
����������
�������

Citation: He, J.; Chen, H. An

LSM-Tree Index for Spatial Data.

Algorithms 2022, 15, 113. https://

doi.org/10.3390/a15040113

Academic Editor: Frank Werner

Received: 22 February 2022

Accepted: 24 March 2022

Published: 25 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

An LSM-Tree Index for Spatial Data
Junjun He * and Huahui Chen

Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China;
chenhuahui@nbu.edu.cn
* Correspondence: 1911082205@nbu.edu.cn

Abstract: An LSM-tree (log-structured merge-tree) is a hierarchical, orderly and disk-oriented data
storage structure which makes full use of the characteristics of disk sequential writing, which are
much better than those of random writing. However, an LSM-tree can only be queried by a key
and cannot meet the needs of a spatial query. To improve the query efficiency of spatial data stored
in LSM-trees, the traditional method is to introduce stand-alone tree-like secondary indexes, the
problem with which is the read amplification brought about by dual index queries. Moreover, when
more spatial data are stored, the index tree becomes increasingly large, bringing the problems of a
lower query efficiency and a higher index update cost. To address the above problems, this paper
proposes an ER-tree(embedded R-tree) index structure based on the orderliness of LSM-tree data. By
building an SER-tree(embedded R-tree on an SSTable) index structure for each storage component,
we optimised dual index queries into single and organised SER-tree indexes into an ER-tree index
with a binary linked list. The experiments showed that the query performance of the ER-tree index
was effectively improved compared to that of stand-alone R-tree indexes.

Keywords: LSM-tree; spatial data; R-tree index; ER-tree index; query performance

1. Introduction

In modern LSM-tree-based storage architecture [1], the SSTable structure is mainly
used as the storage component on disk, initially proposed in BigTable [2]. This paper
takes RocksDB as an example to show the design pattern of the modern LSM tree. The
components in memory include MemTable, Immutable Memtable; the components in
the disk include the SSTable file, log file, current file and manifest file. When a user
writes a KV record, RocksDB will save the record in the log file first and then insert the
record into MemTable in memory. RocksDB does not directly reside the latest data in
the disk for each writing operation but splits it into a sequential write to the log file and
in-memory-based data insertion. When the memory’s MemTable is oversized, RocksDB
generates a static snapshot of Immutable MemTable and generates a new MemTable to
receive the latest update. The backend scheduling thread is responsible for flushing this
snapshot to Level 0 on disk for persistent storage as an SSTable. This process is called minor
compaction. When the file size of a layer on the disk reaches a specific size, the system
compresses and merges it with several SSTables in the next layer and the newly generated
SSTable resides in the next layer. This process is called major compaction. LSM-trees are a
widely used storage structure for NoSQL (Not Only SQL) databases, including Google’s
BigTable [2], LevelDB [3], Apache’s HBase [4] and AsterixDB [5], Facebook’s RocksDB [6]
and Cassandra [7] and are widely used in writing-intensive scenarios.

However, a traditional LSM-tree index can only query data by key, not directly by
value and thus cannot be used for spatial data to perform effective location-based range
queries and other operations by spatial coordinates in the value. To address the above
problem, spatial data query operations on LSM-trees can be accomplished by mapping the
two-dimensional spatial location in the value into one dimension as the key through the
space-filling curve method [8]. However, this method may place pressure on the system’s

Algorithms 2022, 15, 113. https://doi.org/10.3390/a15040113 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15040113
https://doi.org/10.3390/a15040113
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a15040113
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15040113?type=check_update&version=1

Algorithms 2022, 15, 113 2 of 20

computational resources in data mapping [9]. Some approaches involve introducing a
tree-like auxiliary index [10–13], storing the two-dimensional data location information on
the tree-like auxiliary index and when querying, after using the location information to
query the auxiliary index to obtain the key of the data, then going to the LSM-tree to query
the complete data <key, value> using the key. However, the disadvantage is that when the
LSM-tree is merged, the entire auxiliary index tree needs to be updated and the update cost
is considerable. Moreover, during the query, the key should be obtained from the secondary
index first and then the complete data should be obtained by applying the key to the
LSM-tree. Such dual index querying leads to significant reading amplification. Although
the read amplification problem can be alleviated by improving the LSM read performance,
such as the LSM-tree tidal structure [14] and multi-threaded parallel querying [15], it still
does not fundamentally solve the mechanical problem of a secondary index query [16]. An
R-tree index is the most widely used spatial index among tree-like auxiliary indexes and its
query performance is stable and applicable to a wide range of data types. Suppose we can
solve the dual index query, index update and multiplex query problems arising from its
application to LSM-trees. In this case, we can significantly improve the query performance
of spatial data on LSM-trees.

• We propose a new spatial data index SER-tree (embedded R-tree on an SSTable), intro-
duce Hilbert spatial data sorting, and combine an R-tree index with an SSTable to re-
duce the read amplification caused by R-tree multiplex queries and dual
index queries.

• Based on an SER-tree, we present an ER-tree (embedded R-tree) on LSM to further
improve the index query and the update efficiency by organising the SER-tree hierar-
chically through a binary linked list.

• We implemented the ER-tree index structure for spatial data on the open-source
NoSQL database RocksDB. By experimenting with a stand-alone LSM R-tree index,
we conclude that there is a better improvement in query performance.

The remainder of this paper is organised as follows: Section 2 briefly introduces the
current work related to spatial data indexing on LSM-trees and our motivation for improve-
ment; Section 3 presents the implemental details of the ER-tree index; Section 4 introduces
query algorithms on ER-tree indexes; Section 5 tests the build and query performance of
the ER-tree indexes through experiments; Section 6 concludes the work of this paper.

2. Related Works

An LSM-tree is a storage structure commonly used in NoSQL databases to improve
data writing performance. However, finding data in an LSM-tree is realised by the key,
which cannot directly provide spatial range query operations. Therefore, suitable spatial
data indexes must be designed for an LSM-tree structure. This section briefly introduces the
basic structure of LSM-trees. It analyses the current work related to spatial data indexing
on LSM-trees, which leads to the necessity of the work in this paper.

2.1. LSM-Tree Structure

The basic structure of an LSM-tree [17] is shown in Figure 1. When a writing operation
arrives, it first caches data in the memory MemTable. When the memory is complete, it turns
the MemTable into an immutable MemTable and then immediately flushes the immutable
MemTable to the disk through a minor compaction operation to achieve sequential I/O
processes and avoids the significant system overhead caused by random I/O. Moreover,
to improve the read performance, the LSM-tree performs a major compaction operation
according to the storage situation of SSTable in the disk to reduce the redundancy of the
data stored there and to retain the data of an SSTable in the same layer in order by the key.
The key range does not overlap (except the level 0 layer).

Algorithms 2022, 15, 113 3 of 20

Algorithms 2022, 15, x FOR PEER REVIEW 3 of 20

operation according to the storage situation of SSTable in the disk to reduce the redun-
dancy of the data stored there and to retain the data of an SSTable in the same layer in
order by the key. The key range does not overlap (except the level 0 layer).

MemTable
Immutable
MemTable

Rotate

Disk

Memory

SSTable

minor compaction

write operation

SSTableSSTable

SSTable

SSTable

SSTable SSTable

SSTable SSTable

Level 0

Level 1

Level 2
...

major
compaction

Figure 1. Basic structure of an LSM-tree.

2.2. Related Work
In terms of the single-dimensional indexing of LSM-trees, HBase database [4] uses

skip-list for memory and B+ tree for external storage to implement a B+ tree index based
on LSM-trees (LSM B-tree) based on the original LSM-trees to achieve efficient read and
writing performance. Sears [18] improved the original LSM-trees to build a fusion tree of
LSM-trees and B+ trees (bLSM-tree), which solves the read amplification and writing
blocking problems of the original LSM-trees. However, these two methods are only suit-
able for processing one-dimensional data and some special processing is required for
multi-dimensional data.

In terms of multi-dimensional indexing of LSM-trees, Lawder et al. [8] proposed two
spatial indexes, namely, dynamic Hilbert B+ tree (DBH-tree) and dynamic Hilbert-valued
B+ tree (DBVH-tree), using B+ trees and Hilbert curves to store spatial data. Both spatial
indexes can be applied well to LSM-trees to solve the problem of LSM-trees only being
able to index single-dimensional data. However, the shortcoming is that LSM B-trees
based on the Hilbert curve can only index points, so these approaches are only applicable
to point data, not line or surface data.

AsterixDB [5] is an open-source database based on LSM-trees with a native second-
ary index for spatial data. An R-tree index [19] is a widely used spatial data index. The
database uses an LSM R-tree [12] for spatial range queries. In Kim’s [20] experiments com-
paring several LSM-tree spatial indexes based on the AsterixDB database, an LSM R-tree
has better stability in data query performance and update efficiency compared to a DBH-
tree, DHVB-tree, or SHB-tree and is suitable for various types of spatial data. However,
the overall design maintains a stand-alone R-tree index on the disk. The index update
needs to find the changed key-value pairs and update them to the R-tree index in turn,
which has the problem of slow index updates. A compaction operation of SSTables on an
LSM-tree causes many index update operations on an R-tree, which increases the disk I/O
overhead. Moreover, its index storage is independent of each SSTable. When the data key
is queried on the secondary index, it still needs to query the LSM-tree primary index to
obtain the complete data <key, value> by the key. This dual index query increases the read
amplification and reduces the efficiency of spatial data queries. There is also a problem
with the R-tree itself, because the MBR (minimal bounding rectangle) on the leaf nodes
overlap, resulting in the R-tree making multiway queries when querying, further reduc-
ing the query efficiency. Figure 2 is a typical implementation of an R-tree index on an
LSM-tree. Such an index design scheme with stand-alone storage of the index and data

Figure 1. Basic structure of an LSM-tree.

2.2. Related Work

In terms of the single-dimensional indexing of LSM-trees, HBase database [4] uses
skip-list for memory and B+ tree for external storage to implement a B+ tree index based
on LSM-trees (LSM B-tree) based on the original LSM-trees to achieve efficient read and
writing performance. Sears [18] improved the original LSM-trees to build a fusion tree
of LSM-trees and B+ trees (bLSM-tree), which solves the read amplification and writing
blocking problems of the original LSM-trees. However, these two methods are only suitable
for processing one-dimensional data and some special processing is required for multi-
dimensional data.

In terms of multi-dimensional indexing of LSM-trees, Lawder et al. [8] proposed two
spatial indexes, namely, dynamic Hilbert B+ tree (DBH-tree) and dynamic Hilbert-valued
B+ tree (DBVH-tree), using B+ trees and Hilbert curves to store spatial data. Both spatial
indexes can be applied well to LSM-trees to solve the problem of LSM-trees only being able
to index single-dimensional data. However, the shortcoming is that LSM B-trees based on
the Hilbert curve can only index points, so these approaches are only applicable to point
data, not line or surface data.

AsterixDB [5] is an open-source database based on LSM-trees with a native secondary
index for spatial data. An R-tree index [19] is a widely used spatial data index. The database
uses an LSM R-tree [12] for spatial range queries. In Kim’s [20] experiments comparing
several LSM-tree spatial indexes based on the AsterixDB database, an LSM R-tree has
better stability in data query performance and update efficiency compared to a DBH-tree,
DHVB-tree, or SHB-tree and is suitable for various types of spatial data. However, the
overall design maintains a stand-alone R-tree index on the disk. The index update needs
to find the changed key-value pairs and update them to the R-tree index in turn, which
has the problem of slow index updates. A compaction operation of SSTables on an LSM-
tree causes many index update operations on an R-tree, which increases the disk I/O
overhead. Moreover, its index storage is independent of each SSTable. When the data key
is queried on the secondary index, it still needs to query the LSM-tree primary index to
obtain the complete data <key, value> by the key. This dual index query increases the read
amplification and reduces the efficiency of spatial data queries. There is also a problem
with the R-tree itself, because the MBR (minimal bounding rectangle) on the leaf nodes
overlap, resulting in the R-tree making multiway queries when querying, further reducing
the query efficiency. Figure 2 is a typical implementation of an R-tree index on an LSM-tree.
Such an index design scheme with stand-alone storage of the index and data suffers from
the problems of a low query efficiency and a costly index update and this paper calls this
structure a stand-alone R-tree index.

Algorithms 2022, 15, 113 4 of 20

Algorithms 2022, 15, x FOR PEER REVIEW 4 of 20

suffers from the problems of a low query efficiency and a costly index update and this
paper calls this structure a stand-alone R-tree index.

Liu [10] and Rui [11] improved the LSM R-tree using a hierarchical index. They de-
signed a corresponding secondary index for the MemTable and L0 (Level 0) individually,
used a large R-tree to store the index of the SSTable of L1 and above and finally formed a
three-layer structure of the index. This improves the query performance of an LSM R-tree
to a certain extent but suffers from the same problem as stand-alone R-tree indexes, having
a dual index query problem.

MemTable
Immutable
MemTable

Level 0

R-Tree

Level 1

Level 2

……

R-Tree

SSTable SSTable SSTable

SSTable SSTable SSTable

SSTable SSTable SSTable

Disk

Memory

Figure 2. Stand-alone R-tree indexes on LSM-trees.

A reduction in the index update cost and the system read amplification in the com-
bination of LSM R-trees is the direction many researchers focus on. A RUM-tree [21] is a
structure that handles frequently updated spatial data using an update memo structure.
An LSM RUM-tree [22] uses a RUM-tree to store and process update-intensive spatial
data. It introduces the update memo into the LSM R-tree index, reduces the complexity of
index deletion and update and improves the performance of data queries. The problem of
reading amplification can be partially solved in traditional ways to improve the perfor-
mance of LSM-tree reading, such as an LSM-tree tidal structure [14] and a multi-threaded
parallel query [15]. In the tidal structure, Wang et al. moved the files frequently visited in
the bottom to a higher position, reducing the data reading delay and thus reducing the
system read amplification. In the multi-threaded parallel query method, Cheng et al. used
multithreading to read the last layer and other layers of LSM to improve the efficiency of
the data query. Although both ways can enhance the data query efficiency and reduce the
system read amplification, they do not fundamentally solve the dual index query mecha-
nism. In this regard, Li et al. proposed a decoupled secondary index [23], whose query
process avoids obtaining records from the primary index, thus effectively reducing the
system read amplification and improving the data query performance.

Through the above elaboration, it can be concluded that the advantages of the LSM
R-tree index are high computational efficiency, stable data query performance and wide
suitable data types. However, due to the maintenance of a stand-alone R-tree index, there
is still much room for optimisation in reducing the cost of reading amplification and up-
date. Further improvements include: (1) reducing the read amplification caused by the
dual index query mechanism; (2) reducing the update cost on many R-tree indexes caused
by compaction operations; (3) for R-tree itself, reducing the query overhead caused by
multiway queries.

Therefore, this paper proposes an ER-tree index to construct an embedded R-tree in-
dex of an LSM-tree based on the SER-Tree index. Each SSTable maintains an SER-tree
index and the SER-tree index directly points to the corresponding record on the SSTable,
avoiding dual index queries and reducing the read amplification. Furthermore, only the
SER-tree indexes involved in the compaction operation are updated, reducing the update
overhead. In the organisation of an SER-tree, the spatial data are sorted and the SER-tree

Figure 2. Stand-alone R-tree indexes on LSM-trees.

Liu [10] and Rui [11] improved the LSM R-tree using a hierarchical index. They
designed a corresponding secondary index for the MemTable and L0 (Level 0) individually,
used a large R-tree to store the index of the SSTable of L1 and above and finally formed a
three-layer structure of the index. This improves the query performance of an LSM R-tree
to a certain extent but suffers from the same problem as stand-alone R-tree indexes, having
a dual index query problem.

A reduction in the index update cost and the system read amplification in the com-
bination of LSM R-trees is the direction many researchers focus on. A RUM-tree [21] is a
structure that handles frequently updated spatial data using an update memo structure.
An LSM RUM-tree [22] uses a RUM-tree to store and process update-intensive spatial data.
It introduces the update memo into the LSM R-tree index, reduces the complexity of index
deletion and update and improves the performance of data queries. The problem of reading
amplification can be partially solved in traditional ways to improve the performance of
LSM-tree reading, such as an LSM-tree tidal structure [14] and a multi-threaded parallel
query [15]. In the tidal structure, Wang et al. moved the files frequently visited in the
bottom to a higher position, reducing the data reading delay and thus reducing the system
read amplification. In the multi-threaded parallel query method, Cheng et al. used multi-
threading to read the last layer and other layers of LSM to improve the efficiency of the data
query. Although both ways can enhance the data query efficiency and reduce the system
read amplification, they do not fundamentally solve the dual index query mechanism. In
this regard, Li et al. proposed a decoupled secondary index [23], whose query process
avoids obtaining records from the primary index, thus effectively reducing the system read
amplification and improving the data query performance.

Through the above elaboration, it can be concluded that the advantages of the LSM
R-tree index are high computational efficiency, stable data query performance and wide
suitable data types. However, due to the maintenance of a stand-alone R-tree index, there is
still much room for optimisation in reducing the cost of reading amplification and update.
Further improvements include: (1) reducing the read amplification caused by the dual
index query mechanism; (2) reducing the update cost on many R-tree indexes caused
by compaction operations; (3) for R-tree itself, reducing the query overhead caused by
multiway queries.

Therefore, this paper proposes an ER-tree index to construct an embedded R-tree
index of an LSM-tree based on the SER-Tree index. Each SSTable maintains an SER-tree
index and the SER-tree index directly points to the corresponding record on the SSTable,
avoiding dual index queries and reducing the read amplification. Furthermore, only the
SER-tree indexes involved in the compaction operation are updated, reducing the update
overhead. In the organisation of an SER-tree, the spatial data are sorted and the SER-tree is
constructed from the bottom up to minimise the MBR overlap and the redundant query
overhead caused by multiway queries.

Algorithms 2022, 15, 113 5 of 20

3. SER-Tree Index

As analysed in Section 2, the LSM R-tree index has three improvements: Reducing the
multiway queries of R-tree, improving the dual index query mechanism and reducing the
update overhead of the R-tree index caused by the compaction operation of an LSM-tree.
This section presents the details of the ER-tree index implementation for improvements.
In Section 3.1, this paper proposes the design idea of an SER-tree to reduce the multiway
query of an R-tree; in Section 3.2, this paper offers to build an ER-tree index on an LSM-tree
based on an SER-tree, to improve the dual index query mechanism of the LSM R-tree index
and to reduce the update overhead of the R-tree index on an LSM-tree.

3.1. SER-Tree Index Design

The KV database based on an LSM-tree is usually composed of the MemTable and
immutable MemTable resident in memory. The other is the disk divided into multiple
layers in storage logic. Each disk layer contains multiple SSTable files and the key-value
data are encapsulated in these SSTable files. Except for the disk level 0 layer, the data stored
in each layer are arranged in the key order and the range of keys between each SSTable is
not overlapped.

In the SSTable file, the data are divided into several data blocks, as shown in Figure 3.
The data in the data blocks are arranged in dictionary order by the key acquiescently, but
users can also define their ordering of keys. Because each SSTable in each layer of the
LSM-tree is divided according to the range of the key and the data in an SSTable are stored
in the order of the key, if the key can be designed reasonably, the data adjacent to the
geographical location may be stored together, which is convenient for building indexes for
efficient spatial range queries and other operations.

Algorithms 2022, 15, x FOR PEER REVIEW 5 of 20

is constructed from the bottom up to minimise the MBR overlap and the redundant query
overhead caused by multiway queries.

3. SER-Tree Index
As analysed in Section 2, the LSM R-tree index has three improvements: Reducing

the multiway queries of R-tree, improving the dual index query mechanism and reducing
the update overhead of the R-tree index caused by the compaction operation of an LSM-
tree. This section presents the details of the ER-tree index implementation for improve-
ments. In Section 3.1, this paper proposes the design idea of an SER-tree to reduce the
multiway query of an R-tree; in Section 3.2, this paper offers to build an ER-tree index on
an LSM-tree based on an SER-tree, to improve the dual index query mechanism of the
LSM R-tree index and to reduce the update overhead of the R-tree index on an LSM-tree.

3.1. SER-Tree Index Design
The KV database based on an LSM-tree is usually composed of the MemTable and

immutable MemTable resident in memory. The other is the disk divided into multiple
layers in storage logic. Each disk layer contains multiple SSTable files and the key-value
data are encapsulated in these SSTable files. Except for the disk level 0 layer, the data
stored in each layer are arranged in the key order and the range of keys between each
SSTable is not overlapped.

In the SSTable file, the data are divided into several data blocks, as shown in Figure
3. The data in the data blocks are arranged in dictionary order by the key acquiescently,
but users can also define their ordering of keys. Because each SSTable in each layer of the
LSM-tree is divided according to the range of the key and the data in an SSTable are stored
in the order of the key, if the key can be designed reasonably, the data adjacent to the
geographical location may be stored together, which is convenient for building indexes
for efficient spatial range queries and other operations.

data block 1
data block 2...
data block n

 meta block
meta index block

 index block
footer

Data

Data
management

Figure 3. SSTable structure.

Suppose we follow the traditional LSM R-tree indexing idea and build the R-tree in-
dex directly on the value, the read performance will be degraded due to the unclear rela-
tionship between the location of the value and the R-tree index that cannot reflect the or-
derliness of the data in the LSM-tree itself. Precisely, assuming a range query obtains the
key from the R-tree index first and then the complete data from the LSM-tree by finding
the key, it scans the SSTable in the disk file one by one, because it does not know which
SSTable the data corresponding to the key is stored in. Although the LSM-tree itself has a
Bloom filter, a key binary query and other ways to accelerate the query, these query over-
heads cannot be ignored once the amount of data increases. If there is an effective way to
organise spatial data so that each query does not need to scan disk files sequentially, the
query performance will be further improved.

In this paper, the Hilbert values of the spatial location in the data are encoded as the
key and the spatial data can be stored in the SSTable in Hilbert order. When a range query
is performed, the data can be directly retrieved through the data storage location mapped
by the SER-tree index to avoid dual index queries.

Figure 3. SSTable structure.

Suppose we follow the traditional LSM R-tree indexing idea and build the R-tree index
directly on the value, the read performance will be degraded due to the unclear relationship
between the location of the value and the R-tree index that cannot reflect the orderliness of
the data in the LSM-tree itself. Precisely, assuming a range query obtains the key from the
R-tree index first and then the complete data from the LSM-tree by finding the key, it scans
the SSTable in the disk file one by one, because it does not know which SSTable the data
corresponding to the key is stored in. Although the LSM-tree itself has a Bloom filter, a
key binary query and other ways to accelerate the query, these query overheads cannot be
ignored once the amount of data increases. If there is an effective way to organise spatial
data so that each query does not need to scan disk files sequentially, the query performance
will be further improved.

In this paper, the Hilbert values of the spatial location in the data are encoded as the
key and the spatial data can be stored in the SSTable in Hilbert order. When a range query
is performed, the data can be directly retrieved through the data storage location mapped
by the SER-tree index to avoid dual index queries.

The SER-tree learns from the idea of a Hilbert R-tree. The traditional R-tree is built
by the top-down dynamic interpolation method. Because the node splitting process is
locally optimised, it inevitably increases the MBR overlapping area of spatial objects. For
the SSTable structure in the LSM-tree, the data in it do not change once generated. When
selected for compaction, several SSTables are merged into a new SSTable. Therefore, for

Algorithms 2022, 15, 113 6 of 20

the SSTable index, the bottom-up batch loading method is more suitable. In the process
of generating leaf nodes, the spatial objects can be arranged in Hilbert’s order first. Then,
a series of consecutive spatial objects can first be pressed into the tree’s leaf nodes by
scanning the sorted list and then pressed into the next leaf node until all spatial objects
are processed. Finally, a complete Hilbert R-tree is generated from the bottom up. The
bottom-up Hilbert R-tree can be close to 100% in spatial storage efficiency and can reduce
the redundant queries caused by multiway queries to a certain extent, which is suitable
for indexing applications that do not need to insert and delete data frequently, such as an
SSTable. Figure 4 shows an MBR comparison between the Hilbert R-tree and the R-tree. It
shows that the Hilbert R-tree has a lower MBR overlapping area than the traditional R-tree.

Algorithms 2022, 15, x FOR PEER REVIEW 6 of 20

The SER-tree learns from the idea of a Hilbert R-tree. The traditional R-tree is built
by the top-down dynamic interpolation method. Because the node splitting process is lo-
cally optimised, it inevitably increases the MBR overlapping area of spatial objects. For
the SSTable structure in the LSM-tree, the data in it do not change once generated. When
selected for compaction, several SSTables are merged into a new SSTable. Therefore, for
the SSTable index, the bottom-up batch loading method is more suitable. In the process of
generating leaf nodes, the spatial objects can be arranged in Hilbert’s order first. Then, a
series of consecutive spatial objects can first be pressed into the tree’s leaf nodes by scan-
ning the sorted list and then pressed into the next leaf node until all spatial objects are
processed. Finally, a complete Hilbert R-tree is generated from the bottom up. The bot-
tom-up Hilbert R-tree can be close to 100% in spatial storage efficiency and can reduce the
redundant queries caused by multiway queries to a certain extent, which is suitable for
indexing applications that do not need to insert and delete data frequently, such as an
SSTable. Figure 4 shows an MBR comparison between the Hilbert R-tree and the R-tree. It
shows that the Hilbert R-tree has a lower MBR overlapping area than the traditional R-
tree.

Figure 4. Hilbert R-tree and R-tree comparison: (a) Hilbert curve in spatial coordinates; (b) MBR of
the Hilbert R-tree; (c) MBR of the R-tree.

3.2. SER-Tree Index Build
The following describes how to build an SER-tree index on an SSTable. First, we as-

sume that the key and value are of a fixed size, the key is the Hilbert value of the coordi-
nates in the spatial data and the value is the spatial data information. If the size is not
specified, one can refer to the method of WiscKey [24] and can use the technique of value
log to store the key and value separately, while the key is the Hilbert value and the value
is the pointer to the location of that data in the value log.

The corresponding SER-tree index for each SSTable is then built and each data block
in that SSTable, corresponding to a leaf node in the SER-tree index, is defined as follows:

T୪ୣୟ୤ = (MBR, db_ptr) (1)

where MBR = (x୫୧୬, y୫୧୬, x୫ୟ୶, y୫ୟ୶) is the minimum bounding rectangle of the spatial
data in the data block and db_ptr is a pointer to the corresponding data block, as shown
in Figure 5 (R1–R16).

After building the leaf nodes, the middle nodes of the SER-tree are built from the
bottom up, as shown in Figure 5 (R17–R22). The middle nodes of the SER-tree are defined
as:

T୫୧ୢୢ୪ୣ = (cMBR, child_ptr) (2)

where cMBR is the minimum bounding rectangle covering all child nodes in the middle
node and child_ptr is the set of pointers to the next level of child nodes.

Figure 4. Hilbert R-tree and R-tree comparison: (a) Hilbert curve in spatial coordinates; (b) MBR of
the Hilbert R-tree; (c) MBR of the R-tree.

3.2. SER-Tree Index Build

The following describes how to build an SER-tree index on an SSTable. First, we
assume that the key and value are of a fixed size, the key is the Hilbert value of the
coordinates in the spatial data and the value is the spatial data information. If the size is
not specified, one can refer to the method of WiscKey [24] and can use the technique of
value log to store the key and value separately, while the key is the Hilbert value and the
value is the pointer to the location of that data in the value log.

The corresponding SER-tree index for each SSTable is then built and each data block
in that SSTable, corresponding to a leaf node in the SER-tree index, is defined as follows:

Tleaf = (MBR, db_ptr) (1)

where MBR = (xmin, ymin, xmax, ymax) is the minimum bounding rectangle of the spatial
data in the data block and db_ptr is a pointer to the corresponding data block, as shown in
Figure 5 (R1–R16).

After building the leaf nodes, the middle nodes of the SER-tree are built from the
bottom up, as shown in Figure 5 (R17–R22). The middle nodes of the SER-tree are
defined as:

Tmiddle = (cMBR, child_ptr) (2)

where cMBR is the minimum bounding rectangle covering all child nodes in the middle
node and child_ptr is the set of pointers to the next level of child nodes.

The SER-tree is built from the bottom up according to the pre-set node size of the
SER-tree, up to the root node of the SER-tree. The root node is defined as:

T = (tMBR, child_ptr, next) (3)

where tMBR is the minimum bounding rectangle covering all child nodes in the root node
T, child_ptr is the set of pointers of the node to the next level of child nodes and the next

Algorithms 2022, 15, 113 7 of 20

pointer is the SER-tree index pointing to the adjacent SSTable. At this point, the SER-tree
index on the SSTable is built, as shown in Figure 5.

Algorithms 2022, 15, x FOR PEER REVIEW 7 of 20

The SER-tree is built from the bottom up according to the pre-set node size of the
SER-tree, up to the root node of the SER-tree. The root node is defined as:

T = (tMBR, child_ptr, next) (3)

where tMBR is the minimum bounding rectangle covering all child nodes in the root node
T, child_ptr is the set of pointers of the node to the next level of child nodes and the next
pointer is the SER-tree index pointing to the adjacent SSTable. At this point, the SER-tree
index on the SSTable is built, as shown in Figure 5.

R1 R2 R3 R4 R5 R7 R8 R11

R17 R18 R19 R20

R23

R6 R9 R10 R12 R14R13 R15

R21

R16

R22

data block 1

…

…

other structuresthe rest of the data
blocks

SSTable

SER-Tree

data block 2

data block i

…

R24

R25

Figure 5. SER-tree index structure on an SSTable.

The SER-tree index construction algorithm is proposed based on the above structure,
as shown in Algorithm 1.

Algorithm 1 SER-tree build algorithm
Input: S: SSTable; k: the capacity of SER-Tree node.
Output: T: an SER-Tree on SSTable.
1: Q←∅; // Q: auxiliary queue
2: for each data block in S, do
3: Build a leaf node N to store the data points in a data block;
4: Q.enqueue (<N,1>);
5: end for
6: while Q.size ()>1 do
7: Dequeue the first k nodes of the same level t from Q; //t: the level of SER-Tree
8: Build a node N to store MBRs of the nodes and pointers of the nodes;
9: Q.enqueue (<N,t+1>);
10: end while
11: T ← Q.LastNode;
12: return T;

Algorithm 1 describes the process of building an SER-tree index. The auxiliary queue
Q is represented as a <N,t> binary, where N represents the leaf nodes and t represents the
level of the node in the SER-tree. In the first step, Algorithm 1 builds leaf nodes N for each
data block in turn and then pushes them into the queue Q (lines 2–5). In the second step,
for the nodes on the same level t in the queue Q, a middle node is built for every k node
and the middle node stores the MBRs and pointers of the child nodes; the above operation
is repeated until the size of the queue becomes one (lines 6–10). Finally, the last node of
the queue Q is deposited into and stored in T, completing the algorithm (lines 11–12).

Figure 5. SER-tree index structure on an SSTable.

The SER-tree index construction algorithm is proposed based on the above structure,
as shown in Algorithm 1.

Algorithm 1 SER-tree build algorithm

Input: S: SSTable; k: the capacity of SER-Tree node.
Output: T: an SER-Tree on SSTable.
1: Q← ∅; // Q: auxiliary queue
2: for each data block in S, do
3: Build a leaf node N to store the data points in a data block;
4: Q.enqueue (<N,1>);
5: end for
6: while Q.size ()>1 do
7: Dequeue the first k nodes of the same level t from Q; //t: the level of SER-Tree
8: Build a node N to store MBRs of the nodes and pointers of the nodes;
9: Q.enqueue (<N,t+1>);
10: end while
11: T← Q.LastNode;
12: return T;

Algorithm 1 describes the process of building an SER-tree index. The auxiliary queue
Q is represented as a <N,t> binary, where N represents the leaf nodes and t represents the
level of the node in the SER-tree. In the first step, Algorithm 1 builds leaf nodes N for each
data block in turn and then pushes them into the queue Q (lines 2–5). In the second step,
for the nodes on the same level t in the queue Q, a middle node is built for every k node
and the middle node stores the MBRs and pointers of the child nodes; the above operation
is repeated until the size of the queue becomes one (lines 6–10). Finally, the last node of the
queue Q is deposited into and stored in T, completing the algorithm (lines 11–12).

4. ER-Tree Index

We first built the SER-tree index on each SSTable and then linked the SER-tree indexes
on each layer of the LSM-tree to build the ER-Tree index on LSM. The following described
the ER-tree index building method on the LSM-tree. In Section 4.1, this paper presents
the design idea of the ER-tree; in Section 4.2, this paper explains the building method of
the ER-tree; in Section 4.3, this paper proposes further improvements for the ER-tree; in

Algorithms 2022, 15, 113 8 of 20

Section 4.4, this paper presents query algorithms based on the ER-tree index, including
point query, rectangular range query and prototype range query.

4.1. ER-Tree Index Design

The traditional R-tree index of spatial data on an LSM-tree uses the method of indexing
multiple SSTables by a single file to reduce the number of index files, which simplifies the
design, but reduces the data query efficiency and increases the index update overhead. In
this paper, a single index file is used to maintain a single SSTable. Although many index
files are added, the cost of index update can be reduced when the compaction operation
occurs because only a few indexes on SSTable are updated. In terms of data querying, since
the related records are available on the SSTable corresponding to the index, there is no need
to perform dual index queries, which reduces the read amplification and improves the
spatial data query performance.

In the external storage of an LSM-tree, the storage structure is logically divided into
several layers and each layer contains multiple SSTable files. To avoid scanning the SER-tree
indexes on each SSTable, the indexes need to be organised according to the hierarchical
idea of LSM-trees to improve the efficiency of the data query. Figure 6 shows the ER-tree
index structure of the spatial data on the LSM-tree designed in this paper and the details of
the build method are presented in Section 4.2. The SER-tree on the SSTable in each level
of the external storage LSM-tree is organised into a linked list by connecting all the root
nodes of the SER-tree at the level and then the headers of all the level lists are organised
into a linked list. The formed double linked list organises all the SER-tree indexes on the
SSTable together. The query can be filtered by the tMBR range of each node on the double
linked list level by level and can filter some SER-tree indexes unrelated to the query scope
to avoid scanning all indexes.

Algorithms 2022, 15, x FOR PEER REVIEW 8 of 20

4. ER-Tree Index
We first built the SER-tree index on each SSTable and then linked the SER-tree in-

dexes on each layer of the LSM-tree to build the ER-Tree index on LSM. The following
described the ER-tree index building method on the LSM-tree. In Section 4.1, this paper
presents the design idea of the ER-tree; in Section 4.2, this paper explains the building
method of the ER-tree; in Section 4.3, this paper proposes further improvements for the
ER-tree; in Section 4.4, this paper presents query algorithms based on the ER-tree index,
including point query, rectangular range query and prototype range query.

4.1. ER-Tree Index Design
The traditional R-tree index of spatial data on an LSM-tree uses the method of index-

ing multiple SSTables by a single file to reduce the number of index files, which simplifies
the design, but reduces the data query efficiency and increases the index update overhead.
In this paper, a single index file is used to maintain a single SSTable. Although many index
files are added, the cost of index update can be reduced when the compaction operation
occurs because only a few indexes on SSTable are updated. In terms of data querying,
since the related records are available on the SSTable corresponding to the index, there is
no need to perform dual index queries, which reduces the read amplification and im-
proves the spatial data query performance.

In the external storage of an LSM-tree, the storage structure is logically divided into
several layers and each layer contains multiple SSTable files. To avoid scanning the SER-
tree indexes on each SSTable, the indexes need to be organised according to the hierar-
chical idea of LSM-trees to improve the efficiency of the data query. Figure 6 shows the
ER-tree index structure of the spatial data on the LSM-tree designed in this paper and the
details of the build method are presented in Section 4.2. The SER-tree on the SSTable in
each level of the external storage LSM-tree is organised into a linked list by connecting all
the root nodes of the SER-tree at the level and then the headers of all the level lists are
organised into a linked list. The formed double linked list organises all the SER-tree in-
dexes on the SSTable together. The query can be filtered by the tMBR range of each node
on the double linked list level by level and can filter some SER-tree indexes unrelated to
the query scope to avoid scanning all indexes.

MemTable
Immutable
MemTable

Rotate

Disk

Memory

SSTable SSTableSSTableLevel 0

write operation

Level 1 SSTable SSTable SSTable

Level 2 SSTable SSTable SSTable

minor compaction

sst_level head

next_level

sst_level head

next_level

sst_level head

next_level

…

…

…

…

SER-Tree SER-Tree SER-Tree

SER-Tree SER-Tree SER-Tree

SER-Tree SER-Tree SER-Tree

Figure 6. ER-tree index structure for spatial data on LSM-trees.

4.2. ER-Tree Index Build

Figure 6. ER-tree index structure for spatial data on LSM-trees.

4.2. ER-Tree Index Build

Figure 6 shows the ER-tree index structure of the spatial data on the LSM-tree, where
the head node of the double linked list is defined as follows:

ER_Tree_head = (sstlevel, head, next_level) (4)

Algorithms 2022, 15, 113 9 of 20

where sst_level indicates the level where the linked list is located, the head pointer points
to the SER-tree index of the first SSTable at that level and the next_level pointer points to
the next level of the linked list.

When the LSM-tree is in major compaction operation, the database selects several
SSTable files with overlapping keys in levels i and i + 1 for compaction and then outputs
the new SSTable files to level i + 1. Accordingly, indexes also need similar compaction
operations. When the compaction operation of the LSM-tree is completed, the SER-tree
index on the new SSTable is built and the SER-tree index on the compacted SSTable is
deleted. After the above steps are finished, the linked list nodes on the ER-tree structure
are updated, the old nodes are deleted and the nodes are inserted.

4.3. ER-Tree Index Improve

The above describes the general structure of an ER-tree index, but it is not suitable for
practical applications for the following reasons:

1. For read-only workloads, ER-tree indexes can provide higher query performance.
However, for mixed read-write workloads, the indexes are constantly updated with
frequent data writing, resulting in increased overheads, which does not seem to
work well with the high writing performance of the LSM-tree structure. However,
although writing changes the structure of the LSM-tree, most of its structure remains
unchanged, especially for the SSTable in the high levels and a large amount of writing
does not cause compaction operations to occur in the high-level SSTable. Therefore,
indexes built on these high-level SSTables are effective and improve the data query
performance. However, for a low-level SSTable, the data change process is faster and
whether to build SER-tree indexes on them needs further analysis.

2. In the LSM-tree, many SSTable files have a short lifetime, especially for a low-level
SSTable and when a large amount of writing occurs, they are quickly compacted to
the next-level SSTable and their lifetime is less than the index build time. Therefore, it
is necessary to set a threshold value. If the lifetime of an SSTable file is less than this
threshold, there is no need to build an SER-tree index. In this paper, we experimentally
measured that for a 4MB SSTable file and the time to build its index was approximately
45 ms. Therefore, we set a time threshold of Tw = 50 ms. If the lifetime of the SSTable
is greater than Tw, then the index is built for the SSTable; otherwise, it is not built.

3. In addition to the above issues, it is also necessary to consider that even if an SSTable
file has a long lifetime, it is not urgent to build indexes on it if there are almost no
query tasks. To build an SER-tree index for an SSTable, we need to consider the query
gain and the building loss from the index, which are denoted by Gindex and Lindex,
respectively, in this paper. If Gindex is larger than Lindex, it means that it is appropriate
to build an SER-tree index on this SSTable and if Gindex is smaller than Lindex, it is not
applicable to build an index on this SSTable.

If we do not consider the impact of the index building process on other operations of
the LSM-tree, the value of Lindex is approximately equal to the index building time, which
is denoted by Tbuild in this paper. In this paper, Tbuild is the time to build a Hilbert R-tree
index on an SSTable and its size is proportional to the amount of data in the SSTable file. It
is calculated by multiplying the average time to build a Hilbert R-tree index for one data
point in the offline case by the number of data points in the SSTable file. Gindex is calculated
by the time difference between the SER-tree index query time and the baseline method
query time. The baseline method is a key binary query of an SSTable without indexing.
In this paper, the SER-tree index query time is defined as Tmodel and the baseline method
query time is defined as Tbaseline. Assuming that an SSTable has Q queries in its life cycle,
the formula for calculating Gindex is shown below:

Gindex = (Tbaseline − Tindex)×Q (5)

Algorithms 2022, 15, 113 10 of 20

The data in the above equation cannot be obtained directly from the SSTable file,
but rather need to be obtained from the rest of the SSTable files in the same layer that
have undergone the entire lifetime, which is defined as SSTel in this paper. Tbaseline is
approximately equal to the average baseline method query time on the SSTel file before
indexing. Tindex is roughly equivalent to the average index query time on the SSTel file,
while Q is the number of queries on the SSTel file.

To sum up, an index build decider (IBD) is needed to judge the timing of the index
building. The IBD first selects the SSTable whose lifetime is greater than Tw, then calculates
its Gindex and Lindex. If Gindex > Lindex, an SER-tree index is established for the SSTable;
otherwise. the index waits to be built. Suppose many SSTables meet the index build
conditions simultaneously; in this case, the IBD builds the index according to the value of
Gindex − Lindex and the larger the value is, the quicker it will be built to ensure the index
achieves the maximum gain.

4.4. ER-Tree Index Query

In this paper, the most significant difference between the query process of the ER-tree
index and the stand-alone R-tree index is that the index is built directly on the SSTable,
so that when querying, you can go to its corresponding SSTable to obtain the data <key,
value>, without the need for a dual query in the way of the stand-alone R-tree index, which
reduces the query number and improves the query performance. Figure 7 shows the flow
of querying data from the stand-alone R-tree index. First, according to the sparse dashed
arrow in the figure, the key is queried on the R-tree using spatial location. After obtaining
the key, the data are queried from the LSM-tree again according to the dense dashed arrow,
which is a more tedious and time-consuming dual query process. Figure 8 shows the flow
of querying data from the ER-tree index; first, according to the sparse dashed arrows in the
figure, querying on the ER-tree using spatial location and then directly querying data on
the corresponding SSTable according to the dense dashed arrows after querying, which
avoids the dual index query compared with the stand-alone R-tree index.

Algorithms 2022, 15, x FOR PEER REVIEW 10 of 20

query time is defined as Tbaseline. Assuming that an SSTable has Q queries in its life cycle,
the formula for calculating Gindex is shown below:

G୧୬ୢୣ୶ = (Tୠୟୱୣ୪୧୬ୣ − T୧୬ୢୣ୶) × Q (5)

The data in the above equation cannot be obtained directly from the SSTable file, but
rather need to be obtained from the rest of the SSTable files in the same layer that have
undergone the entire lifetime, which is defined as SSTel in this paper. Tbaseline is approxi-
mately equal to the average baseline method query time on the SSTel file before indexing.
Tindex is roughly equivalent to the average index query time on the SSTel file, while Q is the
number of queries on the SSTel file.

To sum up, an index build decider (IBD) is needed to judge the timing of the index
building. The IBD first selects the SSTable whose lifetime is greater than Tw, then calculates
its Gindex and Lindex. If Gindex > Lindex, an SER-tree index is established for the SSTable; other-
wise. the index waits to be built. Suppose many SSTables meet the index build conditions
simultaneously; in this case, the IBD builds the index according to the value of Gindex −
Lindex and the larger the value is, the quicker it will be built to ensure the index achieves
the maximum gain.

4.4. ER-Tree Index Query
In this paper, the most significant difference between the query process of the ER-

tree index and the stand-alone R-tree index is that the index is built directly on the SSTa-
ble, so that when querying, you can go to its corresponding SSTable to obtain the
data<key, value>, without the need for a dual query in the way of the stand-alone R-tree
index, which reduces the query number and improves the query performance. Figure 7
shows the flow of querying data from the stand-alone R-tree index. First, according to the
sparse dashed arrow in the figure, the key is queried on the R-tree using spatial location.
After obtaining the key, the data are queried from the LSM-tree again according to the
dense dashed arrow, which is a more tedious and time-consuming dual query process.
Figure 8 shows the flow of querying data from the ER-tree index; first, according to the
sparse dashed arrows in the figure, querying on the ER-tree using spatial location and
then directly querying data on the corresponding SSTable according to the dense dashed
arrows after querying, which avoids the dual index query compared with the stand-alone
R-tree index.

Based on the above ER-tree index, this paper proposes point query, rectangular range
query and circle range query algorithms for spatial data on the ER-tree index.

MemTable
Immutable
MemTable

disk

memory

Level 0

R-Tree

R-Tree

Level 1

Level 2

……

R-Tree

SSTable SSTable SSTable

SSTable SSTable SSTable

SSTable SSTable SSTable

query primary key query data

read operation

Figure 7. Stand-alone R-tree index query flow. Figure 7. Stand-alone R-tree index query flow.

Based on the above ER-tree index, this paper proposes point query, rectangular range
query and circle range query algorithms for spatial data on the ER-tree index.

Algorithms 2022, 15, 113 11 of 20Algorithms 2022, 15, x FOR PEER REVIEW 11 of 20

MemTable
Immutable
MemTable

Disk

Memory

SSTable SSTableSSTableLevel 0

read operation

Level 1 SSTable SSTable SSTable

Level 2 SSTable SSTable SSTable

sst_level head

next_level

sst_level head

next_level

sst_level head

next_level

…

…

…

…

SER-Tree SER-Tree SER-Tree

SER-Tree SER-Tree SER-Tree

SER-Tree SER-Tree SER-Tree

query primary key query data
Figure 8. ER-tree index query flow.

4.4.1. Point Query
The point query of spatial data is based on one or several query coordinate points to

query the data in the database with the exact data coordinates as the query coordinate
points. The key-value entry is first obtained by a spatial location query on the ER-tree
index and then directly through the SSTable corresponding to the index. The point query
algorithm on the ER-tree index is shown in Algorithm 2.

Algorithm 2 Point query algorithm
Input: QP: query point, ERT: LSM ER-Tree index
Output: result: <key, value>, whose value= QP
1: level_ptr ← ERT. head;
2: while(level_ptr! = null) do
3: ptr ← level_ptr. head;
4: while(ptr! = null) do
5: if include(ptr.tMBR, QP) then //include: judge whether the point QP is within
the MBR range
6: LeafNode ← QPFindLeaf (ptr.SERT, QP); //SERT: SER-Tree index on SSTable
7: temp_result. append (LeafNode.db_ptr);
8: end if
9: ptr ← ptr.next;
10: end while
11: level_ptr ← level_ptr.next_level;
12: end while
13: foreach(<key, value>in temp_result)
14: if equals(value, QP) then
15: result. append(<key, value>); end if
16: end for
17: return result;
18: function QPFindLeaf (T, QP)
19: begin

Figure 8. ER-tree index query flow.

4.4.1. Point Query

The point query of spatial data is based on one or several query coordinate points
to query the data in the database with the exact data coordinates as the query coordinate
points. The key-value entry is first obtained by a spatial location query on the ER-tree
index and then directly through the SSTable corresponding to the index. The point query
algorithm on the ER-tree index is shown in Algorithm 2.

Algorithm 2 describes the process of the ER-tree index point query. In the first step,
the ER-tree is used to judge, layer by layer, whether the QP is located in the tMBR of each
SER-tree root node in the ER-tree. If it exists, the QPFindLeaf function is executed to obtain
the data <key, value> from the data block on the corresponding SSTable and to store it in the
temp_result collection (lines 1–12). The second step is to iterate, through the temp_result
collection, to judge whether <key, value> in the temp_result collection equals the QP. If it is
equal, it is stored in the result collection (lines 13–17); lines 18–28 refer to the QPFindLeaf
function, which uses a recursive way to query the leaf node of the MBR containing the
query point QP.

4.4.2. Rectangular Range Query

The rectangular range query of spatial data is used to query the data within the
rectangular range of coordinate points based on a pair of coordinate points (x1, y1) (x2, y2),
where (x1, y1) are the coordinates of the lower-left corner of the rectangle and (x2, y2) are the
coordinates of the lower right corner of the rectangle. First, we need to query the data by
the coordinate points on the index and then obtain the <key, value> on the corresponding
SSTable. The ER-tree index rectangular range query algorithm is shown in Algorithm 3.

Algorithms 2022, 15, 113 12 of 20

Algorithm 2 Point query algorithm

Input: QP: query point, ERT: LSM ER-Tree index
Output: result: <key, value>, whose value= QP
1: level_ptr← ERT. head;
2: while(level_ptr! = null) do
3: ptr← level_ptr. head;
4: while(ptr! = null) do
5: if include(ptr.tMBR, QP) then //include: judge whether the point QP is within the
MBR range
6: LeafNode← QPFindLeaf (ptr.SERT, QP); //SERT: SER-Tree index on SSTable
7: temp_result. append (LeafNode.db_ptr);
8: end if
9: ptr← ptr.next;
10: end while
11: level_ptr← level_ptr.next_level;
12: end while
13: foreach(<key, value>in temp_result)
14: if equals(value, QP) then
15: result. append(<key, value>); end if
16: end for
17: return result;
18: function QPFindLeaf (T, QP)
19: begin
20: if T is a LeafNode, then
21: if include(T.mbr, QP), then
22: return T; else return ∅;
23: else
24: for each child u of T, do
25: if(include (u.mbr, QP)) then
26: QPFindLeaf (u, QP); end if
27: end for
28: end function

Algorithm 3 describes the process of the ER-tree index rectangular range query. In
the first step, the ER-tree is used to judge, layer by layer, whether the QR intersects
(or contains) the tMBR of each SER-tree root node of the ER-tree; if it satisfies this, the
QRFindLeaf function is executed to obtain the data <key, value> from the data block on the
corresponding SSTable and deposits it into the temp collection (lines 1–10). In the second
step, iteration through the temp collection is used to determine whether the value of <key,
value> is located in the QR. If it is, it is stored in the result_c collection (lines 11–15). Lines
16–26 refer to the QRFindLeaf function, which uses a recursive approach to judge the leaf
nodes where the MBR intersects (or contains) the query range QR.

4.4.3. Circle Range Query

The circle range query of the spatial data is given a circle centre point CP(x, y) and
radius r and queries the data within the circle with the CP point as the centre and r as the
radius. According to the formula to derive the latitude and longitude of the four vertices,
the smallest outlying rectangle of the circle can be found, which is then converted into a
rectangular range query, as shown in Figure 9. The calculation formula is shown below.

x1 = x− r; x2 = x + r; (6)

y1 = y− r; y2 = y + r; (7)

Algorithms 2022, 15, 113 13 of 20

Algorithm 3 Rectangular range query algorithm

Input: QR: query spatial range, ERT: LSM ER-Tree index.
Output: result_c: <key, value>collection, whose value in QR1. Level_ptr← ERT. head;
1: level_ptr← ERT. head;
2: while(level_ptr! = null) do
3: ptr← level_ptr. head;
4: while(ptr! = null) do
5: if intersect (ptr. tMBR, QR) then // intersect: judge whether the range QR is within or
intersects the MBR
6: LeafNode← QRFindLeaf (ptr.SERT,QR); //SERT: SER-Tree index on SSTable
7: temp. append(LeafNode.db_ptr); end if
8: ptr← ptr. next;
9: end while
10: end while
11: foreach(<key, value>in temp)
12: if(include(QR, value)) then //include:judge whether the point value is within the QR range
13: result_c. append(<key, value>); end if;
14: end for
15: return result_c;
16: function QRFindLeaf (T, QR)
17: begin
18: if T is a LeafNode, then
19: if (intersect(T.mbr, QR)) then
20: return T; else return ∅;
21: else
22: for each child u of T, do
23: if(intersect(u.mbr, QR)) then
24: QRFindLeaf (u, QR); end if;
25: end for
26: end function

Algorithms 2022, 15, x FOR PEER REVIEW 13 of 20

20: return T; else return ∅;
21: else
22: for each child u of T, do
23: if(intersect(u.mbr, QR)) then
24: QRFindLeaf (u, QR); end if;
25: end for
26: end function

Algorithm 3 describes the process of the ER-tree index rectangular range query. In
the first step, the ER-tree is used to judge, layer by layer, whether the QR intersects (or
contains) the tMBR of each SER-tree root node of the ER-tree; if it satisfies this, the
QRFindLeaf function is executed to obtain the data <key, value> from the data block on
the corresponding SSTable and deposits it into the temp collection (lines 1–10). In the sec-
ond step, iteration through the temp collection is used to determine whether the value of
<key, value> is located in the QR. If it is, it is stored in the result_c collection (lines 11–15).
Lines 16–26 refer to the QRFindLeaf function, which uses a recursive approach to judge
the leaf nodes where the MBR intersects (or contains) the query range QR.

4.4.3. Circle Range Query
The circle range query of the spatial data is given a circle centre point CP(x, y) and

radius r and queries the data within the circle with the CP point as the centre and r as the
radius. According to the formula to derive the latitude and longitude of the four vertices,
the smallest outlying rectangle of the circle can be found, which is then converted into a
rectangular range query, as shown in Figure 9. The calculation formula is shown below.

xଵ = x − r; xଶ = x + r; (6)

yଵ = y − r; yଶ = y + r; (7)

P(x,y)
r

(x1,y1)

(x2,y2)

Figure 9. Circle query to the rectangular range query.

Algorithm 4 describes the process of the circular range query for the ER-tree index.
In the first step, Algorithm 4 needs to computationally transform the circular range query
into a rectangular range query (line 1). In the second step, the range_query algorithm is
executed and the returned results <key, vakue> are stored in the result_c collection (lines
2–3). In the third step, for the results in the result_c collection, the distance from each data
point to the query circle centre is the computed distance and the results whose distance is
greater than the query distance r are removed (lines 4–8).

Algorithm 4 Circle query algorithm
Input: CP: query center of circle, r: query radius, ERT: LSM ER-Tree index
Output: result_c: <key, value>collection, whose value in circle
1: QR←{(CP. x − r, CP. x + r),(CP. y − r, CP. y + r)};
2: result_c←∅;
3: result_c ← range_query (QR,ERT); //range_query: Algorithm 3
4: foreach(<key, value> in result_c)

Figure 9. Circle query to the rectangular range query.

Algorithm 4 describes the process of the circular range query for the ER-tree index.
In the first step, Algorithm 4 needs to computationally transform the circular range query
into a rectangular range query (line 1). In the second step, the range_query algorithm
is executed and the returned results <key, vakue> are stored in the result_c collection
(lines 2–3). In the third step, for the results in the result_c collection, the distance from
each data point to the query circle centre is the computed distance and the results whose
distance is greater than the query distance r are removed (lines 4–8).

Algorithms 2022, 15, 113 14 of 20

Algorithm 4 Circle query algorithm

Input: CP: query center of circle, r: query radius, ERT: LSM ER-Tree index
Output: result_c: <key, value>collection, whose value in circle
1: QR←{(CP. x − r, CP. x + r),(CP. y − r, CP. y + r)};
2: result_c←∅;
3: result_c← range_query (QR,ERT); //range_query: Algorithm 3
4: foreach(<key, value> in result_c)
5: if(distance(value, CP)>r) then //distance: Calculate the distance between two points
6: remove <key, value>;end if;
7: end for
8: return result_c;

5. Evaluation
5.1. Experimental Environment and Data

RocksDB is an LSM-tree architecture engine developed by Facebook. In this paper, we
implemented the ER-tree index on RocksDB and compared the ER-Tree with the hierar-
chical R-tree index and the stand-alone R-tree index implemented in RocksDB. All of the
experiments were conducted on the following experimental machine: Intel(R) Core(TM)
i7-9700k CPU, 32 GB memory, 2.5 TB SATA, Ubuntu 18.04.4 LTS as the operating system
and RocksDB version number 5.6.1.

Simulated dataset: We used randomly generated double-type coordinate values in
the range of 0~1,000,000 and the key was obtained by encoding the coordinate value to
generate 1 million, 10 million and 100 million test data randomly.

Real dataset 1: We used the Chinese national building data downloaded through
OpenStreetMap [25], with the total number of elements being 2,089,000, as shown in
Figure 10. It can be found that the spatial data distribution of the research object is not
uniform and there is a certain degree of randomness in the sparsity of the data, meaning it
can be used as an experimental sample.

Algorithms 2022, 15, x FOR PEER REVIEW 14 of 20

5: if(distance(value, CP)>r) then //distance: Calculate the distance between two
points
6: remove <key, value>;end if ;
7: end for
8: return result_c;

5. Evaluation
5.1. Experimental Environment and Data

RocksDB is an LSM-tree architecture engine developed by Facebook. In this paper,
we implemented the ER-tree index on RocksDB and compared the ER-Tree with the hier-
archical R-tree index and the stand-alone R-tree index implemented in RocksDB. All of
the experiments were conducted on the following experimental machine: Intel(R)
Core(TM) i7-9700k CPU, 32 GB memory, 2.5 TB SATA, Ubuntu 18.04.4 LTS as the operat-
ing system and RocksDB version number 5.6.1.

Simulated dataset: We used randomly generated double-type coordinate values in
the range of 0~1,000,000 and the key was obtained by encoding the coordinate value to
generate 1 million, 10 million and 100 million test data randomly.

Real dataset 1: We used the Chinese national building data downloaded through
OpenStreetMap [25], with the total number of elements being 2,089,000, as shown in Fig-
ure 10. It can be found that the spatial data distribution of the research object is not uni-
form and there is a certain degree of randomness in the sparsity of the data, meaning it
can be used as an experimental sample.

Real dataset 2: We used the New York building data downloaded through Open-
StreetMap, with the total number of elements being 3,780,837. Its data distribution is dif-
ferent from real dataset 1, meaning it can be used as an experimental sample.

Figure 10. Experimental data display.

5.2. Experimental Results
5.2.1. ER-Tree Index Building Performance

In this paper, the same randomly generated spatial data were inserted into the ER-
tree index database, hierarchical R-tree index database and the stand-alone R-tree index
database and the insertion data time was measured. The experiments were divided into
three groups with 1 million, 10 million and 100 million data items and the insertion latency
is defined below:

Latency =
Insert time

Insert data number
 (8)

The experimental results in Figure 11 show that the insertion process of the ER-tree
index has lower insertion latency than the other two. This is because the data of the stand-
alone R-tree index and the hierarchical R-tree index are time-consuming to insert due to

Figure 10. Experimental data display.

Real dataset 2: We used the New York building data downloaded through Open-
StreetMap, with the total number of elements being 3,780,837. Its data distribution is
different from real dataset 1, meaning it can be used as an experimental sample.

5.2. Experimental Results
5.2.1. ER-Tree Index Building Performance

In this paper, the same randomly generated spatial data were inserted into the ER-
tree index database, hierarchical R-tree index database and the stand-alone R-tree index
database and the insertion data time was measured. The experiments were divided into
three groups with 1 million, 10 million and 100 million data items and the insertion latency
is defined below:

Latency =
Insert time

Insert data number
(8)

Algorithms 2022, 15, 113 15 of 20

The experimental results in Figure 11 show that the insertion process of the ER-tree
index has lower insertion latency than the other two. This is because the data of the stand-
alone R-tree index and the hierarchical R-tree index are time-consuming to insert due to
the huge index tree, resulting in lower build performance than ER-tree indexes. ER-tree
indexes reduce the size of the index tree by building on the SSTable, thus decreasing the
index building time.

Algorithms 2022, 15, x FOR PEER REVIEW 15 of 20

the huge index tree, resulting in lower build performance than ER-tree indexes. ER-tree
indexes reduce the size of the index tree by building on the SSTable, thus decreasing the
index building time.

Figure 11. Comparison of the index insertion latency on the simulated datasets.

5.2.2. ER-Tree Index Query Performance
Simulated dataset point query: For each database with different amounts of data

after building the index, this paper performed 1000 random point queries and calculated
the average query time to compare the query performance of the index. The experimental
results are shown in Figure 12. Note that the vertical coordinate is the logarithmic axis.
The results show that the ER-tree index has better point query performance than the other
two. This is because ER-tree indexes are queried only once, while the other two indexes
are queried twice.

Figure 12. Comparison of the index point query performance on the simulated datasets.

Simulated dataset range query: For each database with different amounts of data
after building the index, this paper performed 1000 random range queries with various
range lengths and calculated the average query time to compare the query performance
of the index. The experimental results are shown in Figure 13. The vertical coordinate is
the logarithmic axis. The results show that the ER-tree index has better range query per-
formance than the other two, for the same reason as the point query.

0

2

4

6

8

10

12

14

16

18

20

1 10 100

in
se

rt
la

nt
en

cy
(m

irc
os

/o
p)

The amount of data(million)

ER-tree Hierarchical R-tree Stand-alone R-tree

1

10

100

1000

10000

100000

1 10 100

qu
er

y
tim

e(
m

s)

The amount of data(million)

ER-tree Hierarchical R-tree Stand-alone R-tree

Figure 11. Comparison of the index insertion latency on the simulated datasets.

5.2.2. ER-Tree Index Query Performance

Simulated dataset point query: For each database with different amounts of data
after building the index, this paper performed 1000 random point queries and calculated
the average query time to compare the query performance of the index. The experimental
results are shown in Figure 12. Note that the vertical coordinate is the logarithmic axis.
The results show that the ER-tree index has better point query performance than the other
two. This is because ER-tree indexes are queried only once, while the other two indexes are
queried twice.

Algorithms 2022, 15, x FOR PEER REVIEW 15 of 20

the huge index tree, resulting in lower build performance than ER-tree indexes. ER-tree
indexes reduce the size of the index tree by building on the SSTable, thus decreasing the
index building time.

Figure 11. Comparison of the index insertion latency on the simulated datasets.

5.2.2. ER-Tree Index Query Performance
Simulated dataset point query: For each database with different amounts of data

after building the index, this paper performed 1000 random point queries and calculated
the average query time to compare the query performance of the index. The experimental
results are shown in Figure 12. Note that the vertical coordinate is the logarithmic axis.
The results show that the ER-tree index has better point query performance than the other
two. This is because ER-tree indexes are queried only once, while the other two indexes
are queried twice.

Figure 12. Comparison of the index point query performance on the simulated datasets.

Simulated dataset range query: For each database with different amounts of data
after building the index, this paper performed 1000 random range queries with various
range lengths and calculated the average query time to compare the query performance
of the index. The experimental results are shown in Figure 13. The vertical coordinate is
the logarithmic axis. The results show that the ER-tree index has better range query per-
formance than the other two, for the same reason as the point query.

0

2

4

6

8

10

12

14

16

18

20

1 10 100

in
se

rt
la

nt
en

cy
(m

irc
os

/o
p)

The amount of data(million)

ER-tree Hierarchical R-tree Stand-alone R-tree

1

10

100

1000

10000

100000

1 10 100

qu
er

y
tim

e(
m

s)

The amount of data(million)

ER-tree Hierarchical R-tree Stand-alone R-tree

Figure 12. Comparison of the index point query performance on the simulated datasets.

Simulated dataset range query: For each database with different amounts of data
after building the index, this paper performed 1000 random range queries with various
range lengths and calculated the average query time to compare the query performance
of the index. The experimental results are shown in Figure 13. The vertical coordinate
is the logarithmic axis. The results show that the ER-tree index has better range query
performance than the other two, for the same reason as the point query.

Algorithms 2022, 15, 113 16 of 20Algorithms 2022, 15, x FOR PEER REVIEW 16 of 20

Figure 13. Comparison of the index range query performance on the simulated dataset.

Simulated dataset circle query: For each database with different amounts of data
after building the index, this paper performed 1000 random circle queries with various
query radii and calculated the average query time to compare the query performance of
the index. The experimental results are shown in Figure 14. The vertical coordinate is the
logarithmic axis. The result shows that the ER-tree index has better circle query perfor-
mance than the other two, for the same reason as the point query.

Figure 14. Comparison of the index circle query performance on the simulated dataset.

Real dataset point query: In this paper, we randomly selected a query point on the
real dataset for querying and repeated the above operation 1000 times to calculate the
average query time. The experimental results are shown in Figure 15. The ER-tree index
shows better point query performance on both real datasets, indicating that the index de-
sign in this paper is effective.

1

10

100

1000

10000

100000

1000000

1 10 100

qu
er

y
tim

e(
m

s)

The amount of data(million)

ER-tree Hierarchical R-tree Stand-alone R-tree

1

10

100

1000

10000

100000

1000000

1 10 100

qu
er

y
tim

e(
m

s)

The amount of data(million)

ER-tree Hierarchical R-tree Stand-alone R-tree

Figure 13. Comparison of the index range query performance on the simulated dataset.

Simulated dataset circle query: For each database with different amounts of data
after building the index, this paper performed 1000 random circle queries with various
query radii and calculated the average query time to compare the query performance
of the index. The experimental results are shown in Figure 14. The vertical coordinate
is the logarithmic axis. The result shows that the ER-tree index has better circle query
performance than the other two, for the same reason as the point query.

Algorithms 2022, 15, x FOR PEER REVIEW 16 of 20

Figure 13. Comparison of the index range query performance on the simulated dataset.

Simulated dataset circle query: For each database with different amounts of data
after building the index, this paper performed 1000 random circle queries with various
query radii and calculated the average query time to compare the query performance of
the index. The experimental results are shown in Figure 14. The vertical coordinate is the
logarithmic axis. The result shows that the ER-tree index has better circle query perfor-
mance than the other two, for the same reason as the point query.

Figure 14. Comparison of the index circle query performance on the simulated dataset.

Real dataset point query: In this paper, we randomly selected a query point on the
real dataset for querying and repeated the above operation 1000 times to calculate the
average query time. The experimental results are shown in Figure 15. The ER-tree index
shows better point query performance on both real datasets, indicating that the index de-
sign in this paper is effective.

1

10

100

1000

10000

100000

1000000

1 10 100

qu
er

y
tim

e(
m

s)

The amount of data(million)

ER-tree Hierarchical R-tree Stand-alone R-tree

1

10

100

1000

10000

100000

1000000

1 10 100

qu
er

y
tim

e(
m

s)

The amount of data(million)

ER-tree Hierarchical R-tree Stand-alone R-tree

Figure 14. Comparison of the index circle query performance on the simulated dataset.

Real dataset point query: In this paper, we randomly selected a query point on the
real dataset for querying and repeated the above operation 1000 times to calculate the
average query time. The experimental results are shown in Figure 15. The ER-tree index
shows better point query performance on both real datasets, indicating that the index
design in this paper is effective.

Algorithms 2022, 15, 113 17 of 20Algorithms 2022, 15, x FOR PEER REVIEW 17 of 20

Figure 15. Comparison of the index point query performance on the real dataset.

Real dataset range query: Using the centre point of the real dataset to gradually ex-
pand the query range outward, this paper conducted five range query operations on the
Chinese and New York datasets, respectively and the last query covered all the data points
of the real dataset. For example, the approximate centre point of New York is 75° W, 42.5°
N, so the first range is from 74° W, 42° N to 76° W, 43° N and the last range is from 70° W,
40° N to 80° W, 45° N, which is roughly the entire range of New York. The experimental
results are shown in Figure 16. The ER-tree index has better range query performance
regardless of the range of the real dataset, indicating that the index design in this paper is
suitable for both short- and large-range queries.

(a) Real dataset 1. (b) Real dataset 2

Figure 16. Comparison of the index range query performance on the real dataset.

Real dataset circle query: Using the centre point of the real dataset to gradually ex-
pand the circle range outward, this paper conducted five circle query operations on the
Chinese and New York datasets, respectively, and the last query covered all the data
points of the real dataset. The experimental results are shown in Figure 17. Similar to the
range queries, the ER-tree indexes have better query performance for both short and large
circular ranges. It is worth noting that circular range queries can be used for KNN queries
that are common in spatial queries.

0

500

1000

1500

2000

2500

3000

ER-tree Hierarchical R-tree Stand-alone R-tree

qu
er

y
tim

e(
m

s)

China New York

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

range1 range2 range3 range4 range5

qu
er

y
tim

e(
m

s)

ER-tree（China）
Hierarchical R-tree（China）
Stand-alone R-tree（China）

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

range1 range2 range3 range4 range5

qu
er

y
tim

e(
m

s)

ER-tree（New York）
Hierarchical R-tree（New York）
Stand-alone R-tree（New York）

Figure 15. Comparison of the index point query performance on the real dataset.

Real dataset range query: Using the centre point of the real dataset to gradually
expand the query range outward, this paper conducted five range query operations on
the Chinese and New York datasets, respectively and the last query covered all the data
points of the real dataset. For example, the approximate centre point of New York is 75◦

W, 42.5◦ N, so the first range is from 74◦ W, 42◦ N to 76◦ W, 43◦ N and the last range is
from 70◦ W, 40◦ N to 80◦ W, 45◦ N, which is roughly the entire range of New York. The
experimental results are shown in Figure 16. The ER-tree index has better range query
performance regardless of the range of the real dataset, indicating that the index design in
this paper is suitable for both short- and large-range queries.

Algorithms 2022, 15, x FOR PEER REVIEW 17 of 20

Figure 15. Comparison of the index point query performance on the real dataset.

Real dataset range query: Using the centre point of the real dataset to gradually ex-
pand the query range outward, this paper conducted five range query operations on the
Chinese and New York datasets, respectively and the last query covered all the data points
of the real dataset. For example, the approximate centre point of New York is 75° W, 42.5°
N, so the first range is from 74° W, 42° N to 76° W, 43° N and the last range is from 70° W,
40° N to 80° W, 45° N, which is roughly the entire range of New York. The experimental
results are shown in Figure 16. The ER-tree index has better range query performance
regardless of the range of the real dataset, indicating that the index design in this paper is
suitable for both short- and large-range queries.

(a) Real dataset 1. (b) Real dataset 2

Figure 16. Comparison of the index range query performance on the real dataset.

Real dataset circle query: Using the centre point of the real dataset to gradually ex-
pand the circle range outward, this paper conducted five circle query operations on the
Chinese and New York datasets, respectively, and the last query covered all the data
points of the real dataset. The experimental results are shown in Figure 17. Similar to the
range queries, the ER-tree indexes have better query performance for both short and large
circular ranges. It is worth noting that circular range queries can be used for KNN queries
that are common in spatial queries.

0

500

1000

1500

2000

2500

3000

ER-tree Hierarchical R-tree Stand-alone R-tree

qu
er

y
tim

e(
m

s)

China New York

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

range1 range2 range3 range4 range5

qu
er

y
tim

e(
m

s)

ER-tree（China）
Hierarchical R-tree（China）
Stand-alone R-tree（China）

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

range1 range2 range3 range4 range5

qu
er

y
tim

e(
m

s)

ER-tree（New York）
Hierarchical R-tree（New York）
Stand-alone R-tree（New York）

Figure 16. Comparison of the index range query performance on the real dataset.

Real dataset circle query: Using the centre point of the real dataset to gradually
expand the circle range outward, this paper conducted five circle query operations on the
Chinese and New York datasets, respectively, and the last query covered all the data points
of the real dataset. The experimental results are shown in Figure 17. Similar to the range
queries, the ER-tree indexes have better query performance for both short and large circular
ranges. It is worth noting that circular range queries can be used for KNN queries that are
common in spatial queries.

Algorithms 2022, 15, 113 18 of 20Algorithms 2022, 15, x FOR PEER REVIEW 18 of 20

(a) Real dataset 1 (b) Real dataset 2

Figure 17. Comparison of the index circle query performance on the real dataset.

5.2.3. ER-Tree Index Space Performance
For databases with different data volumes after building the index, this paper com-

pared the size of the ER-tree index database file with that of a stand-alone R-tree index
database file to study the space performance of the two indexes.

It can be found from the experimental results in Figure 18 that the space performance
of the ER-tree index is slightly better than that of the stand-alone R-tree index. This is
because the building of the ER-tree index is bottom-up, which is compacted in the storage
of tree nodes and there is almost no space to waste. The stand-alone R-tree index is built
from the root node to the bottom, inevitably wasting space on the node. Therefore, com-
pared to the two indexes, the space performance of the ER-tree index is slightly better than
that of the stand-alone R-tree index.

Figure 18. Comparison of index space.

6. Conclusions
To address the problems of a low query efficiency and the dual queries of stand-alone

R-tree index for spatial data on an LSM-tree, this paper designed a new ER-tree index
structure based on the orderliness of an LSM-tree and optimised the dual queries into
single query to improve the query efficiency of spatial data. The experiments proved that
the ER-tree index was improved in the index building and the index query performance
compared to the stand-alone R-tree index, and there was almost no degradation in the
space performance.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

circle1 circle2 circle3 circle4 circle5

qu
er

y
tim

e(
m

s)

ER-tree（China）

Hierarchical R-tree（China）

Stand-alone R-tree（China）

1.22×
1.25×

1.17×
1.21×

1.12×
1.16×

1.08×
1.11×

1.25×
1.29×

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

circle1 circle2 circle3 circle4 circle5

qu
er

y
tim

e(
m

s)

ER-tree（New York）
Hierarchical R-tree（New York）
Stand-alone R-tree（New York）

1

10

100

1000

10000

1 10 100

D
B

 si
ze

(M
B

)

The amount of data(million)

ER-tree R-tree

Figure 17. Comparison of the index circle query performance on the real dataset.

5.2.3. ER-Tree Index Space Performance

For databases with different data volumes after building the index, this paper com-
pared the size of the ER-tree index database file with that of a stand-alone R-tree index
database file to study the space performance of the two indexes.

It can be found from the experimental results in Figure 18 that the space performance
of the ER-tree index is slightly better than that of the stand-alone R-tree index. This is
because the building of the ER-tree index is bottom-up, which is compacted in the storage of
tree nodes and there is almost no space to waste. The stand-alone R-tree index is built from
the root node to the bottom, inevitably wasting space on the node. Therefore, compared to
the two indexes, the space performance of the ER-tree index is slightly better than that of
the stand-alone R-tree index.

Algorithms 2022, 15, x FOR PEER REVIEW 18 of 20

(a) Real dataset 1 (b) Real dataset 2

Figure 17. Comparison of the index circle query performance on the real dataset.

5.2.3. ER-Tree Index Space Performance
For databases with different data volumes after building the index, this paper com-

pared the size of the ER-tree index database file with that of a stand-alone R-tree index
database file to study the space performance of the two indexes.

It can be found from the experimental results in Figure 18 that the space performance
of the ER-tree index is slightly better than that of the stand-alone R-tree index. This is
because the building of the ER-tree index is bottom-up, which is compacted in the storage
of tree nodes and there is almost no space to waste. The stand-alone R-tree index is built
from the root node to the bottom, inevitably wasting space on the node. Therefore, com-
pared to the two indexes, the space performance of the ER-tree index is slightly better than
that of the stand-alone R-tree index.

Figure 18. Comparison of index space.

6. Conclusions
To address the problems of a low query efficiency and the dual queries of stand-alone

R-tree index for spatial data on an LSM-tree, this paper designed a new ER-tree index
structure based on the orderliness of an LSM-tree and optimised the dual queries into
single query to improve the query efficiency of spatial data. The experiments proved that
the ER-tree index was improved in the index building and the index query performance
compared to the stand-alone R-tree index, and there was almost no degradation in the
space performance.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

circle1 circle2 circle3 circle4 circle5

qu
er

y
tim

e(
m

s)

ER-tree（China）

Hierarchical R-tree（China）

Stand-alone R-tree（China）

1.22×
1.25×

1.17×
1.21×

1.12×
1.16×

1.08×
1.11×

1.25×
1.29×

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

circle1 circle2 circle3 circle4 circle5

qu
er

y
tim

e(
m

s)

ER-tree（New York）
Hierarchical R-tree（New York）
Stand-alone R-tree（New York）

1

10

100

1000

10000

1 10 100

D
B

 si
ze

(M
B

)

The amount of data(million)

ER-tree R-tree

Figure 18. Comparison of index space.

6. Conclusions

To address the problems of a low query efficiency and the dual queries of stand-alone
R-tree index for spatial data on an LSM-tree, this paper designed a new ER-tree index
structure based on the orderliness of an LSM-tree and optimised the dual queries into
single query to improve the query efficiency of spatial data. The experiments proved that
the ER-tree index was improved in the index building and the index query performance
compared to the stand-alone R-tree index, and there was almost no degradation in the
space performance.

Algorithms 2022, 15, 113 19 of 20

Author Contributions: Data curation, J.H.; formal analysis, J.H.; investigation, J.H.; resources, H.C.;
software, J.H.; writing—original draft preparation, J.H.; writing—review and editing, J.H. and H.C.;
visualisation, J.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. O’Neil, P.; Cheng, E.; Gawlick, D.; O’Neil, E. The log-structured merge-tree (LSM-tree). Acta Inform. 1996, 33, 351–385. [CrossRef]
2. Chang, F.; Dean, J.; Ghemawat, S.; Hsieh, W.C.; Wallach, D.A.; Burrows, M.; Chandra, T.; Fikes, A.; Gruber, R.E. Bigtable: A

distributed storage system for structured data. ACM Trans. Comput. Syst. TOCS 2008, 26, 1–26. [CrossRef]
3. Ghemawat, S.; Dean, J. LevelDB. Available online: http://code.google.com/p/leveldb (accessed on 15 February 2022).
4. Apache. Apache HBase: The Hadoop Database, a Distributed, Scalable, Big Data Store. Available online: https://hbase.apache.

org/ (accessed on 15 February 2022).
5. Alsubaiee, S.; Altowim, Y.; Altwaijry, H.; Behm, A.; Borkar, V.; Bu, Y.; Carey, M.; Cetindil, I.; Cheelangi, M.; Faraaz, K.; et al.

AsterixDB: A scalable, open-source BDMS. Proc. VLDB Endow. 2014, 7, 1905–1916. [CrossRef]
6. Team Facebook RocksDB. A Persistent Key-Value Store for Fast Storage Environments. Available online: https://rocksdb.org

(accessed on 15 February 2022).
7. Lakshman, A.; Malik, P. Cassandra: A decentralised structured storage system. SIGOPS Oper. Syst. Rev. 2010, 44, 35–40.

[CrossRef]
8. Lawder, J.K. The Application of Space-Filling Curves to the Storage and Retrieval of Multi-Dimensional Data. Ph.D. Dissertation,

University of London, London, UK, 2000.
9. Mao, Q.; Qader, M.A.; Hristidis, V. Comprehensive comparison of LSM architectures for spatial data. In Proceedings of the 2020

IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 455–460. [CrossRef]
10. Xu, R.; Zhou, X.; Liu, Z.; Hu, H. Implementation of LevelDB-based secondary index on two-dimensional data. Journal of East

China Normal University. Nat. Sci. 2019, 5, 159–167. [CrossRef]
11. Xu, R.; Liu, Z.; Hu, H.; Qian, W.; Zhou, A. An efficient secondary index for spatial data based on LevelDB. In Proceedings of the

International Conference on Database Systems for Advanced Applications, DASFAA 2020, Jeju, Korea, 24–27 September 2020;
pp. 750–754. [CrossRef]

12. Alsubaiee, S.; Behm, A.; Borkar, V.; Heilbron, Z.; Kim, Y.; Carey, M.J.; Dreseler, M.; Li, C. Storage management in AsterixDB. Proc.
VLDB Endow. 2014, 7, 841–852. [CrossRef]

13. Bozhi, Q. Research on Linked Spatial Index Based on LSM-Tree. Master’s Thesis, Zhejiang University, Hangzhou, China, 2020.
14. Wang, Y.; Wu, S.; Mao, R. Towards read-intensive key-value stores with tidal structure based on LSM-tree. In Proceedings of the

2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), Beijing, China, 13–16 January 2020; pp. 307–312.
[CrossRef]

15. Cheng, W.; Guo, T.; Zeng, L.; Wang, Y.; Nagel, L.; Süß, T.; Brinkmann, A. Improving LSM-trie performance by parallel search.
Softw. Pract. Exp. 2020, 50, 1952–1965. [CrossRef]

16. Luo, C.; Carey, M.J. Efficient data ingestion and query processing for LSM-based storage systems. Proc. VLDB Endow. 2019, 12,
531–543. [CrossRef]

17. Luo, C.; Carey, M.J. LSM-based storage techniques: A survey. VLDB J. 2020, 29, 393–418. [CrossRef]
18. Sears, R.; Ramakrishnan, R. BLSM: A general purpose log-structured merge tree. In Proceedings of the 2012 ACM SIGMOD

International Conference on Management of Data (SIGMOD ‘12), New York, NY, USA, 20–24 May 2012; pp. 217–228. [CrossRef]
19. Guttman, A. R-trees: A dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD International

Conference on Management of Data (SIGMOD ’84), Boston, MA, USA, 18–21 June 1984; pp. 47–57. [CrossRef]
20. Kim, Y.; Kim, T.; Carey, M.J.; Li, C. A Comparative Study of Log-Structured Merge-Tree-Based Spatial Indexes for Big Data. In

Proceedings of the 2017 IEEE 33rd International Conference on Data Engineering (ICDE), San Diego, CA, USA, 19–22 April 2017;
pp. 147–150. [CrossRef]

21. Silva, Y.N.; Xiong, X.; Aref, W.G. The RUM-tree: Supporting frequent updates in R-trees using memos. VLDB J. 2009, 18, 719–738.
[CrossRef]

22. Shin, J.; Wang, J.; Aref, W.G. The LSM RUM Tree: A Log-Structured Merge R-Tree for Update-intensive Spatial Workloads. In
Proceedings of the 2021 IEEE 37th International Conference on Data Engineering (ICDE), Chania, Greece, 19–22 April 2021;
pp. 2285–2290. [CrossRef]

http://doi.org/10.1007/s002360050048
http://doi.org/10.1145/1365815.1365816
http://code.google.com/p/leveldb
https://hbase.apache.org/
https://hbase.apache.org/
http://doi.org/10.14778/2733085.2733096
https://rocksdb.org
http://doi.org/10.1145/1773912.1773922
http://doi.org/10.1109/BigData50022.2020.9377919
http://doi.org/10.3969/j.issn.1000-5641.2019.05.013
http://doi.org/10.1007/978-3-030-59419-0_50
http://doi.org/10.14778/2732951.2732958
http://doi.org/10.1109/ASP-DAC47756.2020.9045617
http://doi.org/10.1002/spe.2875
http://doi.org/10.14778/3303753.3303759
http://doi.org/10.1007/s00778-019-00555-y
http://doi.org/10.1145/2213836.2213862
http://doi.org/10.1145/602259.602266
http://doi.org/10.1109/ICDE.2017.61
http://doi.org/10.1007/s00778-008-0120-3
http://doi.org/10.1109/ICDE51399.2021.00238S

Algorithms 2022, 15, 113 20 of 20

23. Li, F.; Lu, Y.; Yang, Z.; Shu, J. SineKV: Decoupled Secondary Indexing for LSM-based Key-Value Stores. In Proceedings of the 2020
IEEE 40th International Conference on Distributed Computing Systems (ICDCS), Singapore, 29 November–1 December 2020;
pp. 1112–1122. [CrossRef]

24. Lu, L.; Pillai, T.S.; Gopalakrishnan, H.; Arpaci-Dusseau, A.C.; Arpaci-Dusseau, R.H. WiscKey: Separating Keys from Values in
SSD-Conscious Storage. ACM Trans. Storage 2017, 13, 1–28. [CrossRef]

25. OpenStreetMap Contributors. OpenStreetMap Data. Available online: https://www.openstreetmap.org (accessed on 15 February
2022).

http://doi.org/10.1109/ICDCS47774.2020.00071
http://doi.org/10.1145/3033273
https://www.openstreetmap.org

	Introduction
	Related Works
	LSM-Tree Structure
	Related Work

	SER-Tree Index
	SER-Tree Index Design
	SER-Tree Index Build

	ER-Tree Index
	ER-Tree Index Design
	ER-Tree Index Build
	ER-Tree Index Improve
	ER-Tree Index Query
	Point Query
	Rectangular Range Query
	Circle Range Query

	Evaluation
	Experimental Environment and Data
	Experimental Results
	ER-Tree Index Building Performance
	ER-Tree Index Query Performance
	ER-Tree Index Space Performance

	Conclusions
	References

