
����������
�������

Citation: Nigro, L. Performance of

Parallel K-Means Algorithms in Java.

Algorithms 2022, 15, 117. https://

doi.org/10.3390/a15040117

Academic Editor:

Charalampos Konstantopoulos

Received: 16 February 2022

Accepted: 25 March 2022

Published: 29 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Performance of Parallel K-Means Algorithms in Java
Libero Nigro

Engineering Department of Informatics Modelling Electronics and Systems Science (DIMES),
University of Calabria, 87036 Rende, Italy; libero.nigro@unical.it

Abstract: K-means is a well-known clustering algorithm often used for its simplicity and potential
efficiency. Its properties and limitations have been investigated by many works reported in the
literature. K-means, though, suffers from computational problems when dealing with large datasets
with many dimensions and great number of clusters. Therefore, many authors have proposed and
experimented different techniques for the parallel execution of K-means. This paper describes a novel
approach to parallel K-means which, today, is based on commodity multicore machines with shared
memory. Two reference implementations in Java are developed and their performances are compared.
The first one is structured according to a map/reduce schema that leverages the built-in multi-
threaded concurrency automatically provided by Java to parallel streams. The second one, allocated
on the available cores, exploits the parallel programming model of the Theatre actor system, which
is control-based, totally lock-free, and purposely relies on threads as coarse-grain “programming-
in-the-large” units. The experimental results confirm that some good execution performance can be
achieved through the implicit and intuitive use of Java concurrency in parallel streams. However,
better execution performance can be guaranteed by the modular Theatre implementation which
proves more adequate for an exploitation of the computational resources.

Keywords: parallel algorithms; multi-core machines; K-means clustering; Java; functional parallel
streams; actors; message-passing; lightweight parallel programming

1. Introduction

The work described in this paper aims to experiment with high-performance com-
puting on nowadays commodity multi/many core machines, which are more and more
equipped with significant amount of shared memory and powerful computational units.
However, effectively exploiting such computing potential is challenging and requires the
adoption of innovative software engineering techniques, hopefully, easy to use by domain
specific final users. The paper, in particular, focuses on the support of parallel organizations
of the well-known K-Means algorithm [1,2] which is very often used in unsupervised
clustering applications such as data mining, pattern recognition, image processing, medi-
cal informatics, genoma analysis and so forth. This is due to its simplicity and its linear
complexity O(NKT) where N is the number of data points in the dataset, K is the number
of assumed clusters and T is the number of iterations needed for convergence. Funda-
mental properties and limitations of K-Means have been deeply investigated by many
theoretical/empirical works reported in the literature. Specific properties, though, like
ensuring accurate clustering solutions through sophisticated initialization methods [3], can
be difficult to achieve in practice when large datasets are involved. More in general, dealing
with a huge number of data records, possibly with many dimensions, create computational
problems to K-Means which motivate the use of a parallel organization/execution of the
algorithm [4] either on a shared-nothing architecture, that is a distributed multi-computer
context, or on a shared-memory multiprocessor. Examples of the former case include
message-passing solutions, e.g., based on MPI [5], with a master/slave organization [6],
or based on the functional framework MapReduce [7,8]. For the second case, notable are
the experiments conducted by using OpenMP [9] or based on the GPU architecture [10].

Algorithms 2022, 15, 117. https://doi.org/10.3390/a15040117 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15040117
https://doi.org/10.3390/a15040117
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-6577-4777
https://doi.org/10.3390/a15040117
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15040117?type=check_update&version=1

Algorithms 2022, 15, 117 2 of 15

Distributed solutions for K-Means can handle very large datasets which can be decom-
posed and mapped on the local memory of the various computing nodes. Shared memory
solutions, on the other hand, assume the dataset to be allocated, either monolithically or in
subblocks to be separately operated in parallel by multiple computing units.

The original contribution of this paper consists in the development and performance
evaluation of two Parallel K-Means solutions in Java which can work with large datasets
and can exploit various initialization methods. The first solution is structured according to
a map/reduce schema that leverages the built-in multi-threaded concurrency automatically
provided by Java to parallel streams [11,12]. The second one depends on the lightweight
parallel programming model of the Theatre actor system [13], which is control-based, totally
lock-free and purposely reduces the use of threads to be only “programming-in-the-large”
units, to be allocated onto the available cores. The experimental results confirm some
good execution performance can be achieved through the implicit and intuitive use of Java
concurrency in parallel streams. Better execution performance, though, is delivered by the
modular Theatre actor-based implementation which seems more adequate for a systematic
exploitation of the available computational resources.

The paper is an extended version of the preliminary author’s work described in a
conference paper (ICICT 2022, Springer LNNS, ISSN: 2367-3370). Differences from the con-
ference paper are (1) the development of a Java parallel stream-based version for K-Means,
(2) a complete description of the Theatre actor-based K-Means solution, (3) an implementa-
tion of various K-Means initialization methods either stochastic or deterministic [3] which
can be exploited by both the parallel stream-based K-Means and the Theatre-based solution,
(4) the use of real-world and synthetic large dataset, (5) a detailed experimental work com-
paring the execution performance which can be achieved by the two Java-based solutions
of parallel K-Means.

The remaining of this paper is organized as follows. Section 2 presents some back-
ground work on K-Means and about the fundamental issue of the cluster initialization
methods. Section 3 proposes two parallel implementations in Java, the first one based on
the use of streams and lambda expressions, the second one based on the Theatre actor
system. Differences between Theatre actors and classical actors are discussed and the
special features introduced by Theatre e.g., for supporting high-performance computing
are highlighted. Section 4 describes some experimental results and a performance compari-
son of the developed solutions, together with an indication of limitations of the approach.
Section 5, finally, draws some conclusions and suggests some directions of further work.

2. Background on K-Means

In the following, the basic concepts of K-Means are briefly reviewed. A dataset
X = {x1, x2, . . . , xN} is considered with N data points (records). Each data point has D
coordinates (number of features or dimensions). Data points must be partitioned into
K clusters in such a way to ensure similarity among the points of a same cluster and
dissimilarity among points belonging to different clusters. Every cluster Ck, 1 ≤ k ≤ K, is
represented by its centroid point ck, e.g., its mean or central point. The goal of K-Means is
to assign points to clusters in such a way to minimize the sum of squared distances (SSD)
objective function:

SSD =
K

∑
k=1

nk

∑
i = 1

xi ∈ Ck

d(xi, ck)
2

where nk is the number of points of X assigned to cluster Ck and d(xi, ck) denotes the
Euclidean distance between xi and ck. The problem is NP-hard and practically is approxi-
mated by heuristic algorithms. The standard method of Lloyd’s K-means [14] is articulated
in the iterative steps shown in Figure 1.

Algorithms 2022, 15, 117 3 of 15
Algorithms 2022, 15, x FOR PEER REVIEW 3 of 16

1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 the 𝐾 centroids {𝑐1, 𝑐2, … , 𝑐𝑘} by some initialization method.

2. 𝐴𝑠𝑠𝑖𝑔𝑛 each data point 𝑥𝑖𝜖𝑋 to cluster 𝐶𝑘 according to minimal Euclidean dis-

tance 𝑑(𝑥𝑖 , 𝑐𝑘).

3. 𝑈𝑝𝑑𝑎𝑡𝑒 centroids with the mean point of each cluster, denoted as:

𝑐𝑘
′ =

1

𝑛𝑘

∑ 𝑥ℎ

𝑛𝑘

ℎ=1

4. 𝑅𝑒𝑝𝑒𝑎𝑡 from step 2 until a convergence criterion is met.

Figure 1. Sequential operation of K-Means.

Several initialization methods for the step 1 in Figure 1, either stochastic or determin-

istic (see also later in this section), have been considered and studied in the literature, see

e.g., [3,15–18], where each one influences the evolution and the accuracy of K-Means. Of-

ten, also considering the complexity of some initialization algorithms, the random method

is adopted which initializes the centroids as random selected points in the dataset, alt-

hough it can imply K-Means evolves toward a local minima.

The convergence at step 4 can be checked in different ways. In this work, the distance

𝑑(𝑐𝑘
′ , 𝑐𝑘) is evaluated and when it, for all the centroids, is found to be less than an assumed

threshold, convergence is supposed to be reached. A maximum number of iterations can

be established to terminate the algorithm in any case.

2.1. About the Initialization Methods

Different initialization methods have been proposed and evaluated for K-Means

[3,17,18]. Each method is characterized by its computational complexity and its ability to

enable an “optimal” clustering solution. Both stochastic and deterministic initialization

methods were studied. A deterministic method can generate a (hopefully good) final so-

lution after just one execution run. Generally speaking, initial centroids should be chosen

so as to

1. exclude outlier points;

2. be located in regions of high density of local data points;

3. be far from each other so as to avoid, e.g., (since 𝐾 is fixed) splitting a homogeneous

dense cluster, thus degrading the clustering accuracy.

Of course, although it is easy and efficient to also apply to large datasets, the random

initialization method addresses none of the abovementioned points. As a consequence,

the quality of the generated clustering can be poor. Nonetheless, the reason why the ran-

dom initialization method is most often used, is tied to the fact that by repeating the exe-

cution of K-Means many times, a “good” clustering solution eventually emerges among

the various achieved solutions, as one which minimizes the objective function.

Let 𝐷(𝑥𝑖) denote the minimal distance of the point 𝑥𝑖 to existing centroids (during

the initialization process, the number of centroids 𝐿 increases, gradually, from 1 to 𝐾).

The K-Means++ method starts by assigning a random point in the dataset as the first

centroid 𝑐1 (𝐿 = 1). Then, a new point 𝑥𝑗 can be chosen as the next centroid with proba-

bility

𝑝(𝑥𝑗) =
𝐷(𝑥𝑗)2

∑ 𝐷(𝑥𝑖)2𝑁
𝑖=1

After that 𝐿 is incremented, and the process is continued until 𝐿 = 𝐾 centroids are

defined.

K-Means++ is an example of an initialization method that tries only to choose cen-

troid points in the dataset that are far from each other (point 3. above). The method is

Figure 1. Sequential operation of K-Means.

Several initialization methods for the step 1 in Figure 1, either stochastic or determin-
istic (see also later in this section), have been considered and studied in the literature, see
e.g., [3,15–18], where each one influences the evolution and the accuracy of K-Means. Often,
also considering the complexity of some initialization algorithms, the random method is
adopted which initializes the centroids as random selected points in the dataset, although
it can imply K-Means evolves toward a local minima.

The convergence at step 4 can be checked in different ways. In this work, the distance
d
(
c′k, ck

)
is evaluated and when it, for all the centroids, is found to be less than an assumed

threshold, convergence is supposed to be reached. A maximum number of iterations can
be established to terminate the algorithm in any case.

2.1. About the Initialization Methods

Different initialization methods have been proposed and evaluated for K-Means [3,17,18].
Each method is characterized by its computational complexity and its ability to enable an
“optimal” clustering solution. Both stochastic and deterministic initialization methods were
studied. A deterministic method can generate a (hopefully good) final solution after just
one execution run. Generally speaking, initial centroids should be chosen so as to

1. exclude outlier points;
2. be located in regions of high density of local data points;
3. be far from each other so as to avoid, e.g., (since K is fixed) splitting a homogeneous

dense cluster, thus degrading the clustering accuracy.

Of course, although it is easy and efficient to also apply to large datasets, the random
initialization method addresses none of the abovementioned points. As a consequence, the
quality of the generated clustering can be poor. Nonetheless, the reason why the random
initialization method is most often used, is tied to the fact that by repeating the execution of
K-Means many times, a “good” clustering solution eventually emerges among the various
achieved solutions, as one which minimizes the objective function.

Let D(xi) denote the minimal distance of the point xi to existing centroids (during the
initialization process, the number of centroids L increases, gradually, from 1 to K).

The K-Means++ method starts by assigning a random point in the dataset as the first
centroid c1 (L = 1). Then, a new point xj can be chosen as the next centroid with probability

p
(
xj
)
=

D
(

xj
)2

∑N
i=1 D(xi)

2

After that L is incremented, and the process is continued until L = K centroids
are defined.

K-Means++ is an example of an initialization method that tries only to choose centroid
points in the dataset that are far from each other (point 3. above). The method is stochastic
because, since the use of probabilities, it necessarily has to be repeated multiple times to
generate a stable initialization.

A notable example of an initialization method which is robust to outliers and addresses
all the above-mentioned tree points, is ROBIN (ROBust INitialization) [3,16], which can

Algorithms 2022, 15, 117 4 of 15

be turned to behave deterministically. ROBIN is based on the Local Outlier Factor (LOF),
originally introduced by Breunig et al. in [19] which can be assigned to points of the dataset.
LOF takes into account a density notion around a given point and among close points
and permits to filter out outliers during the centroid initialization. The modus operandi
of ROBIN is summarised in Figure 2, whereas the formal definition of LOF is shown
in Figure 3.

Algorithms 2022, 15, x FOR PEER REVIEW 4 of 16

stochastic because, since the use of probabilities, it necessarily has to be repeated multiple

times to generate a stable initialization.

A notable example of an initialization method which is robust to outliers and ad-

dresses all the above-mentioned tree points, is ROBIN (ROBust INitialization) [3,16],

which can be turned to behave deterministically. ROBIN is based on the Local Outlier

Factor (𝐿𝑂𝐹), originally introduced by Breunig et al. in [19] which can be assigned to

points of the dataset. 𝐿𝑂𝐹 takes into account a density notion around a given point and

among close points and permits to filter out outliers during the centroid initialization. The

modus operandi of ROBIN is summarised in Figure 2, whereas the formal definition of

𝐿𝑂𝐹 is shown in Figure 3.

1. Pick a reference data point 𝑥𝑟 .

2. Sort data points in decreasing order of their distance from 𝑥𝑟 .

3. Pick the first data point 𝑥𝑖, in sorted order, such that 𝐿𝑂𝐹𝑚𝑝(𝑥𝑖) ≈ 1, and define 𝑥𝑖 as

the first centroid 𝑐1 and assign 𝐿 = 2.

4. Sort the data points in decreasing order of 𝐷(𝑥𝑖), that is minimal distance from

existing centroids.

5. Pick the first data point 𝑥𝑖
′, in sorted order, such that 𝐿𝑂𝐹𝑚𝑝(𝑥𝑖

′) ≈ 1, as the next

centroid 𝑐𝐿, and put 𝐿 + +.

6. If 𝐿 ≤ 𝐾, repeat from 4.

Figure 2. The ROBIN initialization method.

1. Define density of a data point 𝑥𝑖 as:

𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑚𝑝(𝑥𝑖) =
|𝑁𝑚𝑝(𝑥𝑖)|

∑ 𝑑(𝑥𝑖 , 𝑥𝑖
′)𝑥𝑖

′𝜖𝑁𝑚𝑝(𝑥𝑖),𝑖′≠𝑖

2. Establish the average relative density 𝑎𝑟𝑑𝑚𝑝 of a data point 𝑥𝑖 as:

𝑎𝑟𝑑𝑚𝑝(𝑥𝑖) =
𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑚𝑝(𝑥𝑖)

∑ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑚𝑝(𝑥𝑖
′)𝑥𝑖

′𝜖𝑁𝑚𝑝(𝑥𝑖),𝑖′≠𝑖

|𝑁𝑚𝑝(𝑥𝑖)|

3. Define the 𝐿𝑂𝐹𝑚𝑝(𝑥𝑖) of data point 𝑥𝑖 as:

𝐿𝑂𝐹𝑚𝑝(𝑥𝑖) =
1

𝑎𝑟𝑑𝑚𝑝(𝑥𝑖)

Figure 3. Formal definition of the Local Outlier Factor (𝐿𝑂𝐹) of a data point.

The operation of the ROBIN algorithm in Figure 2 and the 𝐿𝑂𝐹 definition in Figure

3 depend on the parameter 𝑚𝑝, that is the minimum number of points in the “nearest”

neighborhood of a point 𝑥𝑖. Such a parameter is directly related to the k-distance-neighbor-

hood introduced in [19]. Upon 𝑚𝑝 is based the composition of the neighborhood set

𝑁𝑚𝑝(𝑥𝑖) which can be established when a new nearest point to 𝑥𝑖 is met such that at least

𝑚𝑝 points were previously already found to be closer to 𝑥𝑖. Hence, the cardinality of the

neighborhood set |𝑁𝑚𝑝(𝑥𝑖)| is necessarily expected to be ≥ 𝑚𝑝. As it emerges from Fig-

ure 3, the 𝐿𝑂𝐹 value takes into account not only the density of a point 𝑥𝑖, but also the

reciprocal density of points near to 𝑥𝑖. In fact, for not outlier points, the density of 𝑥𝑖 and

that of neighbor points should be almost equal. Therefore, a point is a candidate for the

next centroid, provided its 𝐿𝑂𝐹 is close to 1. Values of 𝐿𝑂𝐹 ≫ 1 denote outliers. As in

[3], a tolerance 𝐸 (e.g., 0.05) can be defined and a 𝐿𝑂𝐹 value is assumed to be that of a

not outlier when: 1 − 𝐸 < 𝐿𝑂𝐹 < 1 + 𝐸.

Complexity of the ROBIN initialization method is 𝑂(𝑁𝑙𝑜𝑔𝑁) as it is dominated by

repeated sorting of the dataset at each new centroid definition. Such a computational cost

can be a problem in very large datasets. Anyway, the ROBIN method can be preferable to

other initialization methods like the Kaufman method [3], which has a cost of 𝑂(𝑁2) be-

ing necessary to re-compute the distance between every pair of points.

Figure 2. The ROBIN initialization method.

Algorithms 2022, 15, x FOR PEER REVIEW 4 of 16

stochastic because, since the use of probabilities, it necessarily has to be repeated multiple

times to generate a stable initialization.

A notable example of an initialization method which is robust to outliers and ad-

dresses all the above-mentioned tree points, is ROBIN (ROBust INitialization) [3,16],

which can be turned to behave deterministically. ROBIN is based on the Local Outlier

Factor (𝐿𝑂𝐹), originally introduced by Breunig et al. in [19] which can be assigned to

points of the dataset. 𝐿𝑂𝐹 takes into account a density notion around a given point and

among close points and permits to filter out outliers during the centroid initialization. The

modus operandi of ROBIN is summarised in Figure 2, whereas the formal definition of

𝐿𝑂𝐹 is shown in Figure 3.

1. Pick a reference data point 𝑥𝑟 .

2. Sort data points in decreasing order of their distance from 𝑥𝑟 .

3. Pick the first data point 𝑥𝑖, in sorted order, such that 𝐿𝑂𝐹𝑚𝑝(𝑥𝑖) ≈ 1, and define 𝑥𝑖 as

the first centroid 𝑐1 and assign 𝐿 = 2.

4. Sort the data points in decreasing order of 𝐷(𝑥𝑖), that is minimal distance from

existing centroids.

5. Pick the first data point 𝑥𝑖
′, in sorted order, such that 𝐿𝑂𝐹𝑚𝑝(𝑥𝑖

′) ≈ 1, as the next

centroid 𝑐𝐿, and put 𝐿 + +.

6. If 𝐿 ≤ 𝐾, repeat from 4.

Figure 2. The ROBIN initialization method.

1. Define density of a data point 𝑥𝑖 as:

𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑚𝑝(𝑥𝑖) =
|𝑁𝑚𝑝(𝑥𝑖)|

∑ 𝑑(𝑥𝑖 , 𝑥𝑖
′)𝑥𝑖

′𝜖𝑁𝑚𝑝(𝑥𝑖),𝑖′≠𝑖

2. Establish the average relative density 𝑎𝑟𝑑𝑚𝑝 of a data point 𝑥𝑖 as:

𝑎𝑟𝑑𝑚𝑝(𝑥𝑖) =
𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑚𝑝(𝑥𝑖)

∑ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑚𝑝(𝑥𝑖
′)𝑥𝑖

′𝜖𝑁𝑚𝑝(𝑥𝑖),𝑖′≠𝑖

|𝑁𝑚𝑝(𝑥𝑖)|

3. Define the 𝐿𝑂𝐹𝑚𝑝(𝑥𝑖) of data point 𝑥𝑖 as:

𝐿𝑂𝐹𝑚𝑝(𝑥𝑖) =
1

𝑎𝑟𝑑𝑚𝑝(𝑥𝑖)

Figure 3. Formal definition of the Local Outlier Factor (𝐿𝑂𝐹) of a data point.

The operation of the ROBIN algorithm in Figure 2 and the 𝐿𝑂𝐹 definition in Figure

3 depend on the parameter 𝑚𝑝, that is the minimum number of points in the “nearest”

neighborhood of a point 𝑥𝑖. Such a parameter is directly related to the k-distance-neighbor-

hood introduced in [19]. Upon 𝑚𝑝 is based the composition of the neighborhood set

𝑁𝑚𝑝(𝑥𝑖) which can be established when a new nearest point to 𝑥𝑖 is met such that at least

𝑚𝑝 points were previously already found to be closer to 𝑥𝑖. Hence, the cardinality of the

neighborhood set |𝑁𝑚𝑝(𝑥𝑖)| is necessarily expected to be ≥ 𝑚𝑝. As it emerges from Fig-

ure 3, the 𝐿𝑂𝐹 value takes into account not only the density of a point 𝑥𝑖, but also the

reciprocal density of points near to 𝑥𝑖. In fact, for not outlier points, the density of 𝑥𝑖 and

that of neighbor points should be almost equal. Therefore, a point is a candidate for the

next centroid, provided its 𝐿𝑂𝐹 is close to 1. Values of 𝐿𝑂𝐹 ≫ 1 denote outliers. As in

[3], a tolerance 𝐸 (e.g., 0.05) can be defined and a 𝐿𝑂𝐹 value is assumed to be that of a

not outlier when: 1 − 𝐸 < 𝐿𝑂𝐹 < 1 + 𝐸.

Complexity of the ROBIN initialization method is 𝑂(𝑁𝑙𝑜𝑔𝑁) as it is dominated by

repeated sorting of the dataset at each new centroid definition. Such a computational cost

can be a problem in very large datasets. Anyway, the ROBIN method can be preferable to

other initialization methods like the Kaufman method [3], which has a cost of 𝑂(𝑁2) be-

ing necessary to re-compute the distance between every pair of points.

Figure 3. Formal definition of the Local Outlier Factor (LOF) of a data point.

The operation of the ROBIN algorithm in Figure 2 and the LOF definition in Figure 3
depend on the parameter mp, that is the minimum number of points in the “nearest” neigh-
borhood of a point xi. Such a parameter is directly related to the k-distance-neighborhood
introduced in [19]. Upon mp is based the composition of the neighborhood set Nmp(xi)
which can be established when a new nearest point to xi is met such that at least mp points
were previously already found to be closer to xi. Hence, the cardinality of the neighborhood
set

∣∣Nmp(xi)
∣∣ is necessarily expected to be ≥ mp. As it emerges from Figure 3, the LOF

value takes into account not only the density of a point xi, but also the reciprocal density
of points near to xi. In fact, for not outlier points, the density of xi and that of neighbor
points should be almost equal. Therefore, a point is a candidate for the next centroid,
provided its LOF is close to 1. Values of LOF � 1 denote outliers. As in [3], a tolerance
E (e.g., 0.05) can be defined and a LOF value is assumed to be that of a not outlier when:
1− E < LOF < 1 + E.

Complexity of the ROBIN initialization method is O(NlogN) as it is dominated by
repeated sorting of the dataset at each new centroid definition. Such a computational cost
can be a problem in very large datasets. Anyway, the ROBIN method can be preferable to
other initialization methods like the Kaufman method [3], which has a cost of O

(
N2) being

necessary to re-compute the distance between every pair of points.
As a final remark, the ROBIN method is stochastic when the reference point at the

point 1 in Figure 2 is chosen randomly in the dataset. It becomes deterministic, as in the
original work [16], when the reference point is assumed to be the origin.

Algorithms 2022, 15, 117 5 of 15

3. Parallel K-Means in Java

In the basic K-Means algorithm shown in Figure 1, there is a built-in parallelism in both
the Assign and the Update phases, which can be extracted to speed-up the computation. In
other terms, both the calculation of the minimal distances of points xi to current centroids,
and then the definition of new centroids as the mean points of current clusters, can be
carried in parallel.

3.1. Supporting K-Means by Streams

A first solution to host parallel K-Means in Java is based on the use of streams, lambda
expressions and a functional programming style [12], which were introduced since the
Java 8 version. Streams are views (not copies) of collections (e.g., lists) of objects, which
make it possible to express a fluent style of operations (method calls). Each operation
works on a stream, transforms each object according to a lambda expression, and returns
a new stream, ready to be handled by a new operation and so forth. In a fluent code
segment, only the execution of the terminal operation actually triggers the execution of the
intermediate operations.

Figure 4 depicts the main part of the K-Means solution based on streams which can
execute either serially or in parallel. The two modes are controlled by a global Boolean
parameter PARALLEL which can be f alse or true. The algorithm first loads the dataset
and the initial centroids onto two global arrays of data points (of a class DataPoint),
respectively dataset and centroids of length N and K, from which corresponding (possibly
parallel) streams are built.

A Map/Reduce schema was actually coded where the Map stage corresponds to the
Assign step of Figure 1, and the Reduce stage realizes the Update step of Figure 1.

The DataPoint class describes a point in RD, that is with D coordinates, and exposes
methods for calculating the Euclidean distance between two points, adding points (by
adding the corresponding coordinates and counting the number of additions), calculating
the mean of a point summation and so forth. DataPoint also admits a field CID (Cluster
Identifier) which stores the ID (index of the centroids array) of the cluster the point belongs
to. The CID field is handled by the getCID()/setCID() methods. The map() method on
p_stream receives a lambda expression which accepts a DataPoint p and returns p mapped
to the cluster centroid closer to p. Since map() is an intermediate operation, a final fictitious
f orEach() operation is added which activates the execution of map().

When p_stream is completely processed, a newCentroids array is reset (each new
centroid has 0 as coordinates) so as to generate on it the updated version of centroids.
Purposely, the CID field of every new centroid is set to itself.

The c_stream is actually extracted from the newCentroids array. The map() method
on c_stream receives a lambda expression which accepts a new centroid point c and adds
to c all the points of the dataset whose CID coincides with the CID of c. Following the
summation of the points belonging to the same new centroid c, the mean() method is
invoked on c to calculate the mean point of the resultant cluster.

The iteration counter it gets incremented at the end of each K-Means iteration. The
termination() method returns true when the convergence was obtained or the maximum
number of iterations T was reached. In any case, termination() ends by copying the contents
of newCentroids onto the centroids array. Convergence is sensed when all the distances
among new centroids and current centroids fall under the threshold THR.

Algorithms 2022, 15, 117 6 of 15
Algorithms 2022, 15, x FOR PEER REVIEW 6 of 16

 load_dataset();

 load_centroids();

 long start=System.currentTimeMillis();

 do{

 //Map stage-assign data points to clusters

 Stream<DataPoint> p_stream=Stream.of (dataset);

 if (PARALLEL) p_stream=p_stream.parallel();

 p_stream

 .map (p -> {

 double md=Double.MAX_VALUE;

 for (int k=0; k<K; ++k) {

 double d=p.distance(centroids[k]);

 if (d<md) { md=d; p.setCID(k); }

 }

 return p; })

 .forEach (p->{});

 //prepare newCentroids

 for(int i=0; i<K; ++i) {

 newCentroids[i].reset();

 newCentroids[i].setCID (i);

 }

 //Reduce stage-define newCentroids

 Stream<DataPoint> c_stream=Stream.of (newCentroids);

 if (PARALLEL) c_stream=c_stream.parallel();

 c_stream

 .map (c -> {

 for (int i=0; i<N; ++i) {

 if (dataset[i].getCID()==c.getCID()) c.add (dataset[i]);

 }

 c.mean();

 return c;})

 .forEach(c->{});

 it++;

 }while (!termination());

 long end=System.currentTimeMillis();

 …/*output operations*/

Figure 4. A map/reduce schema for K-Means based on Java streams.

It is worthy of note that all the globals: the parameters

𝑁, 𝐾, 𝐷, 𝑇, 𝑇𝐻𝑅, 𝐸, 𝑖𝑡, 𝑀𝑃, 𝑃𝐴𝑅𝐴𝐿𝐿𝐸𝐿 …, the 𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠/𝑛𝑒𝑤𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 data point

arrays, the implemented centroid initialization methods (all the ones, either stochastic or

deterministic, discussed in [3]), some auxiliary methods for calculating the 𝑆𝑆𝐷 cost of a

clustering solution or evaluating its quality by, e.g., the 𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 index [3] and so forth,

are introduced as static entities of a 𝐺 class, which are statically imported in applicative

classes for a direct access to its entities.

The Java code in Figure 4 automatically adapts itself to a multi-threaded execution,

when the 𝑝_𝑠𝑡𝑟𝑒𝑎𝑚 and 𝑐_𝑠𝑡𝑟𝑒𝑎𝑚 are turned to a parallel version. In this case, behind

the scene, Java uses multiple threads of a thread-pool to accomplish in parallel, on selected

data segments, the underlying operations required by the Map and Reduce phases.

Figure 4. A map/reduce schema for K-Means based on Java streams.

It is worthy of note that all the globals: the parameters N, K, D, T, THR, E, it, MP,
PARALLEL . . . , the dataset, centroids/newCentroids data point arrays, the implemented
centroid initialization methods (all the ones, either stochastic or deterministic, discussed
in [3]), some auxiliary methods for calculating the SSD cost of a clustering solution or
evaluating its quality by, e.g., the Silhouette index [3] and so forth, are introduced as static
entities of a G class, which are statically imported in applicative classes for a direct access
to its entities.

The Java code in Figure 4 automatically adapts itself to a multi-threaded execution,
when the p_stream and c_stream are turned to a parallel version. In this case, behind the
scene, Java uses multiple threads of a thread-pool to accomplish in parallel, on selected
data segments, the underlying operations required by the Map and Reduce phases.

A basic feature of the Java code is its independence from the order of processed data
points and the absence of side-effects which can cause interference problems among threads

Algorithms 2022, 15, 117 7 of 15

when accessing to shared data. During the Map stage, the lambda expression operates on
distinct data points and affects their CID without any race condition. Similarly, multiple
threads act on distinct new centroid points during the Reduce phase, and safely accumulate
data points of a same cluster.

A specific parameter in the G class is INIT_METHOD which takes values in an
enumeration with the constants RANDOM, MAXIMIN, KMEANSPP, KAUFMAN,
ROBIN, DKMEANSPP, to select a corresponding centroid initialization method [3]. Other
initialization methods can be added as well. The ROBIN method, which can be configured
to operate stochastically or deterministically, relies concretely on heap-sorting (through a
PriorityQueue collection) the dataset in descending order of the minimal distances from
the existing centroids and initially from the reference point. In addition, the nearest MP-
neighborhood of a data point xi, considered in sorted order, is determined by moving
around xi, and registering in a sorted data structure the distances of nearest points to xi.
Movement is stopped as soon as a point is encountered whose distance from xi is greater
than that of any already met nearest point, and the cardinality of previous visited nearest
points is found to be ≥ MP.

The G class is extended by a further parameter P which specifies the degree of par-
allelism, that is the number of the underlying cores (threads) exploitable in the execution
experiments.

3.2. Actor-Based K-Means Using Theatre

Another solution for serial/parallel K-Means was achieved on top of the Theatre
actor system. Theatre is both a formal modelling language [20] and an implementation
framework in Java. It addresses modelling, analysis and synthesis of parallel/distributed
time-dependent systems like cyber-physical systems with strict timing constraints [20,21].

A key difference from the classical actor computational model [22,23] is the adoption
of a (transparent) reflective control-based layer which can reason on a time notion (real-time or
simulated-time) or on no-time (for concurrent/parallel systems), and regulates the ultimate
delivery order of the asynchronously exchanged messages among actors, which in [22] is
truly non-deterministic.

Theatre is characterized by its lightweight and totally lock-free architecture. The
design purposely minimizes the use of threads as only “programming-in-the-large” units,
to be allocated on the available cores. The goal is to favor time predictability, as well as the
development of high-performance parallel applications [13].

3.2.1. The Parallel Programming Model of Theatre

A system consists of a federation of computing nodes (theatres) which can be allocated
to distinct cores of a multi-core machine. A theatre node is mapped onto a separate
thread and is organized into three layers (see also [13]): (1) a transport-layer, which is
used for sending/receiving inter-theatre messages); (2) a control-layer which provides the
basic services for scheduling/dispatching of messages; (3) an application-layer which is a
collection of local business actors.

Both intra-theatre and inter-theatre communications (message exchanges) are en-
abled. In addition, actors can be moved from a theatre to another, for configuration/load-
balancing issues.

Within a same theatre, actors execute according to a cooperative concurrency model,
ensured by message interleaving, that is dispatching and executing one message at a time.
Actors are without an internal thread. Therefore, they are at rest until a message arrives. A
message is the unit of scheduling and dispatching. Message processing is atomic and cannot
be pre-empted nor suspended. In other terms, messages of any actor, naturally execute in
mutual exclusion.

Actor executions (i.e., message processing) into distinct theatres can effectively occur
in time-overlapping, that is truly in parallel. Since the lock-free schema adopted by Theatre,
shared data among actors assigned to distinct theatres/cores, should be avoided to prevent

Algorithms 2022, 15, 117 8 of 15

data inconsistencies. Sharing data, though, among the actors of a same theatre, is absolutely
safe due to the adopted cooperative concurrency schema.

A time server component, attached to a selected theatre, gets transparently contacted
(through hidden control messages [13]) by the various control layers of the computing nodes,
so as to regularly update the global time notion of a Theatre system. In a pure-concurrent
system, a “time server” can be exploited to detect the termination condition of the parallel
application which occurs when all the control-layers have no pending messages to process
and there are no in-transit messages across theatres.

3.2.2. Mapping Parallel K-Means on Theatre

The simplified UML diagram of Figure 5 shows some developed Java classes for
supporting Parallel (but also serial) K-Means using Theatre.

Algorithms 2022, 15, x FOR PEER REVIEW 9 of 16

Figure 5. Supporting classes for Parallel K-Means based on Theatre.

The actual actor programming style can be checked in Figure 7. An actor admits a

local hidden data status which also specifies the acquaintances, that is the Java references

to known actors (including itself for proactivity) to which this actor can send messages.

Local data can only be modified by processing messages. The message interface is speci-

fied by the exposed message server methods, provided by the annotation @𝑀𝑠𝑔𝑠𝑟𝑣, whose

names are the message names. Message servers are scheduled by the 𝑠𝑒𝑛𝑑 operation and

finally dispatched according to the discipline enforced by the control-layer. An actor can

also introduce normal helper methods (without the annotation @𝑀𝑠𝑔𝑠𝑟𝑣), to facilitate its

code structuring.

As indicated in Figure 5, and also shown by the message exchanges abstracted in

Figure 6, the Theatre based K-Means adopts a master/worker organization (see later in this

section for further details).

Figure 6. Master/worker organization of Theatre-based K-means.

The dataset is equally split in 𝑃 regions (subblocks) (𝑃 is the number of used thea-

tres/cores), each region being (almost) of size 𝑁/𝑃.

The 𝑚𝑎𝑖𝑛() method of the 𝐾_𝑀𝑒𝑎𝑛𝑠 class (see Figure 7) instantiates 𝑃 theatres,

each one equipped with an instance of 𝑃𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and one of 𝑃𝐶𝑇𝑖𝑚𝑒𝑆𝑒𝑟𝑣𝑒𝑟 . The

Figure 5. Supporting classes for Parallel K-Means based on Theatre.

Basic classes of the Theatre infrastructure include Actor, Theatre, PConcurrent and
PCTimeServer (see [13] for more details). A programmer-defined actor class must inherit,
directly or indirectly, from the Actor abstract base class, which exposes the basic services
of (unblocking) message send, and the move operation. The send operation rests on Java
reflection for associating a message name (string) to a message server (method), and for
passing arguments at the message delivery time, regulated by the control-layer. Theatres of
a system are identified by unique identifiers from 0 to P− 1.

void send (String message_name, Object . . . args);

void move (int theatre_id);

A sent message gets (transparently) scheduled on the underlying control-layer. The
move operation transfers an actor to a given (target) theatre, so that its relevant messages
are ultimately handled by the target theatre control-layer. PConcurrent and PCTimeServer
represent respectively the concurrent control-layer and the time server used in a parallel
untimed application. Timed versions of these classes are described in [13]. PConcurrent
ensures messages are delivered in the sending order. By convention, the time server is
associated with the theatre 0 which often plays the role of the master theatre.

Algorithms 2022, 15, 117 9 of 15

The actual actor programming style can be checked in Figure 7. An actor admits a
local hidden data status which also specifies the acquaintances, that is the Java references to
known actors (including itself for proactivity) to which this actor can send messages. Local
data can only be modified by processing messages. The message interface is specified by
the exposed message server methods, provided by the annotation @Msgsrv, whose names
are the message names. Message servers are scheduled by the send operation and finally
dispatched according to the discipline enforced by the control-layer. An actor can also
introduce normal helper methods (without the annotation @Msgsrv), to facilitate its code
structuring.

As indicated in Figure 5, and also shown by the message exchanges abstracted in
Figure 6, the Theatre based K-Means adopts a master/worker organization (see later in this
section for further details).

Algorithms 2022, 15, x FOR PEER REVIEW 9 of 16

Figure 5. Supporting classes for Parallel K-Means based on Theatre.

The actual actor programming style can be checked in Figure 7. An actor admits a

local hidden data status which also specifies the acquaintances, that is the Java references

to known actors (including itself for proactivity) to which this actor can send messages.

Local data can only be modified by processing messages. The message interface is speci-

fied by the exposed message server methods, provided by the annotation @𝑀𝑠𝑔𝑠𝑟𝑣, whose

names are the message names. Message servers are scheduled by the 𝑠𝑒𝑛𝑑 operation and

finally dispatched according to the discipline enforced by the control-layer. An actor can

also introduce normal helper methods (without the annotation @𝑀𝑠𝑔𝑠𝑟𝑣), to facilitate its

code structuring.

As indicated in Figure 5, and also shown by the message exchanges abstracted in

Figure 6, the Theatre based K-Means adopts a master/worker organization (see later in this

section for further details).

Figure 6. Master/worker organization of Theatre-based K-means.

The dataset is equally split in 𝑃 regions (subblocks) (𝑃 is the number of used thea-

tres/cores), each region being (almost) of size 𝑁/𝑃.

The 𝑚𝑎𝑖𝑛() method of the 𝐾_𝑀𝑒𝑎𝑛𝑠 class (see Figure 7) instantiates 𝑃 theatres,

each one equipped with an instance of 𝑃𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and one of 𝑃𝐶𝑇𝑖𝑚𝑒𝑆𝑒𝑟𝑣𝑒𝑟 . The

Figure 6. Master/worker organization of Theatre-based K-means.

The dataset is equally split in P regions (subblocks) (P is the number of used the-
atres/cores), each region being (almost) of size N/P.

The main() method of the K_Means class (see Figure 7) instantiates P theatres, each one
equipped with an instance of PConcurrent and one of PCTimeServer. The run() method
of the master theatre is redefined for completing the parallel configuration. P Manager
actors are created, one of the type Master and P− 1 of the Worker type. Such actors are
moved to separate theatres. For brevity, Figure 8 shows only the Worker actor class. Each
manager understands the basic step() message (see the step(. . .) message server in Figure 8),
introduced by the base abstract Manager class. As a rule, every programmer-defined actor
class is initialized by an explicit init(. . .) message (see also Figure 6), whose parameter
list is tuned to the specific task/role assigned to the actor. The init(. . .) of Master receives
the master ID, the assigned subblock of the dataset, the initial values of the centroids and
the array of all the manager references (acquaintances). The init(. . .) of Worker, instead,
receives (see Figure 8) its unique ID, the assigned subblock of the dataset, and the reference
to the Master manager.

Configuration ends by the master theatre which activates all the theatres and finally
launches, on itself, the execution of the control-layer by invoking the controller() method.

The master actor receives a done() message from a worker when the latter finishes
the operations (Assign and Update sub-phases) of the current step (see Figure 7). The
done() message carries as an argument the partial new centroids calculated according to
the viewpoint of the worker. When all the done() messages of the current step are received,
the master combines the partial centroids provided by the workers, and determines the
resultant new centroids. A helper method of the Master actor checks the termination
condition which occurs (convergence) when, for each centroid, the Euclidean distance
between the new centroid and the current one is found to be less than or equal to the
threshold THR (see Table 1) or the maximum number of iterations T was reached. It
is important to note that each partial centroid point returned by a worker contains the
cumulative D features (coordinates) of the local points handled by the worker, together

Algorithms 2022, 15, 117 10 of 15

with the number of points belonging to the same cluster. This way, the master actor can
correctly assemble all the received partial centroids.

Algorithms 2022, 15, x FOR PEER REVIEW 10 of 16

𝑟𝑢𝑛() method of the master theatre is redefined for completing the parallel configuration.

𝑃 Manager actors are created, one of the type 𝑀𝑎𝑠𝑡𝑒𝑟 and 𝑃 − 1 of the 𝑊𝑜𝑟𝑘𝑒𝑟 type.

Such actors are moved to separate theatres. For brevity, Figure 8 shows only the 𝑊𝑜𝑟𝑘𝑒𝑟

actor class. Each manager understands the basic 𝑠𝑡𝑒𝑝() message (see the 𝑠𝑡𝑒𝑝(…) mes-

sage server in Figure 8), introduced by the base abstract 𝑀𝑎𝑛𝑎𝑔𝑒𝑟 class. As a rule, every

programmer-defined actor class is initialized by an explicit 𝑖𝑛𝑖𝑡(…) message (see also

Figure 6), whose parameter list is tuned to the specific task/role assigned to the actor. The

𝑖𝑛𝑖𝑡(…) of 𝑀𝑎𝑠𝑡𝑒𝑟 receives the master ID, the assigned subblock of the dataset, the initial

values of the centroids and the array of all the manager references (acquaintances). The

𝑖𝑛𝑖𝑡(…) of 𝑊𝑜𝑟𝑘𝑒𝑟, instead, receives (see Figure 8) its unique ID, the assigned subblock

of the dataset, and the reference to the 𝑀𝑎𝑠𝑡𝑒𝑟 manager.

public class KMeans{

 public static void main(String[] args) throws IOException{

 for (int t=1; t<P; ++t)

 new Theatre(t,P,new PTransportLayer(), new PConcurrent());

 new Theatre(0, P, new PTransportLayer(new PCTimeServer()), new PConcurrent()) {

 public void run() {

 load_dataset(); load_centroids();

 long start=System.currentTimeMillis();

 Manager[] m=new Manager[P];//creates managers one per theatre

 int strip=N/P, residual=N%P;//number of subblocks

 int inf=0, sup=strip-1;//lower and upper bounds of current subblock

 for (int t=0; t<P; ++t) {

 if (residual>0) { sup++; residual--; }//distribution of residual data points

 DataPoint[] subblock=dataset_subblock(inf, sup);

 if (t==0) {

 m[t]=new Master();

 m[t].send(“init”, t, subblock, centroids, m);

 }

 else {

 m[t]=new Worker();

 m[t].send(“init”, t, subblock, m [0]);

 }

 m[t].move(t);

 inf=sup+1; sup=sup+strip;//bounds update for the next subblock

 }

 for (int t=0; t<P; ++t) Theatre.getTheatre(t).activate();//theatre activation

 Theatre.getTheatre(0).getControlMachine().controller();//start of message loop

 long elapsed=System.currentTimeMillis()-start;

 System.out.println(“PET=“+elapsed);

 …/*output operations*/

 }//run

 };//new Theatre(0,...)

 }//main

}//KMeans

Figure 7. Configuration program for parallel K-Means based on Theatre.

Configuration ends by the master theatre which activates all the theatres and finally

launches, on itself, the execution of the control-layer by invoking the 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟()

method.

Figure 7. Configuration program for parallel K-Means based on Theatre.

The master actor increments the iteration counter it at the beginning of each iteration.
Each iteration is started by the master which broadcasts a step() message to each worker
and to itself. The step() message carries as a parameter, the current values of the centroids.
At the end of K-Means, the master actor copies the emerged centroids upon the centroids
variable of the G class so that it can be eventually output by the main program. Each cen-
troid point carries the number of dataset points which compose the corresponding cluster.
In addition, each dataset point holds the final cluster id (CID) of the belonging cluster.

Algorithms 2022, 15, 117 11 of 15

Algorithms 2022, 15, x FOR PEER REVIEW 11 of 16

The master actor receives a 𝑑𝑜𝑛𝑒() message from a worker when the latter finishes

the operations (Assign and Update sub-phases) of the current step (see Figure 7). The

𝑑𝑜𝑛𝑒() message carries as an argument the partial new centroids calculated according to

the viewpoint of the worker. When all the 𝑑𝑜𝑛𝑒() messages of the current step are re-

ceived, the master combines the partial centroids provided by the workers, and deter-

mines the resultant new centroids. A helper method of the 𝑀𝑎𝑠𝑡𝑒𝑟 actor checks the termi-

nation condition which occurs (convergence) when, for each centroid, the Euclidean dis-

tance between the new centroid and the current one is found to be less than or equal to

the threshold 𝑇𝐻𝑅 (see Table 1) or the maximum number of iterations 𝑇 was reached. It

is important to note that each partial centroid point returned by a worker contains the

cumulative 𝐷 features (coordinates) of the local points handled by the worker, together

with the number of points belonging to the same cluster. This way, the master actor can

correctly assemble all the received partial centroids.

public class Worker extends Manager{

 private DataPoint[] region, partial;

 private int ID;

 private Master m;//acquaintance

 @Msgsrv

 public void init (Integer ID, DataPoint[] region, Master m) {

 this.ID = ID;

 this.region=region;//a sub-block of the whole dataset

 this.m = m;

 partial = new DataPoint[K];//used to build partial new centroids

 for (int i = 0; i < K; ++i) partial[i] = new DataPoint();

 }//init

 @Msgsrv

 public void step (Integer id, DataPoint[] centroids) {

 //Map stage: allocate local data points to clusters

 for (int i = 0; i < region.length; ++i) {

 double minD = Double.MAX_VALUE,d = 0;

 for (int j = 0; j < K; ++j) {

 d = region[i].distance(centroids[j]);

 if (d < minD) { minD=d; region[i].setCID(j); }

 }

 }

 //Reduce stage: updates partial centroids

 for (int i = 0; i < K; ++i) partial[i].reset();

 for (int i = 0; i < region.length; ++i) {

 int cid = region[i].getCID();

 partial[cid].add (region[i]);

 }

 m.send (“done”, ID, partial);

 }//step

}//Worker

Figure 8. The Worker actor class.

The master actor increments the iteration counter 𝑖𝑡 at the beginning of each itera-

tion. Each iteration is started by the master which broadcasts a 𝑠𝑡𝑒𝑝() message to each

worker and to itself. The 𝑠𝑡𝑒𝑝() message carries as a parameter, the current values of the

centroids. At the end of K-Means, the master actor copies the emerged centroids upon the

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 variable of the 𝐺 class so that it can be eventually output by the main program.

Figure 8. The Worker actor class.

Table 1. Values of some configuration parameters.

Parameter Value Meaning

P 16 Number of used underlying threads

N 2,458,285 Size of the Census1990 data set

D 68 Dimensions of the dataset records

K e.g., 80 Number of assumed centroids

T 1000 Maximum number of iterations

THR 1 × 10−10 Threshold for assessing convergence

INIT_METHOD ROBIN The centroid initialization method

E 0.05 Tolerance in the Local Outlier Factor (LOF) detection (ROBIN)

MP e.g., 15 Size of the MP-neighborhood of data points (ROBIN)

The actor-based parallel K-Means can be easily adapted to work with one single
theatre/core, thus achieving the standalone K-Means program, useful for performance
comparisons. Except for the synchronization messages exchanged at each step of the
algorithm (broadcast of step() messages by the master to workers, followed by the reply

Algorithms 2022, 15, 117 12 of 15

done() messages sent by workers to the master), the parallel and the standalone K-Means
programs execute exactly the same number of operations.

4. Experimental Results

The Java-based K-Means (KM) algorithms were thoroughly checked on different
datasets, real-world or synthetic. It was ensured that, starting from the same initial cen-
troids, the four versions of the developed solutions, namely the Serial Stream KM (SSKM),
the Parallel Stream KM (PSKM), the Standalone Theatre KM (STKM) and the Parallel The-
atre KM (PTKM), always and exactly generate the same final centroids and with the same
number of convergence iterations. For demonstration purposes, the following considers
the US Census Data 1990, downloaded from the UCI Machine Learning Repository [24].
The dataset (see also Table 1) contains N = 2458285 data records each one with D = 68
numerical categorial attributes. Different clustering solutions were studied for the chosen
dataset (see the K number of assumed centroids in the Table 1), under the deterministic
version of the ROBIN initialization method (see Section 2.1). Performance measurements
are documented in the author’s preliminary work (ICICT 2022, Springer LNNS, ISSN:
2367-3370) using some synthetic datasets when the number N of data points increases and
the random initialization method (see Section 2) is adopted.

All the execution experiments were carried out on a Win10 Pro, Dell XPS 8940, Intel
i7-10700 (8 physical cores which with the hyperthreading give support to 16 threads),
CPU@2.90 GHz, 32GB Ram, Java 17 with the default JVM configuration parameters (e.g.,
4GB for the maximum exploitable heap memory size). Table 1 collects the values of some
basic parameters. It is useful to note that the value P = 16 is implicitly and automatically
exploited by Java when working with PSKM. Performance comparison was also explicitly
set for the case of PTKM.

Some preliminary runs were devoted to studying the K value of K-means, which
can minimize the SSD cost (sum of squared distances objective function—see Section 2).
Figure 9 depicts the so-called “Elbow” curve, i.e., the SSD vs.K, which is often used to
understand the values of K to adopt, and Figure 10 shows the number of emerged iterations
required for convergence, i.e., it vs.K. The execution performance was then investigated by
varying the K value from 10 to 120, as shown in Table 2.

Algorithms 2022, 15, x FOR PEER REVIEW 13 of 16

Figure 9. The “Elbow” curve, i.e., the 𝑆𝑆𝐷 cost vs. 𝐾.

Figure 10. The number of iterations (𝑖𝑡) for convergence vs. 𝐾.

For the purpose of the performance comparison work, documented in Table 2, the

deterministic pre-selection of the initial centroids of the ROBIN method was preferred. In

particular, the initial centroids, for each value of 𝐾, were saved on disk and reused (by re-

loading) without regenerating them when executing the various versions of the K-Means

algorithm. As in [19], it emerged that the determination of the 𝐿𝑂𝐹 factor for outlier data

points, is not much sensitive to the value of 𝑀𝑃 (see Table 1). The value 𝑀𝑃 = 10 was

used.

Table 2 reports the measured serial elapsed time (𝑆𝐸𝑇) and the parallel elapsed time

(𝑃𝐸𝑇) for the various versions of K-Means and for the chosen values of 𝐾 which minimize

the 𝑆𝑆𝐷 cost (see Figure 9). Each measure is the average of five runs which, although the

deterministic evolution of K-Means due to the adopted ROBIN initialization method, are

required to smooth out uncertainties of the underlying Operating System.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120 140

Su
m

 o
f

sq
u

ar
ed

 d
is

ta
n

ce
s

(S
SD

)

K

x109

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

It
er

at
io

n
s

(i
t)

K

Figure 9. The “Elbow” curve, i.e., the SSD cost vs. K.

Algorithms 2022, 15, 117 13 of 15

Algorithms 2022, 15, x FOR PEER REVIEW 13 of 16

Figure 9. The “Elbow” curve, i.e., the 𝑆𝑆𝐷 cost vs. 𝐾.

Figure 10. The number of iterations (𝑖𝑡) for convergence vs. 𝐾.

For the purpose of the performance comparison work, documented in Table 2, the

deterministic pre-selection of the initial centroids of the ROBIN method was preferred. In

particular, the initial centroids, for each value of 𝐾, were saved on disk and reused (by re-

loading) without regenerating them when executing the various versions of the K-Means

algorithm. As in [19], it emerged that the determination of the 𝐿𝑂𝐹 factor for outlier data

points, is not much sensitive to the value of 𝑀𝑃 (see Table 1). The value 𝑀𝑃 = 10 was

used.

Table 2 reports the measured serial elapsed time (𝑆𝐸𝑇) and the parallel elapsed time

(𝑃𝐸𝑇) for the various versions of K-Means and for the chosen values of 𝐾 which minimize

the 𝑆𝑆𝐷 cost (see Figure 9). Each measure is the average of five runs which, although the

deterministic evolution of K-Means due to the adopted ROBIN initialization method, are

required to smooth out uncertainties of the underlying Operating System.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120 140

Su
m

 o
f

sq
u

ar
ed

 d
is

ta
n

ce
s

(S
SD

)

K

x109

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

It
er

at
io

n
s

(i
t)

K

Figure 10. The number of iterations (it) for convergence vs. K.

Table 2. Serial/parallel elapsed times for Stream-based and Theatre-based K-Means vs. K (P = 16).

K SETSSKM
(ms)

PETPSKM
(ms) SpeedupS

SETSTKM
(ms)

PETPTKM
(ms) SpeedupT

10 70,566 9233 7.64 59,671 7620 7.83

20 114,743 12,061 9.51 96,891 11,221 8.63

40 428,389 44,877 9.55 357,731 38,535 9.28

60 510,496 53,798 9.49 420,934 45,217 9.31

80 769,109 68,158 11.28 597,489 63,497 9.41

100 1,407,401 145,346 9.68 1,117,578 111,956 9.98

120 1,920,530 199,335 9.63 1,552,306 146,059 10.63

For the purpose of the performance comparison work, documented in Table 2, the
deterministic pre-selection of the initial centroids of the ROBIN method was preferred. In
particular, the initial centroids, for each value of K, were saved on disk and reused (by
re-loading) without regenerating them when executing the various versions of the K-Means
algorithm. As in [19], it emerged that the determination of the LOF factor for outlier data
points, is not much sensitive to the value of MP (see Table 1). The value MP = 10 was used.

Table 2 reports the measured serial elapsed time (SET) and the parallel elapsed time
(PET) for the various versions of K-Means and for the chosen values of K which minimize
the SSD cost (see Figure 9). Each measure is the average of five runs which, although the
deterministic evolution of K-Means due to the adopted ROBIN initialization method, are
required to smooth out uncertainties of the underlying Operating System.

As one can see from Table 2, the parallel Stream-based solution (PSKM) is capable
of delivering a good execution performance, with the burden of choosing the parallelism-
degree, splitting the dataset in segments and processing them concurrently by separate
threads is completely left to the Java runtime system. The emerged speedup for the Stream-
based solutions, that is the ratio between the SETSSKM and the PETPSKM, is shown in the
column SpeedupS and it reaches a value about 11 in the case K = 80. The corresponding
observed times when the Theatre-based solutions are used, are indicated in the second part
of Table 2, confirming a speedup of 10.63 in the scenario with K = 120.

Although the observed values of SpeedupS and SpeedupT are similar, from the Table 2
it emerges that the Theatre actor-based solutions perform better than the corresponding

Algorithms 2022, 15, 117 14 of 15

Stream-based solutions, both in the serial and the parallel cases, which seems to indicate
Theatre is more able to exploit the underlying computational resources. This is also
confirmed by the measured SpeedupT which scales more regularly with the increase of the
number K of clusters.

The registered speedup values are in many cases examples of super-speedups, when one
considers that the number of physical cores of the used machine is 8. Such super-speedup
closely mirrors the number of physical and hardware emulated cores, and the important
contribution of the L2 cache of cores, where segments of the dataset are pre-loaded and
re-used thus avoiding, very often, the need to accessing data in the internal memory. Such
a phenomenon is well documented in the literature, see e.g., [13,25,26] and it was formally
predicted and practically observed in the parallel processing of large numerical arrays and
matrices [25].

As a final remark, the developed stream-based versions of K-Means as well as the
standalone Theatre-based version, have the limitation of allocating the whole dataset in a
native array collection, which the parallel stream version can then split into consecutive
segments and process them by separate threads. Of course the approach can be difficult to
apply to some large datasets, although the memory size of current commodity multi-core
machines is noticeable. On the other hand, the Theatre actor-based parallel version of
K-Means is capable of feeding the master/worker actors with consecutive pieces of the
dataset, directly read from the source file. In any case, the handling of very large datasets
could be possible by using a multi-computer solution, based on distributed Theatre, which
can partition the work and the data among the machines of a networked system, but this is
further work to do.

5. Conclusions

This paper proposes two original parallel implementations in Java of the K-Means
algorithm [1,2,14] which can deliver good execution performance when handling large
datasets on nowadays commodity multi/many-core machines with shared memory. The
first implementation depends on the use of Java streams and lambda expressions [11,12].
The second one is based on an efficient actor-based system named Theatre [13] which ex-
poses an easy to use light-weight parallel programming model, totally lock-free. Although
the solution based on parallel streams is notable, being simple and intuitive to program
and understand, the Theatre-based solution seems more apt to furnish a higher execution
performance in the practical case.

It is planned to prosecute the described work as follows:

• Systematically exploiting the developed Java approach to prove, empirically, the
properties of K-Means, using selected and challenging datasets [3,15].

• Extending and experimenting with the set of supported robust to outliers initialization
methods for K-Means [3,27–31].

• Adapting the approach for studying variations of the K-Means clustering [3].
• Porting the parallel Theatre-based version of K-Means to a distributed context, so as

to cope with very large datasets.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley

Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June–18 July 1965 and 27 December 1965–7 January
1966; University of California Press: Berkeley, CA, USA, 1967; pp. 281–297.

Algorithms 2022, 15, 117 15 of 15

2. Jain, A.K. Data clustering: 50 years beyond k-means. Pattern Recognit. Lett. 2010, 31, 651–666. [CrossRef]
3. Vouros, A.; Langdell, S.; Croucher, M.; Vasilaki, E. An empirical comparison between stochastic and deterministic centroid

initialisation for K-means variations. Mach. Learn. 2021, 110, 1975–2003. [CrossRef]
4. Qiu, X.; Fox, G.C.; Yuan, H.; Bae, S.H.; Chrysanthakopoulos, G.; Nielsen, H.F. Parallel clustering and dimensional scaling on

multicore systems. In Proceedings of the High Performance Computing & Simulation (HPCS 2008), Nicosia, Cyprus, 3–6 June
2008; p. 67.

5. Zhang, J.; Wu, G.; Hu, X.; Li, S.; Hao, S. A parallel k-means clustering algorithm with MPI. In Proceedings of the IEEE Fourth
International Symposium on Parallel Architectures, Algorithms and Programming, NW Washington, DC, USA, 9–11 December
2011; pp. 60–64.

6. Kantabutra, S.; Couch, A.L. Parallel K-means clustering algorithm on NOWs. NECTEC Tech. J. 2000, 1, 243–247.
7. Zhao, W.; Ma, H.; He, Q. Parallel K-Means clustering based on MapReduce. In Proceedings of the IEEE International Conference

on Cloud Computing, NW Washington, DC, USA, 21–25 September 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp.
674–679.

8. Bodoia, M. MapReduce Algorithms for k-Means Clustering. Available online: https://stanford.edu/~{}rezab/classes/cme323
/S16/projects_reports/bodoia.pdf (accessed on 1 January 2022).

9. Naik, D.S.B.; Kumar, S.D.; Ramakrishna, S.V. Parallel processing of enhanced K-Means using OpenMP. In Proceedings of the IEEE
International Conference on Computational Intelligence and Computing Research, Madurai, India, 26–28 December 2013; pp.
1–4.

10. Cuomo, S.; De Angelis, V.; Farina, G.; Marcellino, L.; Toraldo, G. A GPU-accelerated parallel K-means algorithm. Comput. Electr.
Eng. 2019, 75, 262–274. [CrossRef]

11. Bloch, J. Effective Java, 3rd ed.; Addison Wesley: Boston, MA, USA, 2018.
12. Subramaniam, V. Functional Programming in Java—Harnessing the Power of Java 8 Lambda Expressions; The Pragmatic Programmers,

LLC: Raleigh, NC, USA, 2014.
13. Nigro, L. Parallel Theatre: A Java actor-framework for high-performance computing. Simul. Model. Pract. Theory 2021, 106,

102189. [CrossRef]
14. Lloyd, S.P. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [CrossRef]
15. Franti, P.; Sieranoja, S. K-means properties on six clustering benchmark datasets. Appl. Intell. 2018, 48, 4743–4759. [CrossRef]
16. Al Hasan, M.; Chaoji, V.; Salem, S.; Zaki, M.J. Robust partitional clustering by outlier and density insensitive seeding. Pattern

Recognit. Lett. 2009, 30, 994–1002. [CrossRef]
17. Celebi, M.E.; Kingravi, H.A.; Vela, P.A. A comparative study of efficient initialization methods for the k-means clustering

algorithm. Expert Syst. Appl. 2013, 40, 200–210. [CrossRef]
18. Franti, P.; Sieranoja, S. How much can k-means be improved by using better initialization and repeats? Pattern Recognit. 2019, 93,

95–112. [CrossRef]
19. Breunig, M.M.; Kriegel, H.-P.; Ng, R.T.; Sander, J. LOF: Identifying Density-Based Local Outliers. In Proceedings of the 2000 ACM

SIGMOD International Conference on Management of Data, Dallas, TX, USA, 16–18 May 2000.
20. Nigro, L.; Sciammarella, P.F. Qualitative and quantitative model checking of distributed probabilistic timed actors. Simul. Model.

Pract. Theory 2018, 87, 343–368. [CrossRef]
21. Cicirelli, F.; Nigro, L. A development methodology for cyber-physical systems based on deterministic Theatre with hybrid actors.

TASK Q. Spec. Issue Cyber-Phys. Syst. 2021, 25, 233–261.
22. Agha, G. Actors: A Model of Concurrent Computation in Distributed Systems. Ph.D. Thesis, MIT Artificial Intelligence Laboratory,

Cambridge, MA, USA, 1986.
23. Karmani, R.K.; Agha, G. Actors; Springer: Boston, MA, USA, 2011; pp. 1–11. [CrossRef]
24. UCI Machine Learning Repository. Available online: https://archive.ics.uci.edu/ml/datasets (accessed on 1 January 2022).
25. Gusev, M.; Ristov, S. A superlinear speedup region for matrix multiplication. Concurr. Comput. Pract. Exp. 2014, 26, 1847–1868.

[CrossRef]
26. Gergel, V. Parallel methods for matrix multiplication. In Proceedings of the 2021 Summer School on Concurrency, Saint Petersburg,

Russia, 22–29 August 2012; pp. 1–50.
27. Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science 2014, 344, 1492–1496. [CrossRef] [PubMed]
28. Yang, J.; Wang, Y.K.; Yao, X.; Lin, C.T. Adaptive initialization method for K-means algorithm. Front. Artif. Intell. 2021, 4, 740817.

[CrossRef] [PubMed]
29. Lan, X.; Li, Q.; Zheng, Y. Density K-means: A new algorithm for centers initialization for K-means. In Proceedings of the 6th IEEE

International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 23–25 September 2015.
30. Deshpande, A.; Kacham, P.; Pratap, R. Robust K-means++. In Proceedings of the Conference on Uncertainty in Artificial

Intelligence, PMLR, Virtual, 3–6 August 2020; pp. 799–808.
31. Ahmed, A.H.; Ashour, W.M. An initialization method for the K-means algorithm using RNN and coupling degree. Int. J. Comput.

Appl. 2011, 25, 1–6.

http://doi.org/10.1016/j.patrec.2009.09.011
http://doi.org/10.1007/s10994-021-06021-7
https://stanford.edu/~{}rezab/classes/cme323/S16/projects_reports/bodoia.pdf
https://stanford.edu/~{}rezab/classes/cme323/S16/projects_reports/bodoia.pdf
http://doi.org/10.1016/j.compeleceng.2017.12.002
http://doi.org/10.1016/j.simpat.2020.102189
http://doi.org/10.1109/TIT.1982.1056489
http://doi.org/10.1007/s10489-018-1238-7
http://doi.org/10.1016/j.patrec.2009.04.013
http://doi.org/10.1016/j.eswa.2012.07.021
http://doi.org/10.1016/j.patcog.2019.04.014
http://doi.org/10.1016/j.simpat.2018.07.011
http://doi.org/10.1007/978-0-387-09766-4_125
https://archive.ics.uci.edu/ml/datasets
http://doi.org/10.1002/cpe.3102
http://doi.org/10.1126/science.1242072
http://www.ncbi.nlm.nih.gov/pubmed/24970081
http://doi.org/10.3389/frai.2021.740817
http://www.ncbi.nlm.nih.gov/pubmed/34901837

	Introduction
	Background on K-Means
	About the Initialization Methods

	Parallel K-Means in Java
	Supporting K-Means by Streams
	Actor-Based K-Means Using Theatre
	The Parallel Programming Model of Theatre
	Mapping Parallel K-Means on Theatre

	Experimental Results
	Conclusions
	References

