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Abstract: Solving mixed-integer nonlinear programs (MINLPs) is hard from both a theoretical
and practical perspective. Decomposing the nonlinear and the integer part is promising from
a computational point of view. In general, however, no bounds on the objective value gap can
be established and iterative procedures with potentially many subproblems are necessary. The
situation is different for mixed-integer optimal control problems with binary variables that switch
over time. Here, a priori bounds were derived for a decomposition into one continuous nonlinear
control problem and one mixed-integer linear program, the combinatorial integral approximation
(CIA) problem. In this article, we generalize and extend the decomposition idea. First, we derive
different decompositions and analyze the implied a priori bounds. Second, we propose several
strategies to recombine promising candidate solutions for the binary control functions in the original
problem. We present the extensions for ordinary differential equations-constrained problems. These
extensions are transferable in a straightforward way, though, to recently suggested variants for
certain partial differential equations, for algebraic equations, for additional combinatorial constraints,
and for discrete time problems. We implemented all algorithms and subproblems in AMPL for a
proof-of-concept study. Numerical results show the improvement compared to the standard CIA
decomposition with respect to objective function value and compared to general-purpose MINLP
solvers with respect to runtime.

Keywords: optimal control; switched dynamic systems; mixed-integer nonlinear programming;
mixed-integer linear programming; ordinary differential equations; approximation methods

1. Introduction
1.1. General Context

The goal of optimal control is to find control functions and state trajectories that are
feasible and optimal. State trajectories are solutions of systems of differential equations
for given control functions and boundary conditions. Feasibility refers to constraints on
control functions and differential states; optimality refers to an objective functional of
controls and states. Mixed-integer optimal control problems (MIOCPs) do have additional
integrality constraints on some of the control functions. Hence, the differential equations of
the underlying system depend on the value of integer control functions, or equivalently,
one can switch instantly between several differential equations [1–4]. This problem class
is ubiquitous in various application areas, e.g., water, gas, traffic, and supply chain net-
works [5–11], distributed autonomous systems [12], processes in chemical engineering
that involve valves [13,14], cardiac assist devices [15], or the choice of gears in automotive
control [16,17]. We choose problems from a web-based MIOCP benchmark collection [18]
to evaluate our algorithms.

Several families of methods have been proposed for solving MIOCPs. This compre-
hends indirect or first-optimize-then-discretize approaches [19], dynamic programming or
Hamilton–Jacobi–Bellman equations [20], switching time optimization [16,21–25], and direct
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or first-discretize-then-optimize approaches [3,26,27]. Surveys, references, and comparisons
can be found in, e.g., [19,28–30].

1.2. Motivation

Our approach is based on previous ideas [27,31,32] to decompose the MIOCP into a
relaxed continuous optimal control problem (OCP) and a mixed-integer linear program
(MILP). In contrast to general MINLP decompositions (see [33] for recent results on error
bounds for rounding approaches and [34] for a MINLP survey), the particular setting with
dependent (states) and independent (controls) variables allows the derivation of a priori
bounds [35]. As specified in Section 4, the difference between state trajectories xp¨q and yp¨q,
which are the unique solutions of the initial value problems for given control functions ω
and α, respectively, is bounded for a constant C and all t P T by:

||xptq ´ yptq|| ď C max
tPT

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż t

t0

αpτq ´ωpτq dτ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

. (1)

This motivates us to solve the relaxed problem (OCP) to obtain αp¨q, to calculate an
integer control function ω in a second step such that the maximum on the right-hand side
of (1) is as small as possible, and to obtain yp¨q by solving the initial value problem (IVP).
The continuity of constraint and objective functions implies “good” behavior with respect
to feasibility and objective function value in the original MIOCP. The combinatorial integral
approximation (CIA) problem in the second step can be formulated as an MILP [32] and can
be solved either with generic MILP methods, with specifically tailored branch-and-bound
methods [32], and in some cases even in linear time, with the sum-up rounding (SUR)
method [27].

1.3. Review of the State of the Art

The idea of CIA decomposition has also been used in the context of hyperbolic partial
differential equations [36,37], differential-algebraic equation systems [19], with additional
combinatorial constraints [10,32], and based on discrete time formulations [10]. Recently,
algorithms to solve CIA problems have been implemented into the software package
pycombina [38].

In this publication, we generalize all of these approaches by presenting alternative
ways to calculate ω based on α, using different MILPs. We formulate them for the case of
initial value problems with ordinary differential equations, although they are applicable to
all mentioned variants in a straightforward way.

Our results are also independent of the method that is applied to solve the relaxed
problem (OCP). For the numerical results, we are going to use a first-discretize-then-optimize
approach with Radau collocation. First-discretize refers (a) to approximating the control
functions with parameterized basis functions, such as finitely many piecewise constant
functions, and (b) to relaxing path and control constraints from the domain of a time
horizon to finitely many time points. Then-optimize refers to solving the resulting finite di-
mensional optimization problem numerically to optimality. An overview of direct methods
for continuous optimal control problems can be found in, e.g., [39,40]. For comparison,
we also apply this approach directly to the MIOCP and solve the resulting mixed-integer
nonlinear program (MINLP) with the general purpose solver Bonmin.

For a general problem class of MIOCPs, the integer gap depends linearly on the
control discretization [41]. For many applications, this control discretization is not fixed,
but can be refined. Thus, the integer gap can be driven to zero (usually at the expense
of frequent switching). For practical reasons, good or even optimal solutions for a fixed
control discretization are of interest, which is our main focus.

Recently, the MIOCP class has been increasingly studied in the context of combinatorial
constraints that couple over time. For example, as part of the CIA decomposition, the
switching-cost aware rounding problem (SCARP) has been proposed to solve it [42,43].
In addition, the CIA decomposition has been studied in the context of multibang and
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total variation regularization [44,45]. Switching constraints have been also investigated for
mixed-integer partial differential equation optimal control problems [46,47]. Switching costs
can also be included into the switching time optimization approach based on cardinality
constraints [48].

1.4. Contributions

We derive different versions of the CIA problem, leading to multiple MILPs. Noting
that the computational effort to solve one MILP is usually small compared to the solution of
the relaxed nonlinear problem, and even smaller compared to the deterministic solution of
the original MIOCP, we propose solving several approximation problems. These solutions
are candidate solutions themselves, and can be recombined into new switching sequences.
We derive theoretical a priori bounds for them, discuss computational (dis)advantages, and
show numerically the improvement to existing decomposition approaches with respect to
objective function value, and to general-purpose MINLP solvers with respect to runtime.

1.5. Outline of the Article

We define the considered MIOCP class and propose a general decomposition frame-
work in Section 2. The algorithm consists of several MILP formulations, which are discussed
in Section 3. We discuss theoretical properties in Section 4. In Section 5, we look at strategies
that combine and improve existing binary control functions. In Section 6, we provide and
discuss numerical results for the MIOCP benchmark library [18]. Finally, we conclude the
article in Section 7, where we also summarize our findings.

2. Problem Class, Definitions, and Main Algorithm

We denote the considered time horizon by T :“ rt0, tfs Ă R, and write “for a.a. t P T ”
for all t P T , except on a set of measure zero. Let rns :“ t1, . . . , nu, rns0 :“ 0Y rns, for n P N.
The null vector is written as o. We are interested in the following class of mixed-integer
optimal control problems.

Definition 1. (MIOCP) We refer to the following control problem (2) as (MIOCP).

inf
x,ω

Φpxptfqq (2a)

s.t. 9xptq “ f0pt, xptqq `
nω
ÿ

i“1

ωiptq fipt, xptqq, for a.a. t P T , (2b)

xpt0q “ x0, (2c)

1 “
nω
ÿ

i“1

ωiptq for a.a. t P T , (2d)

ωptq P t0, 1unω for a.a. t P T , (2e)

o ď cpt, xptqq for a.a. t P T . (2f)

We minimize a Mayer term Φ P C1pRnx ,Rq over differential states x P W1,8pT ,Rnxq for
binary control functions ω P L8pT , t0, 1unω q. The system of ordinary differential equations (ODE),
(2b), is written using partial outer convexification to model the switched system, using a one-hot
encoding (1hot) constraint (2d), a drift term f0, and nω ě 2 functions fi, ref. [27], both out of
C0pRnx`1,Rnxq. We assume fixed initial values x0 P Rnx for the differential states. The functions
c P C1pRnx ,Rncq model nonlinear state inequalities.

In the following, we assume that (MIOCP) has an optimal solution, so that we can
write “min” instead of “inf”. We refer to [19,29,49] for a discussion of the generality of
(MIOCP) and extensions to cope with, e.g., Lagrange functionals, boundary and multi-point
constraints, vanishing constraints, free final time, control values, and the like. Particularly
interesting are continuous control functions u P L8pT ,Uq that often enter (2b) and (2f) in
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practical applications. From a theoretical point of view, in the interest of comparability, and
for computational speed, it is convenient to consider the continuous controls up¨q as fixed
to the solution that was obtained by solving the continuous relaxation of (MIOCP) in our
approach. It is also possible, though, and often makes sense in practice, to improve the
objective function value by reoptimizing u when (MIOCP) is evaluated for fixed ω. For
notational convenience and without loss of generality, we omit the continuous controls
u in the following. An evaluation of (MIOCP) for fixed ω is then the solution of an initial
value problem. We stress that there are only nω possible solutions for the integer part of
the problem due to the constraint (2d).

Our algorithm solves continuous relaxations of (MIOCP), defined as follows.

Definition 2. (OCP) We define (OCP) as the canonical relaxation of (MIOCP) with respect to (2e),
where we substitute ω P L8pT , t0, 1unω q for α P L8pT , r0, 1snω q.

The problem (OCP) in function space can be solved by different approaches, as men-
tioned above. For using MILPs to approximate control functions, we map between function
space and r0, 1snωˆM, using a time grid as follows.

Definition 3. (Gω, ∆, ϕ, ϕ´1, Ω, ΩM) Let the ordered set Gω :“ tt0 ă . . . ă tM “ tfu denote a
time grid with ∆j :“ tj`1 ´ tj and ∆max :“ maxj ∆j for j P rM´ 1s0. We define the mapping:

ϕ : r0, 1snωˆM Ñ L8pT , r0, 1snω q, α “ ϕpaq

using nω piecewise constant functions:

αiptq :“ ai,j, i P rnωs, t P rtj, tj`1q, j P rM´ 1s0, tj P Gω.

A mapping in reverse direction:

ϕ´1 : L8pT , r0, 1snω q Ñ r0, 1snωˆM, a “ ϕ´1pαq

is defined by extracting integrals on the grid Gω:

ai,j :“
1
∆j

ż tj`1

tj

αipτqdτ, i P rnωs, j P rM´ 1s0, tj P Gω.

We denote integrality and (2d) using the sets:

Ω :“

#

ω P L8pT , t0, 1unω q : 1 “
nω
ÿ

i“1

ωiptq for a.a. t P T
+

,

ΩM :“

#

w P t0, 1unωˆM : 1 “
nω
ÿ

i“1

wi,j for j P rM´ 1s0

+

.

To scale control variables, we are going to need function evaluations and adjoint (dual)
variables on the grid Gω.

Definition 4 (pλ̃, f̃ q). Let x˚ be the optimal solution of (OCP). The evaluated right-hand side
function terms t f̃i,j,kukPrnxs from (2b) are defined as the entries of:

Rnx Q f̃i,j :“
1
∆j

tj`1
ż

tj

fipτ, x˚pτqq dτ, i P rnωs, tj P Gω.
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We denote, by λ̃j,k P R, tj P Gω, k P rnxs, the discretized and evaluated dual variables of the
ODE constraints (2b) in (OCP).

Our decomposition algorithm is based on the algorithmic choices of the sets SCIA and
SREC, which we define next.

Definition 5 (SCIA, SREC). We introduce the set of CIA problems SCIA as:

SCIA :“ tpCIAmaxq, pCIA1q, pCIAmaxBq, pCIA1Bq, pλCIA1q, pλCIA1Bq,

pSCIAmaxq, pSCIA1q, pSCIAmaxBq, pSCIA1Bqu,

where we define the specific CIA problems in the next section. For a subset S̃CIA Ď SCIA, we denote,
with nCIA :“ |S̃CIA|, the number of different CIA problem formulations. Let the elements of S̃CIA be
numbered by 1, . . . , nCIA. Let the set SREC of recombination mappings Frec P SREC be defined via:

Frec :
ą

kPrnCIAs

ΩN Ñ ΩN , Frec
´

w1, . . . , wnCIA
¯

ÞÑ wrec, (3)

where wk denotes the optimal solution of the problem (milp)k
P S̃CIA.

We propose to use Algorithm 1 to approximate the solution of (MIOCP) efficiently
with a priori bounds. Relaxing (MIOCP) to (OCP) results in state and control trajectories
(line 1). We solve different MILPs to approximate the relaxed controls with binary ones
in lines 2–3. Their performance is evaluated in line 4 by calculating their corresponding
(feasible) state trajectories and objective values. In lines 6–7, we create new candidate
binary controls in several recombination heuristics based on the existing binary controls,
which we evaluate as well (line 8). As a final step, we select the best-performing binary
control as the solution in line 10.

Algorithm 1: Decomposition of (MIOCP).

Input : (MIOCP) instance, grid Gω, algorithmic choices of sets S̃CIA Ď SCIA and
S̃REC Ď SREC.

1 Solve (OCP) Ñ Φrel, x˚, α˚, a˚ “ ϕ´1pα˚q.
2 for milp P S̃CIA do
3 Solve milp with MILP solver a˚ Ñ wmilp;
4 Simulate (MIOCP) with fixed ωmilp :“ ϕpwmilpq Ñ Φmilp, x;
5 end
6 for Frec P S̃REC do
7 Create wrec using Frecpwmilpq, Φmilp from all milp P S̃CIA;
8 Simulate (MIOCP) with fixed ωrec :“ ϕpwrecq Ñ Φrec, x;
9 end

10 Find opt P S̃CIA Y S̃REC with Φopt “ min

#

min
milpPS̃CIA

Φmilp, min
FrecPS̃REC

Φrec

+

;

11 return: px, w, Φq “ pxopt, wopt, Φoptq;

The main idea of Algorithm 1 is to decouple controls and states. We approximate the
relaxed control function α˚ that is optimal for (OCP) with binary controls ω, such that a
good objective function value is obtained when (MIOCP) is evaluated for ω. Which MILPs
and recombination heuristics are used in the algorithm depends on the definition of the sets
S̃CIA and S̃REC, which we discuss in Sections 3 and 5. A theoretical motivation and error
bounds on the approximation quality are given in Section 4. Algorithm 1 is a generalization
of the decomposition approach in [27,32], for which S̃REC is empty and S̃CIA contains only
one CIA problem formulation.
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3. Combinatorial Integral Approximation MILPs

In the following, we define the MILP formulations of CIA type for SCIA in Algorithm 1.
CIA, λCIA, and SCIA refer to different scalings (Section 3.1), “1” and “max” to different
norms } ¨ } (Section 3.2), and the presence of “B” to a reversal of time (Section 3.3).

3.1. Combinatorial Integral Approximation and Scaled Variants

As part of the approximation step, we aim at finding binary control values that are
close to the relaxed values with respect to the accumulated difference over all grid points.
The following definition specifies the so-far-applied (CIA) problem together with two novel
variants. We let the vector norm } ¨ } be unspecified here, but discuss applicable norms later.

Definition 6 (θ˚CIA, θ˚SCIA, θ˚λCIA, cf. Definition 4.17 in [50] ). Let a˚ be the given optimal
control solution of (OCP), and let the evaluated model function values f̃ and dual variables λ̃ be
given as introduced in Definition 4. Consider a vector norm } ¨ }. We introduce the following
optimization problems:

θ˚CIA :“ min
wPΩN

max
jPrM´1s0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

lPrjs

pa˚¨,l ´w¨,lq∆l

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, (4)

θ˚SCIA :“ min
wPΩN

max
jPrM´1s0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

lPrjs

ÿ

iPrnωs

pa˚i,l ´wi,lq∆l f̃i,l

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, (5)

θ˚λCIA :“ min
wPΩN

max
jPrM´1s0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

kPrnxs

λ̃j,k
ÿ

lPrjs

ÿ

iPrnωs

pa˚i,l ´wi,lq∆l f̃i,l,k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

. (6)

3.2. Norm Dependent MILP Formulation

By introducing the auxiliary variable θ, we can reformulate (4) and (5) with the
maximum norm.

Definition 7. (CIAmax, SCIAmax) Let a˚ be the given optimal control solution of (OCP) and
let the evaluated model function values f̃ be given as introduced in Definition 4. We define
(CIAmax) as:

min
θě0,wPΩM

θ (7a)

s.t. θ ě ˘
l
ÿ

j“0

pa˚i,j ´wi,jq∆j, for i P rnωs, l P rM´ 1s0, (7b)

and (SCIAmax) as:

min
θě0,wPΩM

θ (8a)

s.t. θ ě ˘
l
ÿ

j“0

nω
ÿ

i“1

pa˚i,j ´wi,jq∆j f̃i,j,k, for k P rnxs, l P rM´ 1s0. (8b)

We introduce the MILP analogue formulations for the Manhattan norm with auxiliary
variables si,j ě 0, i P rnωs, j P rM ´ 1s0. In this way, we specify the norm choices for
Definition 6.
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Definition 8. (CIA1, SCIA1, λCIA1) Consider a˚ as the given optimal control solution of (OCP).
Let the evaluated model function values f̃ and dual variables λ̃ be given as introduced in Definition 4.
Based on the auxiliary variables si,l we define (CIA1) as:

min
θ,si,lě0,wPΩM

θ (9)

s.t. θ ě
nω
ÿ

i“1

si,l , for l P rM´ 1s0, (10)

si,l ě ˘

l
ÿ

j“0

pa˚i,j ´wi,jq∆j, for i P rnωs, l P rM´ 1s0. (11)

With a different dimension for sk,l , we define (SCIA1) as:

min
θ,sk,lě0,wPΩM

θ (12a)

s.t. θ ě
nx
ÿ

k“1

sk,l , for l P rM´ 1s0, (12b)

sk,l ě ˘

l
ÿ

j“0

nω
ÿ

i“1

pa˚i,j ´wi,jq∆j f̃i,j,k, for k P rnxs, l P rM´ 1s0. (12c)

Finally, we define (λCIA1) by modifying (12c) with the dual variables:

min
θ,sk,lě0,wPΩM

θ (13a)

s.t. θ ě
nx
ÿ

k“1

sk,l , for l P rM´ 1s0, (13b)

sk,l ě ˘λl,k ¨

l
ÿ

j“0

nω
ÿ

i“1

pa˚i,j ´wi,jq∆j f̃i,j,k, for k P rnxs, l P rM´ 1s0. (13c)

Of course, also other norms, such as the Euclidean norm, can be used. We do not
consider them here because of the resulting nonlinearity of the constraints.

3.3. Chronologically Ordered Constraints

We consider the possibility to modify the (CIA) problems by altering the chronological
order in the constraints for the accumulated difference }

ř

lPrjspa
˚
¨,l ´w¨,lq∆l} for j P rM´ 1s0.

We may use an arbitrary ordering of time intervals, instead of starting from the first interval
j “ 0. Here, we consider backward accumulation, starting from the interval with index
j “ M´ 1, i.e., rtM´1, tMs:

θ ě ˘
M´1
ÿ

j“l

pa˚i,j ´wi,jq∆j, for i P rnωs, l P rM´ 1s0. (14)

Let the problem where (14) replaces (7b) in (CIAmax) be denoted by (CIAmaxB). The
other introduced MILPs can be modified analogously with backward time accumulation
and are named accordingly; e.g., (SCIA1B) refers to (SCIA1) with backward accumulation.

3.4. Combinatorial Constraints

One advantage of using an MILP for obtaining binary controls after the relaxation step,
rather than using SUR, is the possibility to impose combinatorial constraints that couple
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over time. An example of such constraints is to limit the number of allowed switches
σmax P N between activated binary controls, which can be formulated as:

σmax ě
1
2

nω
ÿ

i“1

M´1
ÿ

j“1

|wi,j ´wi,j´1|. (15)

We will omit this constraint class in the next section, but refer to [51,52] for a priori
bounds and reformulations. Nevertheless, we are going to come back to these constraints
in the numerical experiments section for also testing the different MILP approaches in
this situation.

4. A Priori Bounds for CIA Decompositions

We revise results for the a priori bounds resulting from a CIA decomposition [41] and
extend them to alternative decompositions that may be used in SCIA in Algorithm 1. We
stress here that Manns et al. [53] have recently presented a proof of improved regularity
conditions. Nevertheless, we revise the theorem from [41] here, because it results in natural
algorithmic extensions.

4.1. Combinatorial Integral Approximation

We recapitulate a variant of Grönwall’s Lemma from [41], which is needed for the
main theorem.

Lemma 1 (A variant of Grönwall’s Lemma, see [41], Lemma 1). Let z1, z2 : T Ñ R be
real-valued integrable functions and let z2 also belong to L8pT ,Rq. If, for a constant L ě 0, the
following holds:

z1ptq ď z2ptq ` L
ż t

t0

z1pτq dτ for a.a. t P T ,

then we have:
z1ptq ď }z2}8 eLpt´t0q for a.a. t P T . (16)

Proof. See [41], proof of Lemma 1.

In the following results, we analyze the evolution of two trajectories, x and y, based
on the same ODE system (2b) but driven by two different controls, α and ω. The following
theorem gives a statement on the distance between the two trajectories depending on the
distance of the controls.

Theorem 1. Consider α and ω P Ω. We reuse the model functions f0, fi : T ˆRnx Ñ Rnx from
Definition 2 for i P rnωs. Let xp¨q and yp¨q be the unique solutions of the IVP:

9xptq “ f0pt, xptqq `
nω
ÿ

i“1

αiptq fipt, xptqq, xpt0q “ x0, (17a)

9yptq “ f0pt, yptqq `
nω
ÿ

i“1

ωiptq fipt, yptqq, ypt0q “ y0, (17b)

where x0, y0 P Rnx . Assume that there are positive constants L, C P R`, together with a vector
norm ||¨||, such that, for a.a., t P T holds:

|| fipt, xptqq ´ fipt, yptqq|| ď L||xptq ´ yptq||, for i P rnωs0, (17c)
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

d
dt

fipt, xptqq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C, for i P rnωs. (17d)
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Furthermore, let fip¨, xp¨qq, i P rnωs be essentially bounded by B P R` on T , and assume that
for all t P T . It holds that:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż t

t0

αpτq ´ωpτq dτ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď θ, (17e)

with the constant θ ě 0. Then, for a.a. t P T we also have:

||xptq ´ yptq|| ď p||x0 ´ y0|| ` θnωpB` Cpt´ t0qqqeLpt´t0q. (17f)

Proof. This Theorem is an (equivalent) reformulation of Theorem 2 from [41]. The only
differences are modified notations and the usage of fi, i P rnωs0 as differentiable mapping
instead of A in [41].

We first recognize that Theorem 1 is applicable for the CIA problem with any vector
norm, which can be guessed from the equivalence of norms.

Corollary 1 (Approximation bounds via (CIA), cf. Corollary 5.2 in [50]). Consider the
setting of Theorem 1; in particular, let the regularity assumptions on fi, i P rnωs0, hold. Assume
that x and yCIA are the solutions of the IVP (2b) and (2c), where x is based on a given relaxed control
a and yCIA is based on w˚, which is the optimal solution of (CIAno), no P tmax, 1u, with objective
value θ˚CIA from Definition 6. Then, the state approximation error is bounded for a.a. t P T by:

}xptq ´ yCIAptq} ď θ˚CIApB` Cpt´ t0qqeLpt´t0q. (18)

Proof. This corollary is a direct result from Theorem 1 with x0 “ y0. We note that θ˚CIA
represents the norm of the accumulated control deviation, which appears in the proof of
the Theorem and is bounded by θnω so that this replaced term is settled.

4.2. Scaled Combinatorial Integral Approximation

The proof of Theorem 1 contains a motivation for the (SCIA) problems as derived in
the following result.

Corollary 2 (Approximation bounds via (SCIA), cf. Corollary 5.3 in [50]). Consider the
setting of Theorem 1, and let } ¨ }no refer to the maximum or 1-norm, i.e., no P tmax, 1u. Assume
that x and yCIA are the solutions of the IVP (2b) and (2c), where x is based on a given a, and
yCIA is driven by w˚, which is the optimal solution of (SCIAno). Then, for a.a. t P T , the state
approximation error is bounded by:

}xptq ´ ySCIAptq} ď θ˚SCIAeLpt´t0q ď θ˚CIApB` Cpt´ t0qqeLpt´t0q, (19)

where θ˚SCIA is the optimal objective value of (SCIAno), no P tmax, 1u.

Proof. From the second and last inequalities in the proof of Theorem 2 from [41] and
Corollary 1, it follows that, for a.a. t P T and any ω P Ω:

›

›

›

›

›

ż t

t0

nω
ÿ

i“1

pαipτq ´ωipτqq fipxpτqq dτ

›

›

›

›

›

ď

›

›

›

›

ż t

t0

αpτq ´ωpτq dτ

›

›

›

›

pB` Cpt´ t0qq.
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Let ωCIA denote the control based on the optimal solution w˚ of (CIAno), no P tmax, 1u.
We take the minimum in the above inequality and obtain:

θ˚SCIA ď

›

›

›

›

›

ż t

t0

nω
ÿ

i“1

pαipτq ´ωCIA
i pτqq fipxpτqq dτ

›

›

›

›

›

ď θ˚CIApB` Cpt´ t0qq.

We conclude from Corollary 1 that the approximation and convergence results of the
decomposition still hold if (SCIAno), no P tmax, 1u, is used to construct the binary control.
The approximation bound based on (SCIAno) is tighter than the existing (CIAno)-related
bound. Hence, it is an obvious choice to consult these alternative binary controls for an
approximation study. Ideally, the binary control constructed in this way will result in an
improved state approximation and objective value for (MIOCP). However, we oppose this
hope next.

Remark 1 (Construction by (SCIA) does not guarantee superior quality). The binary con-
trol based on the optimal solution of (SCIAno), no P tmax, 1u and used in the decomposition does
not necessarily result in a state approximation or objective value that is superior to that obtained
using (CIAno). It may hold that:

}xptq ´ yCIAptq} ă }xptq ´ ySCIAptq} ă θ˚SCIA, for some t P T ,

where we use the notation from Corollaries 1 and 2. Because of a possible non-convex objective,
the computed trajectories may lead to a superior objective value for the solution based on (CIAno),
compared with that based on (SCIAno), even if the above inequality does not hold.

4.3. λ-Combinatorial Integral Approximation

The λ-approximation stems from the aforementioned theorem of approximating dif-
ferential states, but with assessing the difference of the cost-to-go function. We define it in
a more general MIOCP setting with a Bolza objective:

Φpxptfqq `

ż

tPT

Lpxpτq, ωpτqq dτ, (20)

where L P C1pRnx`1 ˆRnω ,Rq.

Definition 9 (Cost-to-go function by Hamilton–Jacobi–Bellman). Let the cost-to-go func-
tion J P L8pRnx ˆ T ,Rq with Bolza objective (20) be implicitly defined as:

Jpxptfq, tfq “ Φpxptfqq,

´
B J
Bt
pxptq, tq “ min

ωPΩ
Lpxptq, ωptqq `

B J
Bx
pxptq, tq

˜

f0pt, xptqq `
nω
ÿ

i“1

ωiptq fipt, xptqq

¸

.

We recognize that B J
Bx can be interpreted as Lagrange multiplier or dual variables of

the ODE constraints in (MIOCP). Therefore, we write, in short, λptq instead of B J
Bx . With the

groundwork above, we are ready to deduce the corresponding bound.

Corollary 3 (Approximation bounds via (λCIA), cf. Corollary 5.4 in [50]). Consider the
setting of Theorem 1. In particular, let the regularity assumptions (17d), (17c), and the essential
boundedness of f be true. Assume that x and yλCIA are the solutions of the IVP (2b) and (2c),
where x is based on a given a, and yλCIA is based on w˚, which is the optimal solution of (λCIA1).
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Let J be the cost-to-go function as defined in Definition 9 for (MIOCP) and λptq be the adjoint
vector at t P T for the ODE system (2b). For a.a. t P T , it follows that:

|Jpxptq, tq ´ JpyλCIAptq, tq| ď θ˚λCIAeLpt´t0q ` o
´

}xptq ´ yλCIAptq}2
¯

,

where o refers to Landau’s little-o notation.

Proof. Let us consider the difference of the cost-to-go functions by approximation with a
partial first-order Taylor expansion around Jpxptq, tq. We perform the approximation with
respect to the trajectories x, yλCIA. Thus, we apply Taylor’s theorem for t P T :

JpyλCIAptq, tq ´ Jpxptq, tq “
B J
Bx
pxptq, tqpyλCIAptq ´ xptqq ` o

´

||yλCIAptq ´ xptq||2
¯

. (21)

As pointed out above, the dual variables of the ODE constraint (2b) are equal to dJ
dx pxptq, tq.

We use the notation }xptq}λptq :“
ˇ

ˇ

ˇ

ř

kPrnxs
λkptqxkptq

ˇ

ˇ

ˇ
for t P T , which defines a semi-norm.

Next, for a.a. t P T , we transfer the proof of Theorem 1 to this notation and to (21):

|JpyλCIAptq, tq ´ Jpxptq, tq| ď }yλCIA ´ x}λptq ` o
´

||yλCIA ´ x||2
¯

ď . . . (as in proof of Theorem 1)

ď ||y0 ´ x0||λptq ` L
ż t

t0

||yλCIApτq ´ xpτq dτ||λptq

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nω
ÿ

i“1

ż t

t0

pωλCIA
i pτq ´ αipτqq ¨ fipτ, xpτqq dτ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

λptq

` o
´

||yλCIA ´ x||2
¯

.

The third summand of the last inequality is equal to the objective θ˚λCIA that is to be
minimized in (λCIA1). Finally, we apply x0 “ y0 and use the Grönwall Lemma 1 with the
integrable functions:

z1ptq “ }x´ yλCIA}λptq, z2ptq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nω
ÿ

i“1

ż t

t0

pωλCIA
i pτq ´ αipτqq ¨ fipτ, xpτqq dτ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

λptq

,

so that the claim is proven.

Due to the first-order Taylor approximation, (λCIA1) requires that the relaxed trajec-
tory x can be well approximated by a trajectory y that is based on binary controls. On the
other hand, if there is no such trajectory in a close neighborhood of x, then (λCIA1) may
have an unintuitive binary control as its optimal solution.

4.4. Backwards Accumulating Constraints

If we adapt the MIOCP instance with fixed final states xf P Rnx and with a Lagrangian
objective type, we can also apply this modified setting to Theorem 1. We express this issue
in the following corollary.

Corollary 4 (Approximation bounds via backward constraints). Consider the setting of
Theorem 1. Let x and y be the state trajectory solutions of the terminal value problems (2b), with
xpt f q “ x f and ypt f q “ y f for x f , y f P Rnx . Assume that for all t P T , θb P R`, it holds that:

›

›

›

›

ż t f

t
αpτq ´ωpτq dτ

›

›

›

›

ď θb. (22)
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Then, for a.a., t P T it also holds that:

||xptq ´ yptq|| ď
´
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
x f ´ y f

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
` θbnω

´

B` Cpt f ´ tq
¯¯

eLpt f´tq. (23)

Proof. We apply the proof of Theorem 1 to the altered setting, in which we integrate over
rt, tfs instead of integrating over rt0, ts.

With the assumption that }xpt f q ´ ypt f q} is small, the backward (CIA) rounding prob-
lem approach from Section 3.3 is not only applicable for terminal constraint problems
but is also appropriate for an (MIOCP) instance with a given initial value x0 and variable
final-state values.

4.5. Connection to Decomposition Algorithm and Optimization Problem

As a last step in this chapter, the previous results are related to (MIOCP) and the
decomposition Algorithm 1.

Remark 2 (Arbitrary close approximation of (OCP) solution). We could extend Algorithm 1
with an outer loop that checks if Φopt is sufficiently close to Φrel, and if not, we would refine the
grid Gω . In [29], an arbitrary close approximation of the (OCP) solution has been deduced with this
procedure and based on (CIA). With the assumption of Φp¨q, cp¨q being continuous and that there
exists a feasible trajectory x for (OCP), it follows that for any ε ą 0 there exists a grid Gω, with
grid size ∆max, such that there is a feasible trajectory typtjqutjPGω

with:

|Φpxptfqq ´Φpyptfqq| ď ε,

}cptj, xptjqq ´ cptj, yptjqq} ď ε.

The proof uses the sum-up rounding scheme that derives the binary control approximation
with θ˚CIA ď Constpnωq∆max [35,41], where Constpnωq is a constant depending on nω . In case we
extend Algorithm 1 with the refinement procedure, and if (CIA) or (SCIA) are chosen to be elements
of SCIA, the same approximation result holds.

Corollary 5 (Solution accuracy of differential states of Algorithm 1). Let θ˚SCIA,max, θ˚SCIA,1
be the optimal objective values of (SCIAmax) and (SCIA1), respectively. Consider the setting of
Theorem 1. In particular, let the regularity assumptions (17d), (17c), and essential boundedness of
f be true. Assume that x and y are the solutions of the IVP (2b) and (2c), where x is based on a
given a, and y is based on Algorithm 1. Let Gω be the applied grid. It follows for ti P Gω that:

||yptiq ´ xptiq||j ď
´

||y0 ´ x0||j ` θ˚SCIA,j

¯

eLpti´t0q, j P tmax, 1u. (24)

Proof. The claim is a direct result of Corollary 2.

We have deliberately chosen the tightest bound from the previous corollaries, but
could also use others. The received grid-specific rounding error bounds aim primarily at
approximating the differential states. With (λCIA) or Lipschitz continuity of the objective,
there are also tools to discuss the rounding error of the objectives. The recombination
heuristics work in the area of objective approximation and, hence, are to be discussed next.

5. Recombination Heuristics

We present several recombination heuristics that recombine different binary controls
w to new candidate solutions with potentially smaller objective values. The general frame-
work is open to apply different heuristics, such as genetic algorithms [54], that are not
introduced in this article.
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5.1. GreedyTime

Algorithm 2 is a routine for using the MILP solutions in a greedy pattern with the aim
of constructing binary controls w that exhibit an improved objective value Φpϕpwqq.

Algorithm 2: GreedyTime heuristic for finding improved w variables.

Input : Control grid Gω, binary control vectors wmilp as optimal solutions of
milp P SCIA, corresponding objectives Φpϕpwmilpqq.

1 for j P rM´ 1s0 do
2 for pm1, m2q P SCIA ˆ SCIA, m1 ‰ m2, wm1

j ‰ wm2
j do

3 Set rwm1
k “ wm1

k , k ‰ j, k P rM´ 1s0 and rwm1
j “ wm2

j ;

4 Evaluate (MIOCP) with fixed rωm1 “ ϕprwm1q Ñ Φpϕprwm1qq.
5 if Φpϕprwm1qq ď Φpϕpwm1qq then
6 Set wm1

j “ rwm1
j and Φpϕpwm1qq “ Φpϕprwm1qq.

7 end
8 end
9 end

10 return: Φpϕpwrecqq :“ min
milpPSCIA

Φpϕpwmilpqq.

In GreedyTime, we iterate over all intervals j P rM´ 1s0 in chronological order (line 1).
On every interval, we check if there are MILP pairs pm1, m2q that differ in their binary
control vectors in line 2. We recombine for each of these pairs the m1 solution with the
binary control vector from m2 at interval j to construct a temporary control solution rwm1

(line 3). Based on this construction, we evaluate the objective of this new control solution
in line 4 and overwrite the binary control wm1 with the recombined solution rwm1 if that
latter results in an improved objective value (lines 5–6). We proceed in the same way with
the second solution m2 when the (same) pair pm2, m1q appears in the inner loop.

A large number of calculated MILPs may result in a large number of pairs with unequal
control solutions. In this case, it is advisable to only swap the wm2 solution with the currently
smallest objective value, instead of swapping and testing each variation for every wm1 .

If the control problem at hand involves no continuous controls u, it is straightforward
to evaluate the (MIOCP) in line 4 with the previously found and fixed x until grid interval
j. This speeds up the process in problems with fine grids and numerous MILP solutions,
because (MIOCP) needs to be solved iteratively. Moreover, if an MILP solution m1 differs
from two MILPs m2, m3 with identical binary control vectors wm2

¨,j “ wm3
¨,j , it is sufficient to

test the recombination with only one of the two. We illustrate an example recombination
step for the pairs (CIA, SCIA) and (SCIA, CIA) in Figure 1.

Remark 3 (Modifications of GreedyTime).

1. We can also apply the outer loop in Algorithm 2 backward in time and name the backward
version GreedyTimeBackward;

2. We may consider only singular arcs, instead of looping over all intervals, since the constructed
binary controls are likely to be equal on bang–bang arcs. With singular arcs, we mean the
intervals where ε ă a˚i,j ă 1´ ε holds for the optimal control solution a˚ of (OCP), with a
certain threshold ε ą 0;

3. Greedy-cost-to-go modification: Assume we have obtained the dual variables λ̃j,k, j P
rM ´ 1s0, k P rnxs, of the state equations of (OCP). Then, re-sort the intervals rM ´ 1s0
in descending order according to

ř

kPrnxs
|λ̃j,k|, j P rM´ 1s0. In this way, we construct a

new ordered grid Gλ
ω to be iterated over in Algorithm 2.
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fix 
evaluate

SCIA

CIA

0

0

1

1

fix 

...

...

evaluate

Figure 1. Example visualization of the GreedyTime algorithm. We use two candidate control
solutions, here from CIA and SCIA, to construct new candidates. We perform an enumeration
between 0 and 1 at all times tj when the input vectors differ. Then, the two candidate solutions w
are fixed and we evaluate (MIOCP) for both vectors. We compare the resulting objective function
values with their previous values. Moreover, the binary wj values with the lower objective values
are fixed in the candidate solutions. This procedure is repeated on the next grid point with unequal
candidate solutions.

5.2. Singular Arc Recombination

If a˚ is (almost) binary on certain intervals, w should typically attain these binary
values as well as an optimal solution of a CIA rounding problem—regardless of the MILP
choice. To this end, we formalize singular arcs of a˚ as sets of consecutive intervals on
which the relaxed control takes values smaller than ε or larger than 1´ ε. Here, ε ą 0 is a
chosen small tolerance.

Definition 10 (Number of singular arcs nsing, singular arc interval sets J sing
l ). Consider

a˚ as the optimal control solution of (OCP) and a small chosen tolerance ε ą 0. Let kend
0 :“ ´1.

We introduce the following singular arc interval index sets iteratively for l ě 1:

kstart
l :“ min

!

j P rM´ 1s0 | j ą kend
l´1 ^ Di P rnωs : a˚i,j P rε, 1´ εs

)

,

kend
l :“ max

 

j P rM´ 1s0 | @r “ kstart
l , . . . , j Di P rnωs : a˚i,r P rε, 1´ εs

(

,

J sing
l “

!

kstart
l , . . . , kend

l

)

.

Let the number of singular arcs nsing be defined as:

nsing :“ arg max
lPN

!

kend
l

)

.

We aim to recombine singular arc realizations of the different MILP solutions from
SCIA, which is performed in Algorithm 3.

We initialize the set of visited binary controls as empty in the algorithm and set the
so-far best objective value Φrec to infinity (line 1). Next, the temporary binary control wtmp

on the bang–bang arcs is set as equal to the rounded relaxed control (line 2). In line 3,
we test every possible variation of the different MILP solutions on the singular arcs. In
this way, we fill up the singular arcs of the temporary binary control wtmp (line 4). The
constructed control wtmp is checked if it has already been visited (line 5), and if so, the
algorithm jumps to the next iteration (line 6). Otherwise, we include wtmp in the set of
visited controls (line 8), and we evaluate its objective value (line 9). When a recombination
has an improved objective value than the so-far best control, it will be saved as the so-far
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best control (lines 10–12). We illustrate the algorithm in Figure 2.

Algorithm 3: Singular arc block heuristic for recombining binary controls wm,
m P SCIA.

Input : Grid Gω, small singular arc tolerance ε ą 0, singular arcs interval sets
J sing

l , relaxed control values form (OCP) a˚, binary controls
wm, m P SCIA, corresponding objective values Φpϕpwmqq.

1 Set Svis “ H and Φrec “ 8;

2 Set wtmp
i,j “ ta˚i,j ` εu, for i P rnωs, j P rM´ 1s0z

!

J sing
l

)

lPrnsings
;

3 for pm1, . . . , mnsingq P
Ś

lPrnsings

SCIA do

4 Set wtmp
¨,j “ wml

¨,j , for j P J sing
l , l P rnsings;

5 if wtmp P Svis then
6 continue;
7 end
8 else
9 Set Svis “ Svis Y twtmpu;

10 Evaluate (MIOCP) with w “ wtmp fixedÑ Φ
`

ϕ
`

wtmp˘˘;
11 if Φ

`

ϕ
`

wtmp˘˘ ă Φrec then
12 Set Φrec “ Φ

`

ϕ
`

wtmp˘˘;
13 Set wrec “ wtmp;
14 end
15 end
16 end
17 return: wrec together with Φrec.

Recombination

1st sing.

arc

2nd sing. arc 3rd sing.

arc

1st sing.

arc

2nd sing. arc 3rd sing.

arc

SCIACIA

1

0

1

0

Figure 2. Visualization of the singular arc block recombination heuristic for two MILP control vectors
(which we name CIA and SCIA) with three singular arcs. Every possible variation from the singular
arcs and candidate controls is generated and we evaluate (MIOCP) for each of the constructed
variation. The minimal objective value of all variations represents the heuristic’s result.

We have to take care of the number of possible variations of singular blocks and MILP
solutions |SCIA|narc to avoid a combinatorial explosion. Therefore, it is advisable to choose
S̃CIA in Algorithm 1 with a small number of MILPs. Only a few singular arcs result usually
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after solving (OCP). We may modify Algorithm 3 to be greedy, i.e., to apply the idea of
GreedyTime on arcs instead of on single intervals, if there are more than four singular arcs.

The singular arc recombination yields an objective value that is at least as good as those
previously constructed via the MILPs. However, there currently exists no framework for
quantifying these possible improvements in terms of new rounding errors of the objective.

6. Computational Results
6.1. Software Implementation and Instances

We implemented Algorithm 1 in AMPL [55] using the code ampl_mintoc, which is a
modeling framework to solve optimal control problems. It features different discretiza-
tion schemes of ODEs, though we used only a Radau collocation from [39]. The tool is
advantageous for our purpose, since it includes automatic differentiation, interfaces to
MILP solvers, and its problem formulation stays close to mathematics. In addition, AMPL
provides the dual variables λ. Throughout the numerical study, we applied Gurobi 8.1 as
the MILP solver and IPOPT 3.12.4 as the NLP solver, with default settings in each case, to
solve the discretized (OCP). We assumed that the choice of the MILP solver has little influ-
ence on solution quality and verified this by testing also with CPLEX 12.9. We tested our
algorithms also with CasADi and received similar results as with ampl_mintoc. All results
were obtained on a workstation with four Intel i5-4210U CPUs (1.7 GHz) and 7.7 GB RAM.

We included MIOCPs from the benchmark collection site mintoc.de [18] in our nu-
merical study, which we specify further in the following subsections. For these problems,
we chose a differential states discretization with N intervals such that it was fine enough
respect to the objective value. In this way, the objective value differs only to the fifth
decimal place, with respect to a finer discretization for constant M. Afterwards, we varied
M with fixed N in order to construct different instances. We refer to Appendix A for further
details. Solving the binary approximation problem and then solving the MIOCP with
fixed binary controls might result in infeasible solutions for problems involving path or
terminal constraints. To this end, we relaxed these constraints and applied a merit function
that penalizes constraint violation to be added to the objective with a sufficiently high
penalty factor.

6.2. Scaled Combinatorial Integral Approximation

Our hypothesis is that the MILPs based on a scaled combinatorial integral approxima-
tion perform the best on instances where the binary control enters the control dependent
right-hand side terms fi of the ODE in an affine way, i.e.,:

9xptq “ f0pt, xptqq `
nω
ÿ

i“1

ωiptqci, f or a.a. t P T , (25)

where ci P R. On the other hand, if fi depends on xptq, it may change rapidly over time. To
this end, this results in possibly inaccurate ω solutions, since we use only the discretized
state trajectory xptq value. The MIOCPs “Double tank (Multimode)” and “Lotka–Volterra
(absolute fishing variant)” are identified as candidate problems with the above right-hand
side structure and constructed their solutions for different discretizations and both with
and without the combinatorial constraint (15); see Appendix A for details. The results are
presented in Figure 3.

We chose to evaluate the MIOCP solutions according to the distance in the } ¨ }8-norm
of the differential state trajectories corresponding to either binary or relaxed controls. We
argued in Section 4 that the CIA decomposition is built on this distance, and, particu-
larly, the proximity of objective values and constraint satisfaction follows as derived in
Section 4.5. The differential state trajectories based on the (SCIA1) and (SCIAmax) solutions
are significantly closer to the relaxed solution compared with their CIA counterparts, as
shown in the performance plot. There are hardly differences between } ¨ }1- and } ¨ }8-norm
results, although a tendency can be detected of better-performing } ¨ }8 variants.
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We examined whether the (SCIA1) and (SCIAmax) are outperformed by (CIA1) or
(CIAmax), if the state trajectory distance is measured in } ¨ }1-norm, or if the objective value
deviation to the relaxed solution is taken into account, but the SCIA variants remained the
clear winners. Analogously, the result remains similar when comparing the algorithms
solely on instances (not) including combinatorial constraints.

10−2 10−1 100
Deviation from state trajectory x(t) of relaxed sol tion: ||x(t) −y(t)||∞
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Figure 3. Performance profile comparing the deviation of differential states based on SCIA and CIA
solutions. Relaxed solutions are shown in maximum norm and log-scale. The results are based on
the instances “Double tank (Multimode)” and “Lotka–Volterra (absolute fishing variant)” from the
mintoc.de benchmark library. Using (SCIA1) or (SCIAmax) can improve the performance of the CIA
decomposition significantly.

6.3. λ-Combinatorial Integral Approximation

We derived (λCIA) as an approximation of the cost-to-go function difference to the
relaxed solution. Since this approximation is linear, the standard (CIA) approach is more
suitable on most of the (nonlinear) MIOCPs. Our hypothesis is that the situation is dif-
ferent when a regularization term enters the objective function, accounting for the cost of
activating binary controls in the form of, e.g.,:

Φpxptfqq `

ż

tPT

nω
ÿ

i“1

ωipτqci dτ,

where ci P R. The problem “Quadrotor (binary variant)” includes a cost function, where
the controls enter in the above form, so that we used it with different discretizations and
both with and without the combinatorial constraint (15) for comparing the (λCIA) solutions
with the ones obtained via (CIA). We present the computation results in Figure 4.

In contrast to the previous section, we compared here the objective deviations from
the relaxed solution in percentages, since the λ-combinatorial integral approximation
aims directly at improving the objective values. However, we remark that the latter
algorithm performs worse than (CIA1) and (CIAmax) if the distance to the relaxed solution
is measured in differential state space. The performance plot shows that (λCIA) provides
solutions with improved objective values on some instances, but on many others it does not.
Since (λCIA) turned out to provide even weaker approximations of the relaxed solutions
for other MIOCPs, as will be shown in Section 6.5, we do not recommend to use it in general
as a single MILP approximation step. It serves, however, as beneficial candidate solution
for recombination and might be useful for not-yet-explored problem classes.
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Figure 4. Performance profile comparing objective deviation from the relaxed solution in percentage
and log-scale of λ-CIA and CIA solutions. The results are based on the instance “Quadrotor (binary
variant)” from the mintoc.de benchmark library. (λCIA) appeared to provide no clear improvement
compared with the (CIA) solutions.

6.4. Backwards Accumulating Constraints

Our hypothesis for the MILP variants based on backwards accumulated constraints
is that they are beneficial if the MIOCP involves terminal equality constraints on the
differential states. Because the deviation to the relaxed solution can become large, the
standard (CIAmax) approach may construct a solution that does not satisfy this constraint.
Nevertheless, the direct incorporation of terminal constraints into the MIOCP may lead
to numerical difficulties already for the relaxed problem. To this end, we considered soft
constraints, meaning that we introduce slack variables in order to penalize a deviation
of the differential states from a desired terminal value. We identified the MIOCP “Lotka–
Volterra (terminal constraint violation)” as a candidate problem and calculated its solutions
for different discretizations and both with and without the combinatorial constraint (15).
We illustrate the objective deviation from the relaxed solution in percentage of (CIA) and
its backward variant solutions in Figure 5.
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Figure 5. Performance profile comparing objective deviation from the relaxed solution in percentage
and log-scale of (CIA) and its backward variant solutions. The results are based on the instance
“Lotka–Volterra (terminal constraint violation)” from the mintoc.de benchmark library. Using (CIA1B)
or (CIAmaxB) can improve the performance of the CIA decomposition significantly.

We chose the objective deviation as the performance measure for our comparison
study because the objective accounts for a violation of the terminal constraints via a slack
variable penalty term. The graphs of (CIAmaxB) and (CIA1B) indicate that their respective
MIOCP solutions involve smaller objective values than their forward CIA counterparts.
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We observed that this result seems to be independent from the chosen norm, since the
performance differences of (CIAmaxB) to (CIA1B) are neglectable.

6.5. Recombination Heuristics

We used the MILP solutions by (CIAmax), (CIA1), (SCIAmax), (λCIA1), and (CIA-
maxB) as a base for running the recombination heuristics on a set of 13 MIOCPs from the
benchmark collection site mintoc.de with different discretizations (see Appendix A for
details). The box plot in Figure 6 illustrates the numerical results with respect to objective
deviation of each algorithm to the relaxed solution in percentages.
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Figure 6. Box plot comparing objective deviation from the relaxed solution in percentage and log-
scale of several MILP (marked in blue) and recombination heuristic (marked in red) solutions. The
results are based on instances from the mintoc.de benchmark library. The box borders are 1/4 and
3/4-quantiles, whereas the whiskers represent 1/20 and 19/20-quantiles. We visualize the median
values by black lines in the box and additionally display them numerically above the box. We
represent the average values of the respective algorithms by red asterisks and the outliers by black
crosses. The boxes of recombination strategies are shifted towards lower objective values compared
with (CIA) algorithms and, thus, can improve the CIA decomposition performance significantly.

The boxes including median values of the SCIA and backwards approaches appear
to be slightly larger and their mean values and their outliers a bit smaller, respectively,
than the ones of the (CIA) MILPs. The numerical study revealed several instances where
(SCIAmax) or (SCIA1) ran into a binary solution with active controls on some intervals with
relaxed values close to zero. Under the assumption that the combinatorial approximation is
conducted mainly on singular arcs, these cases might be called degenerated. We experienced
underperforming objective values for SCIA in case of degenerated controls, which explains
some of the underperforming instances. We conclude that (SCIA1), (SCIAmax), and
(CIAmaxB) should be used with caution. For specific problem classes, as shown in the
previous chapters, they can be very helpful. Here, we have not specifically selected the
problems, and on this general problem class there is no guarantee that these algorithms
provide any real improvement.

The solutions of (λCIA1) clearly underperform, but we stress, as mentioned in Section 6.3,
their importance for recombination. As a comparative calculation, we have also computed
the solutions based on SUR and see that they provide similarly good, albeit somewhat
worse, solutions compared with (CIA1) and (CIAmax). Note that depending on the selected
algorithm, some instances resulted in a deviation of more than 100%, which can be explained
by highly penalized infeasible solutions of path- or terminal-constrained problems.
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The depicted recombination heuristics provide significantly better solutions in terms
of the objective than the MILP-constructed binary solutions. The median values are reduced
by a factor of about 2 (ArcRecombination) to a factor of 3 (GreedyTime) in comparison with
(CIA). The other characteristics such as mean values, box borders, and outliers also reflect
the improvements. Particularly noteworthy is the GreedyTime heuristic, which is robust
against outliers as well as constructs on average solutions with small objective values. The
ArcRecombination selects the solution of the MILP algorithms with the smallest objective
value in the case of only one singular arc. Since many of the selected problems have only
one singular arc, the box plot illustrates that this minimum over all MILPs can already
provide a significant improvement.

6.6. Runtime Evaluation

Figure 7 shows exemplarily the relationship between runtime and objective function
values for the Lotka–Volterra multimode problem with N = 12,000 and varying M. We
compare (CIAmax) values both with GreedyTime and the solutions obtained by the MINLP
solver Bonmin 1.8.6. For a fair comparison, we run Bonmin with its four different main
algorithms, B-BB, B-OA, B-QG, and B-Hyb, and depicted the shortest runtime of these algo-
rithms. Elapsed real time from AMPL represents runtime in our computations, since CPU
time appeared to be very similar for our Bonmin calculations, and Gurobi, on the other
hand, is known to be a multi-threaded solver. First of all, the illustration shows that the
objective spread to the relaxed solution vanished with increasing M—regardless of the
selected approach. Second, CIA was, for some instances, already quite close to Bonmin
(M “ 25, 50) in terms of objective quality, so GreedyTime cannot improve much. For other
discretizations with a considerable gap between CIA and Bonmin solution, GreedyTime
could close most of this gap while being two orders of magnitude faster than Bonmin.
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Figure 7. Log plot of run time and objective value deviation from the relaxed solution of the
constructed solutions for different approaches and for the Lotka–Volterra multimode problem, with
differential state discretization N = 12,000. The numbers in the plot indicate the applied corresponding
number of control grid points M. We illustrate the outcomes of the solutions constructed by (CIAmax),
OptpSCIAq, the GreedyTime recombination heuristic, and the MINLP solver Bonmin. By OptpSCIAq,
we denote the best objective value outcome of over all MILP solutions. For each control discretization,
we connect the outcomes of the four approaches with lines in order to compare the behavior for
different discretizations. One observes the convergence of all approaches towards the lower bound
provided by the relaxed solution and the closure of the gap between (CIAmax) and Bonmin solutions
for a fixed discretization. GreedyTime is roughly two orders of magnitude slower than (CIAmax),
but is faster than Bonmin.
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The average runtime over all instances for (CIAmax) was about a few seconds and
increased slightly for (SCIAmax); see Appendix A.2. Gurobi needed on average more than
one minute for the MILPs with 1-norm and thus considerably more time. For instances
involving a fine discretization, the runtime increased enormously, so we set a time limit of
30 min.

We remark that the greedy heuristics and the ArcRecombination are to be used cau-
tiously, because an input of many MILPs leads to a high number of recombinations that
have to be evaluated. ArcRecombination is relatively inexpensive and offers a solution that
is at least as good as the best MILP. The algorithm is most beneficial in cases of several
singular arcs, in contrast to most applied problem instances where there is only one arc.
The greedy algorithm variants are quite expensive (run times of up to 15 min), yet provide
solutions with objective function values very close to those of the relaxed problem.

A way to significantly reduce the computation time of the MILPs is to apply branch-
and-bound [32] or to use SUR for constructing approximate solutions. These algorithms
are implemented in the open-source software package pycombina (see https://github.com/
adbuerger/pycombina) (accessed on 14 February 2022) [56] and might be adapted to the
scaled MILP case as part of a future study. If the binary controls enter linearly into the
dynamics, as in Equation (25), then the modification is straightforward, since only all
differences pai ´ wiq have to be scaled with the factors ci. Finally, run times of days, or
even weeks when it comes to the MINLP solver, cast a positive light on the proposed
decomposition algorithm including recombination.

7. Summary and Conclusions

We have extended the decomposition approach based on combinatorial integral ap-
proximation [32], using multiple MILP formulations and recombination heuristics in an
outer loop. At the price of additional MILP solutions and MIOCP evaluations, we obtain
an improvement of the objective function value for every fixed control discretization grid.

A numerical study with benchmark problems shows that the novel MILP solutions
indeed improve the existing CIA solutions in terms of objective value on specific prob-
lem classes. We conclude that the CIA decomposition can be reasonably modified for
certain MIOC subproblem classes. Furthermore, the computational results for a set of
non-specific MIOCPs resulted in a substantial improvement of the CIA solution through
recombination strategies.

The main added value of this study is a decomposition algorithm that works much
faster than Bonmin, but still offers qualitatively similar solutions and performs on average
better than the existing (CIA) approach. The framework is open to extensions, both on the
MILP and on the post-processing level.

Additional work is necessary to incorporate other constraints, such as vanishing
constraints, to derive further tailored MILP formulations for specific problem classes and to
develop numerical algorithms that generalize SUR and/or branch-and-bound algorithms
to the various MILP formulations.

Furthermore, it would be interesting to include and to compare the results of this
study computationally with recent approaches for the CIA decomposition [43,44].

Author Contributions: C.Z. conducted the implementations and the numerical study, and was
responsible for writing most of the article. T.W. contributed major algorithmic ideas and proofread
the manuscript. S.S. contributed to the research design and discussions of the algorithmic ideas and
wrote parts of the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by European Research Council grant number 647573.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

https://github.com/adbuerger/pycombina
https://github.com/adbuerger/pycombina


Algorithms 2022, 15, 121 22 of 26

Acknowledgments: We acknowledge the financial support by the Federal Ministry of Education
and Research of Germany with in the project P2Chem (support code 05M18OCB). This project has
received funding from the European Research Council (ERC, grant agreement No 647573) under
the European Union’s Horizon 2020 research and innovation program and and from Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)—314838170, GRK 2297 MathCoRe
and SPP 1962 and SPP 2331.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature
The following mathematical symbols are used in this manuscript:

T Time horizon
t Time variable
x, y Differential state vectors
ω, α Binary control and relaxed binary control
w, a Discretized binary control and relaxed binary control variables
Φ Objective function for (MIOCP)
f0, fi Model functions of the ODE system
c Path constraint function for (MIOCP)
M, nx, nω Number of discretization intervals, differential states, and controls
Gω Control discretization grid
∆ Discretization grid length
ϕ Canonical mapping from dicretized controls to control functions
Ω, ΩM Space of binary control functions and discretized binary control variables
λ Evaluated dual variables of the ODE constraints (2b)
SCIA, SREC Set of CIA problems and set of recombination mappings
Frec Recombination mapping
θ˚, θ Optimal MILP objective value, auxiliary MILP objective variable
s Auxiliary MILP constraint variable
σmax Number of allowed switches
L Lipschitz constant
B, C Upper bounds on fi and their derivatives
J Cost-to-go function
J sing

l The lth singular arc interval index set

Appendix A. Detailed Numerical Results

Appendix A.1. Problem Discretization Details

For generating the performance and box plots in Section 6, we applied Algorithm 1 on
the following discretized problems:

“Lotka–Volterra (absolute fishing variant)”:
N “ 12, 000, M P t25, 50, 75, 80, 100, 120, 150, 160, 200u, σmax P t10, 20,8u,
“Quadrotor (binary variant)”:
N “ 12, 000, M P t25, 50, 60, 80, 100, 150, 200, 300u, σmax P t4, 10, 20,8u;
“Lotka–Volterra (terminal constraint violation)”:
N “ 12, 000, M P t20, 30, 40, 50, 60, 100, 120, 200, 240, 300, 400, 600u,
σmax P t4, 10, 20,8u;
“F-8 aircraft (AMPL variant)”:
N “ 6000, M P t30, 40, 50, 60, 100, 120, 150, 200, 240, 300, 400, 500u;
“Egerstedt standard problem”:
N “ 6000, M P t20, 30, 40, 60, 100, 120, 150, 200, 240, 300u;
“Double Tank”:
N “ 18, 000, M P t25, 50, 100, 180, 250, 300, 360, 720u;
“Double Tank multimode”:
N “ 12, 000, M P t20, 25, 50, 100, 200, 250, 300, 400, 600u; σmax P t10, 20,8u,
“Lotka–Volterra fishing problem”:
N “ 12, 000, M P t20, 30, 40, 60, 100, 120, 200, 300, 400, 600u;
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“Lotka–Volterra multi-arcs problem”:
N “ 18, 000, M P t25, 50, 100, 150, 200, 250, 300, 400, 600u;
“Lotka–Volterra multimode problem”:
N “ 12, 000, M P t25, 50, 100, 150, 200, 250, 300, 400, 800u;
“Van der Pol Oscillator (binary variant)”:
N “ 6000, M P t20, 30, 40, 50, 60, 100, 120, 150, 200, 300u;
“D’Onofrio chemotherapy model”:
Scenario 1,2, and 3 with N “ 6000, M P t20, 30, 40, 50, 60, 100, 120, 150, 200, 300u;
only M P t20, 30, 60, 120u for scenario 1, M “ 100 for scenario 2, and M P t40, 100u for
scenario 3 resulted in feasible relaxed solutions and were included;
“Catalyst Mixing problem”:
N “ 3000, M P t10, 15, 20, 30, 50, 60, 75, 100, 120, 150u.

Appendix A.2. Average Performance Indicators and Individual Problem Results

Table A1. Comparison of mean values and standard deviation (σ) of objective deviation, switching
values, and runtime for different approaches. Objective deviation is given in percentages compared
to relaxed objective, and runtime describes elapsed real time.

Approach Obj. dev (%) Switches (#) Runtime (s) σ(Obj. dev) σ(Switches) σ(Runtime)

CIAmax 27.32 40.08 8.84 95.91 40.16 29.60
CIA1 27.08 39.54 106.11 93.60 38.99 385.77

SCIAmax 17.13 31.12 12.38 38.06 31.54 42.35
SCIA1 23.71 30.94 78.17 96.18 29.91 317.55
λCIA1 47.51 28.08 54.91 139.97 45.10 290.47

CIAmaxB 32.37 40.41 19.15 110.28 40.10 166.22
GreedyTime 2.06 33.36 106.26 4.27 34.47 133.61

GreedyTimeB 2.68 33.61 103.05 5.11 33.64 131.84
Greedy-Cost-to-go 2.01 34.05 117.24 4.24 34.09 172.88
ArcRecombination 6.53 35.34 11.26 13.55 37.01 37.12

Table A2. Results for the Lotka–Volterra multimode problem with N = 12,000 and varying M. The tables
list objective values, differences to relaxed objective, number of switches, and runtime in seconds.

(CIAmax) (CIA1)

M Obj. Diff. to rel. S (#) R (s) Obj. Diff. to rel. S (#) R (s)

25 1.84519 0.00920032 6 0.419997 1.84519 0.00920032 6 0.323492
50 1.83353 0.00189968 9 0.498163 1.83353 0.00189968 9 0.526022
100 1.83458 0.00470921 15 0.564993 1.83458 0.00470921 15 0.849123
150 1.83049 0.00129738 20 0.979946 1.83058 0.00138375 20 3.37327
200 1.8294 0.000412465 23 0.983907 1.8294 0.000412465 23 9.61383
250 1.82887 8.52473ˆ 10´4 30 2.01582 1.82887 8.52473ˆ 10´4 30 6.84566
300 1.82884 2.1597ˆ 10´4 33 1.87382 1.82884 2.1597ˆ 10´4 33 27.4496
400 1.82879 3.40892ˆ 10´4 47 3.42292 1.82879 3.40892ˆ 10´4 47 45.0224
800 1.82875 2.58672ˆ 10´4 87 66.8739 1.82875 2.58672ˆ 10´4 87 484.285

(SCIAmax) (SCIA1)

25 1.84519 0.00920032 6 0.313487 1.84519 0.00920032 6 0.925208
50 1.83399 0.00235793 8 0.493533 1.83399 0.00235793 8 0.723298
100 1.91199 0.0821278 16 1.05474 1.91199 0.0821278 16 3.62938
150 1.8834 0.0542079 20 2.84568 1.8834 0.0542079 20 9.7413
200 1.86972 0.0407389 25 7.90383 1.86972 0.0407389 25 36.7948
250 1.82887 8.52473ˆ 10´4 30 11.6632 1.82887 8.5189ˆ 10´4 30 65.8286
300 1.82887 4.80446ˆ 10´4 32 8.75161 1.82887 4.80449ˆ 10´4 32 55.7173
400 1.82877 1.94567ˆ 10´4 47 30.4913 1.82877 1.94577ˆ 10´4 47 188.408
800 1.83859 0.00987316 88 233.701 1.8381 0.00937638 89 1479.19

(λCIA1) (CIAmaxB)

25 1.84543 0.0094458 5 0.443169 1.87559 0.0395975 7 0.511785
50 1.84372 0.0120927 5 0.581385 1.84076 0.00912746 9 0.574335
100 1.8533 0.0234329 16 0.839147 1.8347 0.00483784 15 0.735999
150 1.85038 0.0211798 23 2.50497 1.83041 0.00121583 19 0.840867
200 1.83509 0.00610253 30 2.52277 1.82932 0.000336555 25 1.53587
250 1.8289 0.000119317 25 13.3181 1.82894 0.000159443 31 2.02886
300 1.8553 0.0264818 29 6.28425 1.82887 5.56473 e-05 35 2.94341
400 2.07161 0.242853 128 12.5695 1.82878 2.53493ˆ 10´4 47 5.77022
800 3.44174 1.61302 420 18.8157 1.82875 3.20174ˆ 10´4 89 34.2567
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Table A2. Cont.

GreedyTime GreedyTimeBackward

25 1.84519 0.00920032 6 3.81442 1.84519 0.00920032 6 4.55248
50 1.83353 0.00189968 9 14.398 1.83353 0.00189968 9 14.5728
100 1.83059 0.000723242 15 16.5069 1.83117 0.00130419 13 16.7239
150 1.82956 0.000364781 19 63.9035 1.83 0.000802598 20 60.1375
200 1.82931 0.000326273 24 52.5325 1.82932 0.000336555 25 53.6014
250 1.82887 8.52473ˆ 10´4 30 25.9954 1.82887 8.52473ˆ 10´4 30 25.6038
300 1.82884 2.1597ˆ 10´4 33 81.1383 1.82884 2.1597ˆ 10´4 33 82.31
400 1.82877 1.94567ˆ 10´4 47 217.31 1.82877 1.94567ˆ 10´4 47 179.64
800 1.82874 2.35655ˆ 10´4 87 553.42 1.82874 2.3582ˆ 10´4 87 605.012

ArcRecombination Greedy-Cost-to-Go

25 1.84519 0.00920032 6 0.6978 1.84519 0.00920032 6 3.89079
50 1.83353 0.00189968 9 0.5322 1.83353 0.00189968 9 14.4531
100 1.83458 0.00470907 15 0.3819 1.83318 0.00331505 17 27.2192
150 1.83041 0.00121583 19 0.8785 1.82965 0.00045483 17 67.8054
200 1.82932 0.000336555 25 0.6278 1.82931 0.000326273 24 60.569
250 1.82887 8.52473ˆ 10´4 30 0.6946 1.82887 8.52473ˆ 10´4 30 25.6708
300 1.82884 2.1597ˆ 10´4 33 0.9826 1.82884 2.1597ˆ 10´4 33 103.187
400 1.82877 1.94567ˆ 10´4 47 0.5933 1.82877 1.94567ˆ 10´4 47 302.851
800 1.82874 2.3582ˆ 10´4 87 0.7660 1.82874 2.35652ˆ 10´4 87 1166.96
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