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Abstract: In recent years, cyber attacks have shown diversified, purposeful, and organized character-
istics, which pose significant challenges to cyber defense decision-making on internal networks. Due
to the continuous confrontation between attackers and defenders, only using data-based statistical or
supervised learning methods cannot cope with increasingly severe security threats. It is urgent to
rethink network defense from the perspective of decision-making, and prepare for every possible
situation. Reinforcement learning has made great breakthroughs in addressing complicated decision-
making problems. We propose a framework that defines four modules based on the life cycle of
threats: pentest, design, response, recovery. Our aims are to clarify the problem boundary of network
defense decision-making problems, to study the problem characteristics in different contexts, to
compare the strengths and weaknesses of existing research, and to identify promising challenges for
future work. Our work provides a systematic view for understanding and solving decision-making
problems in the application of reinforcement learning to cyber defense.

Keywords: reinforcement learning; intelligent decision-making model; cyber defense; decision-
making framework

1. Introduction

The openness and security in cyberspace have always been conflicting issues. En-
terprises, governments and schools hope to provide convenient services. At the same
time, nobody wants their confidential data stored and the key systems in the internal
network to be controlled by malicious cyber attackers. On 26 May 2021, the National Com-
puter Network Emergency Response Technical Team of China (CNCERT) pointed out that
multiple attacks continued to increase during the Coronavirus Disease 2019 (COVID-19)
pandemic [1]. As the most threatening form of attack to large organizations or enterprises,
Advanced Persistent Threat (APT) attacks compromised the mail servers of some local
government departments by sending phishing emails related to COVID-19, which want
to obtain more classified intelligence in the internal network. Apart from APT, the ran-
somware attacks are on the rise in 2020. A large number of corporate networks have been
attacked, resulting in serious economic losses. From the analysis of ransomware, it can
be seen that technical means of ransomware are constantly escalating and the selection of
targets is becoming smarter. The above trends all indicate that cyber attacks on intranet
security are becoming more targeted and organized.

(1) Targeted: On one hand, the development of attack techniques has enriched the existing
attack surface. Experienced attackers who are able to integrate collected information
and knowledge to choose appropriate actions in a task-oriented manner. Therefore, iso-
lated defense technology no longer works in these cases, security experts need to make
decisions under different threat situations, which requires more precise objectives.
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(2) Organized: In order to obtain the continuous attack effect, the attacker will constantly
look for vulnerabilities, and carry out more intelligent attacks by coordinating the
attack resources. To fight against the attacker, it is also necessary for the defender to
allocate defense resources to deal with both known and unknown threats.

These changes make intranet security increasingly challenging. Due to the continuous
upgrading of attack techniques and tools, the traditional data mining based on data,
machine learning, deep learning or statistical methods [2–6] cannot solve the problem
of how to adapt to changes of cyber attacks, which require a new approach from the
perspective of decision-making. Reinforcement learning (RL) algorithms are a popular
paradigm for solving decision-making problems under complex interactions. Combined
with the powerful expression mechanism of deep learning, it can effectively solve decision-
making problems in a large state space. It has been successfully applied to games [7–9],
chess [10,11], robots [12,13] and other fields, showing its advantages to help human decision-
making. Figure 1 shows the number of relevant literature from 2016 to 2021. It can be
seen that applications of reinforcement learning to cyber decision-making has drawn much
attention from academia.
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Figure 1. Research trend of cyber defense decision-making based on reinforcement learning.

However, how reinforcement learning can be used to address issues in cyber defense
decision-making remains unclear. The researchers group applications of reinforcement
learning in cybersecurity into DRL-based security methods for cyber-physical systems,
autonomous intrusion detection techniques, and multiagent DRL-based game theory simu-
lations [14], but do not specify how these different classifications are used to support cyber
defense decision-making tasks. We extend this perspective, and focus on cyber defense
decision-making for the internal network from both the attacker’s and defender’s perspec-
tive. The problem is analyzed from three aspects: problem characteristics, decision-making
models and reinforcement learning algorithms. The characteristics of the problem are the
basis of decision-making models and reinforcement learning algorithms, and determine the
specific decision-making models to be used. Based on the selected models, reinforcement
learning algorithms are applied to solve the problem. The major contents presented in this
study are shown in Figure 2. In this survey, we make the following contributions:

(1) A new framework PDRR (Pentest Design Response Recovery) was proposed to dis-
tinguish different cyber defense decision-making tasks. The framework aimed to
demarcate the boundaries of the problems, which can help researchers better under-
stand the cyber defense decision-making problem;

(2) Based on the proposed framework, the existing research literature was summarized
from the perspectives of the attack and defender respectively. We first discussed the
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problem characteristics from different perspectives, and then categorized literature
according to the type of problem and the adopted decision-making model, and finally
compared the problem characteristics, strategies, tasks, advantages and disadvantages
used in different literature.

(3) After summarizing the existing literature, we analyzed the future direction and chal-
lenges from the perspectives of reinforcement learning algorithms and cyber defense
decision-making tasks respectively. The purpose of this discussion is to help re-
searchers understand the cyber defense decision-making task more clearly, and to
promote the applications of reinforcement learning algorithms to this task.

PDRR framework

The Attacker’s Perspective The Defender’s Perspective

Pentest Based on POMDP

Pentest Based on MDP

Pentest based on Markov Game

Design

Response

Recovery

Decision-making models RL algorithms

Conclusion and Prospection

Problem Characteristic Problem Characteristic

Figure 2. The structure of this paper.

The rest of this paper is organized as follows. First, we introduce the research back-
ground in Section 2. We present a framework of network defense decision-making in
Section 3. In Sections 4 and 5, we summarize and compare the existing reinforcement
learning research on network defense decision-making. After a summary of current works,
the future research directions and challenges are pointed out in Section 6. Finally, Section 7
is the conclusion of the whole paper.

2. Research Background

In this section, we provide a brief overview of decision-making models and RL al-
gorithms. The decision-making model abstracts interactions between decision makers
and the environment, and the RL algorithm looks for optimal policies under different
problem scenarios.

2.1. Decision-Making Models

In a decision-making task, an agent perceives states (or observations) from the envi-
ronment and takes an action. The environment transfers to a new state (or observation) and
feeds back to the agent for a reward. This interaction process between the agent and the
environment will keep going or end when it reaches the end state. In this process, the agent
learns an optimal policy to maximize the accumulated reward. The decision-making model
has a variety of formal abstractions, in which the most classic one is the Markov Decision
Process (MDP) [15]. Beyond that, the most commonly used intelligent decision-making
models for cyber defense decision-making tasks include (1) Markov Game which is ex-
tended from one agent to multiple agents [16]; (2) a Partially Observable Markov Decision
Process (POMDP) [17–19] which is obtained from a fully observable state to a partially
observable state.

MDP: Only one agent exists in a decision-making task, and the environment satisfies
the Markov property, which means that the change of state depends only on the current
state and action, instead of the historical state and action. An MDP involves a quadruple
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〈S, A, R, T〉, where S indicates the status space, and A indicates the executable action
space R : s, a, s′ ∈ S × A × S → r = R(s, a, s′) ∈ R is a bounded reward function, and
T : S× A× S→ [0, 1] is a probability function of state transition, which satisfies the ∀s, a,
∑s′∈S T(s, a, s′) = 1. With its interacting with the Environment, the Agent will learn and
optimize a policy π : S× A→ [0, 1] , which is made to maximize the cumulative rewards
over the long term Return = Eπ

[
∑∞

t=0 γtrt
]
, where γ ∈ (0, 1] indicates the discount rate,

t indicates the discrete time step, and rt = R(st, at, st+1) indicates the Rewards for t time,
at ∼ π(st, at).

Markov Game: It is a quintuple consisting of agents:〈N, S, {Ai}n
i=1, {Ri}n

i=1, T〉. Among
them, N represent the set of agents, n represent the quantity of agents, and Ai represents
the action space of the agent i. If A = A1 × A2 · · · × An is the joint action space for all
agents, then Ri : S× A× S→ R is the reward function for the Agent i. Ri(s,~a, s′) indicates
the reward for Agent i fed back by the Environment after all agents take a joint action~a on
the state S, and T(s,~a, s′) represents the probability that the Environment moves from the
state s to the subsequent state s′ through the joint action~a.

POMDP: In this process, an Agent cannot obtain the true state of the Environment, but
can only observe a part of the state or the state after interference. This is called observation.
POMDP is a six-tuple 〈S, A, R, T, Ω, O〉, where 〈S, A, R, T〉 constitute a potential MDP,
Ω indicates the limited set of Observations available to an Agent, and the Observation
function O : S× A×Ω→ [0, 1] indicates that the Observation o is obtained according to
the Probability O(o|s′, a) on the subsequent state s′ after the action a is adopted on the state
s, and the reward R(s, a, s′) is also obtained.

In addition, according to the time of the Agent’s decision-making from discrete time
step to continuous retention time, the Semi-Markov Decision Process (SMDP) [20,21],
Continuous-time Markov Decision Process (CTMDP) [22–24] and other decision-making
models can also be applied.

2.2. RL Algorithms

The basic decision-making model of RL is MDP. When the state and action space is
small, RL assigns a value to each state or state-action pair, where Vπ(s) denotes the value
of state s.

Vπ(s)=̇Eπ

[ ∞

∑
t=0

γtrt|s0 = s
]
, (1)

Qπ(s, a) denotes the value of state-action pair (s, a).

Qπ(s, a)=̇Eπ

[ ∞

∑
t=0

γtrt|s0 = s, a0 = a
]
. (2)

By definition, the Bellman equation is obtained:

Vπ(s) = Eπ

[
R(s, a, s′) + γVπ(s′)

]
. (3)

Taking the state value function as an example, the Bellman equation can be defined by
Equation (4).

Vπ(s) = Eπ

[ ∞

∑
t=0

γtrt|s0 = s
]

= Eπ

[
R(s, a, s′) + γ

∞

∑
t=0

γtrt|s0 = s
]

= Eπ

[
R(s, a, s′) + γVπ(s′)

]
.

(4)

The optimal strategy π∗ satisfies ∀s ∈ S, V∗(s) = maxπ Vπ(s), where V∗ is the optimal
value function, which satisfies Bellman’s optimal equation.
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V∗(s) = max
a

E
[

R(s, a, s′) + γV∗(s′)
]
. (5)

Define the Bellman optimal operator T : R|S| → R|S|.

TV(s)=̇max
a

E
[

R(s, a, s′) + γV(s′)
]
. (6)

The key step of the value iteration algorithm can be obtained: Vn+1 = TVn. Synthe-
sizing the multi-step Bellman evaluation operator Tπ , the operator Tλ,π that satisfies the
compression map can be obtained in Tλ,πV=̇(1− λ)∑∞

i=0 λi(Tπ)i+1V, and thus get the
λ-policy iteration algorithm.

Therefore, policies can be expressed based on value functions, or can be defined
directly. We summarize related RL algorithms based on tabular values, value function
evaluation, and policy evaluation.

RL Algorithms Based on Tabular Values: Policy Iteration and its improved algorithm
continue to repeat the two stages of Policy Evaluation and Policy Improvement until the
optimal Policy and the optimal value function [25] is converged and obtained. However,
the original Policy Iteration algorithm requires the value function to converge to the optimal
solution for each Policy Evaluation before making a Policy Improvement. In the process of
Policy Evaluation, the Value Iteration algorithm performs only one time of Iteration. When
the state space is large, it takes a long time to scan all states. In this case, Asynchronous
Value Iteration improves efficiency by iterating only one sample of the state space at a
time. In the stage of Policy Evaluation, an optimal solution can be approximated more
quickly with λ-Policy Iteration synthesizing all the multi-step Bellman evaluation operators
and doing only one iteration; While Q-learning uses Bellman’s optimal operator, which
is maxa E[R(s, a, s′) + γV(s′)] ≈ maxa[R(s, a, s′) + γV(s′)], to approximate the optimal
value function and perform learning control. This Policy is characterized by the difference
between behavioral policy and learning policy, falling into the off-policy learning.

RL Algorithms Based on Value Function Evaluation: Large-scale or continuous states
and actions caused the curse of dimensionality, making the tabular value based RL algo-
rithms ineffective. However, the ways to solve these this curse include: (i) to reduce the
state and action space; (ii) to estimate the value function V or Policy by using parameters
far smaller than the number of states and actions. The state and action space is mapped by
function to a set of parameter dimensions that are much smaller than the size of the state
and action space. The models of function estimation are usually divided into linear model,
kernel method, decision-making tree, neural network, deep neural network etc. DQN [7] is
a Q-learning method using deep neural network as value function estimator. By correcting
the over-estimation in Q-learning (such as Double Q-learning) [26], Double-DQN [27],
Averaged-DQN [28], MellowMaxDQN [29] based on the MellowMax operator [30], Soft-
MaxDQN [31] based on the SoftMax algorithm, and the soft greedy method based on
Rankmax [32] were proposed successively.

RL Algorithms Based on Policy Evaluation: Unlike the Policy based on the representa-
tion of value function, RL based on Policy Evaluation explicitly defines the parameterized
policy π(a|s, θ), and constantly optimizes the parameter θ by using the policy gradient
ascent method according to the policy evaluation function for the parameter J(θ). The
gradient of the policy is ∇J(θ) ∝ ∑s µ(s)∑a qπ(s, a)∇π(a|s, θ). By using the random gradi-
ent ascent method and replacing qπ(s, a) with Monte Carlo evaluation, the REINFORCE
algorithm is obtained [33]. I the value function of state is updated by the Bootstrap method,
the Actor-Critic algorithm is obtained [34]. To solve the continuous action space problem,
the stochastic policy gradient algorithm can be used if the probability distribution is used
as the policy function [15]. If the value function of action is used to adjust the policy directly
to ensure that the choice of action is unique in the same state, the deep deterministic policy
gradient (DDPG) is obtained [35,36]. The asynchronous execution of multiple simulation
processes by using the multi-threading function of CPU can effectively break the corre-
lation of training samples and obtain the Asynchronous Advantage act-critic framework
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(A3C) [37]. According to the KL divergence between the old and the new policies, the
learning steps are adjusted adaptively to ensure a stable policy optimization process, and
then the Trust Region Policy Optimization (TRPO) algorithm can be obtained [38]. By
using the proximal optimization algorithm based on the first-order optimization, the PPO
(Proximal Policy Optimization) algorithm with greater stability can be obtained [39].

3. PDRR—A Framework for Recognizing Cyber Defense Decision-Making

The type of task determines how reinforcement learning algorithms are used. In an
intranet network, the attacker plans to explore the network environment and get closer to
the target node, who hopes to avoid being detected by defenders. Faced with the “ghostly”
attacker, the defender should make good use of the defend resource to prepare for all
possible situations. These different situations will determine the suitability of decision-
making models and reinforcement learning algorithms. An example of the internal attack–
defense is shown in Figure 3.
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Weaponization
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Delivery

Installation

Command & 

Control

Actions on 

Objectives
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Key assets
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Cybersecurity Framework
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TechnologiesExperts Devices

Figure 3. An example of the internal attack–defense.

Therefore, we propose the PDRR framework to distinguish different cyber defense
decision-making tasks. The PDDR framework dynamic make decisions over the life cycle
of threats, and integrates the perspectives of both attack and defense, which includes four
modules, as shown in Figure 4.

Pentest: Pentest, also known as penetration test, attack planning, risk assessment, or
vulnerability assessment, is a method to identify potential risks by simulating the decision-
making process of attackers. The purpose of the test is not only to find a single vulnerability
in the target network, but to form a series of attack chains (multi-step attacks) to reach the
target node. The path from the starting node to the target node is called the attack path.
Design: Design is the decision-making task made by defenders to optimize the deployment
of defense resources and design defense mechanisms before cyber attacks occur. The
defense resources could be the experts, the number of security devices or the deployment
location.
Response: Response in the process requires defenders to be able to identify, analyze, and
deal with threats. In the real world, defenders often need to analyze a great number of
real-time traffic data to prevent or detect threats.
Recovery: Recovery after the event refers to the decision-making mechanism that takes
effect after the attack has occurred, to restore business function or minimize loss as soon
as possible.
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Figure 4. The PDRR framework.

The PDRR framework describes cyber defense decision-making at different stages
of threats in an interactive form, forming a dynamic cyclic process. The “Pentest” task
identify network defense from an attacker’s perspective, dynamically evaluating potential
risks by simulating the attacker’s behaviors, where the attacker’s observations include
connectable hosts, exploitable vulnerabilities, currently privileged nodes and so on, and
the attacker’s actions are usually to obtain network informations and attack the selected
nodes based on these informations, such as exploiting vulnerabilities, using passwords to
log in to the host and so on. The “Design”, “Response” and “Recovery” tasks, recognize
the cyber defense at stages from the defender’s perspective. Take the “Response” task for
example, the defender’s observations include detecting whether hosts in the network are
attacked, whether there are abnormal behaviors, and whether vulnerabilities are patched
and so on. While the defender’s actions include reimaging hosts, patching vulnerabilities,
and blocking subnets.

In addition to understanding cyber defense decisions as a whole, the biggest benefit
of this is that the appropriate decision model can be selected based on the task. As the
purpose of cyber defense decision-making at various stages is different, some factors can
be selectively ignored or weakened when the conditions are not met. For example, when
evaluating a Design module, the consequence is needed rather than the process. Depending
on whether the adversary or the environment is considered, single-agent or multi-agent
reinforcement learning algorithms can be selected. In terms of single agent’s decision-
making, the attacker or the defender shall be considered as part of dynamic network
environment. Considering that attack and defense agents can interact according to certain
strategies, the model should be constructed as a Markov Game.

4. Survey from the Attacker’s Perspective

This section focuses on sorting out representative literature about the “Pentest” task,
which is from the attacker’s perspective. First, problem characteristics are discussed and,
secondly, we summarized and compared the problem characteristics, decision-making
model, policy and description of related research.

4.1. Problem Characteristics

In a “Pentest” task, we identify possible risks from the attacker’s perspective. The
attacker needs to find a feasible attack path to the target node in an unknown dynamic
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network environment, its objective function is usually to find the random shortest path to
the target node, which is the default objective function of this section. However, in order to
verify the performance of the algorithm, different objective functions are also designed.

Dynamic network environment is composed of static configurations and dynamic be-
haviors. Static configurations refer to network topology, installed softwares, vulnerabilities,
accounts and so on. Dynamic behaviors mainly refer to behaviors of three different roles,
the attacker, defender and normal user. These different behaviors can change the state
of the environment, which bring uncertainty to the decision-making process [40]. In this
paper, the uncertainty in the task can be divided into four parts.

Unknown environment: Due to the fact that the attack process takes place in a non-
cooperative network environment, the agent needs to obtain information (such as to find
the host can be connected, to figure out whether the vulnerability can be exploited and so
on) by exploring the environment. Based on the information, the agent chooses appropriate
actions to complete the exploration of the environment.

Partial observability: Since the attacker agent is in a non-cooperative environment,
after the agent taking actions, it often cannot judge whether received observations are real
states of the system, and can only maintain a certain degree of confidence. In this case, the
attacker needs to constantly update its belief in the state of the environment based on the
obtained information, and then select appropriate actions.

Competitive environment: Security devices and security experts are the biggest
hindrances to the intrusion process. In order to clear the foothold to prevent critical systems
from being controlled by the attacker, the defender take countermeasures include restarting
computers, shutting down hosts, installing patches, and blocking subnets. Consequently,
this will affect the decision-making process of the attacker.

Non-competitive environment: Normal users play a third role in a network envi-
ronment besides the attacker and the defender. They may perform operations such as
restarting hosts, establishing connections between two hosts, and installing new softwares.
These actions still cause uncertainty in the decision-making process.

4.2. Related Work

When the attacker treats the defense and ordinary users as part of the environment, the
attacker decision-making model can be modeled by MDP, POMDP and other models. If the
attack agent and the defense agent are regarded as competitors, the Markov Game can be
used to model the interaction between them. In early stage, the “Pentest” is mainly solved
by the planning-based method. With continuous and deep research on the reinforcement
learning method, more and more researchers use reinforcement learning to solve this
problem. Table 1 summarizes representative research work in this direction in recent years.
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Table 1. Survey from the attacker’s perspective.

Type Ref U P C N Policy Description

POMDP

[41] X X × × SARSOP [42] (1) Introduce beliefs to reflect uncertainty;
(2) Excessive computational complexity.

[43] X X × × Improved
SARSOP

(1) Introduce network structure to reduce
complexity; (2) Not applicable when structure
changes.

[44] X × × × Improved RL Introduce the network information gain to
evaluate actions.

[45] X X X × Improved
Bayesian RL

Introduce the information decay factor to
reflect the influence of the adversary.

[46] X X × × Improved
GIP [47]

(1) Path coverage exceeds that of human in
small networks; (2) Computational cost
exceeds that of human on medium LANs.

MDP

[40] X × × × - Modeling as deterministic planning.

[48] X × × × Q-learning, Deep
Q-learning

(1) Build a system to simulate attack; (2) Ignore
the defender and normal user.

[49] X × × × DQN with
WA [50]

(1) Introduce “WA” to reduce action space;
(2) Use graph embedding method to abstract
state; (3) Low-dimensional vectors lacks
interpretability.

[51] X × × × RNN The RNN algorithm can also work well when
the environment changes.

[52] X × × × A2C, Q-Learning,
SARSA

(1) The A2C algorithm performs better than
other algorithms. (2) State representation lacks
interpretability.

[53] X × × × DQN, PPO

(1) The stability and generalization are
disscussed for the first time. (2) Current
algorithms have poor generalization
performance.

Markov Game

[54] X × X X Planning-based Design dynamic network configurations to
compare attack and defense interactions.

[55] X × X × Strategy sets
(1) The adaptability of algorithms to the
adversary is verified. (2) The task is far from
real world.

[56] X × X X
Q-learning,
DQN, XCS [57]

(1) Designed a attack-defense multi-agent
system. (2) Different action usages are not
discussed.

[58] X × X × DQN (1) Verify the algorithm’s applicability. (2) The
defined model is difficult to scale.

Note: U indicates “Unknown environment”, P indicates “Partial observability”, C indicates “Competitive environ-
ment” and N indicates “Non-competitive environment”.

Pentest based on POMDP: The POMDP uses the “belief” to reflect uncertainty in
attack decision-making. Sarraute et al. [41] first introduce POMDP to simulate “Pentest”
task, the goal of the task is to find the shortest path to the target node. Due to the high
complexity of POMDP algorithms, algorithms can only work in the environment of two
hosts. In order to reduce the computational complexity, Sarraute et al. use decomposition
and approximation to abstract network attack at four different levels [43]. The algorithm
decomposes the network into a tree of biconnected components, then gradually calculates
the cost of attacking subnets in each component, hosts in each subnet, and each individual
host. Although this method reduces complexity, it ignores the consequences of possible
changes in the network environment.
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Due to the limited complexity of planning algorithms, some researchers began to use
reinforcement learning algorithms to solve this problem. Zhou et al. introduce the network
information gain to as the signal for evaluating actions’ reward [44]. The information gain
is equal to H(P) = ∑

|p|
j=1(pj log pj + (1− pj) log(1− pj)), where Pj represents the vector of

operating system, open service, port, and protection mechanism probability distribution
before (after) taking actions. Experiments showed that RL algorithms with information
gain are more effective than other algorithms at finding attack paths.

In addition to considering an “unknown environment”, Jonathon et al. also took
into account the influence of the opponent, and proposed an information decay factor to
represent the observation of the attacker [59]. The author used the Bernoulli process to
model the defender’s behaviors, and verified that the Bayesian Reinforcement Learning
(BRL) algorithms combined with the information decay factor is significantly better than
the baseline algorithm in terms of winning rate and reward.

Ghanem built an automated penetration testing system called “IAPTS” to solve the
problem of automated Pentest in large network environments [46]. The system preprocesses
the original data, and obtains the evaluations by constructing POMDP model to use
PERSEUS [15], GIP [47] and PEGASUS [60] algorithms in combination, and then made
it available to human experts. The experiments are carried out in small and medium
networks. Experimental results showed that the improved GIP algorithm performed better
than manual experts on small networks, but the computational cost was higher on medium
LANs, requiring more in-depth research on the algorithm.

Pentest Based on MDP: Through existing research, it can be seen that when using
POMDP to model the attack decision-making process, due to the computational complexity
of algorithms, the scale of applicable scenarios is limited. Therefore, more and more
researchers choose to model the “Pentest” task with MDP, where the outcomes of actions are
deterministic [40]. This change allows researchers to build the task with more consideration
for the similarity of actions to the real world, the changes in the environment, and the
presence of the opponent and so on.

Schwartz designed and built a new open-source network attack simulator (NAS) for
studying the attack decision-making process [48], and compared different RL algorithms’
convergence times. This system promoted the research of reinforcement learning algorithms
in the direction of “Pentest”, but the abstraction of state space is too simple and lacks
consideration of the dynamic environment, so it needs to be further deepened.

Nguyen et al., focused on the problem of large-scale action space reduction [49]. The
author combined the DQN algorithm with “Wolpertinger Architecture(WA)” [50] to embed
multilevel action. The sensitive machine attacked proportion of the proposed algorithm
was obviously better than other algorithms, and was also applicable in the medium and
large-scale network. Besides, the graph embedding method is first used to represent the
state space, which is worth exploring.

By focusing on how to reduce the number of features represented in the state space
and how to approximate the state-action space with a small set of features, Pozdniakov
et al. performed the experiment to compare the advantages and disadvantages of three
algorithms: Q-learning based on table, RNN with Q-learning and RNN with Q-learning
after network configuration changes [51]. The results showed that, compared with Q-
learning based on table, RNN with Q-learning can converge faster and respond to the
change of environment, showing the potential of model-free learning for automated pentest.

Maeda et al., used the real payloads of attack tools as actions for attack decision-
making, and applied A2C, Q-learning and SARSA algorithms to solve the task [52]. The
experimental results showed that the A2C algorithm has the best effect in cumulative
average reward. However, the defined state representation in the article lacks a certain
degree of interpretability.

In order to test the stability and generalization of various DRL algorithms [53], Sultana
et al. built five experimental scenarios with different topologies, services, and application
configurations based on the Network Attack Simulator (NASim) platform [59]. In the test



Algorithms 2022, 15, 134 11 of 23

of stability, the returns of DQN algorithm and PPO were relatively stable. In the test of
generalization, when the evaluation network deviates from the training environment, the
performance of DQN and PPO algorithms failed to adapt to all experimental scenarios,
even worse than the performance of random algorithm in the same environment, which
pointed out the possible research directions.

Pentest Based on Markov Game: Markov Game in “Pentest” treats the attacker
and the defender as the competing agents and designs a Game model to compare the
effectiveness of the two sides’s policies. Applebaum et al. systematically modeled dynamic
network environment, and used the method of statistical analysis to discuss the winning
and losing situations of both players under different environment configurations [54].

Elderman et al., modeled the attack–defense game as zero-sum two-player Markov
Game with incomplete information. In the game, agents played in turn-based interactions
based on their observations. The attacker tried to reach the target node, while the defender
tried to protect the network and stop the attacker. In this process, the decision-making of
both sides was influenced by the hidden information [55]. The experiment compared the
winning and losing of players using different strategies, and found that neither side can
ensure long-term victory under the same strategy.

Niculae built a more realistic multi-agent system, where included the interactions
among attackers, defenders and normal users [56]. In the system, ten attack actions, three
defense actions and three normal user actions were designed. In addition, attributes such as
reliability, duration, noise, and crash probability were added to the attack action to describe
the uncertainty of the interaction process. The experiments compared reinforcement
learning algorithms such as DQN and Q-learning with rule-based algorithms, results
showed that the DQN algorithm had stronger generalization ability, but required a large
amount of training time. However, it did not analyze how often the different types of
actions designed were used in its algorithm.

Bland et al., used the Petri net as a modeling tool to simulate the attack decision-
making process [58]. The author designed several groups of comparative experiments in
which static attackers versus dynamic defenders and dynamic attackers versus dynamic
defenders. In these comparative experiments, reinforcement learning algorithms using
greedy policies improved performance over time, both in achieving player goals and
reducing costs. However, using the Petri net requires a detailed definition of the transition
between different states, which makes the work less applicable.

5. Survey from the Defender’s Perspective

Unlike research from the attacker’s perspective, the studies from the defender’s
perspective needs to consider various situations in the defense decision-making. Based on
the PDRR framework, this section reviews research in terms of the three defense phases:
Design, Response, and Recovery.

5.1. Problem Characteristics

Although the defender can control the internal network, the agent does not know
whether the attack exists and the possible consequences of the attack. Therefore, its decision-
making process still has the following challenges.

False Positive Rate: In the abnormal detection process, the detection by the defender
will cause a certain false positive rate due to the existence of the anti-detection technology
of unknown and known threat samples. This will happen for the high degree of fitting
between the existing samples and the malicious samples, or forged signals sent by the
attacker to the defense detection algorithm. The existence of a false positive rate will further
improve the complexity of learning, leading to the wrong judgment of defense decision.

Local Information Known: Security experts find it difficult to grasp all the informa-
tion of the network environment in real time due to the dynamic and huge scale of the
network environment, though they have the authority to manage the network environment.
Therefore, the defender can only manage and maintain the network environment of limited
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scale, and such local limitation can be alleviated by means of multi-agent cooperative
communication, while increasing the difficulty of decision-making.

Constraint of Resources: The attack may be launched at any time using different
vulnerable points, and the protection, detection, response and recovery of defense will
take up or consume certain resources. Given this, an unrestricted commitment of defense
resources is impossible. These resources may be the cost of equipment deployment, or
personnel, time and other cost factors. Hence, in a network defense scenario, the defender
needs to respond as quickly as possible and cut the cost as much as possible to complete
the task.

Table 2 summarizes and compares representative research literature from the de-
fender’s perspective. Like the attacker perspective, we also classify these three tasks
from the adopted decision-making model, and compared decision-making models, task,
strategies used and descriptions of related research.

Table 2. Survey from the defender’s perspective.

Type Model Ref F L C Policy Description

Design
MDP

[61] × × X Value Iteration Dynamic optimization algorithm and manual intervention
are combined.

[62] X × X Q-learning Proposed a new adaptive control framework.

[63] × X X Q-learning Proposed a spoofing resource deploy algorithm without strict
constraints on attacker.

Markov Game [64] − × X Q-learning An algorithm that can obtain the optimal security configuration
in multiple scenarios;

Response

MDP

[65] X × X DDQN, A3C (1) Design an autonomous defense scenarios and interfere with
training process; (2) observation is less limited.

[66] X X × DQN (1) The convergence is accelerated by expert artificial reward
(2) Limited reward setting.

[67] × × × Q-learning (1) Knowledge graph is used to guide the algorithm design
(2) High trust in open source data.

[68] − × X Value Iteration (1) Introduces a botnet detector based on RL; (2) Action cost not
taken into account.

[69] − × X Reward
structure

Multi-agent network with collaborative framework and group
decision-making.

[70] × × × Sarsa (1) Hierarchical collaborative team learning can extend to large
scenarios; (2) Difficult to guarantee convergence.

Markov Game

[71] × X X Q-learning (1) Pareto optimization is used to improve Q-learning’s
efficiency; (2) The attacker takes random actions.

[72] × X X Q-learning (1) A defense policy selection simulator is constructed;
(2) Random attack actions.

[73] X X × Q-learning (1) Respond to attacks with limited information; (2) Rely on
expertise to evaluate rewards.

[74] X X X MA-ARNE Solving resource utilization and effective detection of APT
with MARL.

POMDP

[75] × X X Q-learning POMDP is modeled based on Bayes attack graph.

[76] × X X Q-learning (1) The transfer probability is estimated using Thompson
sampling; (2) Fixed attack transfer probability.

[77] X X × Value Iteration (1) Adaptively adjust the recognition configuration according to
the false alarm rate; (2) Cannot face adaptive attackers well.

[78] X X X Q-learning (1) Multi-agent collaboration model based on signal and
hierarchy; (2) Cannot guarantee the convergence.

[79] X X X Q-learning (1) A decentralized threat perception model is proposed;
(2) Value functions needs expert knowledge.

SMDP [80,81] − × X Q-learning; The interaction in the honeypot is modeled as a semi-Markov
process.

Recovery MDP

[82] − × × DDPG (1) The continuous numerical method is used to obtain a better
real-time recovery policy; (2) Low convergence rate.

[83] − × × Q-learning (1) Proposed an effective strategy based on a realistic power
flow model with RL; (2) Low convergence rate.

[84] − × × DDPG Applied reinforcement learning to backup policy.

Note: F indicates “False Positive Rate”, O indicates “Local Information Known ”, C indicates “Constraint
of Resources”.
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5.2. Design

“Design” task refers to deploying resources or designing mechanisms to deal with
different cyber attacks.

The moving target defense (MTD) is proposed to “change the rules of the game” facing
with attacks [85]. MTD mainly works to confuse the attacker by constantly shifting the
attack surface, increase the attack cost and difficulty, and improve the resilience of the
defense system. Ganesan et al. [61] proposed a dynamic stochastic model for scheduling
security analysts. The risk can be kept below target levels by coordinating the allocation of
staff and sensor resources.

Winterrose et al. [62] has developed a method based on online reinforcement learning
to achieve the ideal balance between system security and system performance in a dynamic
threat environment. With this method, the best parameters needed to defend against
adversaries in the security performance space can be autonomously computed even as the
threat changes. However, it usually consumes a lot of energy and resources.

In addition to changing the attack surface, researchers have also countered the attack
by deploying network deception devices such as honeypots. Wang et al. [63] used Q-
learning-based agents to find the best policy of deploying spoofed resources. The algorithm
solves the problem that the static deployment of spoofing resources is easy to identify and
bypass. In the actual network experiment, this method can reach the defense success rate
of 80%.

Jiang et al. [86] proposed the concept of “moderate security”, which means that we
should seek a risk-input balance when considering the constraints of resources and other
actual conditions. In other words, the limited resources should be used to make a reasonable
decision, so the game theory can be used to study the strategies of both players.

A good defense mechanism “Design” should also be found in attack–defense con-
frontation. Panfili [64] et al. obtained the optimal security configuration by searching Nash
Equilibrium of multi-agent attack and defense game. It can minimize the damage caused
by an attack, even making it less than the cost of executing the attack policy.

5.3. Response

“Response” task requires the defender to be able to detect abnormal network traffic
and take appropriate response measures, especially in response to unknown attacks.

A zero-day vulnerability is a vulnerability that has not been disclosed. Before releasing
system patches for zero-day vulnerabilities, how to actively establish a response mechanism
during the repair window to deal with unknown cyber attacks is a challenging problem. Sun
et al. [71] modeled the network attack and defense as a zero-sum multi-objective game in a
simple network topology, and proposed the Q-learning algorithm with pareto optimization
for the “Response” task, where helps network security analysis improved significantly.
Based on the above research, Sun et al. improved the granularity and authenticity of the
network model [72]. A set of defense policy selection simulator was built to the Q-learning
algorithm with pareto optimization. However, in the above two studies, the attackers used
random actions that did not fit well with real attacks.

Hu et al. [75] modeled the “Response” task as a partially observable Markov decision
process on a bayesian attack graph. In the experiments, Q-learning was used to identify
cyber attacks, and verified the performance of the algorithm in a small network. How-
ever, it is assumed here that the process of responding is phased, making it difficult to
detect online. Based on the previous work, Hu et al. proposed a new adaptive network
defense mechanism [76]. The task was modeled as a POMDP problem with uncertain
state transition, and the state transition probability was estimated by using Thompson
sampling. The optimal defense action was obtained based on reinforcement learning
without any false positives. Based on the real network attack numerical simulation, the
cost-effectiveness of the algorithm was verified. However in the real world, the attack value
may change continuously.
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Han et al. [65] explored the feasibility of reinforcement learning algorithm for au-
tonomous defense in SDN and the false positive problem of attack. In their experiment, the
defense agent used various reinforcement learning methods to learn the best operations
to protect critical servers while isolating as few nodes as possible. In addition, in their
adversarial training, the attacker can damage the reward and state of the defensive agent,
thus causing false positives. Therefore, the reinforcement learning may make sub-optimal
or even wrong decisions, which indirectly proves that the adversarial training can reduce
such negative effects for the defender.

The false positive rate and defense expenses will increase with the rising number,
type and complexity of network attacks. As an attacker will often hide from the network’s
constant real-time monitoring after successfully entering a network environment, the
defender should implement appropriate means to identify and respond to abnormalities in
time, formulate corresponding response mechanisms to handle abnormal detection results
containing false positive rate. Chung et al. [73] proposed an automatic detection technique
to respond to the hostile behavior of suspicious users. This is based on the game model of
expert knowledge and uses Q-learning to solve. Experiments based on simulation showed
that, when the information of the opponent is limited, the Naive Q-learning can effectively
learn the behavior of the opponent and has better performance than other algorithms with
limited assumptions. Due to the lack of consistency in security metrics, the damage and
reward of attacks were mainly based on the expert knowledge.

Liu [66] studied the interactive reinforcement learning method which was used to
improve the adaptability and real-time performance of intrusion detection. Based on the
experience replay buffer and Long Short-Term Memory (LSTM) optimization learning, the
feedback of network security experts was added in the reward to accelerate convergence.
In addition, the expert also reported different rewards based on the difference between
true positive and false negative rates. An excellent detection effect was achieved on the
NSL-KDD dataset [87].

Sahabandu et al. [74] studied how to weight the resource efficiency and detection
effectiveness in dynamic information flow tracking analysis models. Their game model
captured the security costs, false positives and missing positives associated with dynamic
information flow tracking, and a multi-agent average reward Nash equilibrium algorithm
is proposed (MA-ARNE) was proposed, which was able to converge to an average reward
Nash equilibrium on the ransomware data set.

Piplai et al. [67] used the prior knowledge represented by the network security knowl-
edge graph to guide the reinforcement learning algorithm to detect the malicious process,
and applied the prior knowledge mined from the open text information source describing
the malicious network attack to guide the reinforcement learning algorithm to adaptively
change parameters to adjust the value function and explore the probability. The simulation
experiment proved that such system was better than the basic reinforcement learning
system in terms of detecting malicious software.

Modern botnets often operate in a secretive manner, which make it difficult to detect.
Venkatesan et al. [68] based on reinforcement learning, detected the presence of botnets
by deploying honeypots and detectors in a simulated environment, and performed the
comparative experiments with static policies in PeerSim [88]. The results showed that the
performance was improved significantly.

Alauthman et al. [77] proposed a detection system combined with reinforcement
learning technology, in which, the network traffic reduction technology was mainly used
to deal with large-scale network traffic. As a result, the botnet hosts with high accuracy
(98.3%) and relatively low false positive rate (0.012%) can be detected, which was better
than other detection methods. Dynamic improving system based on reinforcement learning
can alleviate the dynamic changes existing in botnets, but it cannot well face the methods of
avoiding detection taken by botnet administrators, such as rootkits (A malicious software
that can hide itself and files and networks from the host).
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In response to different attacks, Honeypot technology is adopted to protect the net-
work. Honeypot technology is an active defense technology which can effectively defend
network resources by deceiving attackers to obtain information [89]. Huang et al. [80,81]
applied a semi-Markov decision process to characterize the random transitions and linger
time of the attackers in the honeypot, and designed a defense scheme where the agent
actively interacted with the attacker in the honeypot to increase the attacker’s attack cost
and collect threat information. According to the numerical results, the proposed adaptive
policy can quickly attract attackers to the target honeypot and interact with them for a
long enough time to obtain valuable threat information. At the same time, the penetration
probability was kept at a low level.

The multi-agent system, a classic model of distributed artificial intelligence, can pro-
vide better adaptability and more effective decision-making for cyber defense [90]. Miller
and Inoue [69] used the Synergistic and Perceptual Intrusion Detection with reinforcement
(SPIDeR) [91] and an agent with its Self-Organizing Map (SOM) to cooperate to detect
anomalies. Additionally, decisions were made by the central blackboard system in SPIDeR
based on reinforcement learning. SPIDeR showed positive results in 1999 KDD Cup [92].

Malialis [70] also introduced a multi-agent cooperative architecture to build a layered
anomaly detection framework, so as to improve the response speed and scalability of
intrusion detection, and studied the cooperative team learning of agents. However, similar
to the study of Servin et al. [78], the large-scale collaborative learning of distributed agents
was difficult to guarantee the convergence.

Liu et al. [79] designed a collaborative network threat perception model (DDI-MDPS)
based on decentralized coordination to solve the problems such as high pressure, low
fault tolerance, low damage resistance and high construction cost of the static centralized
network intrusion detection system (NIDS). In addition, they tested the DDI MDPs model
based on the open data CICIDS2017, and the simulation results proved that the interaction
between multiple agents enhanced the network threat perception. However, designing
value functions for agents to deal with the network threat perception problems in unknown
networks largely relies on prior domain knowledge.

5.4. Recovery

“Response” task needs the defender to be able to take measures to restore network
functionality after cyber attacks have occurred.

In the case of unavoidable exceptions or damages, the defender should take adequate
measures to restore the normal operation of the network in time and minimize the impact
caused by attacks. For critical power infrastructure, the system can quickly recover by
using reinforcement learning technology after detecting and removing the invasion [93]. A
malicious attacker can trip all transmission lines to block power transmission as long as it
takes control of a substation. As a result, asynchrony will emerge between the separated
regions interconnected by these transmission lines.

Wei et al. [82], proposed a recovery policy for how to properly choose the reclosing
time, which uses a deep reinforcement learning framework, so as to reclose the tripped
transmission lines at the optimal reclosing time. This policy was given with adaptability
and real-time decision-making ability to uncertain network attack scenarios. Numerical
results showed that the policy proposed can greatly minimize the impact of network attacks
in different scenarios.

Wu et al. [83] modeled the cascade failure and recovery process in the power system
as MDP and used Q-learning to identify the optimal line sequence recovery sequence. The
recovery performance of this method was proven to be better than that of the baseline
heuristic recovery policy in IEEE57 simulation systems.

Debus et al. modeled the threat model and decision-making problem mathematically
for the traditional network defense methods, and transformed the problem of finding the
best backup policy into a reinforcement learning problem [84]. The storage device updating
scheme based on the proposed algorithm can achieve or even exceed the performance of
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the existing scheme. In addition, thanks to the function approximation property of the
policy network, the algorithm not only provides a fixed set of update rules and steps, but
also can deal with the deviation from the planned scheme and dynamically adjust the
backup scheme back to the best route.

6. Open Directions and Challenges

According to existing literature, It can be seen that most of the work still remains on
how to apply reinforcement learning algorithms. Therefore, this paper makes an outlook
from both reinforcement learning and cyber defense decision-making perspectives.

6.1. Challenges in Reinforcement Learning Algorithms

In terms of existing studies on reinforcement learning, reinforcement learning al-
gorithms are too simple to solve the real problems in cyber defense decision-making.
Therefore, the reinforcement learning research in network defense decision-making still
needs to overcome the following challenges:

Appropriate Objective Function and Optimization Method: Different from super-
vised learning, there is no unified optimal goal because the reinforcement learning has no
labels. Objective functions are designed in terms of stability, convergence rate and accuracy
of value function. However, what kind of objective function is more suitable for the policy
solution of network attack and defense decision-making task needs to be further studied.
In addition, the optimization methods such as batch gradient descent, random gradient
descent, least squares, Kalman filtering, Gauss process optimization, proximal optimization,
Newton method etc. should be further discussed given the objective function.

Value Functions and Policy Gradients: Both reinforcement learning algorithms are
based on the value function and policy gradient ascending algorithm which directly defines
a policy exist in many network attack and defense decision-making tasks. Reinforcement
learning algorithms based on a value function are usually used in discrete action space,
while policy gradient based reinforcement learning algorithms are usually used in continu-
ous action space. However, how to define a policy for a specific task should be considered
carefully [15].

Sparse Reward Challenge: In network attack and defense decision-making tasks,
rewards are usually sparse. Sparse reward is one of the important factors affecting the
convergence rate of reinforcement learning. Using reward shaping to make sparse rewards
denser can effectively improve the convergence rate of learning, one of whose cores is
to satisfy policy invariance [94]. There is another scheme, where the decision-making
behavioral data of experts are collected and the techniques such as inverse reinforcement
learning are used to reverse the reward function [95,96].

Non-stationary Challenges: Reinforcement learning assumes that the environment is
stationary: Time-independent uncertainty. However, in the network attack and defense
game, the following two situations lead to nonstationary environment:

(1) Environmental uncertainty may be time-varying [97], for example, the network
topology disturbed by uncertain factors (abnormal shutdown, etc.) may lead to the failure
of nodes;

(2) The competitive game between attacking and defending agents causes the environ-
ment to respond to different action pairs.

Such a nonstationary environment will seriously affect the convergence of reinforce-
ment learning algorithm. Therefore, it is necessary to conduct context detection, track
potential changes [98], predict [99], and construct a model to accommodate it, such as
meta-reinforcement learning [100] and worst case idea [101] etc.

Non-Ergodicity Challenges: Reinforcement learning assumes that the environment
satisfies Ergodicity, also known as Ergodicity of each state, which means that the probability
of each state is non-zero and converges to a definite value. However, in the network attack
and defense game, this ergodicity is broken, causing that some nodes in the topology
are broken at a very low possibility. This brings a strong challenge to reinforcement
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learning. Given this, how to design a stable and efficient reinforcement learning under the
assumption of non-ergodicity is much needed, such as using utility function based on a
value function [102–104].

6.2. Challenges in Cyber Defense Decision-Making

Network defense decision-making requires in-depth study of problem characteristics
in combination with real scenarios, so as to provide a basis for more convenient simulation
experiments and theoretical analysis, as well as better evaluation of defense decision-
making effects. The challenges in network defense decision-making are as follows.

Task model: In order to accurately characterize the characteristics of cyber attack and
defense interactions, the researchers proposed FilpIt [105,106], Hide-and- Seek [107–110],
two-person zero-sum game [55] and other task models to analyze the decision-making
behavior of both attacker and defender. The above models have abstracted the character-
istics of network attack and defense, such as concealability and dynamics, but it is still
difficult to provide guidance for the decision-making process due to the theoretical reasons
as follows: (1) The design of environment, action and state of the existing models is abstract
and lacks the mapping with the real world. (2) Most network attack and defense games are
abstracted as two-person zero-sum games, whose design of reward and ending mechanism
cannot accurately reflect the decision-making preferences of both attacker and defender.
Therefore, to conduct a more in-depth analysis on the characteristics of attack and defense
game in actual task scenarios such as Pentesting and virus infection is necessary.

Table 3. Comparison of Current Network Training and Testing Platform.

Network Implementation Model Literature Convenience Fidelity Expansibility

Network Simulation
MulVAL [111] [112–115] Middle Low Low
Petri net [116] [58] Low High High

NS3 [117] [118] Middle High Middle
Mininet [119] [65] Middle Middle Middle

Testing platform NASim [59] [48] High Middle High
CyberBattleSim [120] - High Middle High

Simulation platform: Previous studies mainly verify the effectiveness of network
attack and defense decision-making algorithm by MulVAL [111], NS3 [117], Petri net [116]
real data playback or using virtual machine network. In Table 3, the relevant work of the
existing training and testing platform is summarized, which is divided into three indexes
of high, middle and low to measure the convenience, fidelity and expansibility of each
network training and testing platform.

(1) Convenience: How easy the platform is to use, which is evaluated on the basis of the
size of the package, the platform on which it is running, the language in which it is
compiled, and how it is installed.

(2) Fidelity: Closeness to the real world, which is mainly evaluated from action design,
network environment, evaluation indexes, etc.

(3) Expansibility: The difficulty of secondary development, which is evaluated based
on the open source degree of the platform and the difficulty of the experiment of
researchers.

Obviously, using NS3, real data playback and other methods to build the training test
environment will bring a lot of unnecessary details in terms of decision-making, such as
raw data preprocessing or traffic packet parsing. As a result, the processing complexity of
the algorithm is increased. However, Petri net or MulVAL and other methods to build the
training testing environment need a lot of pre-defined work, which is difficult to reflect the
dynamic of network attack and defense. Therefore, it has become a current development
trend for researchers to use multi-agent methods to build training and testing platforms
for attack and defense, such as the Network Attack Simulator [59] by Schwartz and Cyber-
BattleSim [120] by Microsoft. However, these training test platforms are still developing,
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which are difficult to define and expand the elements of attacking and defending actions,
states and tasks flexibly. So, to further develop diversified training environments to meet
the needs of decision-making algorithm is required.

Best response strategy: In single-agent reinforcement learning, an agent repeatedly
interacts with the environment to optimize its policies until there is no way to provide
further performance (as measured by rewards or other metrics). However, the attacker
in the process of defense may have more than one policy; the defender therefore shall
comprehensively consider different policies, different starting points, and even different
attackers with different capabilities, so as to make the optimal response as far as possible.
In this case, empirical game analysis and reinforcement learning [121] shall be used to find
the optimal defense response policy in the policy space.

State representation: The state of the decision-making process needs to consider
elements such as network topology, vulnerabilities, and accounts, and Network topology
is a natural graph structure. Therefore, graph neural networks, graph convolutional
deep neural networks [122,123] and graph deep neural networks [124,125] can be used
to effectively represent the state and observation of network attack and defense decision-
making processes. However, only little literature [50] discusses the use of graph embedding
method, more in-depth research should be performed on how to better represent the
multidimensional characteristics in the attack and defense decision-making and analyze
the differences between different representation methods.

Centralized control and distributed control: In the existing research on network at-
tack and defense decision-making, most of them adopt distributed cooperative mode to
control multiple agents for intrusion detection and anomaly detection. However, large-
scale collaborative learning of distributed agents was difficult to guarantee the conver-
gence [69,70,78]. Furthermore, the hostile behavior has gradually taken on the purposeful,
organizational characteristics in the current network attack and defense decision-making
environment. Therefore, the most important work in the next stage is to study a set of
centralized control learning methods, and multiple agents are controlled to make unified
decisions at the same time, in order to respond to the hostile behavior with clear goals and
organizational discipline.

7. Conclusions

Internet technology is the foundation of cyberspace, while network security is an
inevitable problem in the development of cyberspace. Reinforcement learning, as a new
technology, has been used by many researchers to solve the cyber defense decision-making
problem. In this paper, based on the summary of intelligent decision-making models and
reinforcement learning technology, representative literature is summarized and contrasted
from perspectives of the attacker and the defender, respectively. The former focuses on
the uncertain process of attack decision-making, and the latter focuses on addressing the
various scenarios that cyber defenses may face.

This paper is prepared to sort out the technology and application of reinforcement
learning in the field of network attack and defense decision-making, and provide ideas
for further research on network attack and defense decision-making by systematically
analyzing the advantages and disadvantages of existing research. At the end of the paper,
the challenges of reinforcement learning and network defense decision-making are summa-
rized. It can be seen that reinforcement learning shows the potential to solve cyber defense
decision-making problems, but the task models, platforms and algorithms still need further
research to promote this direction.
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