
����������
�������

Citation: Ma, Y.; Xu, X.; Yan, S.;

Ren, Z. A Preliminary Study on the

Resolution of Electro-Thermal

Multi-Physics Coupling Problem Using

Physics-Informed Neural Network

(PINN). Algorithms 2022, 15, 53.

https://doi.org/10.3390/a15020053

Academic Editor: Devendra Kumar

Received: 27 December 2021

Accepted: 30 January 2022

Published: 1 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A Preliminary Study on the Resolution of Electro-Thermal
Multi-Physics Coupling Problem Using Physics-Informed
Neural Network (PINN)

Yaoyao Ma 1,2,3 , Xiaoyu Xu 4 , Shuai Yan 4 and Zhuoxiang Ren 4,5,*

1 Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; mayaoyao@ime.ac.cn
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Beijing Key Laboratory of Three-Dimensional and Nanometer Integrated Circuit Design Automation

Technology, Beijing 100029, China
4 Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China;

xuxiaoyu@mail.iee.ac.cn (X.X.); yanshuai@mail.iee.ac.cn (S.Y.)
5 Group of Electrical and Electronic Engineering of Paris, Sorbonne Université, Université Paris-Saclay,

CentraleSupélec, CNRS, 75005 Paris, France
* Correspondence: zhuoxiang.ren@upmc.fr

Abstract: The problem of electro-thermal coupling is widely present in the integrated circuit (IC).
The accuracy and efficiency of traditional solution methods, such as the finite element method (FEM),
are tightly related to the quality and density of mesh construction. Recently, PINN (physics-informed
neural network) was proposed as a method for solving differential equations. This method is mesh
free and generalizes the process of solving PDEs regardless of the equations’ structure. Therefore,
an experiment is conducted to explore the feasibility of PINN in solving electro-thermal coupling
problems, which include the electrokinetic field and steady-state thermal field. We utilize two
neural networks in the form of sequential training to approximate the electric field and the thermal
field, respectively. The experimental results show that PINN provides good accuracy in solving
electro-thermal coupling problems.

Keywords: electro-thermal coupling; deep learning; physics-informed neural network; PDEs

1. Introduction

The resolution of multi-physics problems comes down to the computation of partial
differential equation (PDE) solutions. General numerical methods for handling PDEs
include the finite element method (FEM), the finite difference method (FDM), the finite
volume method (FVM), etc. All these methods require a discrete representations of the
domains and utilize interpolation functions to obtain the solution not on the discrete set.
The discretization represents the domain well for low-dimensional problems, but not
for high-dimensional ones, as the number of elements increases exponentially with the
dimensionality. In addition, these methods only solve the PDEs at discrete points, and thus
require interpolation or slope behavior for other points or other fields; this property makes
the solution of the state variables at the interpolated points less accurate [1], particularly
the derivatives of the state variables.

Deep learning has recently achieved great success in the fields of science and busi-
ness [2–4]. Due to these advances, many scientists have been working to embrace deep
learning in the computation of physical problems. Most of these studies are data driven [5,6],
which learn certain corresponding relationships between the input data and the output data,
and then output corresponding predictions for the new input data. The correspondence
is usually unknown and not obvious; hence, it requires a large amount of training data
to learn, and that may be arduous. Furthermore, the training process is usually more like
a “black box,” and the hidden layers’ physical meanings are still unknown, making the
network training time consuming. To alleviate this drawback, loss functions, which are

Algorithms 2022, 15, 53. https://doi.org/10.3390/a15020053 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15020053
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-4901-3534
https://orcid.org/0000-0002-9130-9657
https://doi.org/10.3390/a15020053
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15020053?type=check_update&version=2

Algorithms 2022, 15, 53 2 of 15

used to determine the error between the output of neural network and a given target value,
are embedded with some physical constraints. The deep learning training process could be
directed to minimize the governing equations’ residual. Physical constraints can compen-
sate for the lack of data so that less training data are needed to approximate the solution
of the equation. This idea of physically constrained deep learning dates back to the 1990s
[7–9]. Owing to NVIDIA’s breakthrough in GPU computing and the perfection of deep
learning theory, this idea was recently revived. Sirignano et al. [10] proposed a mesh-free
deep Galerkin method (DGM) based on deep learning, and solved high-dimensional PDEs,
including the Hamilton–Jacobi–Belllman PDE and the Burgers’ equation. Wang et al. [11]
and He et al. [12] leveraged deep neural networks to solve interface problems in domains
with multiple materials. Berg et al. [13] focused on the approximation of PDEs with complex
geometries. Ovcharenko et al. [14] utilized deep learning to predict low frequency seismic
data. Sun et al. [15] proposed a ML-decent method to learn the optimization algorithm
and applied it to full-waveform inversion problem.

Recently, Raissi et al. [16] formulated a deep learning method under physical con-
straints as the physics-informed neural networks (PINNs), which makes the neural network
an interpretable optimization problem. With the concept of automatic differentiation, spa-
tial and temporal coordinates’ partial derivatives can be conveniently calculated using
the weights and bias of the network, and then are included in the loss function [17].
Additionally, this method has the advantages of being mesh free and being usable for
solving PDEs regardless of the equations’ structure or even their complexity [18]. More-
over, the training points can be randomly sampled from the domain of interest, and less
training data samples are required, compared with data-driven methods, avoiding the
curse of dimensionality. The trained neural network is an analytical approximation of
the latent solution, and hence, no interpolation is required for the solution at new input
points [1], and further computation of derivatives, such as gradients, is convenient and
smooth. Raissi employed PINN to solve one-dimensional Burger partial differential equa-
tions and the inverse problem of 2D/3D PDEs. After that, research works based on the
PINN mushroomed. Jagtap et al. [19,20] proposed a parallel calculation method, which
decomposes the domain into a few subdomains, then uses separate networks to represent
each subdomains’ function. Song et al. [21] leveraged PINN to solve the frequency-domain
wave equation and introduced an adaptive sinusoidal activation function to improve the
training performance. Lu et al. [22] developed a Python toolkit based on Tensorflow, which
is named DeepXDE and integrates the application of the PINN. Fang et al. [23] studied
the three-dimensional time-independent surface problem. Hu et al. [24] researched the
two-dimensional waveguide problem governed by the Helmholtz equation and estimated
the unknown wave number with the help of PINN. Alkhalifah et al. [25] utilized PINN to
predict the scattered wavefield function. Bin Waheed et. al. [26] used PINN to solve the
nonlinear Eikonal equation and demonstrated the transfer learning possibilities of PINN.
Guo et al. [27] verified PINN’s ability in solving the wave equation, the KdV–Burgers
equation, and the KdV equation. In addition, PINN was also applied to the uncertainty
quantification problem [28,29] and the atomic simulation of materials [30].

Since the introduction of PINN, only few have worked on the computation of multi-
physics problems [31]. In this article, we propose to use the PINN to solve a Joule heating
problem, which consists of a coupling problem of the electrokinetic field and steady-state
thermal field. The study is carried out with the help of the deep learning framework,
PyTorch. To compute the electric field or the current density at a point of the domain,
the calculation of the gradient of the state variable, i.e., the electric scalar potential, is
needed. The automatic differential function of PyTorch makes the computation convenient
for this solution. Therefore, PINN has the capability of handling the electro-thermal
coupling problem. To explore the feasibility and effectiveness of this method, we employ
two neural networks to approximate those two fields, namely the steady electric field and
steady-state thermal field, and then combine them with a sequential coupling.

Algorithms 2022, 15, 53 3 of 15

The rest of the paper is organized as follows. Section 2 recalls the idea behind the PINN
framework and presents the method we use for applying PINN on electro-thermal analysis.
Section 3 utilizes a concrete case to solve the electro-thermal coupling problem. Then, we
compare the accuracy and continuity of the gradient field between the first-order FEM and
the PINN. Section 4 discusses the experimental results and provides some prospects for
future work. Section 5 concludes this work.

2. Materials and Methods

In this section, we first introduce the principle of the deep neural network (DNN),
followed by an overview of PINN.

2.1. DNN

DNN is a form of multi-layer perceptrons, which can be interpreted as universal
function approximators [32]. The DNN consists of L layers and an input vector called the
input layer, wherein L layers include L− 1 hidden layers, and the Lth layer is the output
layer. We let NL : RCi → RCo denote a deep neural network of L layers, where Ci and Co
denote dimensions of the input vector and output vector, respectively, and Nk (1 ≤ k ≤ L)
denotes neurons in kth layer (NL = Co). Let Wk ∈ RNk×Nk−1 and bk ∈ RNk denote the
weight matrix and bias vector of the kth layer, respectively. The activation function in the kth

layer is denoted by σk(·), regardless of its type. Commonly used activation functions are
Sigmoid, ReLu, Tanh, etc. After the kth hidden layer receives an input vector zk−1 (z0 = x),
it multiplies the vector with the weight matrix Wk, and then adds it to the bk. If k is equal
to L, the result is output directly; otherwise, an activation function is applied to the result
and then passed to the next layer. In summary, the feed-forward process of DNN is given
in Equation (1). The first hidden layer’s input vector is x and output is z1; the rest of the
hidden layers will have an input zk−1 (2 ≤ k ≤ L− 1) and output zk. For the regression
task, the last layer usually does not require an activation function, and the Lth layer takes
in zL−1, and outputs y, as follows.

z1 = σ1(W1x + b1),

z2 = σ2(W2z1 + b2),

... (1)

zL−1 = σL−1(WL−1zL−2 + bL−1),

y = WLzL−1 + bL.

Figure 1 shows the basic structure of DNN. In DNN, the hyperparameters are a set of
parameters used to control the learning process, e.g., the number of hidden layers and the
number of neurons in each layer.

Figure 1. A basic schematic representation of DNN, which is composed of an input layer along with
data x = [x1, . . . , xN]T ∈ RN , an output layer y = [y1, . . . , yM]T ∈ RM and hidden layers.

Algorithms 2022, 15, 53 4 of 15

2.2. PINN

Machine learning is able to act as a surrogate model, discovering the potential relations
between the input and output, classifying various images, and predicting system responses
under different conditions [33]. Most methods that are based on machine learning for
solving PDEs are data driven and do not consider any physical constraints [27]. Hence,
a great amount of data is often required to train the model. Preparing training data in
advance is undoubtedly an arduous process. On the contrary, PINN introduces physical
constraints and reformulates solving equations as an optimization problem, which reduces
the amount of required data, alleviates overfitting issues, and therefore improves the
robustness of the trained model [34].

The following describes the formulation of PINN for solving general PDEs. Consider-
ing the following PDE with a boundary condition

Lu(x) = f (x), x ∈ Ω, (2)

u(x0)|Γ = B(x0), Γ ⊂ ∂Ω. (3)

where u(x) denotes the solution to this PDE, L(·) is a differential operator, f (x) is a forcing
function, and Ω represents the domain of interest, ∂Ω is a symbol of all boundaries. Γ
denotes specific boundary where the boundary condition is imposed.

As mentioned previously, we can approximate the solution of PDEs by DNNs. The
essence of PINN is to use the PDE as a loss function for the optimization. All NN training
requires an optimization process. Figure 2 graphically introduces the structure of PINN.
The input data x is a set of randomly sampled points from the domain and boundaries.
After obtaining the loss function value, we will judge both the loss value and the iteration
value to determine whether to enter the next step. ε denotes the cut-off threshold of loss
value, and it refers to the maximal iteration number. Once the loss value is less than
the threshold ε, or the iteration is greater than the maximal number it, then the training
will end. With the help of PyTorch’s automatic differentiation module, we can obtain the
output’s partial derivatives of any order. Consequently, it simplifies converting the network
output into a governing equation format. We let Θ = {W1, W2, . . . , b1, b2, . . .} ∈ V be a set
of trainable parameters, i.e., all the layers’ weights Wk and biases bk (1 ≤ k ≤ L), where V
denotes the parameter space. We also let u(x; Θ) denote the output function of PINN. The
loss function J(Θ) can be defined as [16].

J(Θ) = MSEF + MSEB, (4)

MSEF =
1

N f

N f

∑
i=1
|Lu(xi

f ; Θ)2, (5)

MSEB =
1

NB

NB

∑
i=1
|ui − u(xi

B; Θ)|2. (6)

Equation (5) denotes the governing equation constraint, and Equation (6) is the bound-
ary condition constraints, where N f and NB are the number of domain samples and
boundary samples, respectively. xi

f denotes the sampling points in the domain, ui denotes

the target outputs, and xi
B denotes the sampling points on the boundaries. Unless the

value of J(Θ) converges to zero, we end up with an approximation of the PDE’s solution.
By adjusting the training parameters Θ to minimize the loss function, we seek to find the
optimal parameters Θ∗ that satisfy the following condition.

Θ∗ = arg min
Θ∈V

J(Θ). (7)

Algorithms 2022, 15, 53 5 of 15

Figure 2. A schematic plot of PINN.

The optimization of the loss function depends on the backpropagation and optimizer.
Common optimizers include SGD, Adam, and L-BFGS. Furthermore, to satisfy the bound-
ary conditions, there currently are two methods, namely the “soft” and the “hard” boundary
conditions. The “soft” boundary condition method is more commonly used since it embeds
the boundary conditions into the loss function directly without recourse to preprocessing;
“hard” constructs a particular solution function which is usually used to automatically
satisfy the Dirichlet boundary conditions, thereby making the optimization more efficient
[13]. In addition, it reduces the number of training points required because we only need
to sample points from the inside of the domain and from the boundaries where the “soft”
condition is applied, thus reducing the training cost [1,35]. The corresponding ansatz for
the solution with a “hard” boundary condition is

û(x; Θ) = G(x) + D(x)u(x; Θ). (8)

where G(x) denotes a smooth extension function, which satisfies the Dirichlet boundary
condition, D(x) is a smooth distance function that gives the distance from x ∈ Ω to
Γ, and û(x; Θ) represents the new output function designed to automatically fulfill the
Dirichlet constraints based on the raw output u(x; Θ). Since the Dirichlet boundary can be
automatically satisfied, it is no longer considered in the loss function. Nevertheless, it is
still necessary to train for the Neumann boundary and Robin boundary terms by adding
the boundary constraints to the loss function.

2.3. PINNs for the Electro-Thermal Coupling Problem

In this section, we introduce the principle of solving a two-dimensional electro-thermal
coupling problem with PINNs. The electrokinetic field problem seeks to find the electric
field or current density distribution in a conducting region. The problem can be described
by the electric scalar potential in the form of the Laplace equation. Considering u(x, y) as
the space distribution of the electric potential, σ denotes the electric conductivity, ∂u/∂n
denotes the normal derivative of u along the outward direction of the Neumann boundary
ΓN , B(x, y) is the given value of u on the Dirichlet boundary ΓD , and u(x, y) satisfies the
following partial differential equation and boundary conditions:

∇ · σ∇u(x, y) = 0, (9)

∂u(xN , yN)

∂n
|ΓN = 0, (10)

u(xD, yD)|ΓD = B(x, y). (11)

Algorithms 2022, 15, 53 6 of 15

The electric current generates Joule heat, which causes the temperature change of the
conductor. The calculation formula for Joule heat Q at each point is

Q = J · E. (12)

where J denotes the electric current density and E the electric field, which is expressed as
E = −∇u. The constitutive equation is given by

J = σE. (13)

The thermal field induced by the Joule heat is in the form of steady-state heat
conduction. Considering T as the spatial temperature distribution, k as the thermal
conductivity, and Q as representing the Joule heat source, which can be computed by
Equations (12) and (13), the governing equation and boundary condition is given by

−∇ · k∇T(x, y) = Q, (14)

T(xD, yD)|ΓD = T0. (15)

where T0 is set to 273K.
To handle the electro-thermal coupling problem, we employ two PINN networks to

approximate solutions separately and train the networks in a sequential manner. The flow
chart is shown in Figure 3, both of the two neural networks’ inputs are the same sampling
points, and the outputs are the electric scalar potential and the temperature, denoted by
u and T, respectively. The corresponding loss functions of those two problems are listed
below. Since we employ the “hard” boundary condition method here, the loss function for
the Dirichlet boundary is eliminated. Equations (16) and (17) denote the PDE constraint and
Neumann boundary constraint of the steady electric field problem, respectively. û(xi

f , yi
f ; Θ)

denotes the output of PINN corresponding to the domain sample points, and û(xi
N , yi

N ; Θ)
represents the output of the Neumann boundary sample points.

MSEF =
1

N f

N f

∑
i=1
| ∂

∂x
(σ

∂û(xi
f , yi

f ; Θ)

∂x
) +

∂

∂y
(σ

∂û(xi
f , yi

f ; Θ)

∂y
)|2, (16)

MSEB =
1

NB

NB

∑
i=1
|
∂û(xi

N , yi
N ; Θ)

∂n
|2. (17)

Equation (18) is the PDE constraint of the thermal field problem. T̂(xi
f , yi

f ; Θ) is the
output of PINN corresponding to the temperature domain sample points. No MSEB term
is needed since the thermal field problem only has Dirichlet boundary conditions.

MSEF =
1

N f

N f

∑
i=1
|(∂

∂x
(k

∂T̂(xi
f , yi

f ; Θ)

∂x
) +

∂

∂y
(k

∂T̂(xi
f , yi

f ; Θ)

∂y
) + Q|2. (18)

Firstly, we train the neural network of the steady electric field problem, where the
loss function is embedded with the governing equation and boundary conditions of
Equations (9)–(11). When the loss function drops below a designated cut-off threshold or
when the iteration reaches a specified number, the PINN training ends. Subsequently, we
calculate the gradient of u to obtain the distribution of the electric field and the current den-
sity and then compute the Joule heat source based on the former results. The heat source is
passed to the next PINN network to approximate the thermal field Equations (14) and (15).
It can be noticed that in both PINNs, the “hard” condition is applied for the Dirichlet
boundary conditions. After the same flow of work, we finally obtain both the electric field
and thermal field’s distributions.

Algorithms 2022, 15, 53 7 of 15

Figure 3. The flow diagram of electro-thermal coupling computation based on PINN.

3. Experiments and Results
3.1. Electro-Thermal Coupling Problem

In this section, the two deep neural networks whose loss functions are defined in
Equation (4) are employed to study the electro-thermal coupling issue. The governing equa-
tions and boundary conditions of the electrokinetic problem are defined in Equations (9)–(11),
and counterparts of the thermal problem are defined in Equations (14) and (15). The deep
learning framework we choose is PyTorch. The configuration of the computer is Intel Core
i7-9750H for CPU, Nvidia GTX1660Ti 6G for GPU, with 16 GB RAM. We use PyTorch’s
automatic differentiation [36] to establish the governing equations and the Neumann bound-
ary constraints.

A Rectangle Electro-Thermal Coupling Problem

We choose a model of a square geometry [−0.5, 0.5] × [−0.5, 0.5] m2. As a proof
of concept, here, we take the electric conductivity and thermal conductivity as isotropic
scalars, and we set σ = 1 S/m and k = 1 W/(m · K). The sample results are shown in
Figure 4. There are 100 sample points in the domain for both the electric and thermal
field problems. Each field has different boundary conditions; for the steady electric field,
the upside border of the model is applied to a voltage of 1 V, while the downside border is
grounded and the Neumann boundary condition is applied to the lateral lines. Since we use
the “hard” boundary method to process the Dirichlet boundary condition, the upper and
lower boundaries do not need to be sampled for the electric field problem. As a result, only
40 points on the two lateral boundaries are sampled for the electric field problem. While
for the thermal field, all the boundaries are Dirichlet boundaries, their boundary conditions
are also automatically satisfied by the “hard” boundary method, and hence, there is no
need to sample on these boundaries. The points in the inner region are sampled by the
Latin hypercube sampling method [37], and the boundary data are sampled randomly in a
uniform distribution.

Algorithms 2022, 15, 53 8 of 15

(a) (b)

Figure 4. Sample points: (a) for the electric field problem; (b) for the thermal field problem.

For our study, the electrokinetic field’s governing equation is the Laplace equation.
Here, we construct a “hard” boundary model adapted to the geometry and boundary
conditions. The smooth extension function G(x,y) and the smooth distance function D(x,y)
defined in Equation (8) are specifically defined as follows, respectively.

G(x, y) = y + 0.5, (19)

D(x, y) = (0.52 − y2). (20)

After the “hard” boundary condition is applied, since we treat the electric conductivity
as isotropic scalar, the final PDE expressions of the electric field problem based on the raw
NN output u(x, y; Θ) are given by

−σ(u∇2D + 2∇D∇u + D∇2u +∇2G) = 0. (21)

Since the Dirichlet boundary is compulsorily satisfied, the loss term of the steady
electric field network model only includes governing equations and constraints of the
Neumann boundaries.

When the training of the electric field is over, we can obtain a satisfactory electric
field solution; then, the Joule heat is calculated according to the obtained result. Next,
the heat source data are transferred to the thermal field to continue the calculation. For the
heat conduction equation, we also construct “hard” boundary conditions. Since we set the
temperature on the boundaries to 273 K, we have G(x, y) = 273. The distance function is
given by

D(x, y) = (x2 − 0.52)(y2 − 0.52). (22)

Similarly, the final PDE expression of the thermal field problem based on the raw NN
output T(x, y; Θ) is given by

−k(T∇2D + 2∇D∇T + D∇2T +∇2G) = Q. (23)

Two separate PINNs are employed to approximate the steady electric field and the
thermal field, respectively. After parameter tuning of the neural network, we can obtain a
well-trained model. For both neural networks, we choose 6 hidden layers with 20 neurons
in each layer. The activation function we select is Tanh, the optimization algorithm is
Adam [38], and the initial learning rate of both networks is lr = 1× 10−2. For training
data, we utilize full batch size. Moreover, we set the cut-off threshold of the loss function as
1× 10−5 and the maximum number of epochs at 20, 000, that is, when the neural network
training meets any of these two conditions, the training ends. Weights and biases of the
neural network usually need to be initialized by some initialization methods. Here, we
choose a widely used method: Xavier initialization [39]. Based on the experiment results,
the number of epochs need for the two field problems are 1108 for the steady electric field,

Algorithms 2022, 15, 53 9 of 15

and 1182 for the heat conduction field. The lowest loss function values and the spent time
of each neural network training are displayed in Table 1. We can notice that because of
the non-homogeneous distribution of the thermal field, the learning of the temperature
distribution is more difficult than the electric field.

Table 1. The lowest loss values and the time consumed in each training.

Property Steady Electric Field Thermal Field

Lowest Loss 9.97 × 10−6 9.84 × 10−6

Time(s) 101 109

Our training results are shown in Figure 5. We use the FEM results as the reference
solutions to evaluate the training accuracy. The FEM results, shown in Figure 6, are obtained
with a mesh of 6592 points and the CPU time of 0.87 s.

(a) (b)

Figure 5. Results of our PINN networks: (a) the electric potential (V); (b) the temperature (K).

(a) (b)

Figure 6. Result of the FEM: (a) the electric potential (V); (b) the temperature (K).

In order to further compare the difference between our training results and the refer-
ence solutions, Figure 7 shows the absolute error distributions between the PINNs solutions
and the reference solutions. The relative errors are below 4× 10−4 for both problems. We
can conclude that DNN’s training results are in good agreement with those calculated
by FEM; however, the large computation time of DNN as compared to that of FEM is an
apparent shortcoming that needs to be improved.

Algorithms 2022, 15, 53 10 of 15

(a) (b)

Figure 7. The absolute error between the PINN result and the FEM results: (a) the electric potential
(V); (b) the temperature (K).

3.2. The Comparison between FEM and PINN

The trained PINN could be viewed as an analytical approximation of the latent
solution; hence, for further exploration, such as the derivatives of state variables such as
the gradient manipulation, the PINN can do this analytically and easily [1]. This advantage
makes post-processing operations convenient. In addition, PINN does not need to be
retrained to solve the solution and its gradient at the new sampling points. Hence, we can
obtain a smooth derivative distribution. However, for FEM, the differential equations can
only be solved at discrete points; when utilizing the first-order FEM to compute the state
variables’ gradients, such as the field strength, the value inside the element is constant and
discontinuous at the elements’ interfaces. Therefore, for FEM, the solution state variables’
gradients are less accurate.

To compare the accuracy and the continuity of the gradient field calculated by FEM
and by PINN, respectively, we choose an equation, which has an analytical solution.
The research domain is a square of [0, 1] × [0, 1] m2, and the PDE is given by

−∇2u = 2π2 sin πx sin πy, (24)

u|∂Ω = 0. (25)

the analytical solution is
u(x, y) = sin πx sin πy. (26)

We first discretize the model, acquire the solutions of the scalar potential on the
nodes by first-order FEM, and then calculate the gradient inside every element. The mesh
diagram is shown in Figure 8a, where the number of grid nodes is 983. In order to facilitate
the comparison and the illustration, we compute the gradient module value on the line
y = 0.2 as illustrated by the horizontal solid line in the picture. Figure 8b shows the gradient
modulus comparison between the first-order FEM and the analytical solution. It can be seen
that for the FEM, the gradient modulus distribution of the scalar potential is discontinuous
along the line; this is because the gradient modulus obtained by the first-order FEM is
constant per element.

Secondly, we utilize PINN to solve the equation. After tuning the deep learning
parameters, we choose the number of sample points to be 1000, the number of layers to
be 2, and for there to be 60 neurons for each hidden layer. The activation function and
optimization function we select are the same as in the previous section, while the learning
rate is lr = 5× 10−3. We set the maximum number of epochs as 20, 000 and the cut-off
threshold for the loss function as 1× 10−3. Finally, the training time is 78 s, the training
takes 1166 epochs, and the lowest loss value is 9.98 × 10−4. After training the model,
we resample points on the y = 0.2 line and calculate their solution, gradients, and the
corresponding gradient modulus. Figure 9 illustrates the gradient modulus comparison

Algorithms 2022, 15, 53 11 of 15

between the PINN and the analytical solution. It can be seen that the result of PINN is in
good agreement with the analytical solution, given by a smooth distribution curve.

However, FEM solves this problem with a mesh of 983 points with a computational
time of merely 0.12 s. Compared with FEM, the large computational time is still a limitation
of PINN for now.

(a) (b)

Figure 8. (a) The mesh diagram of the model; (b) the gradient modulus comparison between the
first-order FEM and the analytical result.

Figure 9. The gradient modulus comparison between the PINN result and the analytical result.

3.3. Empirical Properties of the PINN

For the problem defined by Equations (24) and (25), which has an analytical solution,
we performed a study to quantify the training time and the predictive error for two different
variables: one is the network’s size and the other is the number of samples. Some empirical
conclusions will be drawn. Specifically, the neural network’s size includes the network’s
width and depth; the width refers to the number of each layer’s neurons; and the depth
refers to total number of hidden layers. In the following, we will study each of these two
variables while the other variable value is set at a reasonable value. Hyperparameters that
are not studied in this work are set to be the same as in the previous section. For each
combination, we set the maximum epoch to 20, 000 and the cut-off threshold for the loss
function to 1× 10−3. The root mean squared error (RMSE) is used to evaluate the prediction
error. Considering ui as the analytical solution, ûi as the neural network’s predictive value,
and n as the number of test points, the RMSE is given by

RMSE(u, û) =

√
1
n

n

∑
i=1

(ui − ûi)2. (27)

Algorithms 2022, 15, 53 12 of 15

3.3.1. The Effect of Depth and Width of the Network on the Training Time

The selection of hyperparameters plays a vital role in the convergence time of PINN.
In this section, we explore the influence of the network’s size, i.e., the depth and the width
of the network, on the training time. We fix the the number of samples in the domain to
1000, and choose different sizes of the neural network. The practical epoch and the training
time of each network are shown in Tables 2 and 3, respectively. According to the results
in Table 2, we observe that except for the first set, i.e., one hidden layer with 5 neurons
reaches the maximum epoch before reaching the cut-off threshold, other combinations’ loss
functions converge below the cut-off threshold within the maximum epoch. Furthermore,
it is worth mentioning that the prediction errors, i.e., RMSEs, of all selections of the size are
below 5× 10−4, which satisfies our requirement. Moreover, based on the Table 3, we can
conclude that as the size of the neural network increases, the convergence speed gradually
increases at the beginning; however, when it reaches a certain degree, then by increasing
the size, the improvement in computation time stagnates or even becomes worse. For the
considered example, the best result is obtained for 2 layers and 60 neurons.

Table 2. The practical epoch for different neural network sizes.

Width
Depth 1 2 4 6

5 20,000 8539 5126 5193
10 13,120 4832 2634 3046
20 8791 2239 1430 1591
30 7493 1993 1146 1584
60 5958 1161 1343 2936

Table 3. The training time (s) for different neural network sizes.

Width
Depth 1 2 4 6

5 1129 547 410 497
10 739 311 211 293
20 495 144 115 153
30 422 128 92 152
60 335 75 108 286

3.3.2. Effect of Number of Samples on the Prediction Error and Training Time

In this section, we investigate the influence of the number of samples on the training
time and prediction error of the neural network. We test various number of samples.
With respect to the size of the neural network, we use 2 hidden layers with 60 neurons in
each layer.

Table 4 displays the training time, RMSEs of predictive results as compared to the
analytical solution, and the practical epochs for this experiment. We can see that all
combinations’ loss functions converge below the cut-off threshold within the maximum
epoch. The Xavier initialization function sets different initial values for the weight matrix
of the model, which makes the training results slightly different each time. Consequently,
we can see that the training time corresponding to 1000 points in Table 4 is slightly different
from the training results of the neural network with 2 hidden layers and 60 neurons in each
layer in Tables 2 and 3.

Finally, we observe that too few sample points, such as 10, converge the fastest while
resulting in a high prediction error. Other than this option, the convergence speed increases
as the sampling number goes up at the beginning; however, when it reaches a certain level,
the improvement of the convergence speed stagnates or even becomes worse.

Algorithms 2022, 15, 53 13 of 15

Table 4. The training time (s) and prediction error RMSEs, and the number of epochs for various
amount of samples used in the training.

Property
Number 10 100 500 1000 5000 10,000

Time (s) 35 97 91 74 97 101
RMSE 1.59 ×10−1 5.60 ×10−4 1.09 ×10−4 5.14 × 10−5 7.07 × 10−5 5.48 × 10−5

Epoch 551 1508 1123 1066 1480 1539

4. Discussions

From these studies, we can summarize the following observations.

• PINN embeds physical constraints into the loss function of the neural network by
using automatic differentiation. The imposition of the “hard” boundary makes the
approximate solution automatically meet the Dirichlet boundary, which accelerates
the convergence speed and improves the prediction accuracy [1].

• In addition to the advantage of being mesh-free, PINN can also generalize the con-
struction process of various PDEs. On top of that, classical methods, such as FEM,
can only obtain the solution on discrete points, while further interpolation is required
for other points. This property makes the solution of the state variables at the in-
terpolated points less accurate. For PINN, when considering the points that do not
appear in the training set, there is no need to conduct an interpolation scheme to
obtain the solutions.

• With the help of automatic differentiation, the derivative of each state variable can be
easily calculated. Hence, the derivative distribution is smooth. However, for the first-
order FEM, the first derivative of the state variable inside of an element is constant,
which makes the derivative distribution discontinuous.

• Based on the experimental results, the convergence speed of PINN gradually increases
as the size of the neural network goes up at the beginning. However, when it reaches
a certain point, the improvement in computation time stagnates or even becomes
worse. In addition, when studying the number of training samples influence on the
convergence speed, except the case where the sampling points are too few, the conver-
gence speed increases as the number of training samples increases; however, when it
reaches a certain number, the improvement in convergence speed stagnates or even
becomes worse.

• According to our experiments, although the PINN offers unique advantages for solv-
ing PDEs, its computational efficiency is an obvious disadvantage compared to FEM.
Therefore, figuring out how to accelerate the training of PINN is an important research
topic. Ref. [40] introduced an efficient approach based on adaptive sampling strategy,
which speeds up the computation of the PINN. In [19], parallel calculation of the
PINN was successfully implemented, which can easily handle any complex regional
problems, but the improvement in computing time is still on the way. Huang et al. [41]
realized speeding up convergence for high-frequency wavefields solutions by using
the information from a pre-trained model instead of initializing the PINN randomly.

• PINN can be conveniently utilized to generate a surrogate model in the parametric
analysis. In [42], the authors conducted a sensitivity analysis experiment. They first
trained the PINN with merely a few values of a specific parameter and then utilized
the trained neural network to predict the solution to this parameter within a range.
The result is less accurate but still useful for the specific condition, which shows the
possibility of PINN in tackling this kind of issue; we will work on this subject in our
future study.

5. Conclusions

In this article, PINN is applied to solve an electro-thermal coupling problem. Two net-
works are trained to approximate each field. The coupling process is sequential, with the

Algorithms 2022, 15, 53 14 of 15

electric field being evaluated first, followed by the thermal field after the heat sources from
the electric field are given. In order to speed up the training and improve the training
accuracy, we employ the “hard” boundary method. The numerical results show the feasi-
bility of PINN in tackling this kind of problem. A well-trained PINN can provide a global
and smooth approximation of the state variable, which is convenient for the evaluation of
derivatives. However, compared with FEM, the long computation time is still an obvious
disadvantage of PINN and needs to be further addressed. Since the PINN was successfully
used to generate surrogate models, we will work on the parametric analysis based on it in
the future.

Author Contributions: Conceptualization, Z.R. and Y.M.; methodology, Y.M., Z.R. and S.Y.; software,
Y.M.; validation, Z.R., X.X., and S.Y.; formal analysis, Y.M., Z.R., S.Y.; investigation, Y.M. and S.Y.;
resources, Z.R., X.X., S.Y.; data curation, Z.R.; writing—original draft preparation, Y.M.; writing—
review and editing, Z.R., X.X., and S.Y.; visualization, Y.M. and S.Y.; supervision, Z.R., X.X., and S.Y.;
project administration, Z.R., X.X., and S.Y.; funding acquisition, Z.R., X.X. and S.Y.. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by The Institute of Electrical Engineering, CAS (Y960211CS3,
E155620101, E139620101).

Institutional Review Board Statement: No applicable.

Informed Consent Statement: No applicable.

Data Availability Statement: The study did not report any data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schiassi, E.; Furfaro, R.; Leake, C.; Florio, M.; Mortari, D. Extreme Theory of Functional Connections: A Fast Physics-Informed

Neural Network Method for Solving Ordinary and Partial Differential Equations. Neurocomputing 2021, 457, 334–356. [CrossRef]
2. Gao, Z.; Wang, L.; Zhou, L.; Zhang, J. HEp-2 Cell Image Classification with Deep Convolutional Neural Networks. IEEE J. Biomed.

Health Inform. 2016, 21, 416–428. [CrossRef] [PubMed]
3. Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; et al. Google’s

Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv 2016, arXiv:1609.08144.
4. Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Kingsbury, B. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The

Shared Views of Four Research Groups. IEEE Signal Process. Mag. 2012, 29, 82–97. [CrossRef]
5. Oishi, A.; Yagawa, G. Computational mechanics enhanced by deep learning. Comput. Methods Appl. Mech. Eng. 2017, 327, 327–351.

[CrossRef]
6. Gong, R.; Tang, Z. Investigation of convolutional neural network U-net under small datasets in transformer magneto-thermal

coupled analysis. COMPEL Int. J. Comput. Math. Electr. 2020, in press. [CrossRef]
7. Lee, H.; Kang, I.S. Neural algorithm for solving differential equations. J. Comput. Phys. 1990, 91, 110–131. [CrossRef]
8. Lagaris, I.E.; Likas, A. Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural

Networks 1998, 9, 987–1000. [CrossRef]
9. Psichogios, D.C.; Ungar, L.H. A hybrid neural network-first principles approach to process modeling. AIChE J. 1992, 38,

1499–1511. [CrossRef]
10. Sirignano, J.; Spiliopoulos, K. DGM: A deep learning algorithm for solving partial differential equations. J. Comput. Phys. 2017,

375, 1330–1364. [CrossRef]
11. Wang, Z.; Zhang, Z. A mesh-free method for interface problems using the deep learning approach. JCoPh 2020, 400, 108963.

[CrossRef]
12. He, C.; Hu, X.; Mu, L. A Mesh-free Method Using Piecewise Deep Neural Network for Elliptic Interface Problems. arXiv 2020,

arXiv:2005.04847.
13. Berg, J.; Nyström, K. A unified deep artificial neural network approach to partial differential equations in complex geometries.

Neurocomputing 2017, 317, 28–41. [CrossRef]
14. Ovcharenko, O.; Kazei, V.; Mahesh, K.; Peter, D.; Alkhalifah, T. Deep learning for low-frequency extrapolation from multi-offset

seismic data. Geophysics 2019, 84, 1–64. [CrossRef]
15. Sun, B.; Alkhalifah, T. ML-descent: An optimization algorithm for FWI using machine learning. In Proceedings of the SEG 89th

Annual Meeting, San Antonio, TX, USA, 15–20 September 2020.
16. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-Informed Neural Networks: A Deep Learning Framework for Solving

Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. J. Comput. Phys. 2018, 378, 686–707. [CrossRef]

http://doi.org/10.1016/j.neucom.2021.06.015
http://dx.doi.org/10.1109/JBHI.2016.2526603
http://www.ncbi.nlm.nih.gov/pubmed/26887016
http://dx.doi.org/10.1109/MSP.2012.2205597
http://dx.doi.org/10.1016/j.cma.2017.08.040
http://dx.doi.org/10.1108/COMPEL-12-2019-0491
http://dx.doi.org/10.1016/0021-9991(90)90007-N
http://dx.doi.org/10.1109/72.712178
http://dx.doi.org/10.1002/aic.690381003
http://dx.doi.org/10.1016/j.jcp.2018.08.029
http://dx.doi.org/10.1016/j.jcp.2019.108963
http://dx.doi.org/10.1016/j.neucom.2018.06.056
http://dx.doi.org/10.1190/geo2018-0884.1
http://dx.doi.org/10.1016/j.jcp.2018.10.045

Algorithms 2022, 15, 53 15 of 15

17. Song, C.; Alkhalifah, T.; Bin Waheed, U. Solving the frequency-domain acoustic VTI wave equation using physics-informed
neural networks. Geophys. J. Int. 2021, 225, 846–859. [CrossRef]

18. Meng, X.; Li, Z.; Zhang, D.; Karniadakis, G.E. PPINN: Parareal physics-informed neural network for time-dependent PDEs.
Comput. Methods Appl. Mech. Eng. 2020, 370, 113250. [CrossRef]

19. Jagtap, A.D.; Karniadakis, G.E. Extended Physics-Informed Neural Networks (XPINNs): A Generalized Space-Time Domain
Decomposition Based Deep Learning Framework for Nonlinear Partial Differential Equations. Commun. Comput. Phys. 2020,
28, 2002–2041.

20. Jagtap, A.D.; Kharazmi, E.; Karniadakis, G.E. Conservative physics-informed neural networks on discrete domains for conserva-
tion laws: Applications to forward and inverse problems. Comput. Methods Appl. Mech. Eng. 2020, 365, 113028. [CrossRef]

21. Song, C.; Alkhalifah, T.; Waheed, U.B. A versatile framework to solve the Helmholtz equation using physics-informed neural
networks. Geophys. J. Int. 2021, 228, 1750–1762. [CrossRef]

22. Lu, L.; Meng, X.; Mao, Z.; Karniadakis, G.E. DeepXDE: A deep learning library for solving differential equations. SIAM Rev.
2021, 63, 208–228. [CrossRef]

23. Fang, Z.; Zhang, J.; Yang, X. A Physics-Informed Neural Network Framework For Partial Differential Equations on 3D Surfaces:
Time-Dependent Problems. arXiv 2021, arXiv:2103.13878.

24. Hu, X.; Buris, N.E. A Deep Learning Framework for Solving Rectangular Waveguide Problems. In Proceedings of the 2020 IEEE
Asia-Pacific Microwave Conference (APMC), Hong Kong, 8–11 December 2020; pp. 409–411.

25. Alkhalifah, T.; Song, C.; Bin Waheed, U.; Hao, Q. Wavefield solutions from machine learned functions constrained by the
Helmholtz equation. Artif. Intell. Geosci. 2021, 2, 11–19. [CrossRef]

26. Waheed, U.B.; Haghighat, E.; Alkhalifah, T.; Song, C.; Hao, Q. PINNeik: Eikonal solution using physics-informed neural networks.
Comput. & Geosci. 2021, 155, 104833.

27. Guo, Y.; Cao, X.; Liu, B.; Gao, M. Solving Partial Differential Equations Using Deep Learning and Physical Constraints. Appl. Sci.
2020, 10, 5917. [CrossRef]

28. Yang, Y.; Perdikaris, P. Adversarial uncertainty quantification in physics-informed neural networks. J. Comput. Phys. 2019, 394,
136–152. [CrossRef]

29. Zhang, D.; Lu, L.; Guo, L.; Karniadakis, G.E. Quantifying total uncertainty in physics-informed neural networks for solving
forward and inverse stochastic problems. J. Comput. Phys. 2019, 397, 108850. [CrossRef]

30. Pun, G.; Batra, R.; Ramprasad, R.; Mishin, Y. Physically informed artificial neural networks for atomistic modeling of materials.
Nat. Commun. 2019, 10, 2339. [CrossRef]

31. Niaki, S.A.; Haghighat, E.; Campbell, T.; Poursartip, A.; Vaziri, R. Physics-informed neural network for modelling the thermo-
chemical curing process of composite-tool systems during manufacture. Comput. Methods Appl. Mech. Eng. 2021, 384, 113959.

32. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Networks 1989,
2, 359–366. [CrossRef]

33. Tartakovsky, A.M.; Marrero, C.O.; Perdikaris, P.; Tartakovsky, G.D.; Barajas-Solano, D. Physics-Informed Deep Neural Networks
for Learning Parameters and Constitutive Relationships in Subsurface Flow Problems. Water Resour. Res. 2020, 56, e2019WR026731.
[CrossRef]

34. Rao, C.; Sun, H.; Liu, Y. Physics-Informed Deep Learning for Computational Elastodynamics without Labeled Data. J. Eng. Mech.
2021, 147, 04021043. [CrossRef]

35. Leake, C.; Mortari, D. Deep Theory of Functional Connections: A New Method for Estimating the Solutions of Partial Differential
Equations. Mach. Learn. Knowl. Extr. 2020, 2, 37–55. [CrossRef] [PubMed]

36. Baydin, A.; Pearlmutter, B.; Radul, A.; Siskind, J. Automatic differentiation in machine learning: A survey. J. Mach. Learn. Res.
2018, 18, 1–43.

37. Mckay, M.; Conover, R.J.B.J. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output
from a Computer Code. Technometrics 1979, 21, 239–245.

38. Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. Comput. Sci. 2014.
39. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res. 2010,

9, 249–256.
40. Nabian, M.A.; Gladstone, R.J.; Meidani, H. Efficient training of physics-informed neural networks via importance sampling.

Comput. Civ. Infrastruct. Eng. 2021, 36, 962–977. [CrossRef]
41. Huang, X.; Alkhalifah, T. PINNup: Robust neural network wavefield solutions using frequency upscaling and neuron splitting.

arXiv 2021, arXiv:2109.14536.
42. Haghighat, E.; Raissi, M.; Moure, A.; Gomez, H.; Juanes, R. A deep learning framework for solution and discovery in solid

mechanics: Linear elasticity. arXiv 2020, arXiv:2003.02751.

http://dx.doi.org/10.1093/gji/ggab010
http://dx.doi.org/10.1016/j.cma.2020.113250
http://dx.doi.org/10.1016/j.cma.2020.113028
http://dx.doi.org/10.1093/gji/ggab434
http://dx.doi.org/10.1137/19M1274067
http://dx.doi.org/10.1016/j.aiig.2021.08.002
http://dx.doi.org/10.3390/app10175917
http://dx.doi.org/10.1016/j.jcp.2019.05.027
http://dx.doi.org/10.1016/j.jcp.2019.07.048
http://dx.doi.org/10.1038/s41467-019-10343-5
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1029/2019WR026731
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0001947
http://dx.doi.org/10.3390/make2010004
http://www.ncbi.nlm.nih.gov/pubmed/32478283
http://dx.doi.org/10.1111/mice.12685

	Introduction
	Materials and Methods
	DNN
	PINN
	PINNs for the Electro-Thermal Coupling Problem

	Experiments and Results
	Electro-Thermal Coupling Problem
	The Comparison between FEM and PINN
	Empirical Properties of the PINN
	The Effect of Depth and Width of the Network on the Training Time
	Effect of Number of Samples on the Prediction Error and Training Time

	Discussions
	Conclusions
	References

