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Abstract: Classification and topic modeling are popular techniques in machine learning that extract
information from large-scale datasets. By incorporating a priori information such as labels or im-
portant features, methods have been developed to perform classification and topic modeling tasks;
however, most methods that can perform both do not allow for guidance of the topics or features.
In this paper, we propose a novel method, namely Guided Semi-Supervised Non-negative Matrix
Factorization (GSSNMF), that performs both classification and topic modeling by incorporating
supervision from both pre-assigned document class labels and user-designed seed words. We test the
performance of this method on legal documents provided by the California Innocence Project and the
20 Newsgroups dataset. Our results show that the proposed method improves both classification
accuracy and topic coherence in comparison to past methods such as Semi-Supervised Non-negative
Matrix Factorization (SSNMF), Guided Non-negative Matrix Factorization (Guided NMF), and Topic
Supervised NMF.

Keywords: matrix decomposition; topic modeling; classification; semi-supervised learning; legal
documents; california innocence project

1. Introduction

Understanding latent trends within large-scale, complex datasets is a key compo-
nent of modern data science pipelines, leading to downstream tasks such as classification
and clustering. In the setting of textual data contained within a collection of documents,
non-negative matrix factorization (NMF) has proven itself as an effective, unsupervised
tool for this exact task [1–7], with trends represented by topics. Whilst such fully unsu-
pervised techniques bring great flexibility in application, it has been demonstrated that
learned topics may not have the desired effectiveness in downstream tasks [8]. In particular,
certain related features may be strongly weighted in the data, yielding highly related
topics that do not capture the variety of trends effectively [9]. To counteract this effect,
some level of supervision may be introduced to steer learnt topics towards being more
meaningful and representative, and thus improve the quality of downstream analyses.
Semi-Supervised NMF (SSNMF) [10–14] utilizes class label information to simultaneously
learn a dimensionality-reduction model and a model for a downstream task such as clas-
sification. Guided NMF [15] instead incorporates user-designed seed words to “guide”
topics towards capturing a more diverse range of features, leveraging (potentially little)
supervision information to drive the learning of more balanced, distinct topics. Topic Su-
pervised NMF (TS-NMF) [16] associates label information to latent topics to achieve better
modeling results. Despite a distinction between the supervision information and goals of
Guided NMF, SSNMF, and TS-NMF, there are certainly mutual relationships: knowledge
of class labels can be leveraged to improve the quality of learnt topics (in terms of scope,
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mutual exclusiveness, and self-coherence), whilst a priori seed words for each class can
improve classification.

With these heuristics in mind, the contributions of this paper are as follows. We
first analyze the characteristics of both classical and state-of-the-art NMF variants for
classification and topic modeling tasks. We then propose the Guided Semi-Supervised
NMF (GSSNMF), a model that incorporates both seed word information and class labels
in order to simultaneously learn topics and perform classification. Our experimental
results demonstrate that utilizing both forms of supervision information concurrently
offers improvements to both the topic modeling and classification tasks, while producing
highly interpretable results.

2. Related Work
2.1. Classical Non-Negative Matrix Factorization

Non-negative matrix factorization (NMF) is a powerful framework for performing
unsupervised tasks such as topic modeling and clustering [1]. Given a target dimen-
sion k < min{d, n}, the classical NMF method approximates a non-negative data matrix
X ∈ Rd×n by the product of two non-negative low-rank matrices: the dictionary matrix
W = [w1, w2, · · · , wk] ∈ Rd×k

≥0 and the coding matrix H = [h1, h2, · · · , hn] ∈ Rk×n
≥0 . Both

matrices W and H can be found by solving the optimization problem

argmin
W∈Rd×k

≥0 , H∈Rk×n
≥0

1
2
‖X −W H‖2

F, (1)

where ‖A‖2
F = ∑i,j a2

ij is the Frobenius norm of A, and the constant of 1
2 is to ease the

calculation when taking the gradient. In the context of topic modeling, the dimension k is
the number of desired topics. Each column of W encodes the strength of every dictionary
word’s association with a learned topic, and each column of H encodes the relevance of
every topic for a given document in the corpus. By enforcing non-negativity constraints,
NMF methods can learn topics and document classes with high interpretability [1,7].

2.2. Semi-Supervised NMF

Besides topic modeling, one variant of classical NMF, Semi-Supervised NMF
(SSNMF) [10,11,14] is designed to further perform classification. SSNMF introduces a
masking matrix L = [`1, . . . , `n] ∈ Rp×n

≥0 and a label matrix Z = [z1, · · · , zn] ∈ Rp×n
≥0 , where

p is the number of classes and n is the number of documents. The masking matrix L is
defined as:

`j =

{
1p, if the label of document xj is known
0p, otherwise,

(2)

where 1p = [1, . . . , 1]T ∈ Rp and 0p = [0, . . . , 0]T ∈ Rp. Note that the masking matrix L
splits the label information into train and test sets. Each column zi is a binary encoding
vector such that, if the document xi belongs to class j, the jth entry of zi is 1, and otherwise
it is set to be 0. The dictionary matrix W , coding matrix H, and label dictionary matrix C
can be found by solving the optimization problem

argmin
W∈Rd×k

≥0 ,H∈Rk×n
≥0 ,C∈Rp×k

≥0

1
2
‖X −W H‖2

F︸ ︷︷ ︸
classical NMF

+
µ

2
‖L� (Z− CH)‖2

F︸ ︷︷ ︸
label information

, (3)

where µ > 0 is a regularization parameter and A� B denotes entry-wise multiplication
between matrix A and B. Matrices W and H can be interpreted in the same way as classical
NMF. Matrix C can be viewed as the dictionary matrix for the label matrix Z.
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2.3. Guided NMF

Due to the fully unsupervised nature of classical NMF, the generated topics may suffer
from redundancy or lack of cohesion when the given data set is biased towards a set of
featured words [8,9,15]. Guided NMF [15] addresses this by guiding the topic outputs
through incorporating flexible user-specified seed word supervision. Each word in a given
list of s seed words can be represented as a sparse binary seed vector v ∈ Rd, whose entries
are zero except for some positive weights at entries corresponding to the seed word feature.
The corresponding binary seed matrix Y ∈ Rd×s

≥0 can be constructed as

Y = [v1, · · · , vs] ∈ Rd×s
≥0 .

For a given data matrix X and a seed matrix Y , Guided NMF seeks a dictionary matrix
W , coding matrix H, and topic supervision matrix B by considering the optimization
problem

argmin
W∈Rd×k

≥0 ,H∈Rk×n
≥0 ,B∈Rk×s

≥0

1
2
‖X −W H‖2

F︸ ︷︷ ︸
classical NMF

+
λ

2
‖Y −W B‖2

F︸ ︷︷ ︸
guiding

, (4)

where λ > 0 is a regularization parameter. Matrices W and H can be interpreted in the
same way as classical NMF. Matrix B can help identify topics that form from the influence
of seed words.

2.4. Topic Supervised NMF

Given the binary label matrix Z, also known as the supervision matrix, Topic Supervised
NMF (TS-NMF) [16] is able to supervise the classical NMF method to potentially improve
topic modeling results. For a given data matrix X and a supervision matrix Z, TS-NMF
finds the dictionary matrix W and coding matrix H by solving the optimization problem:

argmin
W∈Rd×k

≥0 , H∈Rk×n
≥0

1
2
‖X − (W � Z)H‖2

F, (5)

where the matrices W and H can be interpreted in the same way as in classical NMF. The
supervision matrix Z constrains the importance weights of Wij by enforcing Wij to be 0
whenever Zij is 0. By doing so, TS-NMF is able to prescribe a subspace of the latent topic
space for labeled documents for improved topic modeling results. Note that the number of
latent topics must equal the number of different labels.

3. Proposed Method

Recall that SSNMF is able to classify different documents through given label infor-
mation, while Guided NMF can guide the content of generated topics via a priori seed
words. We propose a more general model, Guided Semi-Supervised NMF (GSSNMF)
that can leverage both label information and important seed words to improve perfor-
mance in both multi-label classification and topic modeling. Heuristically, we see that, for
classification, the user-specified seed words aid SSNMF in distinguishing between each
class label and thus improve classification accuracy. For topic modeling, the known label
information enables Guided NMF to better cluster similar documents, improving topic
coherence and interpretability. Our algorithm combines these and seeks to approximately
solve the optimization problem

argmin
W∈Rd×k

≥0 ,H∈Rk×n
≥0 ,B∈Rk×s

≥0 ,C∈Rp×k
≥0

1
2
‖X −W H‖2

F︸ ︷︷ ︸
classical NMF

+
λ

2
‖Y −W B‖2

F︸ ︷︷ ︸
guiding

+
µ

2
‖L� (Z− CH)‖2

F︸ ︷︷ ︸
label information

, (6)
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where matrices W , H, Y , B, L, Z, and C and constants λ and µ can be interpreted in the
same way as in SSNMF and Guided NMF. Note that, if we simply set either λ or µ to be 0,
GSSNMF reduces to SSNMF or Guided NMF, respectively.

To solve (6), we propose an algorithm that utilizes a multiplicative update scheme
akin to those in [11,17]. In a manner similar to gradient descent, at each step, each of
the four matrices W , H, B, C are updated in turn, while viewing the other three as fixed.
The derivation of these updates is provided in Appendix A, and the updating process is
presented in Algorithm 1. Note that, as with other multiplicative update methods for NMF
variants, the loss is monotone [2].

Algorithm 1: GSSNMF with multiplicative updates.

Input: X ∈ Rd×n
≥0 , Y ∈ Rd×s

≥0 , L ∈ Rp×n
≥0 , Z ∈ Rp×n

≥0 , k, λ, µ, N

1 Initialize W ∈ Rd×k
≥0 , H ∈ Rk×n

≥0 , B ∈ Rk×s
≥0 , C ∈ Rp×k

≥0
2 for i = 1, . . . , N do
3 W ←W � XH>+λYB>

W HH>+λW BB>

4 H ← H � W>X+µC>(L�Z)
W>W H+µC>(L�CH)

5 B← B� W>Y
W>W B

6 C ← C� (L�Z)H>

(L�CH)H>

7 end
Output: W , H, B, C

We will demonstrate the strength of GSSNMF by considering different combinations
of the parameters λ and µ, and comparing the implementations of this method with
Classical NMF, SSNMF, Guided NMF, and TS-NMF through real-life applications in the
following section.

4. Experiments

In this section, we evaluate the performances of our GSSNMF on the California
Innocence Project dataset [18] and the 20 Newsgroups dataset [19]. Specifically, we com-
pare GSSNMF with SSNMF for performance in classification (measured by the Macro-F1
score, i.e., the averaged F1-score which is sensitive to different distributions of different
classes [20]) and with classical NMF, TS-NMF, and Guided NMF for performance in topic
modeling (measured by the C coherence score [21]).

4.1. Pre-Processing of the CIP Dataset

A nonprofit, clinical law school program hosted by the California Western School
of Law, the California Innocence Project (CIP) focuses on freeing wrongfully-convicted
prisoners, reforming the criminal justice system, and training upcoming law students [18].
Every year, the CIP receives over 2000+ requests for help, each containing a case file of legal
documents. Within each case file, the Appellant’s Opening Brief (AOB) is a legal document
written by an appellant to argue for innocence by explaining the mistakes made by the
court. This document contains crucial information about the crime types relevant to the
case, as well as potential evidence within the case [18]. For our final dataset, we include all
AOBs in case files that have assigned crime labels, totaling 203 AOBs. Each AOB is thus
associated with one or more of thirteen crime labels: assault, drug, gang, gun, kidnapping,
murder, robbery, sexual, vandalism, manslaughter, theft, burglary, and stalking.

To pre-process data, we remove numbers, symbols, and stopwords according to the
NLTK English stopwords list [22] from all AOBs; we also perform stemming to reduce
inflected words to their original word stem. Following the work of [18,23,24], we apply term-
frequency inverse document frequency (TF-IDF) [25] to our dataset of AOBs. TF-IDF retains
the relative simplicity of a bag-of-words representation while additionally moderating
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the impact of words that are common to every document, which can be detrimental to
performance [26–29].We generated the corpus matrix X with parameters max_df = 0.8,
min_df=0.04, and max_features = 700 in the function TfidfVectorizer.

For our topic modeling methods, we need to preset the potential number of topics,
which corresponds to the rank of corpus matrix X. To determine the proper range of the
number of topics, we analyze the singular values of X. The magnitudes of singular values
are positively related to the increment in proportion variance explained by adding on
more topics, or increasing rank, to split the corpus matrix X [30]. In this way, we use the
number of singular values to approximate the rank of X. Figure 1 plots the magnitudes
of the singular values of corpus matrix X against the number of singular values, which
is also the approximated rank. By examining this plot, we see that a range for potential
rank is between 6 to 9, since the magnitudes of the singular values start to level off around
this range.

Figure 1. First 20 singular values of the CIP corpus matrix.

4.2. Classification on the CIP Dataset

Taking advantage of Cross-Validation methods [31], we randomly split all AOBs into
70% training set with labeled information and 30% testing set without labels. In practice,
70% of the columns of the masking matrix L are set to 1p for the training set, and the
rest are set to 0p for the testing set. As a result, the label matrix Z is masked by L into a
corresponding training label matrix Ztrain and a corresponding testing label matrix Ztest.
We then perform SSNMF and GSSNMF to reconstruct Ztest by setting the number of topics
as 8. Given the multi-label characteristics of the AOBs, we compare the performance
between SSNMF and GSSNMF with a measure of classification accuracy: the Macro F1-score,
which is designed to access the quality of multi-label classification on Ztest [20]. The Macro
F1-score is defined as

Macro F1-score =
1
p

p

∑
i=1

F1-scorei, (7)

where p is the number of labels and F1-scorei is the F1-score for topic i. Notice that the
Macro F1-score treats each class with equal importance; thus, it will penalize models which
only perform well on major labels but not minor labels. In order to handle the multi-label
characteristics of the AOB dataset, we first extract the number of labels assigned to each
AOB in the testing dataset. Then, for each corresponding column i of the reconstructed
Ztest, we set the largest ji elements in each column to be 1 and the rest to be 0, where ji is
the actual number of labels assigned to the ith document in the testing set.

We first tune the parameter of µ in SSNMF to identify a proper range of µ for which
SSNMF performs the best on the AOB dataset under the Macro F1-score. Then, for
each selected µ in the proper range, we run GSSNMF with another range of λ. While
there are various choices of seed words, we naturally pick the class labels themselves
as seed words for our implementation of GSSNMF. As a result, for each combination of
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µ, λ ∈ {0.0005, 0.0006, · · · , 0.0012}, we conduct 10 independent Cross-Validation trials and
average the Macro F1-scores. The results are displayed in Figure 2.

Algorithms 2022, 1, 0 6 of 18

(a) SSNMF (b) GSSNMF (c) GSSNMF

Figure 2. The heatmap representation of Macro F1-score averaged over 10 independent tri-
als with µ, λ ∈ {0.005, 0.006, · · · , 0.0012}: (a) displays the results for SSNMF with µ ∈
{0.005, 0.006, · · · , 0.0012}; (b) highlights the best scores for GSSNMF by ranging λ from 0.0005
to 0.0012; (c) shows the performance of GSSNMF with different values of µ and λ in the prede-
fined range. From the heatmap, one can see for different µ, one may choose λ such that GSSNMF
outperforms SSNMF.

We see that, in general, when incorporating the extra information from seed words,
GSSNMF has a higher Macro F1-score than SSNMF. As an example, we extract the recon-
structed testing label matrix by SSNMF and GSSNMF along with the actual testing label
matrix from a single trial. In this instance, SSNMF has a Macro F1-score of 0.672 while
GSSNMF has a Macro F1-score of 0.765. By comparing the reconstructed matrices with the
actual label matrix, we generate two difference matrices representing the correct and incor-
rect labels produced by the two methods respectively. The matrices are visualized in Fig. 3.
Given the fact that murder is a major label, without the extra information from seed words,
SSNMF makes many incorrect classifications on the major label murder. In comparison,
through user-specified seed words, GSSNMF not only reduces the number of incorrect
classifications along the major label murder, but also better evaluates the assignment of
other labels, achieving an improved classification accuracy.

Figure 2. The heatmap representation of Macro F1-score averaged over 10 independent
trials with µ, λ ∈ {0.005, 0.006, · · · , 0.0012}: (a) displays the results for SSNMF with
µ ∈ {0.005, 0.006, · · · , 0.0012}; (b) highlights the best scores for GSSNMF by ranging λ from 0.0005
to 0.0012; (c) shows the performance of GSSNMF with different values of µ and λ in the predefined
range. From the heatmap, one can see, for different µ, that one may choose λ such that GSSNMF
outperforms SSNMF.

We see that, in general, when incorporating the extra information from seed words,
GSSNMF has a higher Macro F1-score than SSNMF. As an example, we extract the recon-
structed testing label matrix by SSNMF and GSSNMF along with the actual testing label
matrix from a single trial. In this instance, SSNMF has a Macro F1-score of 0.672 while
GSSNMF has a Macro F1-score of 0.765. By comparing the reconstructed matrices with
the actual label matrix, we generate two difference matrices representing the correct and
incorrect labels produced by the two methods respectively. The matrices are visualized
in Figure 3. Given the fact that murder is a major label, without the extra information
from seed words, SSNMF makes many incorrect classifications on the major label murder.
In comparison, through user-specified seed words, GSSNMF not only reduces the num-
ber of incorrect classifications along the major label murder, but also better evaluates the
assignment of other labels, achieving an improved classification accuracy.
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(a) Difference between Reconstructed Crime Labels (SSNMF) and Actual Crime Labels

(b) Difference between Reconstructed Crime Labels (GSSNMF) and Actual Crime Labels

Figure 3. Difference between Reconstructed Labels using SSNMF and GSSNMF and Actual Crime
Label matrices (µ = 0.0011, λ = 0.0007), a light pixel indicates correct label assignment, while a dark
pixel indicates otherwise.

4.3. Topic Modeling on the CIP Dataset

In this section, we test the performance of GSSNMF for topic modeling by comparing
it with Classical NMF, Guided NMF, and TS-NMF on the CIP AOB dataset. Specifically, we
conduct experiments for the range of rank identified in Section 4.1, running tests for various
values of λ and µ for each rank. To measure the effectiveness of the topics discovered by
Guided NMF and GSSNMF, we calculate the topic coherence score defined in [21] for each
topic. The coherence score Ci for each topic i with N most probable keywords is given by

Ci =
N

∑
b=2

b−1

∑
`=1

log
P(w(i)

b , w(i)
` ) + 1

P(w(i)
` )

. (8)

In the above Equation (8), P(w) denotes the document frequency of keyword w, which
is calculated by counting the number of documents that keyword w appears in at least
once. P(w, w′) denotes the co-document frequency of keyword w and w′, which is obtained
by counting the number of documents that contain both w and w′. In general, the topic
coherence score seeks to measure how well the keywords that define a topic make sense as
a whole to a human expert, providing a means for consistent interpretation of accuracy in
topic generation. A large positive C coherence score indicates that the keywords from a
topic are highly cohesive, as judged by a human expert.

Since we are judging the performance of methods that generate multiple topics, we
calculate coherence scores C for each topic that is generated by Guided NMF or GSSNMF
and then take the average. Thus, our final measure of performance for each method is the
averaged coherence score Cavg:

Cavg =
∑k

i=1 Ci

k
, (9)

where k is the number of topics (or rank) we have specified.
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As suggested by Figure 1, a proper rank falls between 6 and 9. Starting with the
generation of 6 topics from the AOB dataset, we first find a range of λ in which Guided
NMF generates the highest mean Cavg over 10 independent trials. In our computations, we
use the top 30 keywords of each topic to generate each coherence score; then, for each trial,
we obtain an individual Cavg, allowing us to average the 10 Cavg from the 10 trials into the
mean Cavg. Based on the proper range of λ, we then choose a range of µ for our GSSNMF
to incorporate the label information into topic generation. Again, for each pair of (λ, µ), we
run 10 independent trials of GSSNMF and calculate Cavg for each trial to generate a mean
Cavg. With these ranges in mind, we work towards the following goal: for a given “best" λ
of Guided NMF, we improve topic generation performance by implementing GSSNMF with
a “best” µ that balances how much weight GSSNMF should place on the new information
of predetermined labels for each document. We then repeat the same process for ranks
7, 8, and 9, and plot the mean Cavg against each λ in Figure 4. The corresponding choice
of µ can be found in Appendix B. We can see that, most of the time, for a given λ, we are
able to find such µ that GSSNMF can generate a higher mean Cavg than Guided NMF in
topic modeling across various ranks. Ultimately, we also see that a GSSNMF result always
outperforms even the highest-performing Guided NMF result.

In Table 1, we provide an example of the outputs of topic modeling from Guided NMF
using λ = 0.4 and from GSSNMF using λ = 0.3 and µ = 0.006 for a rank of 7. Note that
we output only the top 10 keywords under each identified topic group for ease of viewing,
but our coherence scores are measured using the top 30 keywords. Thus, while the top 10
probable keywords of the generated topics may look similar across the two methods, and
the coherence scores calculated from the top 30 probable keywords reveal that GSSNMF
produces more coherent topics as a whole in comparison to Guided NMF. Specifically,
GSSNMF demonstrates an ability to produce topics with similar levels of coherence (as
seen from the small variance in individual coherence scores C of each topic), while Guided
NMF produces topics that may vary in level of coherence (as seen from the large variance in
individual coherence scores C for each topic). This further illustrates that GSSNMF is able
to use the additional label information to execute topic modeling with better coherence.

We also compare GSSNMF to two other NMF methods—classical NMF and TS-NMF—
on the basis of topic modeling performance on the CIP dataset. Following our methodology
for applying GSSNMF to this data, we ran 10 independent trials of classical NMF for each
rank from 6 to 9 and computed the mean Cavg for each rank. The results for classical NMF,
Guided NMF, and GSS-NMF using ranks 6–9 are summarized in Table 2. For the rank
6–9 approximations, while classical NMF slightly outperforms GSSNMF on the basis of
the topic coherence score Cavg, GSSNMF retains the advantage that the generated topics
are guided by a priori information, whereas classical NMF has no such guarantee. As
noted in Section 2.4, when TS-NMF is applied for topic modeling, the number of latent
topics must be exactly equal to the number of different labels. In the case of the CIP data,
the AOBs have 13 possible labels, so we ran TS-NMF on the CIP data with a rank of 13,
computing Cavg over 10 independent trials. TS-NMF (using rank 13) had Cavg = 1458.732,
which outperforms our recorded GSSNMF results for the same data. This could be a result
of the structure of the CIP dataset, together with being constrained to use a rank of 13 when
applying TS-NMF. As shown in Table 3, at least four of the topics generated by TS-NMF
were all clearly related to gang activity, which is one of the labels used by TS-NMF. While
the resulting topics are highly coherent, the abundance of closely related topics obscures
the latent structure of the data. This arises from the fact that TS-NMF must use a rank
exactly equal to the number of different labels, which may not accurately reflect the true
low-rank structure of the data. In this case, we see that this splits larger topics into more
specific subtopics that have several words in common. This increases Cavg, but the resulting
topics do not correspond well to the original labels.



Algorithms 2022, 15, 136 9 of 18

Rank 6

Rank 7

Rank 8

Rank 9

Figure 4. Comparison of Guided NMF mean Cavg score (over 10 independent trials) and highest
GSSNMF mean Cavg score (over 10 independent trials) for each λ tested.
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Table 1. Topic modeling results of guided NMF and GSSNMF for Rank 7.

Guided NMF Results (λ = 0.4)

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7

gang burglari murder accomplic gang instruct identif
member sexual shot corrobor member murder eyewit

crip strike hous robberi expert manslaught photo
activ admiss detect instruct beer lesser lineup

phone instruct vehicl murder estrada theori suggest
murder threat phone codefend hispan degre suspect
photo object apart abet tattoo passion photograph

territori discret robberi commiss intent abet pack
associ impos want special men voluntari procedur
shot sex firearm conspiraci robberi premedit expert

Coherence Score C per Topic:

1112.94 1388.307 1290.817 921.023 1109.453 1123.185 1090.895

Averaged Coherence Score Cavg: 1148.089

GSSNMF Results (λ = 0.3, µ = 0.006)

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7

murder instruct detect identif gang gang burglari
accomplic manslaught phone eyewit member member strike
corrobor lesser probat photo crip expert sexual

vehicl murder waiver lineup associ beer robberi
robberi self plea suggest expert hispan impos

shot passion interrog suspect activ shot discret
abet theori confess photograph intent estrada punish

intent voluntari interview pack premedit men sex
degre heat admiss procedur prove tattoo feloni
hous spont transcript reliabl firearm male threat

Coherence Score C per Topic:

1215.826 1024.617 1188.975 1184.333 1180.321 1084.33 1281.146

Averaged Coherence Score Cavg: 1165.65

Table 2. Coherence of topics generated by Classical NMF, Guided NMF, and GSSNMF for CIP data.

Rank 6 7 8 9

Cavg

Classical NMF 1247.219 1181.154 1133.603 1070.618

Guided NMF 1227.161 1167.535 1112.29 1058.728

GSSNMF 1238.868 1181.253 1118.944 1065.837

Best GSSNMF Parameters µ = 0.016 µ = 0.006 µ = 0.014 µ = 0.01
λ = 0.2 λ = 0.3 λ = 0.15 λ = 0.2
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Table 3. Similar topics generated by TS-NMF.

Top 10 Words from Selected TS-NMF Topics

Topic 1 Topic 2 Topic 3 Topic 4

gang gang gang accomplic
member estrada member gang
instruct expert circumstanti robberi
expert member premedit instruct
assault tattoo murder corrobor

beer identif instruct identif
object opin deliber intent
intent territori accomplic special
injuri primari intent feloni
men activ shot abet

4.4. Pre-Processing of the 20 Newsgroups Dataset

The original 20 Newsgroups dataset [19] is a collection of around 20,000 individual
news documents. The dataset is organized into 20 different Newsgroups, each correspond-
ing to a topic. For this experiment, we select documents from nine newsgroups. From
each group, we randomly select 200 documents. As a result, our dataset contains a to-
tal of 1800 documents from the categories: comp.graphics, comp.sys.mac.hardware, sci.crypt,
rec.motorcycles, rec.sport.baseball, sci.med, sci.space, talk.politics.guns, talk.religion.misc. We then
evaluate the performance of GSSNMF on this subset of the original 20 Newsgroups data.

To pre-processs the data, we follow the same approaches as for the CIP data, namely, re-
moving numbers, symbols, and stopwords, and stemming the remaining words. Using TF-
IDF, we generated the corpus matrix X with parameters max_df = 0.8, and max_features
= 2000 in the function TfidfVectorizer.

To determine the potential number of topics for these data, we also analyze the singular
values of X. Figure 5 demonstrates the distribution of the singular values of X, which is
also the potential number of topics. From Figure 5, one can see that the potential topic
number should be between 6 to 9 where the magnitudes of the singular values start to
level off.

Figure 5. First 20 singular values of the 20 Newsgroups corpus matrix.

4.5. Classification on the 20 Newsgroups Dataset

For classification, we follow a similar approach to [14] so that comparisons may be
drawn. Namely, we group the nine selected topics into five classes, as described in Table 4,
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i.e., we view the data as containing five classes, which may be subdivided into nine latent
topics. Training label data are then constructed for these five classes, and seed words are
designed for each of the nine topics. Further details in the methodology are identical to
those in Section 4.2.

Table 4. Classes, topics, and seed words for 20 Newsgroups.

Class Topics Seed Words

Computers comp.graphics, comp.sys.mac.hardware graphics, hardware
Science sci.crypt, sci.med, sci.space cryptography, medical, space
Politics talk.politics.guns guns
Religion talk.religion.misc god

Recreation rec.motorcycles, rec.sport.baseball motorcycle, baseball

Similarly to the analysis of the CIP dataset, we begin by tuning µ to yield the best
possible results for SSNMF, again in terms of the Macro F1-score. Scores for selected values
of µ around this maximum are given in Figure 6. For these values of µ, we then run
GSSNMF over a range of λ, the best scores following this tuning are presented in Figure 6.
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with µ ∈ [0.05, 0.12]; (b) shows the best performance for GSSNMF by ranging λ from 0.695 to 0.702;
(c) shows the performance of GSSNMF with different combinations of µ and λ in the predefined
range. From the maximal values and heatmap, one can see for different µ, there are choices of λ such
that GSSNMF outperforms SSNMF.

We see that as in the CIP data experiments, GSSNMF is able to leverage the additional
seed word information to outperform the classification performance of SSNMF. The smaller
absolute difference in scores compared to the CIP results is likely due to the overall higher
scores for this dataset.

4.6. Topic Modeling on the 20 Newsgroups dataset. Note that TS-NMF’s rank has to equal to the
number of classes; as a result it only has rank 9 topic modeling result.

In this section, we test the performance of GSSNMF for topic modeling by comparing
it with Classical NMF, Guided NMF, and TS-NMF on the 20 Newsgroups data. For each
proper rank indicated by Figure 5, we run a range of µ and λ to select the best parameter for
Guided NMF and GSSNMF. Note that both classical NMF and TS-NMF do not require the
selection of µ and λ. To quantify the performance, we also measure the averaged coherence
score Cavg as described in Equation (9) using the top 30 keywords of each topic. The resulting
Cavg scores are recorded in Table 5 along with the choices of parameters. The Cavg scores
indicate that our GSSNMF algorithm outperforms the other NMF methods in rank 6, 7, and
8 topic modeling. For the rank 9 topic modeling, even though TS-NMF outperforms our
GSSNMF, the Cavg scores are fairly close. In addition, GSSNMF does generate the highest
overall Cavg score in the rank 6 topic modeling. This is an indication that the “true rank" for
topic modeling in this subset of 20 Newsgroups data might not be 9; however, TS-NMF
does not offer such flexibility and freedom to choose different ranks for topic modeling

Figure 6. Macro F1-scores for SSNMF and GSSNMF applied to the 20 Newsgroups data, averaged
over 10 independent trials with µ ∈ [0.05, 0.12], λ ∈ [0.695, 0.702]: (a) displays the results for SSNMF
with µ ∈ [0.05, 0.12]; (b) shows the best performance for GSSNMF by ranging λ from 0.695 to 0.702;
(c) shows the performance of GSSNMF with different combinations of µ and λ in the predefined
range. From the maximal values and heatmap, one can see, for different µ, that there are choices of λ

such that GSSNMF outperforms SSNMF.

We see that, as in the CIP data experiments, GSSNMF is able to leverage the additional
seed word information to outperform the classification performance of SSNMF. The smaller
absolute difference in scores compared to the CIP results is likely due to the overall higher
scores for this dataset.
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4.6. Topic Modeling on the 20 Newsgroups Dataset. Note That TS-NMF’s Rank Has to Equal the
Number of Classes; as a Result, It Only Has Rank 9 Topic Modeling Result

In this section, we test the performance of GSSNMF for topic modeling by comparing
it with Classical NMF, Guided NMF, and TS-NMF on the 20 Newsgroups data. For each
proper rank indicated by Figure 5, we run a range of µ and λ to select the best parameter for
Guided NMF and GSSNMF. Note that both classical NMF and TS-NMF do not require the
selection of µ and λ. To quantify the performance, we also measure the averaged coherence
score Cavg as described in Equation (9) using the top 30 keywords of each topic. The resulting
Cavg scores are recorded in Table 5 along with the choices of parameters. The Cavg scores
indicate that our GSSNMF algorithm outperforms the other NMF methods in rank 6, 7,
and 8 topic modeling. For the rank 9 topic modeling, even though TS-NMF outperforms
our GSSNMF, the Cavg scores are fairly close. In addition, GSSNMF does generate the
highest overall Cavg score in the rank 6 topic modeling. This is an indication that the “true
rank" for topic modeling in this subset of 20 Newsgroups data might not be 9; however,
TS-NMF does not offer such flexibility and freedom to choose different ranks for topic
modeling other than fixing the rank to be the number of labels. This further illustrates that
GSSNMF can use additional label information for a more coherent topic model while not
being limited by the additional label information.

Table 5. Coherence of topics generated by Classical NMF, Guided NMF, TS-NMF, and GSSNMF for
20 Newsgroups data.

Rank 6 7 8 9

Cavg

Classical NMF 980.860 940.967 874.404 832.409

Guided NMF 858.361 798.737 741.057 714.796

TS-NMF - - - 856.786

GSSNMF 984.443 942.678 881.626 843.399

Best GSSNMF Parameters µ = 0.0085
λ = 0.1

µ = 0.012
λ = 0.3

µ = 0.012
λ = 0.3

µ = 0.0001
λ = 0.5

5. Conclusions and Future Works

In this paper, we analyze the characteristics of SSNMF (Section 2.2), Guided NMF
(Section 2.3), and TS-NMF (Section 2.4) concerning the tasks of classification and topic
modeling. From these methods, we propose a novel NMF model, namely the GSSNMF,
which combines characteristics of SSNMF, Guided NMF, and TS-NMF. SSNMF utilizes label
information for classification, Guided NMF leverages user-specific seed words to guided
topic content, and TS-NMF uses selected label information to inform topic modeling. To
carry out classification and topic modeling simultaneously, ourGSSNMF uses additional
label information to improve the coherence of topic modeling results while incorporating
seed words for more accurate classification. Taking advantage of multiplicative updates,
we provide a solver for GSSNMF and then evaluate its performance on real-life data.

In general, GSSNMF is able to out-perform SSNMF on the task of classification. The
extra information from the seed words contributes to a more accurate classification result.
Specifically, SSNMF tends to focus on the most prevalent class label and classifies all
documents into that class label. Unlike SSNMF, the additional information from choosing
seed words as the class labels can help GSSNMF treat each class label equally and avoid
the trivial solution of classifying every single document into the most prevalent class label.
Additionally, GSSNMF is able to generate more coherent topics when compared to Guided
NMF on the task of topic modeling. The extra information from the known label matrix
can help GSSNMF better identify which documents belong to the same class. As a result,
GSSNMF generates topics with higher and less variable coherence scores. When compared
with TS-NMF, GSSNMF also reveals its flexibility in choosing the latent topic number,
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which potentially helps it to generate a set of more coherent topics and meanwhile a higher
classification accuracy.

While there are other variants of SSNMF according to [14], we developed GSSNMF
only based on the standard Frobenius norm. In the future, we plan to make use of other
comparable measures like the information divergence, and derive a corresponding multiplica-
tive updates solver. In addition, across all the experiments, we selected the parameters λ
and µ, which put weight on the seed word matrix and label matrix, respectively, based
on the experimental results. In our continued work, we plan to conduct error analysis to
determine how each parameter affects the other parameter and the overall approximation
results. Particularly, for a given parameter λ or µ, we hope to identify an underlying,
hidden relationship that allows us to quickly pick a matching µ or λ, respectively, that
maximizes GSSNMF performance.
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Appendix A. GSSNMF Algorithm: Multiplicative Updates Proof

We begin with a corpus matrix X ∈ Rd×n
≥0 , a seed matrix Y ∈ Rd×s

≥0 , a label matrix

Z ∈ Rp×n
≥0 , and a masking matrix L ∈ Rp×n

≥0 . From these, we hope to find dictionary matrix

W ∈ Rd×k
≥0 , coding matrix H ∈ Rk×n

≥0 , and supervision matrices B ∈ Rk×s
≥0 and C ∈ Rp×k

≥0
that minimize the loss function:

F(W , H, B, C)

= 1
2‖X −W H‖2 + λ

2 ‖Y −W B‖2 + µ
2 ‖L� (Z− CH)‖2

= 1
2 tr[XX> − 2XH>W> + W HH>W>] + λ

2 tr[YY> − 2YB>W> + W BB>W>]
+ µ

2 tr[(L� Z)(L> � Z>)− 2(L� Z)(L> � H>C>) + (L� CH)(L> � H>C>)].

By introducing the Lagrange multipliers α ∈ Rd×k, β ∈ Rk×n, γ ∈ Rk×s, δ ∈ Rp×k, we
are going to consider the following optimization problem:

min
W ,H,B,C

L (W , H, B, C, α, β, γ, δ)

with

L (W , H, B, C, α, β, γ, δ) = F(W , H, B, C) + tr(αW>) + tr(βH>) + tr(γB>) + tr(δC>).

Taking the derivatives with respect to the matrices W , B, H and C, we derive the
following equations:
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∂L
∂W = −XH> + W HH> − λYB> + λW BB> + α = 0,
∂L
∂B = −λW>Y + λW>W B + γ = 0,

∂L
∂H = −W>X + W>W H − µC>(L� L� Z) + µC>(L� L� CH) + β = 0,

∂L
∂C = −µ(L� L� Z)H> + µ(L� L� CH)H> + δ = 0.

with the Karush-Kuhn-Tucker conditions, we have complementary slackness condition

α�W = β� H = γ� B = δ� C = 0.

As such, we arrive at the following stationary equations:

∂L
∂W �W = (−XH> + W HH> − λYB> + λW BCB>)�W + α�W︸ ︷︷ ︸

=0

= 0,

∂L
∂B � B = (−λW>Y + λW>W B)� B + γ� B︸ ︷︷ ︸

=0

= 0,

∂L
∂H � H = [−W>X + W>W H − µC>(L� L� Z) + µC>(L� L� CH)]� H + β� H︸ ︷︷ ︸

=0

= 0,

∂L
∂C � C = [−µ(L� L� Z)H> + µ(L� L� CH)H>]� C + δ� C︸ ︷︷ ︸

=0

= 0.

with these, we derive the following updates:
W ←W � XH>+λYB>

W HH>+λW BB> ,

B ← B� W>Y
W>W B ,

H ← H � W>X+µC>(L�L�Z)
W>W H+µC>(L�L�CH)

= H � W>X+µC>(L�Z)
W>W H+µC>(L�CH)

,

C ← C� (L�L�Z)H>

(L�L�CH)H> = C� (L�Z)H>

(L�CH)H> .

Appendix B. GSSNMF Topic Modeling: Details on µ Values

For each rank examined, we include tables in Table A1 of the mean averaged coherence
scores (mean Cavg), defined by Equation (9) in Section 4.3, corresponding to each λ and its
best-performing µ of the Guided NMF and GSSNMF methods. These are the values that
generate Figure 4 in Section 4.3.

Table A1. Mean of averaged coherence scores from 10 independent trials (mean Cavg) of Guided
NMF and GSSNMF given λ and the best-performing µ for each λ, by rank.

Rank 6

Guided NMF GSSNMF

λ Mean Cavg µ Mean Cavg

0.05 1235.799 0.017 1238.159
0.1 1236.479 0.006 1233.213
0.15 1223.286 0.011 1236.314
0.2 1227.161 0.01 1238.868
0.25 1238.161 0.006 1234.622
0.3 1231.811 0.014 1232.488
0.35 1234.488 0.019 1234.992
0.4 1224.315 0.015 1233.806
0.45 1215.942 0.002 1237.543
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Table A1. Cont.

Rank 6

Guided NMF GSSNMF

λ Mean Cavg µ Mean Cavg

0.5 1219.138 0.009 1236.933
0.55 1217.428 0.019 1237.721
0.6 1225.177 0.009 1235.567
0.65 1221.387 0.011 1234.732
0.7 1233.618 0.014 1231.956
0.75 1225.619 0.019 1234.159
0.8 1232.224 0.014 1232.239
0.85 1219.339 0.02 1233.272
0.9 1220.92 0.002 1232.433
0.95 1220.591 0.0 1233.243
1.0 1199.539 0.01 1233.594

Rank 7

Guided NMF GSSNMF

λ Mean Cavg µ Mean Cavg

0.05 1160.539 0.004 1175.973
0.1 1161.856 0.008 1169.722
0.15 1163.338 0.004 1172.093
0.2 1156.654 0.006 1172.746
0.25 1161.297 0.013 1175.38
0.3 1167.535 0.006 1181.253
0.35 1161.732 0.018 1170.002
0.4 1168.508 0.004 1173.216
0.45 1160.197 0.01 1173.244
0.5 1160.156 0.002 1174.586
0.55 1165.1 0.017 1170.422
0.6 1166.476 0.019 1170.292
0.65 1150.758 0.017 1171.758
0.7 1157.302 0.008 1169.872
0.75 1163.242 0.008 1167.135
0.8 1157.301 0.017 1166.257
0.85 1159.55 0.005 1163.406
0.9 1144.468 0.017 1165.967
0.95 1154.814 0.018 1166.376
1.0 1167.511 0.011 1169.715

Rank 8

Guided NMF GSSNMF

λ Mean Cavg µ Mean Cavg

0.05 1101.472 0.013 1113.19
0.1 1099.322 0.007 1111.402
0.15 1093.238 0.014 1118.944
0.2 1104.311 0.017 1108.933
0.25 1112.251 0.018 1112.88
0.3 1095.652 0.01 1108.676
0.35 1112.29 0.003 1113.42
0.4 1097.472 0.018 1113.481
0.45 1108.421 0.001 1110.225
0.5 1104.963 0.015 1107.234
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Table A1. Cont.

Rank 8

Guided NMF GSSNMF

λ Mean Cavg µ Mean Cavg

0.55 1103.96 0.02 1108.842
0.6 1099.296 0.012 1112.723
0.65 1103.613 0.004 1111.863
0.7 1100.494 0.018 1107.633
0.75 1101.705 0.003 1109.97
0.8 1096.231 0.006 1105.261
0.85 1099.701 0.017 1110.706
0.9 1087.417 0.001 1108.98
0.95 1093.507 0.013 1104.385
1.0 1083.938 0.019 1102.194

Rank 9

Guided NMF GSSNMF

λ Mean Cavg µ Mean Cavg

0.05 1055.147 0.02 1058.959
0.1 1053.454 0.009 1064.597
0.15 1052.940 0.017 1064.211
0.2 1057.455 0.016 1065.838
0.25 1058.728 0.02 1060.095
0.3 1044.547 0.015 1062.604
0.35 1061.362 0.001 1061.362
0.4 1054.063 0.002 1063.328
0.45 1042.789 0.003 1057.803
0.5 1048.559 0.003 1060.999
0.55 1046.531 0.014 1060.221
0.6 1048.027 0.014 1056.21
0.65 1042.196 0.013 1057.367
0.7 1050.172 0.013 1056.088
0.75 1045.215 0.012 1060.503
0.8 1048.137 0.002 1057.536
0.85 1040.848 0.007 1061.34
0.9 1051.050 0.004 1061.306
0.95 1055.246 0.001 1055.246
1.0 1044.768 0.02 1052.106
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