
����������
�������

Citation: Werner, Y.; van Hout, T.;

Raja Gopalan, V.S.; Vietor, T. Test and

Validation of the Surrogate-Based,

Multi-Objective GOMORS Algorithm

against the NSGA-II Algorithm in

Structural Shape Optimization.

Algorithms 2022, 15, 46.

https://doi.org/10.3390/

a15020046

Academic Editors: Szymon Łukasik

and Piotr A. Kowalski

Received: 21 December 2021

Accepted: 26 January 2022

Published: 28 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Test and Validation of the Surrogate-Based, Multi-Objective
GOMORS Algorithm against the NSGA-II Algorithm in
Structural Shape Optimization
Yannis Werner 1,*, Tim van Hout 2, Vijey Subramani Raja Gopalan 2 and Thomas Vietor 1

1 Institute for Engineering Design, Technische Universität Braunschweig, Hermann-Blenk-Str. 42,
38108 Brunswick, Germany; t.vietor@tu-braunschweig.de

2 Technische Universität Braunschweig, 38106 Brunswick, Germany; tim.j.vanhout@gmail.com (T.v.H.);
v.raja-gopalan@tu-braunschweig.de (V.S.R.G.)

* Correspondence: y.werner@tu-braunschweig.de; Tel.: +49-531-391-65013

Abstract: Nowadays, product development times are constantly decreasing, while the requirements
for the products themselves increased significantly in the last decade. Hence, manufacturers use
Computer-Aided Design (CAD) and Finite-Element (FE) Methods to develop better products in
shorter times. Shape optimization offers great potential to improve many high-fidelity, numerical
problems such as the crash performance of cars. Still, the proper selection of optimization algorithms
provides a great potential to increase the speed of the optimization time. This article reviews the
optimization performance of two different algorithms and frameworks for the structural behavior of a
b-pillar. A b-pillar is the structural component between a car’s front and rear door, loaded under static
and crash requirements. Furthermore, the validation of the algorithm includes a feasibility constraint.
Recently, an optimization routine was implemented and validated for a Non-dominated Sorting
Genetic Algorithm (NSGA-II) implementation. Different multi-objective optimization algorithms are
reviewed and methodically ranked in a comparative study by given criteria. In this case, the Gap
Optimized Multi-Objective Optimization using Response Surfaces (GOMORS) framework is chosen
and implemented into the existing Institut für Konstruktionstechnik Optimizes Shapes (IKOS) frame-
work. Specifically, the article compares the NSGA-II and GOMORS directly for a linear, non-linear,
and feasibility optimization scenario. The results show that the GOMORS outperforms the NSGA-II
vastly regarding the number of function calls and Pareto-efficient results without the feasibility
constraint. The problem is reformulated to an unconstrained, three-objective optimization problem
to analyze the influence of the constraint. The constrained and unconstrained approaches show
equal performance for the given scenarios. Accordingly, the authors provide a clear recommendation
towards the surrogate-based GOMORS for costly and multi-objective evaluations. Furthermore, the
algorithm can handle the feasibility constraint properly when formulated as an objective function
and as a constraint.

Keywords: multi-objective optimization; NSGA-II; GOMORS; crash optimization; structural opti-
mization; shape optimization; engineering optimization

1. Introduction

A common way to save weight in structural design is to use optimization approaches
in the product development process (PDP) [1,2], such as topology, shape, and size opti-
mization. Certainly, engineers apply the mentioned optimization types in different stages
of the PDP, for instance, the preliminary or conceptual design. Engineers mostly use shape
optimization in all design-relevant stages of the PDP. Primarily, Computer-aided Design
(CAD) and Non-Uniform Rational B-Splines (NURBS)-based approaches vary the geometry
of parts before the geometry is meshed and calculated [3,4]. Especially in automotive
design, complex structures with multiple requirements exist, with crash safety being the

Algorithms 2022, 15, 46. https://doi.org/10.3390/a15020046 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15020046
https://doi.org/10.3390/a15020046
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a15020046
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15020046?type=check_update&version=2


Algorithms 2022, 15, 46 2 of 22

most challenging. Due to decreasing computational cost, crash calculations are state of the
art in the automotive design process regarding the dimensioning of structural components.
Notably, optimizing the Body-in-White (BIW) structures with shape optimization typically
results in costly numerical evaluations. Each evaluated data point represents a linear and,
often, also a non-linear calculation. Hence, the potential of automotive BIW crash opti-
mization strongly depends on optimization algorithms that precisely find a good design
by using a minimum of the expensive function evaluations. For instance, good designs
in a crash are lightweight and fulfill all requirements towards crash safety, package, and
structural stiffness [5–7].

There are different optimization algorithms that assist in minimizing the objective and
constraint functions. Rayamajhi and Hunkeler [8] optimized the mass, energy absorbed,
maximum section force, deflection, and intrusion of a bumper structure under crash load.
Common engineering optimization problems such as crash optimization are black-box
functions. They usually exhibit numerical noise, multimodal behavior, and uncertainties. In
this case, deterministic search strategies cannot be used, as deterministic methods require
the problem to exhibit specific mathematical characteristics. These characteristics are not
given in crash optimization [9,10]. The most common algorithm type, which operates
this optimization problem sufficiently and effectively, are heuristic and metaheuristic opti-
mization approaches. Problems with these approaches arise when black-box evaluations
are costly. In this case, surrogate models can significantly improve the amount of high-
fidelity computer simulations. In particular, this is even more critical for multi-objective
optimization tasks [9]. Indeed, a surrogate model is a mathematical model that provides
cheaper responses to the input–output relationship for computationally expensive jobs [11].
Optimizing BIW components in automotive crashes combines multiple challenges, such
as multimodality, costly functional evaluations for numerical analysis, numerical noise, and
multi-objective target functions. For instance, suitable surrogates and optimization algorithms
play an outstanding role in these optimization tasks [12–14]. Such processes use different
optimization strategies such as Single-Objective Optimizations (SOOs) to handle one and
Multi-Objective Optimizations (MOOs) to handle multiple objective functions [15]. In SOOs,
all objectives and constraints are summed to a single objective function using approaches such
as the weighted-sum-method. The algorithm optimizes only one objective function [16]. At
the same time, MOO algorithms offer a more extensive solution space but lead to a higher
dimensionality of the optimization problem by creating Pareto-efficient designs [15].

During the development process, the main obstacles in BIW design are the strict geom-
etry and design requirements, which need to be considered [17]. Engineering optimization
typically fails to handle these geometry-based constraints during optimization. For this
reason, a new approach for the handling of geometrical constraints in package and design
optimization was implemented in a Python-based framework called IKOS [18] by the au-
thors. The proof of concept for the IKOS configuration used the well-established NSGA-II
algorithm, following [19]. In [20], the authors applied the approach to a more complex and
automotive-relevant preliminary design scenario of a b-pillar. The optimization showed
that the NSGA-II tends to optimize slow and that the use of surrogate models could help
to improve the speed of convergence. Consequently, this article involves selecting and
implementing a surrogate-based optimization algorithm into the existing framework.

The Materials and Methods section gives a broad overview of black-box optimization
algorithms and introduces the most crucial metamodeling and optimization strategies.
The section summarizes criteria towards the performance of the metamodels, defines op-
timization strategies, and ranks the different optimization algorithms by their degree of
criteria fulfillment. A surrogate-assisted framework called GOMORS is selected. Finally,
the section briefly introduces the NSGA-II algorithm and the GOMORS framework to
understand the underlying principles better. The Results section compares the performance
of the NSGA-II to the implementation of the selected GOMORS framework in a compar-
ative study [21]. The optimizations use the implemented b-pillar from [20] as a model.
Furthermore, different load cases are analyzed for both algorithms: a torsional (linear), a



Algorithms 2022, 15, 46 3 of 22

side-impact (non-linear), and the side-impact load case under the geometrical constraint.
Finally, the constraint is changed to an objective function to test different configurations
of the GOMORS. The Discussion section analyzes and classifies the results of the study.
Finally, the Conclusion and Outlook closes the article and gives an outlook on further
possible areas of application of the method.

2. Materials and Methods

For structural optimization in the conceptual and preliminary design, mainly two dif-
ferent types of optimizations are used: topology and shape optimization. Only shape and
size optimization are applied [3]. Accordingly, engineers often perform shape and size opti-
mizations in preliminary and detailed design stages. Both approaches rely on optimizing
possible design parameters of the structure, mostly with heuristics or metaheuristics. Shape
variation uses two main techniques: Mesh- and CAD-based [3,6] processes. CAD-based
processes can be realized with the combination of CAD programs for the geometry and
pre-processors for the mesh-generation and solver-deck setup or with CAD programs with
integrated pre-processor, such as SFE CONCEPT [4,22,23]. In particular, SFE CONCEPT
offers the ability to generate structures quickly and pre-process Finite Element (FE) decks
easily to follow Finite Element Analysis (FEA). Hence, the SFE CONCEPT tool takes over
the design and pre-processing to optimize structural components [18,24,25]. A vector of
design variables (DVs) x describes the geometry variably. The upper xupper and lower xlower

design variable boundaries define the geometrical limits of optimized parts. The response
of the calculated FE simulation leads to the response function, which can be subdivided
into the objective and constraint function, such as mass, intrusion, or stiffness [15]. Ryberg
and Domeij [9] formulate the general form of an optimization problem as:

min
x

f (x)

subject to
g(x) ≤ 0
h(x) = 0

xlower ≤ x ≤ xupper

(1)

Determining the design variables x that minimize the objective function f is the target
of the optimization problem. The vectors g and h represent the inequality and equality
constraints. Each objective and constraint function value depends on the design variables x.
Feasible design points fulfill all constraints, while the design points which fail to comply with
the constraints are infeasible. If the optimization problem has no constraints, it is called an
unconstrained problem, while the contrary is called a constrained problem. If the problem
has more than one objective function, it is called a multi-objective optimization. By the
reformulation of the problem with m objective functions, the following condition results:

min
x

f1(x), . . . , fm(x)

subject to g(x) ≤ 0
(2)

2.1. Surrogate Models and Optimization Methods

From the viewpoint of the optimizer, the system of geometry change, pre-processing,
calculation, and evaluation is a black box. Surrogate models can predict the dependency
of the constraints and objective functions on the input variables. Furthermore, different
coupling methods of surrogates and optimization algorithms exist, classified as decou-
pled, surrogate-driven, and surrogate-assisted methods. Decoupled methods are the most
straightforward approach as combining a surrogate and an optimization algorithm requires
less effort. The surrogate models approximate the target functions, and the optimization
algorithm searches the optima and predicts a good solution. The framework updates the
surrogate model accordingly until it depletes the budget for expensive evaluations. The
surrogate model is intrinsically built into the optimization procedure in surrogate-driven
methods such as Bayesian optimization techniques, which use probabilistic surrogate mod-



Algorithms 2022, 15, 46 4 of 22

els with sequential updates. A rather unpopular approach is surrogate-assisted methods,
where surrogate models support the algorithm in a specific domain, e.g., local search [11].

An extensive range of optimization algorithms is applicable for this kind of problem.
As the behavior response functions are typically highly multimodal and not present in their
mathematical closed form, one needs to use heuristic or metaheuristic approaches for the
optimization [9,26]. Metaheuristics often adopt biological behavior for the optimization of
the target function. Hence, a broad spectrum of different optimization approaches exists,
which allow the optimization of black-box problems in varying disciplines. Paas and
van Dijk [5] compare a Multi-Objective Evolutionary Algorithm Based on Decomposition
(MOEA/D) to an NSGA-II and apply both algorithms to a BIW-optimization task. The
NSGA-II converged faster to the Pareto-frontier and covered a more significant part of
the solution space. The benchmark results of different automotive crash optimizations are
summarized in [7]. The comparison of an Evolutionary Algorithm (EA), Genetic Algo-
rithms (GAs), and Simulated Annealing (SA) for Noise, Vibration, and Harshness (NVH)
in BIW optimization showed that for the GA and EA, the mutation and population size
play an outstanding role, and so do the number of parents and children. Elitism improves
multi-objective optimizations, while non-elitist approaches work well for single-objective
optimizations. Furthermore, the EA outperformed the other algorithms under high noise
and non-linearity. Due to the diversification and good exploration, EAs tend to be very
successful, as they consider the whole solution space in early conceptual design. Indeed,
one should consider the more exploitive algorithm should. All of these metaheuristics
differ in their intensification and diversification [27]. The Bacterial Foraging Algorithm
(BFO) tends to be less performant than the GA, Particle Swarm Optimization (PSO), and
Ant Colony Optimization (ACO) in the scenario of an aeroelastic wing shape optimiza-
tion. Therefore, modified Cooperative Bacterial Foraging Optimization (CFBO) tends to
perform like the mentioned algorithm regarding the optimization performance [28]. Single
algorithms have characteristics of either good exploitation (intensification) or exploration
(diversification). Thus, new approaches arise that combine the benefits of intensification
and diversification by combining different metaheuristics, e.g., presented in [29]. Due to
its simplicity and effectiveness, recent research implemented the NSGA-II into the IKOS
framework. Furthermore, it was validated using two different generic b-pillar structures
under a geometrical constraint [19,30]. Due to the high computational demand of crash
simulations, surrogate models should improve optimization speed [9,12].

The following section reviews frameworks and Python libraries, which use optimiza-
tion algorithms combined with surrogate models. Wang and Chai combine the PSO with
a BFO to form the PSO-BFO algorithm [31]. The algorithm uses a Radial Basis Function
(RBF) surrogate model to optimize the behavior of a full-frontal impact and side impact of
an SFE CONCEPT BIW model. While the PSO tends to have excellent explorative behavior,
the BFO is better for exploitation. Hence, combining both algorithms with a surrogate
improves the structural performance in both crash scenarios. The combined algorithm
outperformed the PSO-GA and the simple PSO and BFO.

Besides the structural applications, different black-box optimization approaches ex-
ist. The following paragraph mentions notable exemplary implementations. Based on
the MOCE+ algorithm, Haber and Beruvides propose the Simple Multi-Objective Cross-
Entropy (SMOCE) algorithm [32]. The algorithm uses elitism clustering by histograms of
the objective functions. One of the main benefits of this algorithm is its robustness and the
low amount of algorithm parameters that makes the algorithm very consistent. The au-
thors performed a comparative study for commonly used test problems with two objective
functions. The study found that the SMOCE outperforms the MOCE+, NSGA-II, MOEA/D,
MOPSO, SPEA-II, and PESA-II for hyper area exploration. The other algorithm may benefit
from a smaller sampling size and generations (epochs); the SMOCE appears suitable for in-
expensive function calls, e.g., analytical functions, as demonstrated in the article. Belakaria
and Deshwal describe the Max-value Entropy Search for Multi-Objective Optimization
(MESMO) with Bayesian Optimization for Network on Chip optimizations in [33]. The



Algorithms 2022, 15, 46 5 of 22

MESMO uses an output-space, entropy-based acquisition function to detect evaluation
points, which leads to the efficient detection of the Pareto-frontier points. The authors
compare MESMO to different Bayes approaches, which are Pareto-efficient global optimiza-
tion (ParEGO), the Predictive entropy search for Multi-objective Bayesian Optimization
(PESMO), S-Metric-Selection-based Efficient Global Optimization (SMSego) expected im-
provement in Pareto hypervolume (EHI), and the probability of improvement in stepwise
uncertainty reduction (SUR). The paper compares all algorithms for the same two syn-
thetic benchmark problems, which combine classical, single-objective benchmark problems.
MESMO outperforms the other algorithms in terms of robustness and convergence.

Another approach is the GOMORS framework, a multi-objective EA that uses RBF-
surrogate models [21]. The EA predicts new function points based on the surrogate model
and generates possible candidates. A few points are selected based on rules, which balance
exploration, exploitation, and frontier diversification. The selected candidates are then
evaluated based on the costly function evaluation. The expensive black-box evaluations
then update the RBF-surrogates, which serve as the foundation for further optimizations
with the EA. Indeed, different embedded EAs have been evaluated, such as the NSGA-II,
MOEA/D, and AMALGAM. The AMALGAM outperformed the other algorithms slightly.
The GOMORS was then directly compared to the ParEGO and NSGA-II on a groundwater
remediation problem and synthetic test functions. The GOMORS topped the ParEGO [34]
and the NSGA-II regarding the effectivity. The authors state GOMORS to find suitable
solutions under a low amount of costly function evaluations.

2.2. IKOS: The Framework

As this article deals with implementing a new optimization algorithm into an ex-
isting optimization framework, the following paragraph briefly introduces the present
implementation. The basic framework and approach are described in [18]. In addition,
an extension of the method and more detailed optimizations are performed in [20]. The
general framework is a Python 3-based implementation for the multi-objective structural
shape and size optimization of linear and non-linear load cases for structural components.
In particular, the framework currently uses SFE CONCEPT as a CAD-modeling tool and as
a pre-processor. The solver OptiStruct calculates the linear load cases, and RADIOSS deals
with the non-linear calculation of the structural components. Both load cases are evaluated
individually or as multidisciplinary optimization. The framework uses the multi-objective
NSGA-II as an optimization algorithm [19]. Again, one can formulate the optimization
problem as a black-box function, wherein the calculation time for the non-linear evaluations
is high and hence costly. The NSGA-II optimized the parts but showed slow convergence
ratios and many function evaluations. Still, the NSGA-II is a robust algorithm for optimiz-
ing a b-pillar under the given geometrical constraint [20]. Furthermore, the framework
allows for the parallelization of the calculations and server support. Hence, the user can
surveil the optimization routine locally while the algorithm performs costly calculations on
a server of choice, as shown in Figure 1.

Figure 2 shows the basic feasibility detection method. The geometrical intersection
is evaluated in ANSA and processed to the framework. The point “Assess Feasibility”
summarizes the unique novelty in the framework, which is the optimization of structural
components under the geometrical constraint.

The infeasible designs are penalized following the general approaches presented in
the articles mentioned above, which the following rule can summarize:

f (x)m =

{
f (x)m, penalty = 0

f (x)m × penalty f actor(penalty), 1 > penalty > 0
(3)



Algorithms 2022, 15, 46 6 of 22

Figure 1. The flowchart of the IKOS framework describes the single process steps of the
optimization process.

Figure 2. (a) shows the b-pillar and hull surface, while (b) shows the b-pillar enveloped by the
hull surface.

If the design x intersects with the boundary surface, the intersecting surface area is
calculated to the penalty factor. Accordingly, the infeasibility factor penalty varies between
zero and one. A design is fully infeasible (penalty = 1) if the hull surface penetrates every
element of the proposed design. The factor penalty turns 0 if the check finds no penetrations.
For every mth objective function, the objective function value is penalized.

2.3. Requirements towards Optimization Algorithms

The missing availability of criteria for choosing a proper optimization algorithm is one
of the fundamental problems for engineers in optimization. Most publications use different
test functions, and the authors validate the algorithms for computationally inexpensive
test functions. Another problem is the number of validated objectives. Furthermore, the
behavior of the black box (multimodality, non-linearity) and requirements from the frame-
work itself (particular environment, e.g., Python 3) need to be considered. Papers and
articles present different measures to choose a suitable optimization algorithm. Hence,
this paragraph briefly reviews the requirements for the well-founded selection of an op-
timization algorithm. Chugh and Sindhya [35] surveyed a wide variety of algorithms;
the authors found that for 45 published algorithms from 2008 to 2016, a maximum of
three objective functions, mainly two, were evaluated. The amount of DVs commonly lies
below 30. Mostly, no time for the training of the surrogate models is mentioned, which is
founded on the argument that the expensive function evaluations are predominant. Still,



Algorithms 2022, 15, 46 7 of 22

training can be a significant factor for large data sets or quick assessment. In addition,
the factors are mainly relative to the other algorithms analyzed in a specific paper: the
following criteria can be formulated considering the efficiency of the algorithms:

• The dimension of the objective and decision space;
• Maximum number of expensive function evaluations;
• Applicable problem characteristics (e.g., multimodality, divided Pareto-frontier).

Hence, the authors summarize that a good algorithm for optimizing black-box func-
tions generates legitimate solutions with few evaluations even for unknown characteristics.
The main questions towards the choice of algorithms are stated in [36], which are:

• Which algorithm deals the best with the problem?
• For which kind of problem can the algorithm be used?

Commonly, both questions can only be answered after testing the algorithm for the
problem. The user’s experience influences the algorithm’s choice, as do the software, licens-
ing, calculation (evaluation) cost, and the maximum time for the optimization. Because of
their discontinuity, the numerical noise, and the multimodal character of crash simulations’
local search strategies are not applicable for multi-objective optimization. Global search
algorithms such as SAs, GAs, and EAs can usually be applied [7], while newer (adaptive)
approaches focus on a balanced behavior of exploration and exploitation [12].

The following section reviews the choice, implementation, and validation of one of
the mentioned algorithms into the IKOS framework.

2.4. Choice of the Optimization Algorithm

The mentioned algorithms are all potential candidates for the optimization problem.
The linear load case does not play an important role, as calculation times are about 30 s.
With 30 min for a simple and more than 12 h for a complex crash calculation, the algorithm
and its efficiency are more important for the non-linear optimization time. From the
survey, and according to the experience with the framework, the following requirements
are suggested:

• Multi-objective optimization algorithm;
• Effective search strategy;
• A limited number of costly function evaluations (e.g., use of surrogates);
• Able to deal with the constraint function;
• Parallelization possible.

As all these criteria are case-dependent and notably hard to evaluate for each opti-
mization algorithm, a pre-selection with a weighted cost–benefit analysis is processed to
choose an optimization algorithm.

Accordingly, the three main criteria for this specific optimization scenario are defined
with the weights:

• Convergence ratio (40%);
• Parallel data evaluation (20%);
• Global search strategy (40%).

The evaluation and ranking of all the algorithms are still subjective, but it helps
quantify and compare the benefits and drawbacks of all algorithms and frameworks.
Appendix A shows the detailed cost–benefit analysis in tabular format. From this analysis,
the GOMORS framework is chosen and used for the following analysis due to its potentially
high convergence ratio, the parallel data evaluation with up to four parallel calculations,
and its global search strategy. Furthermore, GOMORS is already implemented in Python.

Accordingly, the following paragraphs briefly describe the NSGA-II and the GOMORS
to understand both methods better.



Algorithms 2022, 15, 46 8 of 22

2.4.1. NSGA-II Algorithm

The Elitist Nondominated Sorting Genetic Algorithm (NSGA-II) is one of the most
commonly applied GAs in engineering optimization. The main principle of the algorithm is
based on fast, nondominated sorting, with diversity preservation, called crowding distance
sorting. Deb described the NSGA-II initially in [18]. The following paragraph gives a brief
overview of the articles’ implementation.

• Step 0—Define Algorithm inputs: Firstly, the user sets the maximum number of
expensive function evaluations, the number of parents, and the mutation rate.

• Step 1—Initial Evaluation Points Selection: The experimental design is processed using
expensive simulations for a predefined sampling size.

• Step 2—Iterative Improvement: To select the Pareto points of the sampling and iter-
atively optimize the designs, the algorithm repeats the steps of fast, nondominated
sorting, diversity preservation, crossover, and mutation until it reaches the maximum
number of costly evaluations.

• Step 2.1—Fast, Nondominated Sorting: For each design, a domination count,
which represents the number of designs dominating the current design, is set up.
Furthermore, a set of designs, dominated by the current design, is assigned. By
sorting the designs by their domination count, frontiers are built, for which the
most dominating frontiers represent the individuals with the highest potential.

• Step 2.2a—Density Estimation: The method calculates the crowding distance by
the distance of the current solution to its two closest neighbors for each point of
each frontier. It then sorts the designs by their crowding distance.

• Step 2.2b—Crowded Comparison Operator: The method prioritizes designs if
they exhibit a prior nondominated rank. Accordingly, if two designs are in the
same frontier and have the same nondomination rank, it prefers the design in the
less crowded area.

• Step 2.3—Offspring Creation: The initial population based on the sampling is
now sorted according to the mentioned strategies. Then, binary tournament
selection, recombination, and mutation create the offspring population. Finally,
elitism selects a certain percentage of parents.

• Step 2.4—Calculate Responses: Expensive simulations return the demanded
objective function values.

Finally, the procedure is repeated until the maximum number of expensive evaluations
is reached.

The parameter values for the NSGA-II are set by experience. Hence, the number of
parents for each generation is set to 20% of the sampling size. A total of 30% of the created
offspring are mutated for more extensive exploration. Furthermore, the change of the
selected value by mutation is 10%.

2.4.2. GOMORS Framework

Akhtar and Shoemaker [21] implemented the Gap-Optimized Multi-objective Opti-
mization using Response Surfaces (GOMORS) framework. Indeed, GOMORS is a surrogate-
assisted algorithm that uses the response surface method to estimate costly objective func-
tions for the optimization with a GA. GOMORS updates the response surface model with
the points evaluated in parallel. It identifies new, high-potential points in each iteration
for the expensive data evaluation by selection rules based on the surrogate model. The
following steps comprehensively describe the algorithm based on the original article.

• Step 0—Define Algorithm inputs: Firstly, the maximum number of expensive function
evaluations is selected. Furthermore, the gap parameter and the number of costly
evaluations after each iteration are chosen.

• Step 1—Initial Evaluation Points Selection: The experimental design selects the initial
set of points and expensively evaluates the selected points via simulation.



Algorithms 2022, 15, 46 9 of 22

• Step 2—Iterative Improvement: The algorithm runs iteratively until the maximum
number of expensive function evaluations (abort criteria) is reached.

• Step 2.1—Fit/Update the Response Surface Models: The response surface models
fit each objective for the expensively evaluated simulation points.

• Step 2.2—Surrogate-Assisted Global Search: GOMORS uses an MOEA to mini-
mize the objective functions represented by the response surface models, selecting
a set of potential candidates.

• Step 2.3a—Identify Least Crowded Solution: The least crowded design is selected
by calculating the crowding distance of the expensively computed data.

• Step 2.3b—Local Search: The framework uses the least crowded solution as input
for an MOEA-based neighborhood search, based on the response surface models,
called the “Gap Optimization Problem”. It processes the search in the radius of
the initially defined gap parameter around the least crowded solution.

• Step 2.4—Select Points for Expensive Function Evaluation: A candidate selection
is processed based on selection rules, the data sets from the surrogate-assisted
global search, and the local search.

• Step 2.5—Perform expensive function evaluations and update the non-dominated
solution set: The method evaluates candidate points by costly simulations and
updates the response surface model with the data of the candidate points.

• Step 3—Return Best Approximated Front: After the final loop, when the maximum
number of expensive function evaluations is reached, the best non-dominated frontier
is returned.

For further details on GOMORS, the reader is referred to [21]. One problem with the
current version of the GOMORS framework is that it is an implementation in Python 2.7,
incompatible with Python 3.7. Hence, the GOMORS framework was ported to Python 3.7 to
run in the existing IKOS environment. The article provides this modified GOMORS-code via
GitHub [37]. Mainly, it consists of the following changes compared to the implementation
from [21]:

• It uses a symmetric Latin hypercube sampling instead of a Latin hypercube sampling;
• The MOEA of choice is the epsilon-NSGA-II following Kollat and Reed;
• Instead of the hypervolume improvement, the epsilon-progress-based selection is used.

3. Results

The optimization setup was already established and surveyed in recent papers. The
b-pillar has two main load cases: Nastran calculates the linear load case and RADIOSS a
non-linear load case. Accordingly, for the linear and the non-linear load case, the b-pillar
offers multiple objective functions for evaluation. The potential objective functions are the
mass fm(x), the static deflection (torsion) fs(x), the intrusion in the lateral direction fi(x),
and the absorbed energy during the impact fae(x).

The optimization scenario is always multi-objective and can be a multidisciplinary
optimization scenario in the case of the deflection and crash case. Figure 3 shows the two
load cases.

The Nastran load case is torsional and evaluates the stiffness of the b-pillar. The
RADIOSS load case is an impact load case, where an impactor with 15.56 m/s and one ton
of mass hits the b-pillar in the lateral direction. Twenty-four DVs can change the b-pillar.
Eight DVs each control, the outer sheet metal, the inner sheet metal, and the stiffener. Again,
the stiffener is positioned in-between the upper and the lower shell.

The following first two examples compare the performance of the two algorithms
NSGA-II and GOMORS for the linear and non-linear load case for a simple optimization
scenario without infeasibility. The sampling size is 100 members, while the number of
additional evaluations is 100 members. The variation of the b-pillar takes place in the eight
DVs of the stiffener.



Algorithms 2022, 15, 46 10 of 22

Figure 3. The two load cases (linear and non-linear) of the b-pillar, following [18,20].

The stiffener varies by implicit parametrization between the upper and the lower shell,
as shown in Figure 4. Eight sections control the shape and create many possible designs.
By setting the DVs implicitly, no infeasible designs are created. Still, the effort it takes to
develop such an implicit design is very high.

Figure 4. Minimum and maximum configuration of the stiffener sheet metals implicitly parameterized
following [8].

3.1. Linear Load Case Comparison without Infeasibility

The first scenario optimizes the b-pillar performance towards the static torsional load
case and the mass. The challenge is the minimization of both objective functions. Hence,
the unconstrained MOO optimization problem is formulated to:

min
x

fm(x), fs(x) (4)

In Figure 5, the optimization results are displayed, which compares the two objective
NSGA-II optimization runs with the two objective GOMORS optimization runs for the
linear displacement load case. The z-displacement and the mass are normalized to give the
viewer a better understanding of the improvement on the scale by the following formula
for feature scaling:

x′ i =
(

xinit − xi
xinit

)
× 100 (5)



Algorithms 2022, 15, 46 11 of 22

where x′ is the normalized data for the ith data point for the objective function value xi. All
values are relative to the initial design xinit. The weight change is relative to the initial part
for each design, so it excludes the rest of the structure. In this case, the mass of each design
only relates to the initial stiffener design in the first scenario.

Figure 5. Optimization result of the linear load case without any infeasibility constraint for the
NSGA-II and GOMORS. It shows the sampling of both algorithms shaded and the initial design in
green. All values are relative to the weight of the initial sheet metal and initial displacement.

One can see that the GOMORS outperforms the NSGA-II. The GOMORS converges
faster and reaches a Pareto-frontier earlier. Still, due to the conflicting objective functions,
the algorithms strive into the minimum mass, and the structural stiffness decreases. Still,
the GOMORS finds designs that reduce structural weight by 13% while maintaining equal
stiffness. The shape optimization of the stiffener reduces the mass on the component level
by approximately 7%, while the design achieves a minor displacement of 1%. Further
structures lie in the lower left quadrant.

3.2. Non-Linear Load Case Comparison without Infeasibility

Figure 3 also shows the second scenario, the intrusion of the impactor in the b-pillar.
In this scenario, the algorithms minimize the intrusion and the mass. Again, the min–max
feature scaling method is used for the value scaling in Figure 6.

Again, the GOMORS converges significantly faster than the NSGA-II. The NSGA-II
slightly improves the design compared to the sampling points, as multiple iterations lie
in the sampling area. The GOMORS, on the other hand, has a more explorative behavior.
The designs are determined to converge towards the Pareto-frontier. Nearly no points are
in the sampling area. The GOMORS can decrease the weight by 12.5% while maintaining
equal intrusion. The NSGA-II can only reduce the weight by 8% under similar intrusion.
Significant decreases in the intrusion up to 12% are possible, reducing weight by 5%.



Algorithms 2022, 15, 46 12 of 22

Figure 6. Optimization result of the non-linear load case without any infeasibility constraint for the
NSGA-II and GOMORS. The figure shows the sampling of both algorithms shaded and the initial design
in green. All values are relative to the initial sheet metal’s weight and the initial setup’s intrusion.

The preceding paragraphs demonstrate the performance of the GOMORS in comparison
to the NSGA-II for linear and non-linear calculations. Hence, further analysis will only assess
linear calculations due to the high computational resources needed for non-linear calculations.

3.3. Optimization Results for the Linear Load Case with Infeasibility

The third analysis compares the two algorithms for the same b-pillar with two more
design variables and the infeasibility constraint. Figure 7 shows three different configu-
rations of the b-pillar in its thinnest, the initial, and the thickest configuration. The used
design and package-constraint surfaces are the same as in [19]. The stiffener can still vary
between the upper and the lower shell. Furthermore, the design space, representing the
external geometric constraint from package and design, is highlighted in red.

Another problem is the ratio of infeasible designs by the intersecting hull surface,
which reduces the number of calculated designs [18,20]. Accordingly, the sampling size
of actual calculated samples shrinks by a factor of 0.2 for the given sample. The sampling
size is initially set to 1000 members to compensate for that effect. Hence, approximately
200 members are calculated during the optimization; still, the number of design variables
is increased by two, which increases the size of the solution space. The number of iterative
samples is set to 200. Finally, Figure 8. shows the resulting point diagram with the
normalized mass and z-displacement.



Algorithms 2022, 15, 46 13 of 22

Figure 7. The b-pillar for the third scenario. The red line represents the geometric hull surface. The
stiffener can be changed the same way as in the first scenario. Additionally, the thickness of the
b-pillar is variable by the upper and lower shell.

Figure 8. Optimization result of the linear load case with infeasibility constraint for the NSGA-II and
GOMORS. The figure shows the sampling of both algorithms shaded and the initial design in green.
All values are relative to the initial sheet metal’s weight and the initial setup’s intrusion.

The distribution of the samples differs due to the different model setups. Conversely
to the previous optimization runs, the optimization algorithms perform very differently.
The NSGA-II and the GOMORS act pretty similar for the shape optimization task. Both
form an interval of potential candidates but do not converge into a region of ideal design.
For equal mass, both algorithms find solutions, which decrease the displacement by 20%.
For a similar displacement, the max decrease is about 1.5%. Notably, the NSGA-II shows a
slightly better performance than the GOMORS, which the small sampling size could cause.
Both algorithms mostly create feasible designs considering the infeasibility constraint.
The GOMORS creates three infeasible members, and the NSGA-II creates four infeasible



Algorithms 2022, 15, 46 14 of 22

members. Still, both results seem to be insufficient in the improvement of performance.
Hence, a different approach is needed, discussed in the following section.

3.4. Implementation for Surrogate-Based Optimization Schemes

The preceding Sections 3.1 and 3.2 demonstrate that the surrogate-based GOMORS
framework mostly has a superior performance to the NSGA-II in the case of classical shape
optimization. However, penalty factors may cause surrogate models to map the behavior
of the actual physical model poorly. This behavior was already predicted in [20] and is now
validated in Section 3.3 of this article. Hence, the following section tests a second approach
to validate the feasibility of the penalization scheme for surrogate-based processes, which
are represented in this case by GOMORS.

As the unsteady behavior of the penalization scheme may cause an inferior quality
of the surrogate models [20], the penalty is therefore set as the third objective function.
The approach benefits from the lower amount of needed mesh evaluations, as it does not
manipulate the infeasible designs. Still, the number of required calculations increased.
The objective function value of the infeasibility factor f (x) f eas is zero if no infeasibility is
detected, and f (x) f eas is larger than zero if a surface penatration is detected. As GOMORS
performed well on the unconstrained and provided worse results in the constrained ap-
proach, the approach is only validated for GOMORS under consideration of the following
three objective functions: mass fm(x), stiffness fs(x) and feasibility f f eas(x):

min
x

fm(x), fs(x), f f eas(x) (6)

With respect to the preceding optimizations, the sampling size is set to 200, and
the number of iterations is set to 100. Figure 9 shows the Pareto-frontier, which is built
during the optimization. The normalization is relative concerning the initial design, and
it considers the outer sheet metal, the inner sheet metal, and the stiffener. Hence, the
percentage relations are the same as in Figure 9.

Figure 9. The Pareto-frontier for the GOMORS optimization concerning three objective functions:
mass, displacement, and feasibility. All objectives are relative to the initial design.

With the presented optimization setup, only a feasible design outperforms the initial
setup in terms of Pareto-optimality. Still, the improvement is minimal, which means no
increase in terms of mass and ~10% in displacement. Conversely, there are potential lighter



Algorithms 2022, 15, 46 15 of 22

candidates, but they exhibit a more significant static deformation. This lack of potential
candidates may result from the larger solution space (10 DV) and the strong influence of
the outer and inner shell movement on the weight and resulting displacement due to the
feature importance.

The sampling size is increased to 1000 samples to improve the surrogate model quality,
while 200 iterations allow a more detailed optimization run. Furthermore, the number of
design variables is increased to 24. The 16 DVs for the outer and inner shells are activated
to ensure that the influence of the DVs is evenly weighted and that more design freedom
leads to candidates of higher potential. Furthermore, the feasibility approach with penalty
constraint and the feasibility approach with three objective functions are directly compared
for the chosen sampling and the NSGA-II and the GOMORS iterations, as shown in Table 1.

Table 1. The table shows the setup of the different optimization runs for the GOMORS and the
NSGA-II.

Algorithm Sampling Size Nr. Iterations Objective Functions DVs

GOMORS 1000 1000 2 24
NSGA-II 1000 1000 2 24

GOMORS 1000 200 3 24

According to Table 1, the three scenarios are optimized and visualized in the following
paragraphs. Again, the b-pillar is analyzed, but the number of DVs is increased to 24. The
optimization problem can be formulated as:

min
x

fm(x), fs(x)

subject to f f eas(x) = 0
(7)

For a better understanding of the outer shell movement, four possible feasible candidates
are shown in Figure 10. The stiffener can move in between the upper and lower shell, as
presented in Figure 4.

Figure 10. Four possible configurations of the b-pillar controlled by the 16 DVs of the outer shell. The
stiffener is governed by the 8 DVs used in the previous optimizations.

Figure 11 displays the overall performance of the GOMORS three objective implemen-
tation. It plots the third objective function for feasible results beside the performance of the



Algorithms 2022, 15, 46 16 of 22

objective functions mass and displacement. Hence, the yellow circles represent the feasible
results of the optimization run.

Figure 11. The Pareto-frontier for the GOMORS optimization concerning three objective functions
(mass, displacement, and feasibility) plotted over mass and displacement. The yellow dots represent
the feasible iterations.

The figure shows that the mass and displacement can be decreased significantly, while
mostly feasible designs are created. The decrease in mass goes up to 8% for an equal static
deformation, while other candidates exhibit a reduced mass by 5.5% and nearly 10% lower
deformation. The sampling contains almost no feasible designs, but the algorithm produces
mostly feasible designs during the optimization.

Figure 12 shows the convergence of the feasibility for the three other optimization
runs to demonstrate the effectiveness of the different approaches towards the feasibility.
Therefore, it offers the infeasible designs per 10 samples for the sampling and optimization
iterations. The sampling size, as described in Table 1, is 1000.

Figure 12. Feasible designs per 10 samples plotted over the sampling and the iterations of the
optimization algorithms.

Figure 12 shows that infeasible designs are very high in the sampling. After the
sampling, the number of infeasible designs decreases to zero in the case of the constrained
two objective approach. Conversely, the three-objective approach still creates some in-
feasible designs. To visualize the convergence of the algorithms, Figure 13 shows how
the NSGA-II and the GOMORS perform for the given optimization with 24 DVs for the
two-objective constraint approach and the three-objective approach. In the two-objective
approach, the infeasible designs are penalized and not part of the frontier, while in the



Algorithms 2022, 15, 46 17 of 22

three-objective approach, the final designs are all created feasible. For each algorithm, the
frontier only represents feasible designs.

Figure 13. The Pareto-frontier for the GOMORS with two and three objective functions and the
NSGA-II with two objective functions. The performance is relative to the initial design.

One can see that the GOMORS outperforms the NSGA-II. Both GOMORS frontiers
nearly converge equally, while the NSGA-II frontier does not converge this far. For an equal
displacement of 100%, the GOMORS with three objective functions reduces the mass to
92.5%, while the GOMORS with two objective functions reduces the mass to 93.5%. The
NSGA-II, on the other hand, only achieves 95% of the initial mass.

4. Discussion

The presented analysis dealt with implementing the GOMORS optimization algorithm
into an existing framework and its potential to optimize the structural performance of
BIW parts under a geometrical constraint. The results of the structural optimization for a
linear and a non-linear crash-load case are promising, as the GOMORS outperforms the
NSGA-II in terms of convergence ratio. Figures 4 and 5 show that GOMORS reduces the
time for calculation and the number of expensive computations. The second part of the
paper dealt with whether surrogate-based algorithms can handle the feasibility constraint.
This question was successfully answered with Figure 7. The surrogate represents the
model behavior properly so that the optimization converges quickly if the sampling size
is of sufficient size. In [20], the authors tested Random Forrest Regression as a surrogate
model and found that the penalized infeasible sampling’s mean squared error was very
high. Concerning the optimization of the linear load case with infeasibility constraint, this
hypothesis can be partly refuted, as the GOMORS converges much better than the NSGA-II,
which could be reasoned by a higher performance of the RBF surrogate model.

The final test of the GOMORS framework for three-objective optimization analyzes the
performance of the constraining approach by direct penalization of infeasible designs. It
considers the displacement, mass, and feasibility. Firstly, Figure 11 shows the functionality
of the approach as the final frontier only exhibits feasible results, which also show better
structural performance than the initial design. Figure 13 compares the performance of
the two-objective with the three-objective approach. While comparing the two-objective
to the three-objective GOMORS approach, the three-objective approach performs slightly
better in this specific scenario. Furthermore, GOMORS outperforms the NSGA-II for the



Algorithms 2022, 15, 46 18 of 22

24 DV example. The results demonstrate the performance of the GOMORS framework in
comparison to the NSGA-II. Still, one drawback of the GOMORS implementation is the
number of parallel evaluations, which is limited to four, and for the current implemen-
tation, to one. Long calculation runs may benefit a substantial parallelization; a wider
parallelization will make the GOMORS even more performant. It could help to reduce the
time of optimization even further. Even if the convergence ratio of the NSGA-II is lower
than the one of GOMORS, the nearly unlimited scalable parallelization makes it attractive
for cheaper optimization tasks, such as linear calculations. Still, GOMORS may be of benefit
here, as areas that tend to be not explored by the NSGA-II are explored.

5. Conclusions and Outlook

The multi-objective optimization of structural BIW parts, especially with costly crash
calculation, is challenging for standard metaheuristic algorithms, such as the NSGA-II.
Especially when the design is constrained, as in the demonstrated geometric constraint, the
NSGA-II tends to converge slowly and may use many costly evaluations. Implementing
the GOMORS optimization framework into the IKOS framework showed that surrogate-
based frameworks can outperform typical metaheuristic approaches on a large scale, even
concerning constrained objective functions and linear and non-linear calculations. Here, the
method of infeasibility penalization was validated for the GOMORS algorithm and can now
be effectively used for the presented scenarios. Furthermore, the article demonstrated the
importance of choosing influential DVs as a critical factor for the success of optimizations.
The study confirmed that more DVs enable larger improvements in the initial design
proposal, e.g., 7.5% less weight while maintaining equal structural stiffness without any
need for different tooling or manufacturing technologies.

Further research will focus on analyzing the optimization parameter of the GOMORS
framework, for example, the influence of the gap and additional internal parameters, which
have been defaulted in this analysis. Furthermore, the optimization of more complex
non-linear calculations will be of significant interest, mainly non-linear crash calculations of
longitudinal structures. Problems such as bifurcation and high uncertainties occur during
the non-linear calculation for these calculations. This behavior may be a problem for the
radial basis function, failing to handle the significant uncertainties. Here, different surrogate
approaches may be of major interest. In particular, the question should be answered if the
surrogate-assisted process has major benefits compared to classic metaheuristics such as
the NSGA-II [7,19].

At the same time, further applications of the feasibility factor are of significant interest.
The approach could be tested in all domains, where shape optimization is used under geo-
metric constraints, such as structural applications, e.g., automotive chassis components [38]
or aeroelastic analysis for planes [39]. Primary applications tend to be aerodynamics in
planes [40] or preliminary race car design, where large geometrical designs are explored
under strictly regulative design spaces [41].

Author Contributions: Conceptualization, Y.W.; methodology, Y.W.; software, Y.W., V.S.R.G. and
T.v.H.; validation, Y.W. and T.v.H.; formal analysis, T.v.H. and V.S.R.G.; investigation, T.v.H. and
V.S.R.G.; resources, T.V.; writing—original draft preparation, Y.W.; writing—review and editing, Y.W.;
visualization, Y.W.; supervision, Y.W.; project administration, T.V. All authors have read and agreed
to the published version of the manuscript.

Funding: We acknowledge support from the Open Access Publication Funds of Technische Univer-
sität Braunschweig.

Data Availability Statement: The implemented GOMORS for Python 3.7 can be downloaded via the
following link on GitHub [37].

Conflicts of Interest: The authors declare no conflict of interest.



Algorithms 2022, 15, 46 19 of 22

Appendix A

Table 1. Choice of the Optimization Algorithm.

Algorithm/Framework

Ant Colony
Optimiza-

tion
(ACO)

Bacterial Foraging
Optimization

(BFO)

Multi-
Objective

Bees
Algorithm

(Bees)

Cooperative Bacterial
Foraging Algorithm

(CBFO)

Continuous
Genetic

Algorithm
(CGA)

Differential
Evolution for

Multi-Objective
Optimization

(DEMO)

The Expected
Improvement in

Pareto
Hypervolume

(EHI)

Gap-Optimized
Multi-Objective

Optimization
Using Response

Surface
(GOMORS)

Max-Value
Entropy Search

for Multi-
Objective

Optimization
(MESMO)

Approach Metaheuristic Metaheuristic Metaheuristic Metaheuristic Metaheuristic Metaheuristic Bayes Approach Metaheuristic Bayes-
Approach

Source [3,8] [5] [6–8] [3] [3] [6–8] [2] [1] [2]
Criteria

Convergence ratio * (1) - - - - - o + * (2) + * (2), (3) ++ * (2), (4)
Parallelization ? ++ ? ? ++ ? – ++ –

Global search strategy + + + + + ? ++ ++ ++

weighted weight
(%)

Convergence
ratio * (1) 40 0.1 0.1 0.1 0.1 0.1 0.2 0.3 0.3 0.4

Parallelization 20 ? 0.2 ? ? 0.2 ? 0 0.2 0
Global search

str. 40 0.3 0.3 0.3 0.3 0.3 ? 0.4 0.4 0.4

Sum 100 - 0.6 - - 0.6 - 0.7 0.9 0.8

* (1) Time/amount of function calls/evaluations until sufficient convergence [1] Akhtar & Shoemaker (2016)
* (2) Update of the surrogate model necessary [2] Belakaria et al. (2019)
* (3) In comparison to the NSGA-II and parEGO, most efficient [3] Georgiou et al. (2014)
* (4) Faster than the PESMO because of the “input scape entropy-based” approach [4] Paas & van Dijk (2017)
* (5) Enhancements include vectorization and constraint handling [5] Wang & Cai (2018)
* (6) By vectorization of the NSGA-II 8x faster convergence to a similar frontier in comparison to the MOEA/D [6] Yang & Deb (2013)
* (7) Performance is fluctuating [7] Yang (2013)
* (8) Problematic due to premature convergence [8] Yang (2014)

[9] Zhao et al. (2016)
Legend: ++ strongly agree; + agree; o neutral; - disagree; – strongly disagree; ? unknown.



Algorithms 2022, 15, 46 20 of 22

Table 2. Choice of the Optimization Algorithm.

Algorithm/Framework
Multi-Objective
Cuckoo Search

(MOCS)

Multi-Objective
Differential
Evolution
(MODE)

Multi-Objective
Evolutionary

Algorithm-Based
on

Decomposition (MOEA/D)

Multi-Objective
Firefly Algorithm

(MOFA)

Multi-Objective
Flower

Pollination
Algorithm
(MOFPA)

Non-Dominated
Sorting Based

Multi-Objective
Evolutionary

Algorithm (NSGA-II)

Enhanced Nondominated
Sorting Based

Multi-Objective
Evolutionary

Algorithm
(Enhanced NSGA-II)

Pareto-Efficient
Global

Optimization (ParEGO)

Predictive
Entropy Search

for Multi-Objective
Bayesian

Optimization (PESMO)

Approach Metaheuristic Metaheuristic Metaheuristic Metaheuristic Metaheuristic Metaheuristic Metaheuristic Bayes Approach Bayes Approach
Source [6,7] [6–8] [4] [7,8] [8] [1,6–8] [4] [1,2] [2]
Criteria

Convergence ratio * (1) + o - + + - o * (6) o * (2), (7) + * (2)
Parallelization ++ ? ++ ++ ++ ++ ++ – –

Global search strategy + ? o + + + + ++ ++

weighted weight (%)
Convergence ratio * (1) 40 0.3 0.2 0.1 0.3 0.3 0.1 0.2 0.2 0.3

Parallelization 20 0.2 ? 0.2 0.2 0.2 0.2 0.2 0 0
Global search str. 40 0.3 ? 0.2 0.3 0.3 0.3 0.3 0.4 0.4

Sum 100 0.8 - 0.5 0.8 0.8 0.6 0.7 0.6 0.7

* (1) Time/amount of function calls/evaluations until sufficient convergence [1] Akhtar & Shoemaker (2016)
* (2) Update of the surrogate model necessary [2] Belakaria et al. (2019)
* (3) In comparison to the NSGA-II and parEGO, most efficient [3] Georgiou et al. (2014)
* (4) Faster than the PESMO because of the “input scape entropy-based” approach [4] Paas & van Dijk (2017)
* (5) Enhancements include vectorization and constraint handling [5] Wang & Cai (2018)
* (6) By vectorization of the NSGA-II 8x faster convergence to a similar frontier in comparison to the MOEA/D [6] Yang & Deb (2013)
* (7) Performance is fluctuating [7] Yang (2013)
* (8) Problematic due to premature convergence [8] Yang (2014)

[9] Zhao et al. (2016)

Legend: ++ strongly agree; + agree; o neutral; - disagree; – strongly disagree; ? unknown.

Table 3. Choice of the Optimization Algorithm.

Algorithm/Framework Particle Swarm Optimization
(PSO)

Hybrid Particle Swarm
Optimization Incl. Bacterial

Foraging Optimization
(PSO-BFO)

Hybrid Particle Swarm Optimization
Incl. Genetic Algorithm

(PSO-GA)

S-Metric Section-Based Efficient
Global Optimization

(SMSego)

Strength Pareto
Evolutionary Algorithm

(SPEA)

Probability of Improvement in
Stepwise Uncertainty Reduction

(SUR)

Vector Evaluated
Genetic Algorithm

(VEGA)

Approach Methaheuristic Methaheuristic Methaheuristic Methaheuristic Methaheuristic Methaheuristic Methaheuristic
Source [3,5,8] [5,9] [5] [2] [6–8] [2] [6–8]
Criteria

Convergence ratio * (1) - + + + * (2) - + * (2) -
Parallelization ++ ++ ++ ‘– ? ‘– ?

Global search strategy - * (8) + + ++ ? ++ ?

weighted weight (%)
Convergence ratio * (1) 40 0.1 0.3 0.3 0.3 0.1 0.3 0.1

Parallelization 20 0.2 0.2 0.2 0.0 ? 0.0 ?
Global search str. 40 0.1 0.3 0.3 0.4 ? 0.4 ?

Sum 100 0.4 0.8 0.8 0.7 - 0.7 -

* (1) Time/amount of function calls/evaluations until sufficient convergence [1] Akhtar & Shoemaker (2016)
* (2) Update of the surrogate model necessary [2] Belakaria et al. (2019)
* (3) In comparison to the NSGA-II and parEGO, most efficient [3] Georgiou et al. (2014)
* (4) Faster than the PESMO because of the “input scape entropy-based” approach [4] Paas & van Dijk (2017)
* (5) Enhancements include vectorization and constraint handling [5] Wang & Cai (2018)
* (6) By vectorization of the NSGA-II 8x faster convergence to a similar frontier in comparison to the MOEA/D [6] Yang & Deb (2013)
* (7) Performance is fluctuating [7] Yang (2013)
* (8) Problematic due to premature convergence [8] Yang (2014)

[9] Zhao et al. (2016)

Legend: ++ strongly agree; + agree; o neutral; - disagree; – strongly disagree; ? unknown.



Algorithms 2022, 15, 46 21 of 22

References
1. Feldhusen, J.; Grote, K.-H. Pahl/Beitz Konstruktionslehre; Methoden und Anwendung Erfolgreicher Produktentwicklung; Springer:

Berlin/Heidelberg, Germany, 2013.
2. Schumacher, A.; Seibel, M.; Zimmer, H.; Schäfer, M. New optimization strategies for crash design. In Proceedings of the 4th

LS-DYNA Anwenderforum, Bamberg, Germany, 20–21 October 2005.
3. Bletzinger, K.-U. Shape Optimization. In Encyclopedia of Computational Mechanics, 2nd ed.; Stein, E., de Borst, R., Hughes, T.J.R.,

Eds.; John Wiley & Sons: Chichester, UK, 2018; pp. 1–42.
4. Zimmer, H. Erweiterte Knotenfunktionalität im parametrischen Entwurfswerkzeug SFE Concept. FAT 2002, Nr.172, 1–30.
5. Paas, M.H.J.W.; van Dijk, H.C. Multidisciplinary Design Optimization of Body Exterior Structures; Springer: Cham, Switzerland, 2017;

Volume 41, pp. 17–30.
6. Schumacher, A.; Vietor, T.; Fiebig, S.; Bletzinger, K.-U.; Maute, K. Advances in Structural and Multidisciplinary Optimization; Springer

International Publishing: Cham, Switzerland, 2018.
7. Duddeck, F. Multidisciplinary optimization of car bodies. Struct. Multidiscip. Optim. 2008, 35, 375–389. [CrossRef]
8. Rayamajhi, M.; Hunkeler, S.; Duddeck, F. Geometrical compatibility in structural shape optimisation for crashworthiness. Int. J.

Crashworthiness 2013, 19, 42–56. [CrossRef]
9. Ryberg, A.-B.; Domeij Bäckryd, R.; Nilsson, L. Metamodel-Based Multidisciplinary Design Optimization for Automotive Applications;

Linköping University Electronic Press: Linköping, Sweden, 2012.
10. Younis, A.; Dong, Z. Trends, features, and tests of common and recently introduced global optimization methods. Eng. Optim.

2010, 42, 691–718. [CrossRef]
11. Palar, P.S.; Liem, R.P.; Zuhal, L.R.; Shimoyama, K. On the use of surrogate models in engineering design optimization and

exploration. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, New York, NY, USA, 13–17
July 2019; pp. 1592–1602.

12. Vahid, G. Adaptive Search Approach in Multidisciplinary Optimization of Lightweight Structures Using Hybrid-Metaheuristics; Technische
Universität Braunschweig: Braunschweig, Germany, 2020.

13. Rayamajhi, M.; Hunkeler, S.; Duddeck, F.; Zarroug, M.; Rota, L. Robust Shape Optimization for Crashworthiness via a Sub-
structuring Approach. In Proceedings of the 9th ASMO UK/ISSMO Conference on Engineering Design Optimization, Product
and Process Improvement, Cork, Ireland, 5–6 July 2012.

14. Rayamajhi, M. Efficient Methods for Robust Shape Optimisation for Crashworthiness; Technische Universität München: London, UK,
2014.

15. Bäckryd, R.; Ryberg, A.-B.; Nilsson, L. Multidisciplinary design optimisation methods for automotive structures. Int. J. Automot.
Mech. Eng. 2017, 14, 4050–4067. [CrossRef]

16. Yeniay, Ö. Penalty Function Methods for Constrained Optimization with Genetic Algorithms. Math. Comput. Appl. 2005, 10,
45–56. [CrossRef]

17. Malen, D.E. Fundamentals of Automobile Body Structure Design; SAE International: Warrendale, PA, USA, 2020.
18. Werner, Y.; Vietor, T.; Weinert, M.; Erber, T. Multidisciplinary design optimization of a generic b-pillar under package and design

constraints. Eng. Optim. 2021, 53, 1884–1901. [CrossRef]
19. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.

Computat. 2002, 6, 182–197. [CrossRef]
20. Werner, Y.; Thiele, P.; Gopalan, V.S.R.; Vietor, T. From package and design surfaces to optimization—How to apply shape

optimization under geometrical constraints. Procedia CIRP 2021, 100, 548–553. [CrossRef]
21. Akhtar, T.; Shoemaker, C.A. Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates

and multi-rule selection. J. Glob. Optim. 2016, 64, 17–32. [CrossRef]
22. Duddeck, F.; Zimmer, H. New Achievements on Implicit Parameterization Techniques for Combined Shape and Topology

Optimization for Crashworthiness based on SFE CONCEPT. In Proceedings of the Shape and Technology Optimization for
Crashworthiness, Int. Crashworthiness Conf. ICRASH2012, Milano, Italy, 18–20 July 2012; pp. 1–14.

23. Ghaffarimejlej, V.; Türck, E.; Vietor, T. Finding the best material combinations through multi-material joining, using genetic
algorithm. In Proceedings of the European Conference on Composite Materials (ECCM 2016), Munich, Germany, 26–30 June 2016.

24. Rayamajhi, M.; Hunkeler, S.; Duddeck, F. Efficient Robust Shape Optimization for Crashworthiness. In Proceedings of the 10th
World Congress on Structural and Multidisciplinary Optimization, Orlando, FL, USA, 19–24 May 2013.

25. Hillmann, J. On the Development of a Process Chain for Structural Optimization in Vehicle Passive Safety. Ph.D. Thesis,
Technische Universität Berlin, Berlin, Germany, 2009. [CrossRef]

26. Schmitt, B.I. Konvergenzanalyse für die Partikelschwarmoptimierung. In Ausgezeichnete Informatikdissertationen 2015; Gesellschaft
für Informatik: Bonn, Germany, 2015.

27. Yang, X.-S.; Deb, S.; Fong, S. Metaheuristic Algorithms: Optimal Balance of Intensification and Diversification. Appl. Math. Inf.
Sci. 2014, 8, 977–983. [CrossRef]

28. Georgiou, G.; Vio, G.A.; Cooper, J.E. Aeroelastic tailoring and scaling using Bacterial Foraging Optimisation. Struct. Multidiscip.
Optim. 2014, 50, 81–99. [CrossRef]

29. Yang, X.-S.; Deb, S.; He, X. Eagle Strategy with Flower Algorithm. In Proceedings of the 2013 International Conference on
Advances in Computing, Communications and Informatics (ICACCI), Mysore, India, 22–25 August 2013; pp. 1213–1217.

http://doi.org/10.1007/s00158-007-0130-6
http://doi.org/10.1080/13588265.2013.832720
http://doi.org/10.1080/03052150903386674
http://doi.org/10.15282/ijame.14.1.2017.17.0327
http://doi.org/10.3390/mca10010045
http://doi.org/10.1080/0305215X.2020.1837791
http://doi.org/10.1109/4235.996017
http://doi.org/10.1016/j.procir.2021.05.118
http://doi.org/10.1007/s10898-015-0270-y
http://doi.org/10.14279/DEPOSITONCE-2190
http://doi.org/10.12785/amis/080306
http://doi.org/10.1007/s00158-013-1033-3


Algorithms 2022, 15, 46 22 of 22

30. Deb, K. An Evolutionary Many-Objective Optimization Algorithm Using Reference-point Based Non-dominated Sorting Ap-
proach, Part I: Solving problems with Box Constraints. IEEE Trans. Evol. Comput. 2013, 18, 577–601. [CrossRef]

31. Wang, D.; Cai, K. Multi-objective crashworthiness optimization of vehicle body using particle swarm algorithm coupled with
bacterial foraging algorithm. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2018, 232, 1003–1018. [CrossRef]

32. Haber, R.E.; Beruvides, G.; Quiza, R.; Hernandez, A. A Simple Multi-Objective Optimization Based on the Cross-Entropy Method.
IEEE Access 2017, 5, 22272–22281. [CrossRef]

33. Belakaria, S.; Deshwal, A.; Doppa, J.R. Max-value Entropy Search for Multi-Objective Bayesian Optimization. In Proceedings of
the International Conference on Neural Information Processing Systems (NeurIPS), Vancouver, BC, Canada, 8–14 December 2019.

34. Knowles, J. ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization
problems. IEEE Trans. Evol. Comput. 2006, 10, 50–66. [CrossRef]

35. Chugh, T.; Sindhya, K.; Hakanen, J.; Miettinen, K. A survey on handling computationally expensive multiobjective optimization
problems with evolutionary algorithms. Soft Comput. 2019, 23, 3137–3166. [CrossRef]

36. Yang, X.-S. Nature-Inspired Optimization Algorithms; Elsevier: Amsterdam, The Netherlands, 2014.
37. Raja Gopalan, V.S.; Werner, Y.; van Hout, T. GOMORS Implementation in Python 3.7 Using Pysot Package. Available online:

https://github.com/Vijey-Subramani-Raja-Gopalan/GOMORS_Python3.7_PYSOT0.2.0/tree/v1.0.1 (accessed on 27 January
2021).

38. Georgios, K. Shape and parameter optimization with ANSA and LS-OPT using a new flexible interface. In Proceedings of the 6th
European LS-DYNA Conference, Gothenburg, Sweden, 28–30 May 2007.

39. Cavagna, L.; Ricci, S.; Riccobene, L. A Fast Tool for Structural Sizing, Aeroelastic Analysis and Optimization in Aircraft Conceptual
Design. In Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
Palm Springs, CA, USA, 4–7 May 2009; p. 05042009.

40. Skinner, S.; Zare-Behtash, H. State-of-the-art in aerodynamic shape optimisation methods. Appl. Soft Comput. 2018, 62, 933–962.
[CrossRef]

41. Katz, J.J. Race-Car Aerodynamics; McGraw-Hill Professional: Cambridge, MA, USA, 2015.

http://doi.org/10.1109/TEVC.2013.2281535
http://doi.org/10.1177/0954407017724636
http://doi.org/10.1109/ACCESS.2017.2764047
http://doi.org/10.1109/TEVC.2005.851274
http://doi.org/10.1007/s00500-017-2965-0
https://github.com/Vijey-Subramani-Raja-Gopalan/GOMORS_Python3.7_PYSOT0.2.0/tree/v1.0.1
http://doi.org/10.1016/j.asoc.2017.09.030

	Introduction 
	Materials and Methods 
	Surrogate Models and Optimization Methods 
	IKOS: The Framework 
	Requirements towards Optimization Algorithms 
	Choice of the Optimization Algorithm 
	NSGA-II Algorithm 
	GOMORS Framework 


	Results 
	Linear Load Case Comparison without Infeasibility 
	Non-Linear Load Case Comparison without Infeasibility 
	Optimization Results for the Linear Load Case with Infeasibility 
	Implementation for Surrogate-Based Optimization Schemes 

	Discussion 
	Conclusions and Outlook 
	Appendix A
	References

