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Abstract: Deep learning uses artificial neural networks to recognize patterns and learn from them to
make decisions. Deep learning is a type of machine learning that uses artificial neural networks to
mimic the human brain. It uses machine learning methods such as supervised, semi-supervised, or
unsupervised learning strategies to learn automatically in deep architectures and has gained much
popularity due to its superior ability to learn from huge amounts of data. It was found that deep
learning approaches can be used for big data analysis successfully. Applications include virtual
assistants such as Alexa and Siri, facial recognition, personalization, natural language processing,
autonomous cars, automatic handwriting generation, news aggregation, the colorization of black
and white images, the addition of sound to silent films, pixel restoration, and deep dreaming. As a
review, this paper aims to categorically cover several widely used deep learning algorithms along
with their architectures and their practical applications: backpropagation, autoencoders, variational
autoencoders, restricted Boltzmann machines, deep belief networks, convolutional neural networks,
recurrent neural networks, generative adversarial networks, capsnets, transformer, embeddings from
language models, bidirectional encoder representations from transformers, and attention in natural
language processing. In addition, challenges of deep learning are also presented in this paper, such as
AutoML-Zero, neural architecture search, evolutionary deep learning, and others. The pros and cons
of these algorithms and their applications in healthcare are explored, alongside the future direction
of this domain. This paper presents a review and a checkpoint to systemize the popular algorithms
and to encourage further innovation regarding their applications. For new researchers in the field of
deep learning, this review can help them to obtain many details about the advantages, disadvantages,
applications, and working mechanisms of a number of deep learning algorithms. In addition, we
introduce detailed information on how to apply several deep learning algorithms in healthcare, such
as in relation to the COVID-19 pandemic. By presenting many challenges of deep learning in one
section, we hope to increase awareness of these challenges, and how they can be dealt with. This
could also motivate researchers to find solutions for these challenges.

Keywords: artificial neural networks (ANN); deep learning; autoencoders (AE); convolutional neural
networks (CNN); recurrent neural network (RNN); health care sector

1. Introduction

Deep learning is a machine learning technique that teaches computers and devices log-
ical functioning. It is inspired by the structure of the human brain. Deep learning originated
as artificial neural networks (ANNs) and has developed far more efficiency after decades
of research and development compared to the other machine learning algorithms [1].

In the early stages of the development of neural networks, researchers aspired to
create a system that mimicked the functions of the human brain. In 1943, McCulloch
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and Pitts attempted to explain how the brain could create highly complex patterns by
using neurons [2]. They invented the MCP (McCulloch Pitts neuron) model, which had a
significant impact on the development of artificial neural networks. They implemented
threshold logic in their model to simulate the human thought process but not to learn. Since
then, the development of deep learning has been slow but steady, with several significant
milestones along the way. In 1958, Frank Rosenblatt invented the perceptron, the first
prototype of our modern neural networks, which consisted of two layers of processing
units that are commonly thought of as a basic mechanism for recognizing simple patterns [3].
Rather than undergoing further development and research, the evolutionary history of
neural networks and artificial intelligence underwent a winter after 1969, after the MIT
professors Minsky and Papert proved the limitations and failings of the perceptron [4].

The standstill was broken when the backpropagation algorithm emerged in 1974,
invented by Werbos [5]. It is considered a significant milestone in neural network devel-
opment. In 1980, Fukushima [6] introduced the “Neocognitron,” which is regarded as the
ancestor of convolutional neural networks, followed by the Boltzmann machine, invented
by Hinton et al. in 1985 [1], and the recurrent neural network, invented in 1986 by Jordan [7].
In 1998, Yan LeCun introduced the convolutional neural network with backpropagation for
document analysis [8]. Deep learning has made major progress since 2006, when Hinton
introduced the concept of deep belief networks (DBNs) [9,10]. These involve a two-stage
plan: pre-training and fine-tuning. This technique allowed researchers to train neural
networks much more deeply than previous methods.

Deep learning algorithms aim to draw similar conclusions as humans do by continu-
ously analyzing data according to a given logical structure. Deep learning allows machines
to manipulate images, text, or audio files like humans to accomplish human-like tasks.
To achieve this, deep learning uses a multi-layered structure of algorithms called neural
networks. As the name suggests, deep learning involves going deep into multiple layers of
a network, which include a hidden layer. As one goes deeper, more complex information
is extracted. Deep learning relies on iterative learning methods, which expose machines
to very large datasets. It helps computers to learn to identify traits and adjust to changes.
Machines are able to learn differences among datasets, understand the logic, and reach
reliable conclusions after repeated exposures [1].

A review on deep learning has been presented in [11]. In [11], the following informa-
tion is provided: Computational models consist of multiple layers for processing. They are
permitted to learn data representations with various levels for abstraction by deep learning.
By using these techniques, the state-of-the-art has been enhanced in several fields, including
visual object recognition, speech recognition, genomics, and discovery of drugs, along with
plenty of others. Backpropagation is applied by deep learning in order to find the complex
structure within a huge dataset, and this for specifying the way that internal parameters
of machine have to be altered by the machine, and these are employed to calculate the
representation within every layer depending on the representation within the prior layer.
RNNs are mainly used for sequential data, such as speech and text, whereas CNNs are
used for the processing of images, speech, audio, and video.

In recent years, a large number of studies, such as [9–12], have made use of deep
learning and demonstrated its capabilities in many respects, including healthcare and
health informatics, such as in bioinformatics, medical imaging, pervasive sensing, medical
informatics, and public health [13–25]; motor imagery classification [26], for the perfor-
mance improvement of sensorless FOC [27]; and a new method developed for a retrofitted
self-tuned controller with FPGA [28] and for a self-tuning neural network PID [29].

This paper aims to provide a literature review on different well-known deep learning
algorithms. We highlight their capabilities, suitabilities, shortcomings, and applications,
which many researchers in this field can benefit from knowing. Moreover, critical analyses
of different deep learning algorithms are provided, focusing in particular on their advan-
tages, disadvantages, and applications, whether supervised or unsupervised. In addition,
the application of deep learning algorithms to healthcare is also introduced.
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The main contribution of this paper is to systematically review several popular deep
learning algorithms such as backpropagation, autoencoders, variational autoencoders,
restricted Boltzmann machines, deep belief networks, convolutional neural networks,
recurrent neural networks, generative adversarial networks, capsnets, transformer, em-
beddings from language models, bidirectional encoder representations from transformers,
and attention in natural language processing. This review discusses several challenges of
deep learning. This literature review also demonstrates the advantages, disadvantages,
and applications of these the algorithms, and identifies whether they are supervised or
non-supervised. Moreover, the applications of deep learning algorithms in healthcare are
also presented; for instance, details of how deep learning algorithms can be used to fight
COVID-19 pandemic are provided in this paper. The directions of future works are also
given in this paper.

The researchers in the deep learning field interested in using deep learning algorithms
in healthcare can obtain benefits from this review, which provides detailed information
about each algorithm. In addition, beginners and new researchers in the deep learning field
can read this review as a starting point to gain a comprehensive understanding of each
given deep learning algorithm, helping them to attain the knowledge that they need to solve
problems related to deep learning and to design and develop deep learning algorithms.

The paper is organized as follows: Works related to deep learning algorithms are
presented in Section 2, followed by a comparison of the accuracy of deep learning algo-
rithms applied in different domains. Artificial neural networks and several well-known
deep learning algorithms are introduced in Section 3. A comparison between these deep
learning algorithms based their advantages, disadvantages, applications, and whether
they are supervised or unsupervised is presented in Section 4. The application of deep
learning algorithms to healthcare is given in Section 5. Several challenges of deep learning
are displayed in Section 6. Future directions of deep learning are provided in Section 7.
Finally, conclusions and future works are introduced in Section 8.

2. Related Works

Deep learning has been widely implemented in various areas in health informatics,
such as bioinformatics, medical imaging, pervasive sensing, medical informatics, and pub-
lic health [9]. An analysis of deep learning algorithms reported in the literature related to
the health sector, especially COVID-19 prediction, classification, and detection strategies is
presented below. Deep learning is able to be employed reliably with respect to physiological
signals obtained via electromyogram (EMG), electroencephalogram (EEG), electrooculo-
gram (EOG), or electrocardiogram (ECG). For these purposes, the most common algorithms
used in processing these physiological signals are RNNs and one-dimensional CNNs [9].

The author of [12] proposed a sonar target recognition. Two-layer backpropagation
networks are trained to distinguish between reflected sonar signals from rocks and metal
cylinders at the bottom of the Chesapeake Bay. A total of 60 input units and 2 output
units are involved. The input pattern is based on the Fourier transform of the raw time
signal. The best performance was obtained with 12 hidden units (nearly 100% training
set accuracy).

The authors of [30] proposed a solution for medical practitioners handling a COVID-
19 crisis that implements protocols of investigation for the first patient infected by this
disease, which will also be beneficial to epidemiologists for making a decision about virus
spread. This paper presents a framework based on deep learning (specifically, stacked
auto-encoders in medical image retrieval) in its feature-extraction phase. During retrieval
tasks, this method reduces the image’s size to a small, compact representation, allowing for
faster image comparisons. In a content-based image retrieval system, the importance of the
auto-encoder approach can be seen, since it achieves good recognition accuracy at 80% for
COVID-19 digital images, given the capability of the stacked encoders. Autoencoder algo-
rithms have also been developed for cancer diagnosis. Sparse autoencoders are presented
for microaneurysm detection in fundus images as a part of a diabetic retinopathy strategy.
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Additionally, various autoencoder-based learning methods have been developed for use in
Alzheimer’s disease prediction based on functional magnetic resonance images (FMRI),
3D brain reconstruction, cell clustering, and human behavior monitoring [31]. In [13],
researchers examined various autoencoding architectures that integrated multiple types of
data (e.g., multi-omic and clinical) from cancer patients. They explored these approaches
and provided a clear framework for developing systems which can be used for investigating
cancer characteristics and translating some of the results into clinical applications. Using
these networks, they described how to design, build, and apply integrative analyses of
heterogeneous data on breast cancer. These approaches yield accurate and stable diagnoses
by producing relevant data representations.

RBM architectures can be applied to manifold brain MRIs used in Alzheimer disease
detection, segmenting multiple sclerosis lesions in multi-channel 3D MRIs, assigning diag-
nosis automatically according to the clinical status of patients, suicide risk prediction for
mental health patients using low-dimensional approaches to the medical aspects embedded
in electronic health records (EHRs), and determining photoplethysmography signals for
health monitoring [14]. A deep learning framework for the classification of complex hyper-
spectral medical images is presented in this study. To accomplish this, a deep Boltzmann
machine (DBM) architecture of the bipartite structure was developed as an unsupervised
generative model. The implementation is based on a three-layer unsupervised network
with a backpropagation structure. In the present dataset, image patches are collected and
classified into two classes, namely, non-informative and discriminative classes. The spatial
information is used for classification and spectral-spatial representations of class labels
are created. The accuracy, false-positive predictions, and sensitivity are calculated for the
fully-connected network based on the labelled classes. With the proposed cognitive compu-
tation technique, an accuracy of 95.5% and sensitivity of 93.5% were achieved. The DBM
model provides a significant improvement in the computer-aided diagnosis of cancerous
regions in HIS (hyperspectral imaging) images. This method separates two types of image
patches, informative and non-discriminative, in the first phase. By calculating the accuracy
and success rate of DBM in the second phase of learning, the performance was confirmed.
This method was 6.1% more accurate than CNN. The results showed that the unsupervised
DBM was best suited for identifying cancer regions from complicated 3D hyperspectral
images [15].

DBNs are used in the modeling of compound–protein interactions, anomaly detection,
biological parameter monitoring, obstacle detection, sign language recognition, detecting
lifestyle diseases, and modeling infectious disease epidemics [31]. In [16], deep belief
networks were used to classify normal and COVID-19 patients using medical images of
chest X-rays. The proposed system successfully identifies COVID-19 cases with a 90%
accuracy rate. The diagnosis is usually based on the presence of a white patchy shadow in
the lungs. By using a Gaussian filter (to remove the noise), it is able to detect these diseases
through these medical images. The medical images are then separated by separating the
important section of the lungs from the others. Threshold-based segmentation is performed
to separate gray pixels from the others, and the number of gray pixels in lungs affected by
COVID-19 is very low in comparison to normal lungs.

CNN algorithms can be employed in the prediction of risk of osteoarthritis by using
the automatic segmentation of knee cartilage MRIs, when using retinal fundus photographs
to detect diabetic retinopathy, in dermatologist-level classification of skin cancer, in conges-
tive heart failure prediction, for predicting chronic obstructive pulmonary disease using
longitudinal EHRs, for predicting the quality of sleep using physical activity data during
awake time, in electroencephalogram analysis, and for estimating the prevalences of var-
ious chromatin marks [14]. The early stages of Alzheimer’s disease (AD) are associated
with mild cognitive impairment (MCI).

For the early diagnosis of Alzheimer’s disease, some authors proposed a new voxel-
based hierarchical feature extraction method (VHFE). The entire brain was divided into 90
regions of interest (ROIs) using an automatic anatomical labeling template (AAL). They
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divided the uninformative data by selecting the informative voxels in each ROI, using a
baseline of the voxels’ values to make a vector. On the basis of the correlations between
voxels of different groups, the features for the first stage were selected. In order to learn
deeply hidden features, the brain feature maps made up of the voxels of each subject were
fed into a convolutional neural network (CNN). The results show that the proposed method
is robust, having a promising performance in comparison to the current state-of-the-art
methods [18].

In [32], processing data that exhibit natural spatial invariance (e.g., images whose
meanings do not change under translation) is shown to have grown to be central in the
field (CV) [32]. The use of deep learning systems could help physicians by providing
second opinions and flagging concern areas. In object-classification, CNNs learn to classify
objects contained an images and have achieved human-level performance. They are initially
trained on a massive dataset, unrelated to the task of interest, to learn the natural statistics
in images (curves, straight lines, colorations, etc.) before being further fine-tuned on a much
smaller dataset related to the task of interest (e.g., medical images). The higher-level layers
of the algorithm are retrained to distinguish between diagnostic cases. CNNs demonstrated
strong performance in transferring learning [33]. Clinicians have started to utilize image
segmentation and object detection for urgent and easily missed cases, such as identifying
large-arteria occlusions in the brain using radiological images [19], during which severe
brain damage may occur in a short period of time (a few minutes). Moreover, cancer
histopathology reading can be supplemented with CNNs trained to detect mitotic cells [20]
or tumor regions [21]. CNNs have been used to account for survival probability [22] by
discovering the biological features of tissues.

Long short-term memory (LSTM) [34] RNNs are being tested in medicine for multiple
purposes, ranging from clinical measurements of patients in pediatric intensive care units, a
dynamic memory model for predictive medicine based on patient history, and prediction of
disease onset from longitudinal laboratory tests, to the de-identification of patients’ clinical
notes [14]. RNN-based language translation [35] has been used to directly translate speech
in one language to text in another. If adapted for electronic health records (EHRs), this
technique could translate a patient–provider conversation into transcribed text. Classifying
the attributes and status of each medical entity from the conversation while accurately
summarizing the dialogue is key. The next generation of automatic speech recognition
and information extraction models will likely help clinical voice assistants to accurately
record patient visits [35]. Despite showing promise in early human–computer interaction
experiments, these techniques have yet to be widely used in medical practice.

The brain–computer interface (BCI) allows people and machines to interact by ana-
lyzing brain activity. Electroencephalography (EEG) is the most viable and noninvasive
method of obtaining such information. It has a low signal-to-noise ratio and low spatial
resolution. A new method has been proposed using a combination of blind source separa-
tion (BSS) to estimate independent components, continuous wavelet transform (CWT) to
represent these signals in 2D, and a convolutional neural network (CNN) for classification.
The experimental results of 94.66% are competitive with recent state-of-the-art techniques.
Regarding the architecture of the CNN, researchers have found that hyper-parameters
such as the size of the kernel and the kernel stride of each convolutional layer significantly
influence network performance, whereas the number of convolutions has little impact on
the final accuracy [26].

In [27], the authors describe a method for developing an open-architecture controller
based on reconfigurable hardware in an open-source framework for servo applications. The
servo system is a feedback-control system characterized by the outputs of position, speed,
and acceleration. The authors have implemented a genetic algorithm for online self-tuning
with an emphasis on both high-quality servo control and vibration reduction during linear
motion system positioning. The controller was developed using free tools from graphical
user interface to logical implementation. Using this approach, it is also possible to make
modifications and add updates easily, which lessens the probability of obsolescence. A
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graphical user interface developed in Python provides speed profiling, controller auto-
tuning, measurement of the main parameters, and monitoring of the vibrations of the servo
system. Additionally, a method for auto-tuning of the used PID (proportional–integral–
derivative) controller has been developed for efficiently tracking trajectory in the linear
movement system. The modules are usable by any FPGA (field programmable gate array)
manufacturer. Open-source tools have higher performance, due to their distribution and
management of logical resources. Moreover, it is multiplatform and could be run on a
Linux, Windows, or Mac OS. The authors also developed a Python GUI for monitoring
system variables and vibrations generated by the mechanical system. As well as calculating
the trapezoidal velocity profiles, this GUI configures gains through serial communication.
To test different velocity profiles, the profile calculation algorithm can be easily replaced. In
the translational mechatronics system, the PID controller can follow any path with an error
of less than 0.2%.

By using the vibration-monitoring system, faults in a translational mechatronic system
can be detected. It can be used as a type of preventative maintenance [28]. That paper
focuses on real-time and online electrical parameter estimation using CMAC-ADALINE
(cerebellar model articulation controller adaptive linear neuron) and the standard FOC
(field-oriented control) scheme, the former being added to improve IM (induction motor)
driver performance and lengthen the lifetime of the driver and induction motor. Using two
types of neural networks, the authors estimated both rotor speed and rotor resistance for an
induction motor. In that paper, they proposed a new kind of estimator for control schemes
for neural networks and control theory. Moreover, the IM speed and rotor resistance esti-
mations were validated, and the IM driver’s performance was improved. A hybrid neural
network estimator has been developed that takes advantage of two different types of neural
network designs, and it has shown to be effective, as expected. By adjusting its weights,
this estimator updates speed and rotor resistance, which improves the performance of the
FOC algorithm. This algorithm was easily implemented in a real-time application over a
three-phase IM, showing good speed and resistance tracking and a minimal error rate.

Based on a backpropagation artificial neural network, the aforementioned paper
presented a self-adjusting PID controller [28]. According to the desired output, the network
calculates the appropriate gains according to the transient and stationary parts of the
step response of the system. Besides using the error for network training, the maximum
desired values of overshoots, settling times, and stationary errors were also used as input
data for the network. In order to obtain the dynamic response data associated with
PID gains, an offline training database was created using genetic algorithms. Genetic
algorithms allow obtaining data in a wide range of operating ranges using only stable
gains combinations. The database was used for training. Adapting to the error and the
desired response, the neural network then estimated an appropriate gain combination. The
method’s performance was assessed by controlling the speed of a direct-current motor. The
results show an average error rate of 4% between the database request and the response
from the system. However, in 86% of the combinations of the test dataset (1544 connections),
the results predicted by the network were not unstable [29].

In recent years, many studies, such as [23], have made use of deep learning and
demonstrated its ability to prevent the sudden failure of lithium-ion batteries. Lithium-ion
batteries (LIBs) have high efficiency and are low cost, but their instability and varying
lifetimes remain challenges. Researchers have worked to develop ways of predicting the re-
maining useful life (RUL) of lithium-ion batteries, especially using data-driven approaches.
A higher resolution of inter-cycle aging for faster and more accurate predictions, by consid-
ering temporal patterns and cross-data correlations in the raw data, specifically, terminal
voltage, current, and cell temperature, is sought. An in-depth analysis of the deep learning
models using the uncertainty metric, t-SNE of features, and various battery related tasks
was presented in [23]. The proposed framework significantly boosted the remaining useful
life prediction (25X faster) and resulted in a 10.6% mean absolute error rate.
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RUL predictions of LIBs are of great importance to the health management of electric
vehicles and hybrid electric vehicles. Fluctuations and nonlinearity during battery degrada-
tion result in difficulties in both RUL prediction accuracy and model adaptability. To face
the challenge, ref. [24] proposed a sequence decomposition and deep learning integrated
prognostic approach for the RUL predictions of LIBs. To separate the local fluctuations
and the global degradation trend from the battery aging data, complementary ensemble
empirical mode decomposition and principal component analysis are applied. Since the
long- and short-term memory (LSTM) fully connected (FC) structure makes good use of
offline and online data information, an LSTM neural network combined with FC layers was
designed as a transfer learning model. The hyper-parameter optimization and fine-tuning
strategy of the model were developed based on offline training data. The illustrative
results demonstrate that the proposed approach can achieve adaptive, accurate, and robust
predictions for both RUL and capacity trajectory.

By analyzing routine computed tomography, the authors proposed an automatic deep
learning system for COVID-19 diagnostics and prognostics. Deep learning is a convenient
tool for diagnosing COVID-19 and identifying patients at risk, which may aid in resource
optimization and early prevention of disease before severe symptoms occur. CT scanning
can be acquired within minutes if a patient is suspected. Once this deep learning system
has been applied, it is possible to predict whether a patient has COVID-19. The deep
learning system also predicts the patient’s prognostic situation if they are diagnosed with
COVID-19, which can be used to identify high-risk patients who require urgent medical
attention. The system is fast and does not require human-assisted image annotation, in-
creasing clinical value and enhancing robustness. Deep learning takes less than 10 s to
produce a prognostic and diagnostic prediction for a chest CT scan of a patient [16]. The
authors of [25] reported on how experts (medical or otherwise) and technicians have used
deep learning techniques to combat the COVID-19 outbreak. The rapidly development of
artificial intelligence (AI) in the area of medical image analysis has also helped to combat
COVID-19 by providing high quality diagnostic results and by reducing or eliminating the
need for manpower when employed. For COVID-19 diagnoses using CT and X-ray samples,
deep-learning-based support systems have been developed. Several of these systems have
been introduced using customized networks, and some were derived from pre-trained
models with transfer learning. Similarly, machine learning and data science are also actively
used for COVID-19 diagnosis, prognosis, prediction, and outbreak forecasting. In addition,
big data, smartphone technology, and the Internet of Things (IoT) enable innovative solu-
tions to combat the spread of COVID-19. Researchers have used multiclass classification
methods to distinguish images of patients with infectious diseases, such as COVID-19
viral pneumonia, bacterial pneumonia, fungal pneumonia, SARS, MERS, influenza, and
tuberculosis, from those of healthy people. Multiclassifiers are more accurate than binary
classifiers in detecting COVID-19 cases. CNNs and DNNs (deep neural networks) are
the most significant classification methods for COVID-19 detection, followed by SVM,
random forest, KNN (K nearest neighbors), and LSTM. Furthermore, the CNN is the most
widely used classifier for COVID-19 diagnosis regarding machine learning/deep learning
techniques. Machine learning/deep learning-based approaches can significantly enhance
intelligent diagnosis systems, which has promise for healthcare professionals seeking to
detect the virus quickly and reliably. Furthermore, they will eliminate manual errors made
by physicians and radiologists during diagnosis. Additionally, they will facilitate more ac-
curate and time-efficient diagnoses. Researchers have used X-rays, CT images, RT-PCR, and
clinical blood data to investigate COVID-19’s prognosis and anomalies. In the most recently
mentioned study, the highest accuracies in detecting COVID-19 were achieved by CNN,
DNN, SVM, KNN (K nearest neighbors), and R.F, with 99%, 99.7%, 99.68%, 93.41%, and
95%, respectively. Besides medical research and radiology, machine learning/deep learning
techniques have made astounding performance gains in multiple domains. In conclusion,
machine learning and deep learning techniques could play a significant role in predicting,
classifying, screening, and minimizing the spread of the COVID-19 pandemic [25]. The
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COVID-DeepNet system is one of the accurate methods used to diagnose infection with
COVID-19, and it depends on chest radiography images. DBN algorithms associated with
other deep learning architectures, such as CBDN, were trained on the top of pre-processed
chest radiography images to reduce overfitting and improve the generalization capabilities
of the adopted deep learning approaches [36].

Numerous current applications have focused on using deep learning for diagnosing
EEG signals, aiming at the identification and prediction of several challenging brain ac-
tivities. Due to the wide field of applications and the results of EEG in terms of efficiency
and reliability, the information it provides has become a key element in the health sector.
From the reviewed works, it was found that EEG data—in combination with processing
techniques (Fourier transform (FT), fast Fourier transform (FFT), short-time Fourier trans-
form (STFT), wavelet transform (WT)), and machine learning tools such as support vector
machines (SVMs) and neural networks (NN)—achieve an efficiency greater than 90%,
thus becoming a competitive tool for solving problems in its field of study. The authors
of [37] used an extreme learning machine (ELM) and achieved 95%. EEGs measure brain
electrical activity without invasive procedures and have numerous medical applications,
one of which is the detection of neurodegenerative diseases. Dementia diseases are rapidly
increasing and have become an alarming problem for the health sector. This is a growing
challenge for health systems. Various parameters or measurements can be extracted during
the processing of EEG signals, such as frequency spectra; time–frequency; values such as
entropy and fractal average; and combinations of more than one parameter. During the pro-
cessing stage, the objective is to extract relevant information that allows the identification
of EEG patterns/biomarkers that, during the classification stage, contribute to increasing
efficiency [37].

The deep learning algorithms presented can be implemented using Keras [38–42].

3. Artificial Neural Networks

Artificial neurons that function similarly to our brain’s neurons make up the basis of
deep learning. A perceptron or artificial neuron simulates a neuron with a set of inputs
that each has a particular weight. The neuron computes some function and produces an
output based on these weighted inputs. The neuron receives n inputs (one for each feature).
Following that, it sums the inputs, applies a transformation (activation), and generates the
output (see Figure 1) [1].
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A particular input’s weight indicates how effective it is. Inputs with higher weights
will have greater impacts on the neural network. The bias parameter for perceptrons is
used to adjust the output of the neural network according to their input weights. It allows
the model to fit the data in the best possible way. An activation function converts inputs
into outputs. An output is produced by using a threshold. The following functions may
be used as activation functions: linear or identity; unit or binary step; sigmoid or logistic;
tanh, ReLU, or softmax. Several neurons are used to solve problems, since multiple inputs
cannot be processed by a single neuron. A neural network is composed of perceptrons,
interconnected in various ways and operating on different activation functions, as shown
in Figure 2 [1].
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Figure 2. A representation of a neural network [1].

A deep learning model is a neural network with more than two layers. The layers
between input and output layers are called hidden layers. These layers can improve
the accuracy. Neural networks can mimic the human brain, although they are still not
close to the brain’s processing capabilities. Also note that neural networks learn from
massive datasets.

Deep learning is among the fastest-growing areas in computational science, employing
complex multilayered networks to model high level patterns in data. Most often, it is used
in machine learning and artificial intelligence, and many major companies, such as Google
and Microsoft, rely on it to manage critical problems, such as speech recognition, image
recognition, 3D object recognition, and natural language processing. Some well-known
deep learning algorithms are discussed in this section, such as backpropagation, autoen-
coders, variational autoencoders, restricted Boltzmann machines, deep belief networks,
convolutional neural networks, recurrent neural networks, generative adversarial net-
works, capsnets, transformer, embeddings from language models, bidirectional encoder
representations from transformers, and attention in natural language processing.

3.1. Backpropagation

The backpropagation algorithm has played an important role in machine learning’s
development due to its efficiency in computing the gradient of neural networks. The
weights in the network are successively adjusted to minimize the difference between
the actual output vector and the desired output vector, namely, the loss function. As a
consequence of weight adjustment, internal hidden layers that are neither input nor output
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are significant features. The interactions between these layers assure the regularities in the
task domain [43,44].

The backpropagation algorithm is summarized using the most common activation
function, which is the logic sigmoid function.

σ(α) =
1

1 + e−α
(1)

where α is the activation, which is a linear combination of the inputs x =
{

x1, . . . , xp
}

and
the weights w =

{
w1, . . . , wp

}
, as α = w0 + ∑

p
i=1 wixi . The additional weight w0, which is

independent of the input, is included and is known as the bias. The actual outputs ỹ are
given by

ỹ = σ

(
w0 +

p

∑
i=1

wixi

)
(2)

A similar approach given in [34] and [4] as follows. For a given dataset D = {(xn, yn), n
= 1, . . . , N}, where xn is the input vector, yn is the output, and N is the number of layers,
we consider the loss function:

ξ(w) =
1
2

N

∑
n=1

(ỹ(xn − yn))
2. (3)

In order to minimize the error ξ(w), the gradient descent method is implemented, and the
backpropagation procedure is applied. The loss function is rewritten as

ξ(w) =
N

∑
n=1

φn(w), (4)

with φn(w) = 1
2 (ỹ(xn − yn))

2. Now the adjustment of the weights w will be applied
incrementally using the approach

w← w− u∇wφn(w) (5)

where µ is a positive step-size. The remaining step is to compute the gradient ∇wφn(w).
The partial derivative is determined with respect to the weight wij in the unit j and, using
the chain rule

∂φn

∂wij
=

∂φn

∂αj

∂αj

∂wij
(6)

where αj is the activation in unit j and is defined by

αj = w0 +
k

∑
i=1

wijxi (7)

For simplicity, the notation δj =
∂φn
∂αj

is used. If j is the output unit, then

δj = σ
(
αj
)(

1− σ
(
αj
))(

σ
(
αj
)
− yn

)
(8)

In the case that j is not an output function, we obtain

δj = σ′
(
αj
) k

∑
i=1

wikδk (9)
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To finalize the procedure, the derivatives ∂φn
∂wij

are found; then each weight wij is
updated using the approach

wij ← wij − u
∂φn

∂wij
(10)

The backpropagation algorithm uses a teacher-based supervised-learning approach to
train ANNs. Despite high training accuracy, backpropagation does not always perform
well when applied to testing data. As backpropagation relies on local gradient information
with a random initial point, it often gets stuck in local optima. Moreover, neural networks
(NNs) may experience overfitting if the training set is not large enough.

Backpropagation can be categorized into two types: [45]

i. Static Backpropagation: Such an algorithm aims at producing a mapping of a static
input for static output, and it is capable of solving static classification problems
such as optical character recognition (OCR).

ii. Recurrent Backpropagation: This type of network is carried out until a fixed-point
value is obtained, after that the error is determined and propagated backward.

3.2. Autoencoders (AE)

This is an unsupervised learning algorithm used to efficiently code the dataset for
dimensionality reduction. It is a specific type of neural network where the input is the
same as the output. In essence, it compresses the input into a lower dimensional code
and then reconstructs the output using this representation. The code is a compact way of
summarizing or compressing the data, also known as the latent space representation. An
autoencoder consists of three components: (1) encoder: this compresses the input; (2) code:
this is produced by the encoder; (3) decoder: this reconstructs the input using only the code.
To build an autoencoder, the following things are needed: (1) an encoding method, (2) a
decoding method, and (3) a loss function to compare the output with the target. The main
function of an autoencoder is to reduce dimensionality (or compress) with the following
properties: data specific, lossiness, and no supervision [46].

3.2.1. Architecture

The encoder and decoder are both feed forward neural networks, essentially artificial
neural networks (ANNs). A code is a single layer of an ANN with the dimensionality of
our choice. Before training the autoencoder, a hyper parameter (code size) is set for the
number of nodes in the code layer [46].

The input passes through the encoder to produce the code. The decoder then produces
the output using only the code as shown in Figure 3. The goal is to get an output identical
to the input. The only requirement is that the dimensionality of the input and output be
the same. Before training an autoencoder, four hyper parameters must be set: (1) Code size:
number of nodes in the middle layer. The fewer, the greater the compression. It is possible
to have as many layers as required in the autoencoder. (2) Number of nodes per layer:
with each extra layer in the encoder, the number of nodes per layer decreases, whereas the
opposite happens in the decoder. (3) Loss function: using either mean square error (mse) or
binary cross entropy. Cross entropy is used if the input values lie between (0, 1); otherwise,
the mean square error is used [46].
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3.2.2. Types of Autoencoders

i. Convolution Autoencoders:

In convolutional autoencoders, the input signals are encoded in simple signals to
reconstruct the image or modify its reflectance as shown in Figure 4.
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The applications of convolutional encoders are image reconstruction, image coloriza-
tion, latent space clustering, and generating higher resolution images [46].

ii. Sparse Autoencoders (SAEs):

By using sparse autoencoders, an information bottleneck is introduced without reduc-
ing the number of nodes in our hidden layers as shown in Figure 5. Rather, the loss function
is to be constructed to penalize activations within a layer. Feature extraction from raw data
is the core purpose of SAEs. The sparsity of the object presentation can be achieved using
two methods. One method is to penalize the hidden unit’s bias, and the other is to directly
penalize the hidden unit’s activation output [46,47].
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iii. Deep Autoencoders:

A deep autoencoder is an extension of the simple autoencoder. Deep autoencoding is
implemented in layers, with the first layer being used for first-order features. Second-order
features correspond to patterns in the appearance of first-order features in the second layer.
Higher-order features can be learned by deeper layers of the deep autoencoder. A deep
autoencoder is composed of two symmetrical deep belief networks as shown in Figure 6.
The first four or five shallow layers represent the encoding part, and the second set of four
or five layers makes up the decoding part [46].
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The applications of deep autoencoders are image search, data compression, topic
modeling, and information retrieval.

iv. Contractive Autoencoders:

The contractive autoencoder is an unsupervised deep learning technique that enables
neural networks to encode unlabeled training data. This is accomplished by constructing a
loss term that penalizes large derivatives of hidden layer activations with respect to input
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training examples, essentially penalizing instances: a small change in the input leads to a
large change in the encoding space [46,48].

v. Denoising Autoencoders:

This is a type of autoencoders that through modifying the criterion of reconstruction
can try to enhance the representation that retrieves useful features. Therefore, it decreases
the danger in learning an identity function [49]. It accepts a data point that is corrupted;
then training is used to obtain the original input that is undistorted as the output, and this
by diminishing the average reconstruction error in training data—for instance, denoising,
or the corrupted data are cleaned. A denoising autoencoder can be applied for automatic
pre-processing; e.g., it can pre-process an image automatically, thereby enhancing the
quality for accuracy of recognition.

Stacking denoising autoencoders to initialize a deep network works in a similar fashion
as stacking RBMs in deep belief networks or ordinary autoencoders. The input corruption
is only used in the initial denoising training of each layer so that it can learn useful feature
extractors. After the mapping has been learned, it will be used on uncorrupted inputs from
then on. In particular, no corruption is applied to produce the representation that will be
used as the input for the next layer of training. The highest-level output representation of a
stack of encoders can then be used as input to a stand-alone supervised learning algorithm,
for example a support vector machine classifier or (multi-class) logistic regression. Another
option is to add a logistic regression layer on top of the encoders, resulting in a deep neural
network suitable for supervised learning. Gradient-based procedures such as stochastic
gradient descent can be used to fine-tune the parameters of all layers simultaneously [49].

It is not new to train a multilayer perceptron using error backpropagation on a denois-
ing task. In 1987, LeCun and Gallinari et al. introduced the idea as an alternative method
to learn (auto) associative memories similar to how Hopfield Networks were understood.
Training and testing were done on binary input patterns, corrupted by flipping a fraction
of bits at random. To assess the capacity of such a network for memorization tasks, LeCun
counted how many patterns it could correctly recall under these conditions. Moreover, a
nonlinear hidden layer proved to be very useful in this process. A second relevant work is
that of Seung in 1998, in which the training of recurrent neural networks is used to complete
corrupted input patterns through backpropagation over time. Both Seung’s and LeCun’s
and Gallinari’s et al.’s work seems to be inspired by Hopfield-type associative memories,
in which learned patterns are conceived as attractive fixed points of a recurrent network
dynamic. The study by Seung differs from previous studies in that it examines continuous
attractors, highlights the limitations of regular autoencoding, and proposes the pattern
completion task to replace density estimation for unsupervised learning. More recently,
Jain and Seung in 2008 described a very successful approach to image denoising based on
layer-wise constructions of deep convolutional neural networks. This method outperforms
state-of-the-art Markov random field and wavelet methods developed for image denoising.
In particular, Jain and Seung trained each layer in the stack to reconstruct the original clean
image more accurately, which makes sense for image denoising [49].

3.3. Variational Autoencoders (VAE)

A variational autoencoder (VAE) is a type of autoencoder that includes both encoder
and decoder as shown in Figure 7. It belongs to a class of neural networks known as
generative models, and it is used in unsupervised learning. VAEs learn a low dimensional
representation (latent variable) that models the original high dimensional dataset into a
Gaussian distribution. By training, it minimizes the reconstruction errors between the
encoded decoded data and the initial data. To introduce some regularization of the latent
space, a small modification to the encoding–decoding process is made: the input is encoded
as a distribution over latent space instead of as a single point. The model is then trained
as follows: First, the input is encoded as a distribution over the latent space. Next, a
point is sampled from that distribution. Then, the sampled points are decoded and the
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reconstruction error can be determined. Finally, the reconstruction error is backpropagated
through the network [50,51].
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Using this model will enable parameters describing the distribution of each dimension
in latent space to be deduced as shown in Figure 8. Two vectors describing the mean
and variance of the latent state distributions are outputted. By assuming the covariance
matrix only has nonzero values on the diagonal, the information can be represented with a
simple vector. To construct a reconstruction of the original output, the decoder model then
generates a latent vector by sampling from these defined distributions [52].
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A backpropagation technique is used to calculate the relationship between each param-
eter and the final output loss during the training process. By using the re-parameterization
trick, a random sample, ε, from a unit Gaussian distribution can be taken, shifted by the
latent distribution’s mean, µ, and scaled by the latent distribution’s variance, σ as shown in
Figure 9 [52].
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3.4. Restricted Boltzmann Machines (RBMs)

RBMs were invented by Geoffrey Hinton. They are unsupervised machine learning
algorithms. They follow a generative model. RBMs are two-layered, shallow neural
networks that fall under the category of energy-based models. Layer one of the RBM is
known as the visible, or input, layer; and layer two is the hidden layer. Nodes are linked
across layers, but they cannot be linked within the same layer. In a restricted Boltzmann
machine, there is no intra-layer communication, which in RBMs is the restriction. A node is
a locus of computation that processes input and makes stochastic decisions about whether
to transmit it or not. (Stochastic means” determined at random”; in this case, the coefficients
that modify inputs are initialized randomly). Each visible node takes a low-level feature
from an item in the dataset to be learned. For example, each visible node on a dataset of
grayscale images would be assigned a pixel value for each pixel. As in Figure 10, through
the two-layer network, if x is a single-pixel value, it is multiplied by a weight and given
a bias in node 1 of the hidden layer. This result is fed into an activation function, which
produces the output of the node, or the strength of the signal passing through it, given
input x [53,54].
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If there are several inputs, each x is multiplied by a different weight; the products are
summed and given a bias; and again, the result is passed through an activation function to
produce the output of the node as shown in Figure 11.
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In each hidden node, each input x is multiplied by its corresponding weight w. This
means that a single input x will have three weights, making a total of 12 weights (four input
nodes and three hidden nodes). The weights between the two layers will always create
a matrix in which the rows correspond to the inputs and the columns correspond to the
outputs. The four inputs are multiplied by their respective weights for each hidden node.
After adding this sum to a bias (which forces some activations to occur), the result is passed
through an activation algorithm to produce the output of the node as shown in Figure 12.
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3.5. Deep Belief Networks (DBN)

These belong to the class of generative graphical models and are unsupervised algo-
rithms [55]. They solve problems with backpropagation using pre-training. This can be
thought of as a stack of restricted Boltzmann machines. The structure is similar to that of
multilayer perceptrons (MLPs), but they are different. Each RBM helps to locate global
features. This is a class of deep neural networks with multiple layers. In DBNs, there are
both directed and undirected layers. In a DBN, the hidden units are not connected. Despite
this, there are connections between layers. The DBN consists of two major components: the
belief network (Bayesian network) and the restricted Boltzmann machine. Belief networks
are acyclic graphs containing stochastic variables. The DBN infers the binary value (0 or 1)
among unknown variables based on the observed variables, which is known as an inference
problem. A DBN is divided into two phases: pre-training and fine-tuning. A stack of RBMs
is used for pre-training, so that the model learns the features of the visible layer and the
features of the features, etc. A feed-forward MLP or sigmoid belief network is used for
fine-tuning. In pre-training, iterative Gibbs sampling and greedy layer-wise learning are
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used [9]. For fine tuning, either backpropagation (supervised) or a wake–sleep algorithm
(unsupervised) can be used [9]. A DBN could be built by progressively training RBMs from
the bottom to the top, layer by layer. As an RBM can be rapidly trained using the layered
contrast divergence algorithm [9], the training avoids the high degree of complexity of
DBN training, which simplifies the process of training each RBM. Figure 13 represents the
architecture of the deep belief network in which the RBMs are trained layer by layer from
bottom to top [9].
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3.6. Convolutional Neural Networks (CNNs)

The CNN is one of the deep learning algorithms that can take an input image, as-
sign importance to various objects in the image and then distinguish and differentiate
between the image and others [57]. It is used to improve the classification accuracy of
facial electromyography (FEMG) and speech signals. CNN is mostly used in video and
image recognition, natural language processing, and image classification and analysis. It
can categorize images according to the objects included in them. They can even detect
human emotions in an image by classifying the effect of what that person seems to be
feeling [57,58].

A CNN is a supervised algorithm; it is just a neural network. It introduces a new
method for conducting supervised feature learning, and it provides discriminative features
which generalize well. It is a type of feedforward neural network architecture in machine
learning [57–59]. Figure 14 shows the architectural diagram of a CNN.
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The role of a CNN is to reduce images into an easier form for processing. Some
information will be lost from the image when using the feature detector, but the critical
features that are required to get a good prediction will not be lost. The application of
relevant filters allows the CNN to capture the spatial and temporal dependencies in an
image. The reduction in the number of parameters involved and reusability of weights
performs a better fitting to the image dataset [57,58].

Typical convolutional neural networks consist of many layers of hierarchy, with
some layers representing features while others act as conventional neural networks for
classification. Convolutional and subsampling layers are the two types of altering layers.
Convolutional layers perform convolution operations with multiple filter maps of equal
size, while subsampling layers reduce the sizes of the following layers by averaging pixels
within a small neighborhood [58,60].

CNN is used to solve the problems related to images, which means it can solve the
issues that can be given in the form of image. As an example of a CNN’s solutions, an input
image of a cat or dog needs to be classified to either the cat or dog class.

3.6.1. The Ultimate Guide to Convolutional Neural Networks (CNN)

CNN consists of four main steps: the convolution operation and the rectified linear
unit step, the pooling step, the flattening step, and the full connection step.

Step 1a: Convolution Operation
The convolution operation’s main objective is to reduce the size of the input image

by extracting its high-level features. In this step, the feature detectors serve as the neural
networks’ filters. The patterns are detected in the form of layers and the findings are
mapped out. These feature maps are referred to as convolutional layers. The network
categorizes objects or images based on the set of features that pass through them that they
manage to detect. The responsibility of the first convolution layer is to capture low-level
features such as color, edges, and orientation. The architecture adapts to the high-level
features using the added layers. This gives the network a holistic understanding of the
images in the dataset. The other use of the convolution matrix is to adjust an image. The
convolution operation has three elements: the input image, the feature detector, and the
feature map [57–59].

1. An input image is a matrix of pixel values. Each pixel contains eight bits of information.
Black and white images are scanned differently from colored images. Black and white
images are two-dimensional, colors are represented on a scale of (28) possible values,
from 0 to 255. In other cases, such as detecting facial expressions, all of the pixels are
valued at 0 except the objects, which are valued at 1 [57,58].
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2. Convolution layer—the feature detector and the feature map: A 5× 5 or a 7× 7 matrix
is used as a feature detector (kernel), but the 3 × 3 matrix is more conventional. A 5
(Height)× 5 (Breadth)× 1 (Number of channels, e.g., RGB) input image is convoluted
with a 4 × 3 × 1 kernel filter to get a 3 × 3 × 1 convolved feature. The kernel/filter, K,
is the feature detector. It is the part that is involved in carrying out the convolution
operation. K is selected as a 3 × 3 × 1 matrix [57,58].

Kernel/Filter K =
1 0 1
0 1 0
1 0 1

The number of cells in which the feature detector matches the input image is counted,
and the number of matching cells is then inserted in the top-left cell of the feature map.
Since the stride length (movements of the feature detector across pixels) = 1 (one cell at a
time), the kernel shifts nine times. Every time it performs a matrix multiplication between
k and the portion of the image that is hovered over by the kernel. The larger the strides, the
smaller the feature map/activation map. Wide movements across pixels are required when
working with proper images. A feature map can contain any digit, not only 1 s and 0 s. The
purpose of the kernel/detector is to sift through the information in the input image, filter
the parts that are integral to it, and exclude the rest. The network determines what these
features are. Here the kernel and the input image have the same depth. The performed
matrix multiplication is between Kn and in stack. ([K1, I1]; [K2, I2]; [K3, I3]). To obtain
a squashed, one depth channel convoluted feature output, the results are summed with
the bias. Small neurons (receptive fields) in multiple layers process the input image in
portions, and the result is a clear representation of the original input image. One of the
most distinguishable characteristics of the CNN is that it consists of 3D volumes of neurons,
which are arranged in three dimensions: depth, height, and weight [57,58].

Step 1b: Rectified Linear Unit (ReLU) Layer
This is a supplementary step to the convolution operation. It is the step of linearity

functions in the context of convolutional neural networks. The rectifier functions serve to
break up the linearity as shown in Figure 15. They are applied to increase the nonlinearity
in images since images are naturally nonlinear (e.g., the colors, the borders, or the transi-
tion between pixels) [57]. This linear function outputs the input directly if it is positive;
otherwise, it outputs zero. Both the function and its derivative are monotonic. In that case,
any negative input given to the ReLU activation function would turn into zero immediately
on the graph, which would then affect the resulting graph by not mapping the negative
values appropriately. The advantages are as follows: Since it is nonlinear, the errors can be
back propagated and activate multiple layers of neurons at the same time. As compared to
sigmoid and tanh functions, it greatly accelerates the convergence of stochastic gradient
descent. It does not activate all neurons at once. Several neurons have no output, so only a
few are activated, making the network sparse, efficient, and easy to compute. The disadvan-
tages are as follows: ReLU is unbounded at zero and non-differentiable. As the gradients for
negative input are zero, data in that region are not updated during backpropagation. This
can result in dead neurons that are never activated. ReLU output is not zero-centered, and
it negatively affects neural network performance. During backpropagation, the gradient of
the weights will either be positive or negative. In the gradient updates for the weights, this
could cause undesirable zig-zagging dynamics [58].
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Step 2: Pooling
The purpose of max pooling is to enable the convolutional neural network to detect

the image of an object when presented in any manner, even if the object in the image is
posing differently as shown in Figure 16 in different settings and from different angles. The
network needs to acquire the “spatial variance” property that allows the convolutional
neural network to learn to recognize a certain object in the image despite the above-
mentioned differences. There are different types and approaches to pooling: mean pooling,
max pooling, sum pooling, and others [57].
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Pooled Feature Map:
The pooled feature map differs from the regular feature map. A 2 X2 box is most often

used. The maximum numerical value for every four cells is inserted into the pooled feature
map as shown in Figure 17 [57].
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Figure 17. Max pooling, 2-pixel strides [57].

In this case, roughly 75% of the original information in the feature map is lost. The
lost details are the unnecessary details, and the network can do its job without them more
efficiently. The point here is to account for distortions, which is the point of the entire
pooling step.

Step 3: Flattening
The pooled feature map is flattened into a column, as in Figure 18. This is needed in

order to insert this data into an artificial neural network later [57].
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Step 4: Full Connection
The purpose of the artificial neural network is to make the convolutional network

more capable of classifying images. The artificial neural network’s role is to take the data
that were created in the flattening step and combine the features into a wider variety
of attributes to achieve its aforementioned purpose. There are three layers in the full
connection step: the input layer, the fully connected layer (in this context called a hidden
layer in artificial neural networks), and the output layer.

The neural network issues its predictions for the processed input image that passes
through it. Assume that the actual image is a cat, but the network predicts that the figure
in the image is a dog with a probability of 80%. A calculation of the error should be carried
out. This is defined as a “loss function” or a mean squared error. The importance of the
loss function lies in optimizing the network to increase its effectiveness. This requires
altering certain things in the network, such as the weights (the blue lines connecting the
neurons in Figure 19) and the feature detector, if the network turns out to be seeking the
wrong features. For the sake of optimization, the network must be reviewed multiple times;
meanwhile, information keeps flowing back and forth until the network reaches the desired
state [57,58].
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3.6.2. Class Recognition

Figure 20 shows the full connection step with two neuron outputs (dog and cat) [57].
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Assume the dog class. The process of the full connection works as follows: A certain
feature, e.g., a nose, is detected by the neuron in the fully connected layer. The fully
connected layer preserves the feature value as in Figure 21. It communicates this value to
both the ”dog” and the ”cat” classes. Both classes examine the feature and decide whether
it is relevant to them. Assume that the weight placed on the dog’s nose synapse is high
(1.0), in the above example. This implies that the network is confident that it is a dog’s nose.
Subsequently, the ”cat” class takes note that it is a dog’s nose, which implies it is not a cat’s
nose. The dog class will focus more on the attributes that have the highest weights (the
thick purple lines in the figure below) and will ignore the rest. Similarly, the cat class picks
out its priority features. The process is repeated thousands of times until an optimized
neural network is obtained [57].
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3.7. Recurrent Neural Networks (RNNs)

An RNN is one type of artificial neural network (ANN). It is the only type of neural
network with internal memory, and it is powerful and robust. As a result of their internal
memory, RNNs can remember important information about the input they receive. An
RNN model is calibrated to recognize a sequential pattern in data and then use that
pattern to predict what is going to happen very precisely. Therefore, they are the preferred
algorithm for sequential data, such as time series, speech, text, financial data, audio, video,
and weather. By using recurrent neural networks, a sequence is understood much better. In
an RNN the information cycles through a loop as in Figure 22. The decision is made based
both on its current input and the input it previously received [61].
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An RNN model is designed to recognize the sequential characteristics of data and
thereafter use these patterns to predict coming scenarios. RNNs usually have a short
term memory. In combination with LSTM, they also have a long-term memory. An RNN
has two inputs: the present and the recent past. The sequence of data contains a lot of
information about what will happen next, which is why an RNN can do things that other
algorithms cannot. RNNs apply weights to both the current and previous input. The
weights of a recurrent neural network can also be adjusted both via gradient descent and
backpropagation. RNNs can map one to one, one to many, many to many (translation), and
many to one (classifying a voice) [61].

An RNN is a sequence of neural networks that are trained one after another with
backpropagation. The Figure 23 illustrates an unrolled RNN. The RNN is unrolled after the
equals sign (as shown in Figure 23) on the left. After the equals sign, there is no cycle, since
the different time steps are visualized, and information is passed from one time step to the
next [61].
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The information in RNN is cycled through a loop. When it makes a decision, it takes
into account the current input and what it has learned in the past. A typical RNN has a
short-term memory. As soon as it produces output, it copies the output and loops it back
into the system. Thus, RNN has two inputs: the present and the recent past. RNN can
therefore, do things that other algorithms cannot because a sequence of data provides vital
information about what’s to come next. Weights are applied to both the current input and
the previous input by RNNs. Moreover, a recurrent neural network will also tweak its
weights through gradient descent and backpropagation through time (BPTT) [61].

If backpropagation is applied through time (BPTT), the concept of unrolling is required
because the error of a given time step is dependent on the previous time step. BPTT
propagates the error from the last to the first time step, unrolling all the time steps in the
process. Calculating the error for every time step allows the weights to be updated. BPTT
can be computationally expensive when it has a large number of time steps.

The higher the gradient, the steeper the slope and the faster the model can learn. On
the other hand, if zero is the slope, the model stops learning. A gradient is simply the
change in weights based on the change in error. Exploding gradients occur when the
algorithm, for no apparent reason, gives weights excessive importance. Gradients can be
easily truncated or squashed to solve this problem. The gradient vanishes when the values
of the gradient are too small and the model stops learning or takes an excessive amount of
time. In the 1990s, this was a major problem and much harder to solve. Fortunately, it was
solved using LSTM [61].

3.8. Generative Adversarial Networks

Generative adversarial networks (GANs) can be explained as follows [62]: A mecha-
nism has been proposed that uses an adversarial procedure to estimate generative models.
At the same time, two models are trained: these models are the generative model G and
discriminative model D. G is a generative model that captures data distribution, while
D is a discriminative model that estimates the likelihood that a sample came from the
training data rather than G. Training G maximizes the likelihood that D makes an error.
The mechanism is like the two players game of minimax. A unique solution is found within
the arbitrary function space, where the distribution of training data is recovered by G, and
the value of D is 0.5 everywhere. When multilayer perceptrons define both G and D, back-
propagation is used to train the whole system. Through generating of samples or training,
there are no requirements for Markov chains or unrolled approximate inference networks.

3.9. Capsnets

The neurons can be collaborated in a particular unit arrangement, such as capsules [63].
An explanation of capsnets is given as follows [64]: The definition of a capsule is a col-
lection of neurons, which their activity vector denotes the parameters of instantiation for
a particular kind of entity, such as an object or a portion of an object. The parameters of
instantiation and the probability of the existence of an entity are denoted by the orientation
and length of the activity vector, respectively. The predictions are carried out by active cap-
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sules using matrices of transformation on the parameters of instantiation within capsules
at a higher level. The capsule at the higher level is an active when approval is given for
several predictions.

Capsnets is an architecture that consists of two convolutional layers and a single
fully connected layer, and it is given in Figure 24. The first convolutional layer that is
called Conv1 includes 256, 9 × 9 kernels and 1 as the stride value, and it uses a ReLU
activation function. Intensities of pixels are transformed into activities for local features,
and these are employed later as the inputs of the second convolutional layer that is called
PrimaryCapsules. The PrimaryCapsules layer consists of 32 channels of capsules that are
8D. The components of every primary capsule: the number of convolutional units is 8,
the kernels are 9 × 9, and the stride value is 2. The outcomes of the entire convolutional
units that are 256 × 81 in the first convolutional layer can be noticed by every outcome of
primary capsule. Overall, the number of capsule outcomes in PrimaryCapsules is the result
of 32 × 6 × 6. Every outcome is a vector of 8D. Within a grid of 6 × 6, the weight of every
capsule is shared by the others. The third layer is called DigitCaps, and it consists of one
16D capsule for each class of digit. The capsules obtain their inputs from all of the capsules
that are at levels below themselves.
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The routing exists solely between PrimaryCapsules and DigitCaps layers. In addition,
there is no routing between Conv1 and PrimaryCapsules due to the outcome of Conv1
being 1D, and therefore its space is without orientation to approve upon. At the beginning,
the outcome of a capsule is transferred to the entire parent capsules with an equal value of
probability.

3.10. Transformer

Transformers can be explained as follows [65]: A transformer is a network architecture
that relies upon attention methods and eventually excluding the convolutions and the re-
currence. The architecture of a transformer (Figure 25) employs for an encoder and decoder,
stacked self-attention and point-wise fully connected layers. The stack of encoder has six
identical layers, there are two sub-layers for every layer. Sub-layer 1 is called a method of
multi-head self-attention, and sub-layer 2 is a position-wise fully connected feedforward
network. A connection of residual [66] is used nearly from every sub-layer, next to it is
layer normalization [67]. Every sub-layer produces the outcome that is LayerNorm(x +
Sublayer(x)), the sub-layer is executed the function Sublayer(x) by itself.
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The stack of the decoder is like the stack of the encoder, having six identical layers;
and every decoder layer includes the two sub-layers of the encoder layer, along with a
third sub-layer that uses multi-head attention upon the encoder stack’s output. In addition,
connection of residuals is used nearly from every sub-layer, next to it is layer normalization.
In the decoder stack, the self-attention sub-layer is altered, aiming to not allow positions to
attend the next positions. Masking is joint with the truth, so the output embeddings are
offset through a single position, confirming the expectations at position I relies solely upon
the recognized outputs of positions that are smaller than I.

An attention function maps the query and a collection of pairs of key-values into
an output. Vectors are the representations of the queries, keys, values, and outputs. The
calculation of output can be done as the weighted sum for the values. The weight is given
to every value, and this weight can be calculated using the query compatibility function
and the corresponding key.

3.11. Embeddings from Language Models

The authors of [68] presented embeddings from language models (ELMo) as a kind of
deep contextualized work representation. They used ELMo to model the following:

• The complex features of using words, including the semantics and syntax;
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• For these uses, how they are different in various contexts of linguistics, such as
modeling polysemy.

More details about ELMo are given as follows [68]: The vectors of word are represented
as learning functions for internal states in a deep bidirectional language model (biLM) that
is pretrained upon a huge set of text. Those are easily to be appended to the models that
already existed, the state-of-the-art can be enhanced through six challenging issues related
natural language processing. These are: sentiment analysis, question answering, textual
entailment, named entity extraction, conference resolution, and semantic role labeling.

3.12. Bidirectional Encoder Representations from Transformers

Bidirectional encoder representations from transformers (BERT) is a model of language
representation and it is clarified as follows [69]. By using the combined conditions upon the
left context and right context within the entire layers, the deep bidirectional representations
taking from the unlabeled text can be pre-trained via BERT. This leads to the model of
BERT that pre-trained are fine-tuned by appending a sole single output layer as shown in
Figures 26 and 27. This can construct modern models for many tasks, including language
inference, question answering, etc.
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3.13. Attention in Natural Language Processing

The authors of [70] presented the following: In natural language processing, a unified
model has been determined in terms of architectures of attention. A general view on
models of natural language processing is presented, and it is employed to lay out the main
activities of research in this field. The concentration is upon those who are working with
the representations of vector for textual data. Based on four dimensions, a classification
for models of attention is proposed. These dimensions are the input representation, the
distribution function, the compatibility functions, and the input and/or output multiplicity.
This classification is the first classification for models of attention. A brief explanation
about every model of attention is given; they compare the models with each other; and
they provide views related to their usage.

4. A Comparison of Deep Learning Algorithms

Table 1 highlights the main information and is arranged in an emphasized manner to
summarize the representation of the deep learning algorithms that have been presented in
this article, including their advantages, disadvantages, and applications, and whether the
algorithm is supervised or unsupervised.
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Table 1. Deep learning algorithms used in different domains with accuracy.

Reference No. Algorithm Used Domain Accuracy Rate

[30] Back propagation Sonar target recognition Nearly 100%

[31] Stacked autoencoders COVID-19 digital
images recognition 80%

[15] Deep Boltzmann
machine

Classification of hyperspectral
medical images for the

diagnosis of cancerous regions
95.5%

[16] Deep belief networks
Classification of normal and

COVID-19 patients using
medical images of chest X-rays

90%

[18] CNN

For diagnosis of Alzheimer’s
disease by a voxel-based

hierarchical feature
extraction method

97%

[26] CNN

For motor imagery
classification based on sorted

blind source separation,
continuous wavelet transform,

and convolutional
neural network

94.66%

[25] CNN To detect COVID-19 99%

[25] DNN To detect COVID-19 99.7%

[25] SVM To detect COVID-19 99.68%

[25] KNN To detect COVID-19 93.41%

[36] DBN and
convolutional DBN

To detect COVID-19 in chest
X-ray images 99.93%

[37] SVM and NN To detect dementia diseases 90%

As listed in Table 2, Backpropagation is a simple supervised algorithm which is easy
and fast to program. However, it needs excessive time for training and is very sensitive
to noisy data. It can also be used for speech recognition, face recognition, character recog-
nition, etc. An autoencoder is an unsupervised learning algorithm which is an efficient
algorithm for learning several layers—mainly used for dimensionality reduction. However,
it is a lossy technique. A variational autoencoder is an autoencoder that forms a high
dimensional dataset into a distribution. The implementation of a variational autoencoder
is more challenging than the implementation of an autoencoder. However, they produce
high quality images. The main application of variational autoencoder is to generate new
data related to the source data. RBMs are unsupervised learning algorithms useful for
dimensionality reduction, classification, regression, feature learning, etc. They are restricted
in terms of the connections between the input layers and the hidden layers. They are also
very tricky to train, and the loss cannot be tracked. DBNs are also unsupervised learning
algorithms belonging to a generative graphical model. They identify deep patterns in the
input data. DBNs can learn an optimal set of parameters quickly even for models with large
numbers of parameters and layers with nonlinearity, but they are very slow and inefficient.
Their main applications are classification and clustering. CNNs are supervised learning
algorithms which are designed to learn the spatial hierarchies of features automatically
through backpropagation by using multiple building blocks, such as convolution layers,
pooling layers, and fully connected layers. They are easy to train and implement, and they
are efficient in pre-training and feature extraction. However, they need large amounts of
memory to store their intermediate results, and their main uses are in video and image
recognition, natural language processing, image classification, etc. RNN is a supervised
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learning algorithm which can relearn from old data as new data are acquired, and this is
beneficial in for time series. The nature of RNNs makes their calculations slow. RNNs have
many applications, such as machine translation, speech, and voice recognition, handwriting
recognition, etc. GANs have no need to utilize Markov chains, and have many applications,
such as image analysis. The GAN exhibits an inverse relationship regarding to the cost
functions of the discriminator and the generator: when the cost function of the discrimina-
tor is increased, the cost function of the generator is decreased, and vice versa. Capsnets
can be applied in medical applications, such as brain tumor classification. Capsnets uses
few parameters. Capsule networks face the scalability of complex data. A transformer uses
methods of attention, and it does not depend upon convolutions or recurrence. Attention
utilizes fixed-length text strings; text chunking performs context fragmentation. Trans-
formers have several applications, such as sequence transduction, that relate to language
translation. ELMo can be applied in sentiment analysis, question answering, etc. Both
building embeddings and training process are very slow because of the complex nature of
Bi-LSTM architecture. The word representations for deep context and letter level could be
adapted with works that are complex. A model of language representation called BERT
is computationally costly at inference time. BERT can be applied to language inference
and answering of questions. The first categorization for models of attention based on four
dimensions was proposed in [71]. These dimensions are input representation, distribution
function, compatibility function, and input and/or output multiplicity. Attention in natural
language processing faces challenges, such as attention analysis of model evaluation and
attention for deep networks investigations. Attention in natural language processing has
several uses, such as feature selection, auxiliary tasks, building of contextual embedding,
and others.



Algorithms 2022, 15, 71 32 of 55

Table 2. Comparison of deep learning algorithms [9,45,46,50,52,58,61,62,64,65,69,70,72–84].

Algorithm Supervised/
Unsupervised Advantages Disadvantages Applications

Backpropagation Supervised
• Easy to implement.
• Flexible and efficient.

• Might not perform well when
applied to testing data.

• Could be sensitive to noisy data.
• It often gets stuck in local optima
• May experience overfitting if the

training set is not big enough.

• Optical character recognition.
• Useful for image or speech

recognition

Autoencoders Unsupervised

• Can learn nonlinear transformations with non-layer
activation function and multiple layers

• Does not have to learn dense layers
• More efficient to learn several layers with an autoencoder

• Data specific
• Lossy

• Data denoising
• Dimensionality reduction
• Image reconstruction
• Image colorization
• Anomaly detection
• Data compression
• Feature variation

Variational
Autoen-
coders

Unsupervised
• A better organization of the latent space results in high

quality images
• Samples from image tend to be

blurry

• For learning latent
representations

• To draw images
• Achieve state-of-the-art results

in semi-supervised learning
and interpolate between
sentences

RBMs
RBMs Unsupervised

• Can do pattern
• completion
• Can be used as feature extractors
• Can be used to train other models
• Can be stacked to pre-train a deeper feedforward neural

model

• RBMs are tricky to train well
• Unable to track the loss that is

required (let alone take derivatives
with respect to it).

• Dimensionality reduction
• Classification
• Regression
• Collaborative filtering
• Feature learning
• Topic modeling
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Table 2. Cont.

Algorithm Supervised/
Unsupervised Advantages Disadvantages Applications

DBNs
DBNs Unsupervised

• learn an optimal set of parameters quickly, even for models
with large numbers of parameters and layers with
nonlinearity.

• It is possible to compute the output values of variables in the
lowest layer using an approximate inference procedure.

• The limitation of the approximate
• inference procedure to a single

bottom-up pass.
• It never readjusts with the other

layers or parameters of the network.
• It is very slow and inefficient.

• They are used to recognize,
cluster, and generate images,
video sequences and motion
capture data.

• They can be used in
• classification and feature

learning

CNNs
CNNs Supervised

• Saves memory
• Uses only fewer parameters
• Easy to train
• Able to learn relevant features from an
• image or video at
• different levels
• Can design 2D structure from an input image by local
• connections and weights
• Better performance
• Are very efficient in feature extraction. They are efficient at

pre training
• Are easy to implement from a practical perspective.

• Require an
• enormous amount of memory to

store all the intermediate results.
• They often get confused by images

and mistakenly categorize objects
during their early stages of training.

• They would be of no use if the data
were completely

• unstructured, such as in an Excel
spreadsheet.

• Video and image recognition
• Natural language processing
• Image classification and

analysis.



Algorithms 2022, 15, 71 34 of 55

Table 2. Cont.

Algorithm Supervised/
Unsupervised Advantages Disadvantages Applications

RNNs
RNNs Supervised

• An RNN is capable of processing inputs of any length.
• An RNN model is
• designed to remember all the previous
• information over time which is very useful in time series

prediction.
• Model size does not increase as input size increases.
• It is possible to share weights across the time steps.
• It gives an effective pixel neighborhood with the help of

convolutional layers.
• In contrast to feedforward neural networks, RNNs can use

their internal memory to process an arbitrary series
of inputs.

• The computation of this neural
network is slow due to its

• recurrent nature.
• Training is a difficult process.
• With the use of ReLU or tanh

activation functions, it is very
tedious to process long sequences.

• It faces problems such as exploding
or vanishing gradients.

• Machine translation
• Robot control
• Speech or voice recognition
• Composing music
• Learning grammar
• Predicting the
• location of proteins in a cell
• Prediction in business

management and
administrative tasks

• Rhythm learning
• handwriting
• recognition

GANs Unsupervised

• No requirements to use Markov chains, gradients can be
achieved solely using backpropagation.

• Through learning, there are no requirements for inference.
• Through the model, an enormous diversity of functions has

the ability to be integrated.
• The models of adversarial perhaps obtain a statistical

advantage from the network of generator that is not
modified immediately with examples of data.

• Degraded and extremely sharp distributions can be
represented by the adversarial networks. In terms of the
approaches of Markov chains demand a bit blurry
distribution aiming to mix among methods.

• The shape of distribution probability for the generator
model has no need to define it.

• The sampling related to generated data can be parallelized.
• Through presenting a lower bound like in VAE, there is no

requirement for estimating a probability.
• It can offer satisfactory results like those better than VAE.

• No clear representation for pg(x).
• Through training, D has to be

synchronized with G in good way.
• Quietly like the negative chains for a

Boltzmann machine should be
remained updated among the steps
of learning.

• Increasing in the cost function of the
discriminator makes decreasing in
the cost function of the generator
and vice versa.

• Failing of convergence for the game
of GAN, and instability could be
happened.

• The problem of mode collapse.

• Applications of image.
• Domain adaptation.
• Applications of sequential data

based.
• Improvement of recognition

and classification.
• Miscellaneous applications like

discovery of drug.
• Development of molecule

within oncology.
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Table 2. Cont.

Algorithm Supervised/
Unsupervised Advantages Disadvantages Applications

Capsnets Unsupervised

• Invariance of viewpoint.
• Less number of parameters.
• Better generalization to new viewpoints.
• Defense versus the attacks of white-box adversarial.
• Validatable.
• Fewer volume of training data.

• Complex data scalability
• Capsules required to model

everything.
• The representation of entities is

forced by the structure.
• Applying capsnet on a new dataset

is normally requested:
• Applying a new loss function.
• Crowding.
• Implementation that is not optimal.

• Capsnets can be applied in
medical area such as it is
employed for classifying the
kind of brain tumor.

• Capsnet is also used with RNN
in the works of sentiment
analysis.

• ·
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Table 2. Cont.

Algorithm Supervised/
Unsupervised Advantages Disadvantages Applications

Transformer semi-supervised

• Transformer is depending only upon the attentions methods,
and it is excluding on its reliance on either recurrence or
convolutions.

• Attention is utilized by transformers to increase the speed,
which using it training models can be done.

• For particular tasks, the translation model of Google Neural
Machine is outperformed by transformers.

• The way that the Transformer can lend itself into
parallelization.

• Fixed length strings of text can
solely be used by the attention.

• Context fragmentation is caused by
text chunking.

• At layers of encoder-decoder
attention, both memory keys
and values arrive from the
encoder outcome, while the
source of the queries is the
prior decoder layer.

• The layers of self-attention are
included in the encoder.

• Within a layer of self-attention,
the entire keys, values and
queries are come from the
outcome of the precede layer
in the encoder.

• In the encoder, every position
has the ability to attend to the
complete positions within the
encoder former layer.

• In the decoder, the layers of
self-attention permit every
position within the decoder to
attend to the entire positions
within the decoder up to and
covering that position.

• Sequence transduction, which
means language translation,
the mission of analyzing the
classic language for parsing of
syntactic constituency, and
dissimilar patterns of inputs
and outputs like resolution of
co-reference, video and
images.

• Videos and images are
applications for this algorithm.
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Table 2. Cont.

Algorithm Supervised/
Unsupervised Advantages Disadvantages Applications

ELMo Unsupervised

• The representations of word for letter level and the context
that is deep can be adapted with further complicated works.

• Based on many tasks, it works much better comparing to
simple embeddings. The easiness to access the pretrained
form.

• The complicated nature of Bi-LSTM
architecture leads to that the training
process and building embeddings
are quite slow.

• Comparable models like Flair works
better.

• Struggling with the dependencies of
context that are with long term.

• Sentiment analysis.
• Question answering.
• Textual entailment.
• Named entity extraction.
• Conference resolution.
• Semantic role labeling.

BERT Unsupervised

• BERT is a bidirectional, deep bidirectional representations
can be pre-trained by masked language models used
via BERT.

• BERT model obtains the performance of the state-of-the-art
using a massive set of token and sentence level missions,
and it has better performance than several
mission-particular architectures.

• Building of vectors or contextualized word embeddings
by BERT.

• At inference time BERT is quite
expensive computations. In other
words, it is costly.

• Language inference and
answering of questions
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Table 2. Cont.

Algorithm Supervised/
Unsupervised Advantages Disadvantages Applications

Attention
in Natural
Language
Process-

ing

Supervised

• The first classification for models of attention in terms of
four dimensions:

◦ Input representation.
◦ distribution function.
◦ Compatibility function.
◦ Input and/or output multiplicity.

• Attention for deep networks
investigation.

• Attention for sample weighing and
outlier detection.

• Analysis of attention for evaluation
of model.

• Unsupervised learning with
attention.

• Neural symbolic learning and
reasoning.

• Feature selection, and an
example on the task is
multimodal tasks.

• Auxiliary task, and examples
on the task are semantic role
labelling, and visual question
answering.

• Building of contextual
embedding, examples on the
task are sentiment analysis,
information extraction, and
machine translation.

• Sequence-to-sequence
annotation, an example on the
task is machine translation.

• Selection of work, examples on
the tasks are cloze question
answering, and dependency
parsing.

• Multiple input processing, an
example on the task is question
answering.
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5. Applying Deep Learning Algorithms in Healthcare

Various deep learning algorithms are used in practical applications in the current
situation with the COVID-19 pandemic. Deep learning has shown itself to be useful in
healthcare for governments worldwide. These applications provide image-processing
capabilities, classification, or clustering, or predict when life will resume as before.

As of the time of writing, it is reported that more than 213 million patients have been
diagnosed with COVID-19, and 4.4 million of these cases have passed away, according
to the Coronavirus Resource Centre at Johns Hopkins University [85]. This pandemic
poses a dire threat to human civilization. In the pre-COVID-19 era, deep learning was
not viewed as a sustainable algorithm for health informatics due to the large amount of
training data and computational resources it requires, compared to other algorithms that
do not require similar efforts and tuning [30]. Deep learning techniques were constantly
negatively viewed due to their lack of interpretability [14]. However, COVID-19 has created
a need for robust research in order to find the best classification, screening, and diagnostic
measures. Search code strategies were used to track the progress of machine learning and
deep learning in predicting, detecting, and diagnosing COVID-19. Convolutional neural
networks, deep neural networks, and support vector machine algorithms have exhibited
accuracies of up to 99% while detecting the virus [86].

In the medical field and healthcare, deep learning was used in detecting and differ-
entiating among COVID-19, viral pneumonia, and healthy chest X-rays in patients using
image-processing capabilities [87]. The COVID-DeepNet system has been proposed for
determining COVID-19 in chest X-ray (CX-R) images [36]. This system helps radiologists
who have experience in understanding the images quickly and accurately [36]. The re-
sults taken from two dissimilar methods rely upon the combination of a convolutional
deep belief network and deep belief network, trained from the beginning utilizing a big
dataset [36]. The developed system appears to offer precision and efficiency and can be
utilized to identify COVID-19 by applying early diagnosis. Additionally, this system can
be used to follow-up the treatment, with each image taking less than 3 s to be decided
upon [36].

Diagnosis, techniques such as Covid-Net CNN, ConoNet CNN, Bayes SqueezeNet,
and CoroNet AutoEncoders, have performed superiorly with high accuracies. Other deep
learning algorithms have diagnosed COVID-19 after being used on CT-scan datasets, such
as the WOA-CNN, CRNet, and CNNs [88].

An entirely automatic system of deep learning for the diagnosis of COVID-19, and anal-
ysis of prognosis, has utilized computed tomography [36]. From seven cities or provinces,
5273 patients along with their computed tomography images have been gathered [16]. For
pre-training the deep learning system, 4106 patients along with their tomography images
have been used, enabling the system to learn the features of the lung [16]. Subsequently,
1266 patients from six cities or provinces have been registered with the intention of training
and validating externally the system performance of deep learning [16]. A total of 924 out
1266 patients had COVID-19 (471 were followed-up for > days) [16]. In particular, 342 out
of 1266 patients had other pneumonia [16]. The system of deep learning accomplished
satisfactory performance in distinguishing COVID-19 from viral and other pneumonia
within the four sets of external validation [16]. In addition, the system of deep learning
has the ability to group patients into low and high risks whose time of stay at hospital
has important dissimilarities [16]. The rapid diagnosis of COVID-19 and determining the
patients with high risks can be achieved using deep learning, which can help in enhancing
the medical resources and also to help the patients before they will be in critical states [16].

In order to classify the image tissue, [89] utilized SegNet and U-NET as two recognized
networks of deep learning. U-NET is a tool of medical segmentation [89], and SegNet is the
network of scene segmentation [89]. SegNet and U-NET were used as binary segmentors
in order to distinguish between infected and healthy lung tissue [89]. Moreover, the two
networks can be used as multi-class segmentors for the purpose of learning the infection
within the lung [89]. Every network used seventy-two images for training [89], ten images
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for validation [89] and eighteen images for testing [89]. The results showed that SegNet is
capable to differentiate between healthy and infected tissues. In addition, U-NET provided
better results based on multi-class segmentor [89].

Additionally, using models that apply convolutional neural networks and recurring
neural networks, applications can be created to predict vaccination patterns in the fu-
ture [89]. Deterministic and stochastic recurrent neural networks were used to predict the
geographic spreading of the active virus using unsupervised learning methods so as to
plan vaccine distribution among the USA, as a case study [90].

Machine learning helps governments and health ministries to prepare and schedule
the dosages required for the public. In addition, algorithms have helped to forecast the
case numbers and mortality statistics in many countries. Deep learning has improved
the accuracy of predictions, enabling improved data-driven decisions regarding easing
or enforcing lockdowns [91]. A case study was conducted in India that took no external
factors that could affect the rate of spread to predict lockdown extension time. A linear
regression model was used to predict how long lockdowns should last in order to eradicate
COVID-19 from India [84].

The authors of [87] discussed the ways that deep learning assisted in the COVID-19
pandemic and presents guidelines for upcoming research on COVID-19. The authors of [86]
provided applications of deep learning in different fields, such as computer vision, natural
language processing, epidemiology, and life sciences. The authors of [92] described the
differences of the applications of big data and methods for building the tasks for learning.
In addition, ([91], p. 19) introduces deep learning’s limitations for application during
COVID-19. The limitations are generalization metrics, interpretability, the privacy of data,
and using limited labelled data for learning.

Deep learning algorithms can be used to forecast the number of COVID-19 cases
and death cases. The multivariate CNN algorithm outperformed the LSTM in terms of
validation accuracy and forecasting consistency. CNN has been suggested for long-term
forecasting in the absence of seasonality and periodic patterns in time series datasets [90].
The paper mentioned that DL techniques have a significant impact on early detection of
COVID-19 with high accuracy rate. Most of the studies used deep learning to detect COVID-
19 cases in early stage based on different diagnostic techniques. The most widely used
techniques are convolutional neural network (CNN) and transfer learning (TL) [93]. The
paper detailed that the use of AI in COVID-19 investigation can be summarized in terms
of clinical image examination, drug design and pandemic prediction against coronavirus.
The study revealed that in a considerable number of patients with suspected COVID-19
pneumonia, CT should be examined following CXR, potentially causing impairment in the
absence of pre-defined diagnostic work-up criteria. The DNN architectures are built from
the ground up instead of applying transfer learning techniques [94]. Deep Learning appli-
cations to detect the symptoms of COVID-19, AI based robots to maintain social distancing,
Block chain technology to maintain patient records, Mathematical modeling to predict and
assess the situation and Big Data to trace the spread of the virus and other technologies.
These technologies have immensely contributed to curtailing this pandemic [95]. In this
article, they designed a weakly supervised deep learning architecture for fast and fully-
automated detection and classification of COVID-19 cases using retrospectively extracted
CT images from multiple scanners and multiple centers. It can distinguish COVID-19
cases accurately from CAP (Community Acquired Pneumonia) and NP(Non-Pneumonia)
patients. It can also spot the exact position of the lesions or inflammations caused by the
COVID-19, and can also provide details about the patient severity in order to guide the
following triage and treatment. Experimental findings have indicated that the proposed
model achieves high accuracy, precision and promising qualitative visualisation for the
lesion detections [96]. This article provide a solution for recognizing pneumonia due
to COVID-19 and healthy lungs (normal person) using CXR (chest X-ray) images. They
used the state-of-the-art technique, genetic deep learning convolutional neural network
(GDCNN). It is trained from the scratch for extracting features for grouping them into
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COVID-19 and normal images. The proposed method do better compared to other transfer
learning techniques. Classification accuracy of 98.84%, the precision of 93%, the sensi-
tivity of 100%, and specificity of 97.0% in COVID-19 prediction is attained [97]. As long
as the number of patients is very high and the level of radiological expertise required is
low, deep learning-based recommender systems can be of great assistance in diagnosing
COVID-19. The study examined four different deep CNN architectures on chest X-ray
images of COVID-19 patients for diagnosis recommendation. From all of the models, the
Mobilenet model comes out on top. Based on the results, CNN-based architectures have the
potential to diagnose COVID-19 correctly. Transfer learning plays a key role in improving
detection accuracy. Further fine-tuning of these models may improve their accuracy [98].
In this paper they presented a clinical decision support system for the early detection of
COVID-19 using deep learning based on chest X-ray images. For this, they developed an
architecture made up of three stages. The first stage includes pre-processing of input images
followed by data augmentation. The second stage includes feature extraction followed by
learning. Finally, the third stage produces the classification and prediction process with
a fully connected network of several classifiers. The proposed deep learning algorithm
provided an AUC of 0.97 for internal validation and 0.95 for external validation based on
the number of chest Xray images with an accuracy of 92.5% and 87.5% respectively [99].
This paper addresses how AI provides safe, accurate and efficient imaging solutions in
COVID-19 applications. Two imaging techniques, i.e., X-ray and CT, are used to show
the effectiveness of AI-empowered medical imaging for COVID-19. Imaging only gives
partial information about patients with COVID-19. So, it is important to integrate imaging
data with both clinical manifestations and laboratory examination results to help better
screening, detection and diagnosis of COVID-19. AI will demonstrate its natural capability
in fusing information from these multi-source data, for performing accurate and efficient
diagnosis, analysis and follow-up [96]. In this paper, the significance of the AI-driven tools
and suitable training and testing models have been discussed. AI-driven tools are required
to be implemented from the beginning of data collection, in parallel with the experts in the
field, where active learning needs to be implemented. During the decision-making process,
multiple data types should be used rather than just one in order to increase confidence.
As part of active learning, multitudinal and multimodal data have been discussed [100].
They presented an artificial intelligence (AI) system for rapid COVID-19 detection and
extensively analyzed the CTs of COVID-19 based on Artificial Intelligence. They evaluated
the system using large datasets consisting of more than 10 thousand CT scans from the
COVID-19, influenza-A/B, community acquired pneumonia (CAP), and other subjects. On
a test cohort of 3199 scans, the deep convolutional neural network-based system achieved
an area under the receiver operating characteristic curve of 97.81%. This AI system outper-
formed all five radiologists in a reader study by two orders of magnitude when facing more
challenging tasks [101]. COVID-19 is a new disease announced on 11 February 2020. The
major symptoms of COVID-19 are fever, breathing difficulty, dry cough, headache, runny
nose, nasal blockage, body pain, and throat pain [102]. The disease can easily transfer
to others through droplets. Respiratory droplets >5–10 µm can spread the virus and are
spread easily through direct contact compared to droplet nuclei with particle sizes <5 µm.
The transmission of the droplet occurs within 1 m direct contact with a COVID-19-infected
person. As of 22 May 202, there were 4,995,996 confirmed cases of coronavirus in over 216
countries and 3,27,821 confirmed deaths [102]. The COVID-19 pandemic has exposed the
vulnerability of healthcare services worldwide. There is a clear need to develop computer
assisted diagnosis tools to provide rapid and cost-effective screening to identify SARS-CoV-
2. CBC, chest X-ray, Polymerase Chain Reaction (PCR), chest CT, and the IgM/IgG combo
test are the diagnosis methods that are generally utilized for COVID-19. Among these, CT
scans produce the best performance in COVID-19 diagnosis [103]. The artificial intelligence
(AI) applications related to COVID-19 are involved in medical imaging, drug development,
lung damage delineation, cough sample analysis, etc.
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AI algorithms can take CT images of patients with clinical symptoms to diagnose
COVID-19 result rapidly. A CNN is used to classify the medical image and diagnose
the disease as pneumonia or COVID19. A linear support vector machine, VGG16, and
Inception V3 were used in one study [104]. Supervised machine learning algorithms such
as SVM, random forest, and I Bayes are mostly utilized to predict the disease easily. The
random forest provided the highest accuracy in 9 of 17 studies, with 53% overall. Among
these studies, three SVMs produced the best classification for prediction of disease [105].
Automatic investigative systems based on AI and ML devices have been developed to
detect the coronavirus accurately and rapidly to protect healthcare workers in direct contact
with COVID-19 patients [106]. DeTraC DCNN is utilized to classify chest X-ray images
(suspected COVID-19) accurately. It achieved 95.12% accuracy in the finding of coronavirus
X-ray images [104]. Extracting CT image features using a deep learning model could
provide clinical diagnosis to save time [107]. One of the challenging issues is distinguishing
COVID-19 coughing sounds from non-COVID-19 coughing sounds. The AI4COVID19
application is used to record cough sound samples for 2 s. Matching the voice samples
with coronavirus patients and non-COVID-19 patients was done with 90% accuracy [108].
Deep learning techniques are utilized for computed tomography (CT) images to distin-
guish between coronavirus and pneumonia [109]. COVID-19 and pneumonia X-ray image
data classes were created using a fuzzy coloring technique for a preprocessing step. The
preprocessing datasets were trained with DL models such as SqueezeNet and MobileNetV2.
With up to 99.27% accuracy, a support vector machine is used to extract and classify the
data features of COVID-19 [110].

Ten convolution neural network techniques were utilized to distinguish between
coronavirus and non-coronavirus groups. Among all these networks, Xception and ResNet-
101 both achieved high performance area under the curve (AUC) of 0.994. The radiologist’s
performance was moderate with an AUC of 0.873 [111].

RestNet-100, a classifier made of a convolutional neural network (RCNN), combined
with logistic regression (LR), was used to identify COVID-19. The CT scan image input
is given to the Restnet101 deep convolutional neural network model that has 101 layers
deep with 33 residual blocks. Then the result is passed to a logistic regression classifier. The
logistic regression classifier classifies the result as COVID-19, normal, or pneumonia. The
test produces 99.15% accuracy with COVID-19-positive patients. The COVID19 diagnosis
has threshold values of 0 and 1. 1 indicates the person is affected with coronavirus or
pneumonia, and the result zero indicates the person is not affected with coronavirus. To
identify the patient’s condition from the initial stage to a severe stage, the threshold value
is utilized for CT image classification. Threshold value 0.5 indicates the initial stage, and
1 indicates a severe condition [103]. One of the latest techniques for COVID-19 diagnosis
and classification is the depthwise separable convolution neural network (DWS-CNN)
with a deep support vector machine (DSVM) enabled by the Internet of Things (IoT). The
procedure consists of two stages, training and testing. It starts with collecting data from
patients using IoT devises, and sending them to the cloud server via 5G networks. The
aim of DWS-CNN is to determine the binary and multiple class labels of COVID-19 using
CXR images. CNN is involved as the basis of new models used for predicting diseases,
due to its efficiency at detecting structural abnormalities. This model was developed to
improve the accuracy of COVID-19 detection from chest X-ray scans, and it minimizes
manual interaction dependent on radiologists [112].

Parkinson’s disease (PD) is an illness which could be diagnosed and detected by
a CNN from drawing movements, using the Digitized Graphics Tablet dataset. This
CNN includes two parts: feature extraction (convolutional layers) and classification (fully
connected layers). The fast Fourier’s transform has the range of frequencies between 0
and 25 Hz, which are used as inputs to the CNN [113–115]. Skin cancer is one of the most
widespread causes of death, and early detection could increase the survival rate to 90%.
For that purpose, deep convolutional neural networks (DCNNs) have been developed and
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applied to classify the color images of skin cancer into three types: melanoma, atypical
nevus, and common nevus [116–118].

6. Challenges of Deep Learning

This section presents several challenges of deep learning.

6.1. AutoML-Zero

Automating the design and creating algorithms in Machine Learning (ML) is called
AutoML [119–121]. Up to now, AutoML has concentrated in building solutions by joining
sophisticated components that manual designed.

Searching for whole algorithms from the beginning is the substitution method for
using the sophisticated components that designed manually. This is considered as a
challenge due to it demands the discovering the sparse and huge search spaces. Despite
this challenge, there are advantages for automating the whole ML process—for instance,
there is no bias from our knowledge, and this will probably allow the creation of new ML
architectures [122]. The research of AutoML has been extended into using evolution, and it
aims to automate creating full ML algorithms from the beginning using basic mathematical
operations as building blocks, and this elucidated by presenting a framework that decreases
the bias of humans by generic search space [119]. Although the space is huge, the search of
evolutional is remained identify neural networks with two layers that can be trained using
Backpropagation. The identified neural networks can be exceeded by evolving immediately
upon tasks.

AutoML-Zero is developed to deal with disadvantages [119], such as the space search
bias of components designed by humas for the algorithms designed by humans this perhaps
decreases the possible novelty of AutoML. Another disadvantage is that composing of
restricted search spaces carefully [123–125].

AutoML-Zero is proposed as an automatically search for full ML algorithms from the
beginning using basic mathematical operations as building blocks and also slight constraint
upon form [119]. AutoML-Zero aims to very less design for human. Reference [119]
proposed a framework that denotes ML algorithms as computer programs consisting of
setup, predict, and learn as three component functions. These component functions do
initialization, prediction, and learning. The basic mathematical operations can be performed
upon a small memory by using the instructions of component functions. Both the addresses
of memory and operation utilized by every instruction considered as free parameters with
the search space, and the component functions’ sizes [119]. In the method of search for
AutoML-Zero, by revising the instructions of component functions including setup, predict,
and learn, the tests of search should find algorithms [119]. On the other hand, the search
method of regularized evolution is applied due to its ease of use and its success upon the
standards for architecture searching [124,126]. At the outset, the P algorithm population is
empty, which means there are no lines of code or instructions in the component functions.
The enhancement of population is done using cycles. For every cycle, take T algorithms
randomly and chooses as the parent the top achieving algorithm, where T is less than
P algorithms. The child algorithm is accomplished by copying and mutating the parent
algorithm, then the child algorithms is appended to the population, and the first-born
algorithm is deleted from the population. The appropriateness should be given between the
search space and the mutations of the parent used to obtain the child. A random choice can
be employed from three kinds of action: adding an instruction randomly, or an instruction
is deleted at a random position in a component function; applying randomization for
the whole set of instructions in a component function; or adjusting an argument for an
instruction through substituting it with a random option, such as alterating a constant
value or switching the address of the output [119].
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6.2. Neural Architecture Search

Neural architectures are constructed by hand by humans who are experts in the
fields of ML and deep learning, and this can be time consumption and possibly allow
mistakes [127]. Therefore, there is great interest in neural architecture search (NAS) [127].
NAS is an automating process for building neural architectures [127]. NAS provides better-
designed architectures than manually designed architectures—e.g., in object detection [123]
and in image classification [123,128]. NAS methods are categorized regarding to three
dimensions: search space, search strategy, and performance estimation strategy [127].

In search space, the architectures that can be represented are identified. The search
space size can be decreased, and the search can be simplified if it can be done using
previous knowledge on the characteristics of architectures that are appropriate for the
mission. Nevertheless, this leads to human bias, and hence, this inhibits discovering the
building blocks of new architectures that surpass the knowledge of present people [127].

The usually massive search space is discovered by a search strategy. The algorithm
faces the classical tradeoff of exploration–exploitation. On the one hand, it can discover
satisfactorily performing architectures rapidly. However, on the other hand, it should be
averse to early convergence on architectures that are suboptimal [127].

Discovering architectures with high expected performance upon invisible data is the
aim of NAS. The meaning of performance estimation is the procedure of calculating this
performance. Applying on data the standard training and validation of architecture is
considered the simplest choice. Nonetheless, it presents limitations upon the number of
architectures that can be discovered, and their computations are expensive. Based on
these, a lot of research is concentrated upon building methods to decrease the performance
estimation costs [127]. The following are methods that quicken the performance esti-
mates: lower fidelity estimates [123,128,129], learning curve extrapolation [130,131], weight
inheritance/network morphisms [132,133], and one-shot models/weight sharing [134,135].

6.3. Evolutionary Deep Learning

The following portions are vital portions in success or failing of deep neural networks
in many applications and for solving different problems: building the architectures of
deep neural networks, optimizing the hyperparameters, and training the deep neural
networks [136]. The research that is related to architecture searching has increased, and
it can be categorized into two classes: methods based on reinforcement learning [137],
and methods based on evolution [138,139]. References [140–142] include deep neural
architectures built by evolutionary algorithms (EAs). These are well-known because there is
no gradient. These methods rely upon population, but can at the same time discover several
places of the search space, and also provide an approach to avoiding local optima [143].

EAs have many benefits [144]. For instance, EAs optimize functions that are unable
to be derived, which means these algorithms are not applying derivations. EAs employ
gathering of solutions, join with greedy approaches with the intention of constructing solu-
tions that are new, and discover the majority of search space. The simplicity of parallelism
for EAs is another one. Finally, they can use operators that can be applied to dissimilar
solutions synchronously within the same gathering.

EAs have disadvantages, such as the stagnation issue and slow convergence to local
minima [144]. They are slow learners, and their computations are costly [145]. The results
of EAs are categorized to be close optimal due to the lack of assurance for these conver-
gence results [143]. Due to the stochastic gradient descent (SGD) calculating the accurate
gradient, perhaps EAs are inappropriate for deep learning missions [143]. Nevertheless, by
applying the result of GSD result, this is not completely crucial in the success of deep neural
networks [143]. In [146], the cause of the deficiency of researchapplying evolutionary
computation in deep neural networks is said to be not completely associated with the
gradient. The reason is the notion that new methods of deep neural networks have arisen,
but not in the boundaries of SGD.
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Genetic operators enable the procedure of evolutionary to be conducted. The operators
that can be used by the majority of EAs are make selection for individuals in order to
reproduction, new individuals can be generated relying upon the chosen individuals, and
at succeeding generation, specify the individuals’ configuration in the population [143]. The
following main genetic operators are applied in the majority of EAs: selection, crossover
and mutation [143].

Neuroevolution is discovering new approaches for automated architectures and train-
ing of neural networks using evolutionary algorithms (EAs) [140,147]. EAs are a col-
lection of stochastic optimization algorithms that are bio-inspired, which can construct
strong adaptive systems using the fundamentals of evolutionary [138,139]. There are four
main evolutionary techniques in EAs, and these are: genetic algorithms [148,149], ge-
netic programming [150], evolution strategies [151], and evolutionary programming [152].
References [153–155] showed that re-enforcement learning techniques demand more com-
putational time than neuroevolution. Neuroevolution can be used in deep neural networks
to build various neural networks, such as autoencoders, CNNs, RNNs, and DBNs.

6.4. Data Management Challenges

Reference [156] presents several data management challenges that maybe be occurred
in every phase of the following phases: data collection, data exploration, data preprocessing,
dataset preparation, data testing, deployment and postal deployment. These challenges can
be faced by the people who are executing the deep learning in real life applications [156].

Data collection can be defined as a systematic procedure of collecting data from
different sources that are related to the subject [156]. In data collection, the following
challenges can occur [156]:

Lack of metadata. The people who work on such projects indicate that lack of metadata
leads to ambiguity and a lack of understanding of data. Therefore, these people demand
metadata, perhaps also as are not experts in the area where the elements of deep learning
are executed. For the data granularity challenge, beyond the process of data gathering is
aggregating the data.

Methods of data aggregation can cause the deletion of important data, and therefore
data granularity is missed.

The shortage of diverse samples challenge is this: deep neural networks should train
on all potential samples, including normal instances and rare instances. Otherwise, the
deep neural network will not have success when previously unseen data appear. Plenty
of companies have gathered huge amounts of data, but they fail to collect rare instances,
which leads to deep learning models that are not trained on the rare data.

For the purposes of sharing and tracking techniques, information needs to be shared
among the people who are working on deep neural networks. However, a common medium
or channel to share data does not exist.

Tracking techniques are a significant measure of confirming data quality. However,
because a lack of resources and time, frequently the concentration upon data quality is
insufficient, and thus, data quality is often weak. The performances of deep learning
models are largely influenced by the quantity of the training data.

Clear knowledge on the ways to gather and store data based on General Data Pro-
tection Regulations (GDPR) is not possessed by small companies. Moreover, their data
gathering is not performed efficiently due to non-existing protocols or frameworks.

Data exploration can involve different tasks, such as analyzing the distributions of
dissimilar datasets, testing the quantity of outliers, and testing how data can be connected
with each other. Specifying the missing data and creating a dataset that can be applied to
the model are also forms of data exploration [156]. The challenges of data exploration are as
follows [156]: Statistical understanding of some data distributions is considered a challenge
even when one has adequate knowledge about statistics. Deduplication complexity is a
challenge due to datasets normally having duplicates; and consider a complex task wherein
datasets have both duplicates and deduplication as a complex. Another challenge is the
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heterogeneity of data. Heterogeneity of data can be shown through the variety of size,
format, and encoding methods.

Data preprocessing is the task of treating all the problems of raw data prior to building
datasets. Data can be gathered from different sources, and therefore, the data can contain
incorrect values, missing values, and perhaps different formats. These issues are to be
resolved prior to the use of deep learning models [156].

The challenges of data preprocessing are as follows [156]: One of the challenges during
data preprocessing is dirty data. Dirty data includes missing and error-laden datasets, and
also datasets with incorrect data formats. Another challenge is managing categorical data.
Categorical data are split into groups, so such data have label values and not numerical
values. Categorical data have two types: nominal and ordinal data. The models of deep
learning request the input variables to be numeric and not text. Therefore, text values
are required to be converted into numeric values. Managing sequences in data is another
challenge. Keeping contextual metadata beside the sequencing data represents a challenge,
particularly when there are huge amounts of data.

In dataset preparation, the original dataset is split into three dissimilar sets called
training, validation, and testing datasets [156]. The following represent the challenges of
dataset preparation [156]: Data leakage can come from the training, validation, and test
datasets not being portioned correctly. For example, identical instances of data in testing
and training datasets represent data leakage. Data quality is another challenge. Data quality
is considered important due to weak data quality leading to performance deterioration
and overstated results. Consistency of data can be involved in determining data quality.
Nevertheless, consistency of data is difficult to accomplish within many fields.

Data testing is an important phase that tests the quality of the data and decreases the
presence of flawed data that would impact the procedural efficiency [156]. When some test
data are outdated or erroneous, this can prevent people from using the data at all [156].
The challenges of data testing are as follows: Performing testing of data is very expensive.
It demands much time and effort. Tooling is a challenge that emerges in most stages of the
data pipeline.

If the data-utilizing systems have prepared to be deployed in production contexts, an
unparalleled collection of challenges may be faced [156]: Training–serving skewing can
occur if the data at the time of serving are dissimilar to the data employed in model training.
Overfitting is another challenge. Overfitting appears whenever deep neural networks fit
their training datasets very well and memorize extremely specific features. When this
happens, they can fail to generalize and perform predictions with new data.

Post deployment, although the deep learning method is already deployed, observa-
tion must remain continuous. The reasons for that are that distribution alterations can
occur, sudden additions of data, and much else may take place in the real world; and
the model keeps learning continuously [156]. The following challenges come up beyond
deployment [156]: Again, changes in data sources and distribution are challenges. If the
distribution of data is altered, the resulting distribution may not be processed well by the
deep neural network. Results that are unforeseen can be obtained due to abrupt alterations
in the source of data. Data drifting is another challenge. Data drifts are also called data
shifts, and can happen unexpectedly over time. Deep learning models may provide faulty
and strange outcomes because of data drifts. Another challenge is feedback loops. Feedback
loops can be harmful sometimes and advantageous other times.

6.5. Input Quantity and Discovering Noncontributing Attributes

The quantity of inputs and discovering noncontributing attributes are challenges [157].
A dataset may have any quantity of attributes. However, during the development of a deep
learning model, the needless attributes are not taken into account. In addition, an attribute
class needs to be detached from the dataset. Worthy attribute selection is considered a
challenge task.
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6.6. Quantity of Hidden Layers

The quantity of hidden layers can be important [157]. Using two hidden layers in a
model of deep learning is the baseline. Employing further hidden layers will increase the
complexity of the computation. However, adding more layers means an analytical model
that is deeper. Hidden layers play an important role in the performance of a neural network,
especially when dealing with complex problems where accuracy and time complexity are
the main constraints. A hidden layer is necessary in an artificial neural network if and
only if the data must be separated nonlinearly. If the data can be separated linearly, then
no hidden layers are required. If the data are not very complex or have few dimensions
or features, neural networks with one or two hidden layers will work. When data have
many dimensions or features, 3–5 hidden layers can be used to achieve optimal results. An
appropriate number of hidden layers reduces the training time required for high accuracy.
A large number of hidden layers slows down the training process of a neural network.
Consequently, if the goal of the application is to improve accuracy, then large numbers of
hidden layers are the best solution; however, if time complexity is the primary constraint of
the application, then large numbers of hidden layers will not be the most suitable solution.
Adding unnecessary layers can also result in overfitting. Hence, before designing the neural
network, training database samples must be analyzed to estimate the number of hidden
layers needed.

6.7. Gradient Descent Optimizers

The gradient descent optimizers challenge can be described as follows [157]: The
cost of a model is minimized based on modifying the weights using the selected gradient
descent [157]. These optimizers can provide the inputs with weights that should optimize
the model. However, modifying a model using dissimilar weights will most likely involve
great computational effort, especially when it is trained on a huge dataset [60,158].

6.8. Weights

By selecting weights precisely, the performance of the model is improved and the
procedure of learning is quickened [157]. It is favorable to select random values for the
weights [157].

6.9. Loss Function

The loss function is used to calculate the error [157]. In [157], different loss functions
are presented, such as mean squared error (MSE), mean absolute error (MAE), hinge
loss, and cross entropy (including binary entropy and categorical cross entropy). In deep
learning, selecting a suitable loss function is considered a challenge [157].

6.10. Activation Functions

Choosing activation functions and where they can be used are challenges [157]. In the
problem of binary classification, a sigmoid activation function can be used, and it presents
the most satisfactory outcomes. If the vanishing gradient issue is present, a tanh activation
function should be applied cautiously. For multi-labelled classification, a softmax activation
function is an appropriate option. If many input values are zero, then the leaky ReLU
activation function is a suitable option. For the following reasons, ReLU is the most widely
employed activation function: low computational costs; it can be applied to the hidden
layers of a network.

6.11. Kinds of Network

Reference [157] presented different kinds of network, such as the dense network,
LSTM, and the CNN. LSTM is the most widely used network. Despite its complexity, it is
very efficient. In a dense network, each neuron within a layer is connected to each neuron
in the following layer [157]. The long short term memory network was developed to avoid
the problems associated with remembering over long periods of time. Each layer of a
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general neural network has the same activation function and structure except the output
layer. However, LSTM networks can be used if different layers have different structures,
such as for weather forecasting [157]. The CNN is a multilayer neural network where
each layer is fed by the previous layer, allowing the results from all layers to be compared
and analyzed. It is being researched for image processing, human language processing,
computer vision, and self-driving cars.

6.12. Epochs

Epochs are relevant as follows [157]. A model is made by analyzing the weight after
every epoch. The weights are altered and tested in the following epoch. During the
implementation, the training data need to be accessible within the RAM. When dealing
with massive datasets, the training dataset might not be able to be kept within the RAM.
Hence, the data must be split into batches, and every batch is successively received by the
RAM and implemented. The outcome is summed up and it can be denoted as the outcome
of an epoch.

7. Future Directions

This paper presented several challenges in deep learning, such as those regarding
AutoML-Zero, NAS, evolutionary deep learning, data management challenges, input
quantity, discovering noncontributing attributes, hidden layer quantity, gradient descent
optimizers, weights, loss functions, activation functions, kinds of network, and epochs.

We suggested opportunities to deal with those challenges. We can use AutoML-Zero
to build algorithms in machine learning automatically, and this will reduce the intervention
of humans. We should apply NAS to construct neural architectures automatically, and this
will also minimize the intervention of humans. EAs can create solutions that merge greedy
methods, and these solutions account for the majority of the search space. Automated
generation of architectures and training of neural networks can be done by new methods
using EAs, and these new methods were discovered by neuroevolution.

Data management challenges can take place during the following phases: data collec-
tion, data exploration, data preprocessing, dataset preparation, data testing, deployment,
and postal deployment. These challenges can be faced by the people who are working on
using deep leaning for applications in real life. All the challenges of data management
need to be addressed in order to create high performance deep learning models. Thus, the
researchers who are working in deep learning are encouraged to find solutions for these
challenges.

In addition, we encourage the researchers of deep learning who are interested in
dealing with the rest of the challenges we mentioned, including those related to input
quantity, discovering noncontributing attributes, the quantity of hidden layers, gradient
descent optimizers, weights, loss functions, activation functions, kinds of network, and
epochs. Providing effective solutions for these challenges will lead to more satisfactory
performance by deep learning models.

The given challenges of deep learning may be solved by proposing improved or new
deep learning algorithms.

We also hope to see new deep learning algorithms that offer better performances
in certain fields, such as healthcare, especially algorithms that could help with fighting
diseases, such as COVID-19.

8. Conclusions and Future Work

In this paper, a review of well-known deep learning algorithms, such as backpropaga-
tion, autoencoders, variational autoencoders, restricted Boltzmann machines, deep belief
networks, convolutional neural networks, recurrent neural networks, generative adver-
sarial networks, capsnets, transformers, embeddings from language models, bidirectional
encoder representations from transformers, and attention in natural language processing,
was provided. The architecture of each algorithm was discussed. A comparison between



Algorithms 2022, 15, 71 49 of 55

the provided deep learning algorithms based on factors such as advantages, disadvantages,
applications, and classification as supervised/unsupervised was presented. A comparison
of deep learning algorithms based on their domains of application and their accuracies has
been provided.

Moreover, the applicability of deep learning algorithms in healthcare has been ex-
amined, including distinguishing between different diseases using image processing ca-
pabilities, such as COVID-19 and viral pneumonia. In addition, deep learning has been
used to make decisions, such as whether to ease or enforce lockdown. An analysis of
deep learning algorithms reported in the literature related to the health sector, especially
COVID-19 prediction, classification, and detection strategies, has been presented. Details
of how deep learning algorithms can be used to fight the COVID-19 pandemic, dementia,
and cancer have also been provided. For future work, the plan is to extend the review
to include more deep learning algorithms, covering deep-reinforcement machine learn-
ing algorithms, including model-based and model-free deep learning algorithms. We
plan to conduct a comprehensive review of these models along with their pros, cons, and
practical applications.

In addition, challenges of deep learning were also presented, such as those of AutoML-
Zero, neural architecture search, evolutionary deep learning, and others.

Finally, future directions were provided to deal with the given challenges of deep learn-
ing.

This paper presented the following for researchers who desire to start working in
the deep learning area and healthcare: a review of many deep learning algorithms and
the results of comparisons among these algorithms; applications of several deep learning
algorithms in healthcare; and an introduction to the challenges of deep learning.
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