
Citation: Wang, K.; Xu, Z.-J.;

Gong, Y.; Du, K.-L. Mechanical Fault

Prognosis through Spectral Analysis

of Vibration Signals. Algorithms 2022,

15, 94. https://doi.org/10.3390/

a15030094

Academic Editor: Frank Werner

Received: 5 February 2022

Accepted: 14 March 2022

Published: 15 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Mechanical Fault Prognosis through Spectral Analysis of
Vibration Signals
Kang Wang 1, Zhi-Jiang Xu 2,* , Yi Gong 3 and Ke-Lin Du 4

1 Computer and Information Security Department, Zhejiang Police College, Hangzhou 310018, China;
wangkang@zjjcxy.cn

2 School of Automation, Zhejiang Institute of Mechanical & Electrical Engineering, Hangzhou 310059, China
3 Department of Electrical and Electronic Engineering, Southern University of Science and Technology,

Shenzhen 518055, China; gongy@sustech.edu.cn
4 Department of Electrical and Computer Engineering, Concordia University, Montreal, QC H3G 2W1, Canada;

kldu@ece.concordia.ca
* Correspondence: xuzhijiang@zime.edu.cn

Abstract: Vibration signal analysis is the most common technique used for mechanical vibration
monitoring. By using vibration sensors, the fault prognosis of rotating machinery provides a way to
detect possible machine damage at an early stage and prevent property losses by taking appropriate
measures. We first propose a digital integrator in frequency domain by combining fast Fourier
transform with digital filtering. The velocity and displacement signals are, respectively, obtained
from an acceleration signal by means of two digital integrators. We then propose a fast method for
the calculation of the envelope spectra and instantaneous frequency by using the spectral properties
of the signals. Cepstrum is also introduced in order to detect the unidentifiable periodic signal in
the power spectrum. Further, a fault prognosis algorithm is presented by exploiting these spectral
analyses. Finally, we design and implement a visualized real-time vibration analyzer on a Raspberry
Pi embedded system, where our fault prognosis algorithm is the core algorithm. The real-time
signals of acceleration, velocity, displacement of vibration, as well as their corresponding spectra and
statistics, are visualized. The developed fault prognosis system has been successfully deployed in a
water company.

Keywords: digital integrator; envelope spectrum; cepstrum; fault prognosis; Raspberry Pi

1. Introduction

Vibration has been an important direction in industry. The operating condition of
industrial equipment is closely related to vibration. The primary goal of vibration-based
machine condition monitoring is to avoid catastrophic machine failures that can lead to
secondary damage, shutdown, potential safety accidents, production losses, high mainte-
nance costs, and more. Based on the collision vibration signal between the metal plate and
coal gangue, a coal gangue recognition scheme in the top coal caving process is proposed
in [1]. A vibration signal-based method is proposed in [2] for condition monitoring and
fault diagnosis of the water-circulating heat exchangers used in the petrochemical industry.
The vibration method is considered to be an economical and non-destructive method for
exploring the operating conditions and assessing the mechanical integrity and performance
of the transformer [3,4].

The causes of mechanical vibration are roughly explained as follows. Modern machin-
ery cannot do without rolling bearings as an important transmission component. When the
lubricating oil film ruptures due to various reasons, such as overload and insufficient oil,
the local stress in the bearing area is too large, then the contact body will produce plastic
hardening and cracks. As a result of repeated crushing, the cracks continue to expand,
and the material will peel off from the contact body after expanding to a certain degree,
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forming pits. When the contact body passes a pit, due to an abrupt change in contact
area, the bearing force will also change abruptly, resulting in a short impulse force. This
impulse force is reflected in the vibration signal, which is the impulse response of a shock
decay. The pits appear on the inner and outer rings of the bearing and the rolling element,
generating impulse signals of different frequencies. In a vibration analyzer, how to detect
these impulse frequencies from sensor signals is key to fault diagnosis of bearings.

There are many methods for processing vibration signals, which can be roughly
divided into two categories. One is the traditional methods, typically amplitude domain
analysis, Fourier transform, and correlation analysis. The amplitude domain analysis
method is a time-domain analysis method that describes the amplitude variation with time,
while the Fourier transform and correlation analysis are based on the time-domain statistical
analysis. Generally, the research objects of these methods are stationary signals. The
other category is modern methods, typically, variational mode decomposition [5], singular
value decomposition [6], principal component analysis [7], filtering [8–10], Wigner–Ville
distribution, spectral analysis [11], Hilbert–Huang transform [12], wavelet analysis [13,14],
blind source separation, and higher order statistics analysis. They are widely used as they
achieve good results for non-stationary signals.

Much of the literature combines traditional time-frequency domain analysis methods
with machine learning, deep learning and artificial intelligence to propose many new
approaches for vibration fault diagnosis [15–22]. Furthermore, the use of machine learning
methods to analyze vibration data is expected to significantly reduce the associated analysis
effort and further improve diagnostic accuracy [15]. In order to extract impulsive compo-
nents precisely, an approach that combines K-clustering with singular value decomposition
and split-Bregman is proposed in [16]. An that approach combines artificial neural network
and support vector machine for identifying and measuring shaft misalignment under vari-
able load conditions is proposed in [17]. By transforming raw vibration signals into images
and using a convolutional neural network for classification, a deep learning-based fault
classification model is proposed in [18]. In order to differentiate among faulty states, the
authors in [19] investigated various multi-axis statistical features and employed K-Nearest
Neighbors and Decision Trees to obtain a model. A refined composite multiscale dispersion
entropy and deep belief network-extreme learning machine based sub-health recognition
offline algorithm is proposed and optimized by an improved firework algorithm in [20].
For bearing fault detection, a new framework based on wavelet transform and discrete
Fourier transform with deep learning is proposed in [21]. The chapter “Vibration-Based
Condition Monitoring Using Machine Learning” in book [22] describes the fault-detection
and -diagnosis framework, and provides many machine learning algorithms, such as
unsupervised/semisupervised learning, reinforcement, and transfer learning.

However, machine learning requires huge amounts of valid data. The visualized real-
time vibration analyzer designed in this paper stores the data sampled from measurements
to a local database and uploads them to a server through a 5G network. The proposed
analyzer provides an effective data source for machine learning. Meanwhile, it also has the
traditional spectrum analysis function.

The main contributions of this paper are given as follows.

1. A digital integrator in frequency domain is proposed by combining fast Fourier
transform with digital filtering. The analyzer uses a vibration acceleration sensor to
sample acceleration signal. The corresponding velocity and displacement signals are,
respectively, obtained from the acceleration sensor signal by means of two digital
integrations. Frequency-domain integration has higher accuracy, faster computation
speed, and better stability than the time-domain integration;

2. By using the spectral properties of the signals, a fast method for calculating the
envelope spectrum and instantaneous frequency of the narrowband modulated signal
is derived. In order to detect an unidentifiable periodic signal in the power spectrum,
cepstrum is introduced. As a result, the analyzer can perform power spectrum,
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envelope spectrum, and cepstrum analysis simultaneously. Further, a fault prognosis
algorithm is given by exploiting these spectral analyses;

3. A Raspberry Pi-based analyzer with integrated vibration signal acquisition, analysis,
display, data storage, and uploading is proposed. The application running on the
Raspberry Pi uses TCP protocol to transmit to a remote server the raw vibration
data that the fault prognosis algorithm has assessed to be faulty. Except for the
general-purpose hardware, the system is implemented and upgraded by software.

The rest of this paper is organized as follows. Section 2 describes key algorithms
based on spectral analysis, focusing on digital integrator, envelope spectrum, and cepstrum.
Section 3 introduces the overall system design of the test platform and software flow.
Section 4 presents the practical measurements and the analysis of the results, and finally,
Section 5 concludes this paper.

2. Key Algorithms Based on Spectral Analysis

In this section, we describe in detail the digital integrator, the envelope spectrum, and
cepstrum. Then, a fault prognosis algorithm is given by exploiting these spectral analyses.
Throughout this paper, uppercase letters denote frequency-domain variables, lowercase
letters denote time-domain variables, and bold letters denote vectors or sequences.

2.1. Digital Integral

The vibration acceleration stands for the impact force, the vibration velocity for the
energy, and the vibration displacement for the vibration amplitude. It can also be considered
that the vibration intensity is proportional to the acceleration in the high frequency range,
to the velocity in the intermediate frequency range, and to the displacement in the low
frequency range. In order to reduce costs and size, the vibration analyzer often uses only one
sensor, e.g., a vibration acceleration sensor, to sample the acceleration. Then, the first-order
and second-order digital integrations are, respectively, used to obtain the corresponding
velocity and displacement signals. The reason for not using analog integrators is, again, to
reduce hardware costs. For example, an A/D (Analog-to-Digital) converter is required if
an analog integrator is used.

Digital integration can be done in time domain or in frequency domain. Frequency
domain integration can effectively avoid the cumulative amplification effect of small
errors in the time domain signal during the time domain integration process, making the
calculation results more accurate. Moreover, the time for time domain integration is longer
when the number of samples is large, while the time for frequency domain integration is
less sensitive to the number of samples. In this paper, we choose the frequency domain for
integration.

As it is well known, the transfer function of the integrator is GI(s) = 1
s , and its

frequency characteristic function is GI( f ) = 1
2π f , where  =

√
−1. Let a(t) be the time-

domain signal of acceleration. Applying the Fourier transform, the corresponding spectrum
A( f ) will be

A( f ) = F[a(t)] =
∫ +∞

−∞
a(t)e−2π f tdt , (1)

where F[·] denotes the continuous Fourier transform. Let V( f ) be the spectrum of the
velocity signal v(t). It is well known that the integral of a(t) is the velocity signal v(t), i.e.,
v(t) =

∫ t
−∞ a(τ)dτ. Correspondingly, there is V( f ) = A( f )GI( f ) in the frequency domain.

Thus, we have

v(t) = F−1[V( f )] = F−1[A( f )GI( f )] =
1

2π

∫ +∞

−∞

A( f )
2π f

e2π f td f , (2)

where F−1[·] denotes the continuous Fourier inverse transformation. Let D( f ) be the
spectrum of the displacement signal d(t). Similarly, the second-order integration of a(t) is
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the displacement signal d(t). Correspondingly, there is D( f ) = A( f )G2
I ( f ) in the frequency

domain. Thus, we have

d(t) = F−1[D( f )] = F−1
[

A( f )G2
I ( f )

]
= − 1

2π

∫ +∞

−∞

A( f )
(2π f )2 e2π f td f . (3)

For each vibration acceleration signal, the velocity signal is obtained by the first-order
digital integration and the displacement signal is obtained by the second-order digital
integration. Equations (1)–(3) are performed in the analog domain and must be digitized
for implementation. The process of digital integration is given as follows.

The sampled time-domain sequence of acceleration over a period of time,
a = {an, n = 0, 1, · · · , N − 1}, is applied by FFT with N nodes to obtain the corresponding
frequency-domain sequence A = {Ak, k = 0, 1, · · · , N − 1}, that is,

Ak =
N−1

∑
n=0

anWnk
N ⇒ A = F[a] , (4)

where WN = e−2π/N , and F[·] denotes the discrete Fourier transform, which is a slight
abuse of notation but does not affect the understanding. Let the sampling frequency of
the DAU (Data Acquisition Unit) be fs, and then the frequency resolution is ∆ f = fs/N.
From Equations (2) and (3), it can be seen that the integrand includes the reciprocal of
the frequency, f−1 (or f−2 in Equation (3), thus, the integration can be unstable when
the frequency is close to 0. Moreover, the measurement accuracy of the acceleration
sensor is poor for low frequency, and small measurement errors can cause large calculation
deviations. Thus, the low frequency signal becomes an important error source for frequency
domain integration. In consideration of actual machine operation, the vibration frequency
must be far away from f = 0 Hz. Let fl and fh be the lower and upper cutoff frequencies,
respectively, and choose fl and fh as integer multiples of ∆ f . Under this condition, the
discretized integrator is

Gk =


1

2πk∆ f , k ∈
[

fl
∆ f , fh

∆ f

]
1

2π(k−N)∆ f , k ∈
[

N − fh
∆ f , N − fl

∆ f

]
0, otherwise

, (5)

and the sequence {G0, · · · , GN−1} is denotes as G.
Equation (2) is discretized in order to obtain the velocity signal after the first-order

integration. The expression for the velocity signal in the frequency domain is Vk = AkGk.
The corresponding expression in the time domain is obtained by applying the inverse
discrete Fourier transform,

vn =
1
N

N−1

∑
k=0

VkW−nk
N =

1
N

N−1

∑
k=0

AkGkW−nk
N ⇒ v = F−1[AG] , (6)

where v = {v0, · · · , vN−1}.
Similarly, the acceleration signal is applied the second-order integral in order to

obtain the displacement signal. Its expression in the frequency domain is Dk = AkG2
k .

Correspondingly, the discretized expression in the time domain of Equation (3) is obtained
by applying the inverse discrete Fourier transform,

dn =
1
N

N−1

∑
k=0

DkW−nk
N =

1
N

N−1

∑
k=0

AkG2
k W−nk

N = F−1
[

AkG2
k

]
⇒ d = F−1

[
AG2

]
, (7)

where d = {d0, · · · , dN−1}.



Algorithms 2022, 15, 94 5 of 16

In practical measurements, it is generally difficult to achieve whole-cycle sampling
since the signal contains multiple frequency components. Hence, there is spectral leakage in
the Fourier transform process. That is, some of the energy is dispersed to other frequencies.
As it is well known, the transition time of a rectangular window is long and the out-of-
band attenuation is not large enough, resulting in severe spectral leakage. Choosing an
appropriate window, such as the Hanning window, may partially reduce the error in the
frequency domain integration. Therefore, the lowest frequency of the original signal cannot
be directly used as the lower cutoff frequency fl , which requires appropriate selection.
Without doubt, increasing the sampling frequency fs can reduce the error.

2.2. Envelope Spectrum

The actual bearing modulation factors are very complicated, including amplitude
modulation, frequency modulation and phase modulation in the mechanism, and shaft
speed modulation and cage rotation frequency modulation in the source. The modulation
frequency may also coincide the natural frequency, external excitation frequency, and
harmonics, superimposing one another, making it difficult to differentiate. The envelope
spectrum contains the modulation information of the original signal and is an important
tool for bearing fault diagnosis. In this subsection, we first derive the relation between the
envelope spectrum and the Fourier transform, and then give the formulae for calculating
the envelope spectrum and the instantaneous frequency [23] after discretization.

Given a real-valued function x(t), its Hilbert transform x̂(t) is given as

x̂(t) = x(t)⊗ 1
πt

=
1
π

∫ +∞

−∞
x(τ)

1
t− τ

dτ , (8)

where ⊗ denotes the convolution operation. The analytic signal of x(t) is

z(t) = x(t) + x̂(t) = b(t)eϕ(t) , (9)

where b(t), ϕ(t) denote the envelope and phase of the analytic signal, respectively.
It is difficult to calculate x̂(t) by direct integration of Equation (8). Instead, it is

convenient to use the property that its spectrum, Z( f ), has only positive frequency bands,
having an amplitude of twice the original one,

Z( f ) =


2X( f ), f > 0
X(0), f = 0
0, f < 0

, (10)

where X( f ) = F[x(t)] =
∫ +∞
−∞ x(t)e−2π f tdt. Therefore, (9) can be rewritten as

z(t) = F−1[Z( f )] . (11)

From (11), the envelope of x(t) is obtained,

b(t) =
√

x2(t) + x̂2(t) =
∣∣∣F−1[Z( f )]

∣∣∣ . (12)

Correspondingly, its envelope spectrum is given as

B( f ) = |F[b(t)]| =
∣∣∣F[∣∣∣F−1[Z( f )]

∣∣∣]∣∣∣ , (13)

and its instantaneous frequency is derived,

f (t) =
1

2π

d
dt

ϕ(t) =
1

2π

d
dt

arctan
x̂(t)
x(t)

=
1

2πb2(t)

[
x(t)x̂

′
(t)− x̂(t)x

′
(t)
]

, (14)
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where the superscript “′” indicates the derivative operation. Equations (10), (13), and (14)
are performed in the analog domain and must be discretized for digital implementation.
The whole process is described as follows.

A real-valued function x(t) is sampled at a sampling rate of fs, denoted as
x = {x0, · · · , xN−1}. Correspondingly, its frequency-domain sequence, X = {X0, · · · , XN−1},
is obtained by applying the discrete Fourier transform as

Xk =
N−1

∑
n=0

xnWnk
N ⇒ X = F[x] . (15)

Let

Hk =


1, k = 0, N

2

2, k = 1, · · · , N
2 − 1

0, k = N
2 + 1, · · · , N − 1

(16)

for N even and

Hk =


1, k = 0
2, k = 1, · · · , N−1

2

0, k = N+1
2 , · · · , N − 1

(17)

for N odd. The sequence of {H0, · · · , HN−1} is denoted as H. The spectrum sequence of
the analytic signal as shown in (10), can be discretized as

Zk = Xk Hk ⇒ Z = XH , (18)

where Z = {Z0, · · · , ZN−1}. Therefore, Equation (11) is sampled at a sampling rate fs to
yield the discretized analytic sequence z = {z0, · · · , zN−1},

zn =
1
N

N−1

∑
k=0

ZkW−kn
N = F−1[Xk Hk] ⇒ z = F−1[XH]. (19)

Obviously, the envelope sequence, b = {b0, · · · , bN−1}, is given as

b = |z| , (20)

and the envelope spectrum sequence, B = {B0, · · · , BN−1}, can be immediately obtained as

Bk =

∣∣∣∣∣N−1

∑
n=0
|zn|Wnk

N

∣∣∣∣∣ = |F[|zn|]| ⇒ B = |F[|z|]|. (21)

Correspondingly, the instantaneous frequency fn is given by

fn =
ϕn − ϕn−1

2πT
=

fs

2π
∠
(
znz∗n−1

)
, (22)

where the sampling interval T = 1/ fs, and the symbols (·)∗, ∠(·) denote the conjugate and
angle of a complex number, respectively.

2.3. Cepstrum

The vibration signal of a gear consists of two main components, namely the gear
mesh vibration signal (high frequency) and the rotational frequency vibration signal of
the gear shaft (low frequency). The mixing of high and low frequency signals produces
modulation, which is multiplied in the time domain and convolved in the frequency
domain. The modulated frequency-domain signal approximates the convolution of a set of
pulse functions with larger frequency intervals and a set of pulse functions with smaller
frequency intervals, forming a number of side frequencies on the spectrum around the
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meshing frequency and their octave components on both sides. For the vibration spectrum
of a gearbox with multiple pairs of gears meshing at the same time, since each pair of
gears will produce side bands and multiple side bands are crossed together, sometimes the
spectrum structure cannot be clearly seen and cepstrum analysis is further required.

Cepstrum can be used to better detect the periodic components on the power spectrum.
It is usually not possible to make a quantitative estimate of the overall level of the side
frequencies in the power spectrum. The cepstrum can be used to “generalize” the side
frequency components, which can simplify the original spectral families of the side band
lines into a single spectrum line. That is very easy to observe. When a fault occurs, the
vibration spectrum of the gear has a structure of equal intervals (fault frequency). The
property of the cepstrum can be used to detect the periodic signals that are difficult to
identify in the power spectrum.

For sensors arranged at different positions, the power spectrum is different because
of different transmission paths. However, in cepstrum, the vibration effect of the signal
source is separated from the effect of the transmission path, thus the cepstrum frequency
components representing the gear vibration are almost identical, except for the lower
cepstrum frequency bands due to the different transfer functions. In cepstrum analysis,
the effects of signal attenuation and calibration coefficient during signal acquisition can be
disregarded. This advantage is extremely useful for fault identification.

A cepstrum is the absolute value of the inverse Fourier transform of the logarithm
of the magnitude of the Fourier transform of a sequence. For a real-valued function x(t)
sampled at a sampling rate of fs, denoted the sequence as x = {x0, · · · , xN−1}, the cepstrum
sequence c = {c0, · · · , cN−1} is defined as

c =
∣∣∣F−1[log|F[x]|]

∣∣∣ . (23)

Obviously, multiple discrete Fourier transforms are used in the computation of the
digital integral, envelope spectrum, and cepstrum. Therefore, a fast and low-complexity
discrete Fourier transform is very important to speed up the computation. The FFTW (the
Faster Fourier Transform in the West) is used in the proposed analyzer. The FFTW is an
open-source library developed by M. Frigo and S. Johnson of MIT [24], which can be used
for one- or multi-dimensional real and complex data of arbitrary size (i.e., the number of
FFT nodes can be an arbitrary integer). It is a standard C library for quickly computing
discrete Fourier transforms. It is highly portable and is generally faster than any other
current open-source Fourier transform program.

2.4. Fault Prognosis Algorithm

In this subsection, we describe in detail a fault prognosis algorithm that makes use of
the above spectral analyses. We divide the fault prognosis into simple prognosis and precise
prognosis. In this paper, we first use simple prognosis, that is, we compare the statistics
on the time domain of the vibration signals (acceleration, velocity, and displacement) with
the preset thresholds, then determine whether the equipment is malfunctioning according
to whether the measured values exceed the thresholds given by the standard, in order
to decide whether further precision prognosis is needed. The simple prognosis standard
here means that the vibration of the same part of the equipment is monitored for a long
time, and the vibration value in the normal state of the equipment is used as the standard
value (reference value). The standard value is then multiplied by an appropriate empirical
coefficient, which is the threshold value.

The precision prognosis process here is very complex. Let us take the bearing detection
as an example. We can use the vibration signal waveform and its autocorrelation waveform in
the time domain, combined with the frequency spectrum, envelope spectrum, and cepstrum
in the frequency domain to roughly distinguish that the fault appears on the outer ring, inner
ring, or ball of the bearing. Especially in the frequency domain, the frequency spectrum
will appear significantly different for different faults. The information on the time-frequency
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domain combined with deep learning and artificial intelligence may yield a more accurate
fault prognosis. This step is not yet realized and is also our future research.

Multiple TCP messages are received from the data acquisition unit and parsed to
collect vibration acceleration sequence, a = {a0, · · · , aN−1}, from a sensor within a time
period. Its spectrum sequence, A, is obtained by applying FFT with N nodes. In order
to obtain the corresponding velocity and displacement sequences, v and d, from the
acceleration sequence a, the first-order and second-order digital integrations are applied,
according to (6) and (7), respectively. Thus, the time-domain statistics, such as the maximum
xmax, minimum xmin, and effective value xrms of a sequence x, are calculated to evaluate
the impact force or energy of the vibration signal, where x ∈ {a, v, d}. Since envelope
spectral analysis can be used to effectively demodulate and extract the low-frequency
vibration signal, the envelope spectrum Bx is calculated by (20) to evaluate the modulation
information. The cepstrum of a sequence cx is calculated by (23) to detect the periodic
components on its spectrum. Finally, thresholds for feature parameters Θth are set and
alarms are generated when the value of a feature parameter exceeds the threshold. The
threshold is empirically set 2 to 3 times the value for the normal machine operation. These
steps are outlined in Algorithm 1.

One can also calculate the signal envelope, and then apply cepstrum analysis on the
signal envelope. This may extract the fault features more effectively. We will validate this
idea in the future.

Algorithm 1: Fault prognosis through spectral analysis
Input: Acceleration sequence a
Output: Fault diagnosis: normal or warning

1 Initialize thresholds Θth empirically, G by (5), H by (16) or (17), and a return flag
b← normal.

2 Compute the power spectrum sequence A by (4).
3 Compute the velocity sequence v by (6), and the displacement sequence d by (7).
4 foreach sequence x in {a, v, d} do
5 Compute the time-domain statistics: xmax = max{x}, xmin = min{x}, and

effective value xrms =

√
∑N

k=1 x2
k

N . Let Θ = {xmax, xrms}.
6 if Θ > Θth then
7 Compute the envelope spectrum Bx by (21), and find the peak frequency

Bx,max = max{Bx}.
8 Compute the cepstrum cx by (23), and find the local peaks to obtain

vibration frequencies.
9 Set b← warning .

10 end
11 end

3. Test Platform and Software Flow

In this section, the hardware setup and software processes for the test platform are
described to provide the basis for subsequent practical measurements.

3.1. System Structure

As shown in Figure 1, the designed visualizable real-time vibration analyzer consists of
vibration sensors, a data acquisition unit (DAU), an Raspberry Pi embedded system, a 5G
industrial router, and an optional remote server. The piezoelectric acceleration sensors are
attached to the pump motor, gearbox or water pipe by strong magnets to collect vibration
acceleration signals. The DAU is connected to up to eight sensors of different types, such
as vibration acceleration sensors, velocity sensors, eddy current displacement sensors, and
inductive displacement sensors. Moreover, the DAU has an Ethernet interface, through which
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the sampled data are uploaded to a remote embedded system. Thus, the embedded system is
cross-connected to the DAU via wired Ethernet, or directly connected to it via a switch/router.

Data 
Acquisition 

Unit

Embedded 
System

5G 

networks

!"#$%&'(

!"#$%&')

!"#$%&'#

Server

5G Industrial 
Router

Figure 1. Block diagram of the test platform.

The 5G industrial router makes the data interaction between the machine equip-
ment and the platform more efficient, and the 5G characteristics of ultra-high speed,
ultra-large link, ultra-low latency, and secure transmission are highly desirable. The 5G
industrial router can be used in harsh and complex factory environments. It contains
high-performance industrial-grade 32-bit communication processors and industrial-grade
wireless modules to ensure reliability for long-time communication between remote devices
and a monitoring center in harsh environments.

A vibration detection system using MEMS as an acceleration sensor was designed in [25].
However, the used YXS-8908 charge output piezoelectric acceleration sensor works on the
piezoelectric effect of the piezoelectric crystal and adopts a unique isolated shear structure,
which enables the sensor to have low strain on the mounting base, low transverse sensitivity,
and performance stability. It is used in conjunction with a YX-ADV2 DAU with charge
amplifier. Table 1 lists the dynamic performance parameters of the acceleration sensor.

Table 1. Dynamic performance of YXS-8908 vibration acceleration sensor.

Measurement range (Peak) ±5 g (1 g ≈ 9.8 m/s2)
Sensitivity (25 ◦C) ± 5% 100 mV/g (160 Hz)
Amplitude nonlinearity ±1%
Frequency response 1∼10,000 Hz (3 dB)
Transverse sensitivity ratio ≤5%

The YX-ADV2 DAU supports simultaneous input of multiple sensor types, such
as vibration velocity sensor, acceleration sensor, eddy current displacement sensor, and
inductive displacement sensor, with 8-channel, 16-bit A/D simultaneous acquisition with
sampling rate of fs = 4 KHz. The DAU encapsulates the collected raw data into a frame
and sends it to the Raspberry Pi via TCP protocol (port number 8000). The communication
protocol is customized by the company but is open to users. The vibration analysis
application running on the Raspberry Pi parses the received packets according to the
protocol to obtain the sample values of each sensor.

The Raspberry Pi embedded system (controller) hardware includes an external power
supply, an SD (Secure Digital) card, a keyboard, a mouse, and a display. The Raspberry Pi
Model 3B+ uses a Qualcomm BCM2837 processor with a 64-bit quad-core processor running
at 1.4 GHz. It has 1 GB of RAM, 2.4/5 GHz dual-band WiFi, Bluetooth 4.2, 300 Mbps Ethernet,
4 USB 2.0 ports, 40 GPIO pins, as well as audio and video interfaces, multimedia support,
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and more. The embedded system hardware, though having the size of a credit card, is
powerful and has all the basic functions of a computer with the Debian Linux operating
system. Raspberry Pi’s operating system, applications, and data files are all on the SD card. In
order to store the raw data of each sensor for a long period, a SanDisk 128 GB high-speed SD
card with a read speed of 100 MB/s and a write speed of 10 MB/s was used.

The vibration analysis software running on the Raspberry Pi stores the raw waveform
data and the statistics after digital signal processing from each sensor in a MySQL database
on the Raspberry Pi. At the same time, all or part of the data are uploaded to the server via
the Internet.

3.2. Software Flow

Qt/Embedded has the advantages of high configurability, cross-platform, portability,
rich interfaces, high reliability and stability, and low system overhead. Thus, the analyzer
application is designed using Qt programming. The software flow of the application is
shown in Figure 2. The embedded system communicates with the DAU via TCP protocol
to collect real-time vibration acceleration data. The application uses FFT (Faster Fourier
Transform) analysis to obtain the spectral distribution of vibration acceleration signals.
Then, the velocity and displacement are estimated from the acceleration data by means
of the first-order and the second-order digital integral in frequency domain. The specific
description of the process is given in Section 2.1. The vibration acceleration, velocity, and
displacement signals of each sensor in the low and high frequency bands are obtained
through digital filters, respectively. Furthermore, after simple calculations, the statistics of
the acceleration, velocity, and displacement signals in the whole frequency band, as well as
the low and the high frequency bands are obtained, respectively. MySQL service is running
on the Raspberry Pi. The application connects to a MySQL database and periodically
stores raw vibration acceleration data and statistical information to the database. In order
to use more complex algorithms on the server in the future for more accurate vibration
assessments, the application uses TCP protocol to upload the sampled data to the server.

begin

Device initialization

GUI initialization

Connect !"#$%&#'()#*+,

Parse incoming data 
packets

Select channel

Acceleration sequence#   

Compute velocity and 
displacement 

sequences-

Compute time-domain 
statistics

Display graphs and 
statistics information

Upload data to server

S!"./ data to local 

MySQL database

exit?

end

Y

N 

Disconnect TCP 
with DAU

+"012!/#power 

spectrum sequence

 3  

Warning alarm

Y

N 

A

v,d

Θ

a

Compute envelope 
spectrum B

Compute cepstrum C

Θ > Θth

Figure 2. Software flow of the vibration analysis.
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4. Measurement and Analysis

In industrial production, water pumps are a common and important industrial equipment.
Water pumps are widely used in many fields, such as nuclear power, agriculture, and chemical
fields. In this paper, we selected the pump of a water company as an application example.

First, a standard vibration signal source generates vibration signals with adjustable
frequency and amplitude within a certain range. The sensors are connected to the vibration
signal source and the monitoring software runs on the Raspberry Pi. The GUI (Graphical
User Interface) is shown in Figure 3. The vibration test bench output is set so that the
vibration acceleration varies by

a(t) = (1 + 0.5 cos(30πt)) cos(100πt + 0.5 sin(20πt)) , (24)

where 1 volt corresponds to 1 gravitational acceleration, i.e., 9.8 m/s2. The real-time wave
sampled from the DAU and its corresponding spectrum are shown in Figure 3.

The left panel in Figure 3 shows the analysis results of all sensor signals, including
the vibration acceleration/velocity/displacement signals of each sensor. The time-domain
statistics include the maximum, minimum and effective values as a whole, in the low and
the high frequency bands, as well as at the frequency at the largest vibration amplitude. As
a result, the statistics of each sensor have 28 parameters. The statistics of all sensors are
displayed by the QTreeView control in the left panel of the interface. At the same time, the
real-time waveform, power spectrum, envelope spectrum, cepstrum, and historical peak of
the vibration signal are displayed on the right panel.

Figure 3. Real-time monitoring GUI for Raspberry Pi-based vibration test platform.

The blue curve shows the signal waveform corresponding to Equation (24). Moreover,
from Equation (24), the envelope of the signal is

b(t) = 1 + 0.5 cos(30πt) , (25)

and its waveform is shown in red color. The amplitude spectrum of the signal (blue color)
shows that the main energy of the signal is concentrated around the carrier frequency
(herein 50 Hz). In contrast, the envelope spectrum in red color indicates that the energy
is concentrated at lower frequencies (herein 15 Hz). The envelope spectrum contains the
modulation information of the original signal, and thus, is an important tool for bearing
fault diagnosis.
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Second, we use a computer to simulate the DAU for complex vibration signals that
cannot be generated by the vibration test bench. As shown in Figure 1, the Raspberry Pi is
connected to the DAU through a 5G router. We follow the protocol of the DAU to generate
complex vibration signals. For our proposed algorithm, the results are exactly the same
whether the vibration signal originates from a real DAU or a simulated DAU. To verify
cepstrum performance, a computer was used instead of DAU to simulate the low-frequency
gear shaft rotational vibration signal a1(t) and the high-frequency gear mesh vibration
signal a2(t): {

a1(t) = 1.0 cos(10πt) + 0.7 cos(20πt) + 0.5 cos(40πt)
a2(t) = 2.0 cos(100πt) + 1.5 cos(200πt) + 2.5 cos(400πt)

. (26)

These two signals are amplitude modulated, that is, a(t) = a1(t)a2(t), and quantized
(simulation of 16-bit analog-to-digital converter) before being fed to the Raspberry Pi via
the network.

As can be seen from the spectrum subgraph on the right of Figure 4, in the vicinity
of 50, 100, and 200 Hz, the a2(t) signal are offset by 5, 10, and 20 Hz by the a1(t) signal,
respectively. Eighteen spectral lines appear in the spectrogram, which makes it difficult to
identify the presence of the low-frequency gear shaft rotational vibration signals.

Figure 4. The side bands in simulated gearbox vibration signals by using cepstrum analysis.

The left subgraph is the cepstrum computed by (23). The three peaks, at 0.06 s, 0.12 s,
and 0.20 s, correspond to frequencies of 17 Hz, 8 Hz, and 5 Hz respectively, which approach
the low-frequency components of the modulated signal. These low-frequency components
appear as side bands in the right subgraph. Their corresponding frequency values are not
identifiable on the spectrogram, but are easily identified on the cepstrum.

By clicking the “Acc”, “Vel”, and “Disp” QRadioButtons in the “Functions” QGroup-
Box, the corresponding real-time signal waveform and its spectra are displayed, as well as
the historical peak values are read from the database and displayed in “Historical Peak”
plot. Similarly, the time-domain waveforms and spectra of the overall, low, and high
frequency bands of the vibration acceleration/velocity/displacement signals of each sensor
are switched by the QRadioButtons in the “Frequency Band” QGroupBox.

The QTabWidget control is used to paginate the display. Each sensor occupies one
page. In the “Channel selection” QGroupBox of the measurement settings interface, as
shown in Figure 5, the user can enable/disable data acquisition of any channel (i.e., sen-
sor). Accordingly, the statistics and graphical interface of that channel in Figure 3 is
added/removed.
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Figure 5. Measurement settings interface.

The threshold values are set in relation to the monitored device, i.e., the threshold
values are different for different monitored devices. These thresholds may be given by
experienced technicians and adjusted through the measurement settings interface shown
in Figure 5. When the amplitude of the vibration signal is gradually increased, a regular
warning or a severe alarm is issued depending on how much the threshold value is
exceeded, as shown in the bottom right of Figure 3. A log of the alarm messages is printed,
including the timestamp, channel, signal type, signal value, and other information of the
generated warning/alarm.

Finally, we deployed the monitoring system we developed to vibration monitoring
of water pumps in a water company. At the test site shown in Figure 6, there are seven
large-scale pumps, as well as gearboxes and pipes. The vibration acceleration sensor is
attached to the pump/motor housing with a strong magnet. The Raspberry Pi embedded
system is connected to the DAU via a 5G industrial router. We verified the accuracy of
our monitoring system by comparing the measurement results with those of the AR63A, a
dedicated instrument used for field testing by the water company. The measurement results
show that the performance of our monitoring system is consistent with those of the AR63A.
To verify whether the vibration analysis platform works properly over time, the stability
of the system needs to be tested. No faults were detected in the tests because the device
was operating normally and could not be intentionally damaged to create faults. However,
for the noise brought by the external power supply of the DAU, the power harmonic
can be for seen from the spectrum. Moreover, the collected vibration signal is usually
coupled with heavy noises, such as stemming from sensor imperfections, poor running
environment, or background noise, and so on. Besides, the vibration signals are normally
non-stationary and nonlinear. What is worse, is that the vibration signal may be too weak
to be distinguished from the noise. Therefore, it is still a challenge to extract vibration
signals for fault diagnosis under high noise levels and strong harmonic interference.

Several of the above experimental measurements show that the proposed fault prog-
nosis algorithm meets the needs of the water company. We are also well aware that
more advanced deep learning-based algorithms, such as those proposed in [26,27], use
non-contact vibration images for fault diagnosis and work well under strong noise. The
designed analyzer uploads the raw vibration data that the proposed fault prognosis algo-
rithm has assessed to be faulty to a remote server. This provides a sufficient source of data
for subsequent deep learning-based algorithms.
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Figure 6. Water pump room of a water supply company with seven large-scale pumps, including
gearboxes and water pipes.

5. Conclusions

Modern industrial equipment has improved to a great extent for production efficiency
and labor cost, and are moving towards higher precision. High-precision equipment will
bring a relatively high abnormality rate. Through experimental tests, the proposed test
platform is convenient for users to view the real-time data and graphs. Furthermore, users
can also log into the proposed test platform with “VNC viewer” tool software to view
real-time monitoring information of the long-running object under test remotely. The test
platform is implemented in software, except for the necessary hardware. Therefore, better
performance can be obtained by updating the algorithm. By using 5G networks, the raw
data of vibration signals are uploaded to the server, which provides a huge amount of data
for machine learning and artificial intelligence. The proposed test platform has a wide
application value.

The statistical features of vibration signals, such as peak value, peak-to-peak (p2p)
value, root-mean-square (RMS), crest factor skewness, kurtosis, spectral kurtosis, impulse
factor, shape factor, and clearance factor, are suggested to determine the health state of
machinery. However, how to choose appropriate feature parameters to distinguish a
healthy state from a faulty state is a key problem. Furthermore, how to differentiate among
faulty states is an even more crucial problem. We will intend to work on a solution to these
problem with the help of machine learning and artificial intelligence.
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