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Abstract: The general problem of tiling finite regions of the plane with polyominoes isNP-complete,
and so the associated computational geometry problem rapidly becomes intractable for large instances.
Thus, the need to reduce algorithm complexity for tiling is important and continues as a fruitful area
of research. Traditional approaches to tiling with polyominoes use backtracking, which is a refinement
of the ‘brute-force’ solution procedure for exhaustively finding all solutions to a combinatorial search
problem. In this work, we combine checkerboard colouring techniques with a recently introduced
integer linear programming (ILP) technique for tiling with polyominoes. The colouring arguments
often split large tiling problems into smaller subproblems, each represented as a separate ILP problem.
Problems that are amenable to this approach are embarrassingly parallel, and our work provides
proof of concept of a parallelizable algorithm. The main goal is to analyze when this approach yields
a potential parallel speedup. The novel colouring technique shows excellent promise in yielding
a parallel speedup for finding large tiling solutions with ILP, particularly when we seek a single
(optimal) solution. We also classify the tiling problems that result from applying our colouring
technique according to different criteria and compute representative examples using a combination of
MATLAB and CPLEX, a commercial optimization package that can solve ILP problems. The collections of
MATLAB programs PARIOMINOES (v3.0.0) and POLYOMINOES (v2.1.4) used to construct the ILP problems
are freely available for download.

Keywords: tiling with polyominoes; checkerboard colouring arguments; integer linear programming;
parallelizable algorithm; algorithm complexity; MATLAB; CPLEX

1. Introduction
1.1. Background and Motivation

A polyomino Pi is a set of edge-connected unit squares in the plane, which we as-
sume is simply connected. We refer to the polyominoes of area n as n-ominoes and for
n = 1, 2, . . . , 8 are called monominoes, dominoes, triminoes, tetrominoes, pentominoes,
hexominoes, heptominoes, and octominoes, respectively. In this work, we focus on tiling
finite regions of the plane R with copies of F free polyominoes {Pi}F

i=1. Free polyominoes
are the same if reflected (‘flipped’) or rotated, and thus correspond to a physical puzzle
piece or tile. For example, there are exactly 12 free pentominoes, illustrated below:

{
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}

We can rotate one-sided polyominoes, but not reflect them, while fixed polyominoes
cannot be rotated or reflected. There is no known closed-form formula for enumerating
the number of distinct polyominoes (free, one-sided, or fixed) as a function of area or
perimeter [1–12]. For tiling reasons, we can translate free, one-sided, and fixed polyominoes
in a target region R. We assume the target region is connected, but not necessarily simply
connected, i.e., we let R have ‘holes’. There are two basic tiling situations: tiling with
copies of a single free polyomino, or tiling with two or more distinct free polyominoes
(with or without copies). We refer to these cases as monohedral and multihedral, respectively.
For more background theory on polyominoes and tiling with polyominoes, we refer the
reader to standard references (see e.g., [5,7,13–16] and the citations there). There is also
a large specialized literature on the many computational and theoretical aspects of tiling
the plane with polyominoes [17–23], or tiling finite regions of the plane with polyominoes
(e.g., [24–40]). Unless stated otherwise, in the rest of this article, we assume polyominoes
are free.

Tiling with polyominoes is an example of combinatorial optimization [41,42]. The key
challenge is to develop algorithms that solve large tiling problems in a reasonable amount
of time [43]. The general problem of tiling finite regions of the plane with polyominoes is
NP-complete [42,44,45], and so the associated computational geometry problem rapidly
becomes intractable for large instances. Thus, it is important to reduce algorithm complexity
for tiling, and this area continues as a fruitful area of research.

The method in this article for tiling relies on combining two different techniques,
namely, integer linear programming (ILP) [46] and checkerboard colouring techniques [47].
We give a very simple tiling example to motivate our tiling strategy and leave the formal
development of the method and definitions to Section 3. Although the two solutions are
obvious, for the sake of introducing the colouring approach, we proceed as though the
solution is unknown, to highlight the issues involved.

Consider the problem of tiling the 2× 4 rectangle, denoted R, with two L-shaped

tetrominoes

{ }
, all orientations permitted. Initially, we review the basic ILP

approach that was developed in [46] and then solve the same problem with the addition of
colouring techniques.

We introduce a variable yi ∈ {0, 1} for whether we use a particular placement of a
tetromino ( coloured red) to tile the region, illustrated in Figure 1.

(a) y1 (b) y2 (c) y3 (d) y4

(e) y5 (f) y6 (g) y7 (h) y8

Figure 1. Possible placements of a tetromino in R and the associated variables.

In any tiling of R, we must cover each of the eight cells exactly once, yielding the
following system of eight linear equations in eight unknowns:
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y1 + y3 + y7 = 1

y2 + y3 + y4 + y7 + y8 = 1

y3 + y4 + y5 + y7 + y8 = 1

y4 + y6 + y8 = 1

y1 + y5 + y7 = 1

y1 + y2 + y5 + y6 + y8 = 1

y1 + y2 + y3 + y5 + y6 = 1

y2 + y4 + y6 = 1

(1)

Observe that if we sum these equations, we obtain 4 ∑8
i=1 yi = 8 =⇒ ∑8

i=1 yi =
2, which implies that we must use exactly two polyominoes to tile the region. Thus,
this constraint is automatically incorporated into the system. A tiling of the region R
corresponds to a binary solution of this system. However, solutions of the extended system
where yi ∈ R do not necessarily correspond to a tiling as solutions may also be rational. The
reduced row echelon form of this system has seven non-zero rows and eight variables, thus
one free variable. Solving this system, using a high-performance optimization package,
such as CPLEX, Gurobi, or SCIP, yields two binary solutions: y1 = y4 = 1 with all other
variables equal to zero; and y7 = y6 = 1 with all other variables equal to zero, illustrated in
Figure 2. These tilings are trivial variations of each other, obtained by reflecting the entire
board horizontally.

(a) (b)

Figure 2. The two possible ways to tile R: (a) first tiling solution; (b) second tiling solution.

We now solve this tiling problem by including checkerboard colouring techniques. The
starting point of the approach is to give the target region R a fixed checkerboard colouring,
illustrated in Figure 3. There is another checkerboard colouring for this region obtained
by swapping the black and white squares, but the particular choice of colouring does not
matter to the solution procedure.

Figure 3. Checkerboard coloured region to be tiled with coloured tetrominoes.

We also assume that the tetrominoes used to tile R have a checkerboard colouring, and
the two distinct variants are {

,

}
,

where all orientations are permitted. Not only must the coloured polyominoes fit in the
target region, but the colouring of the cells covered must correspond to the colouring of the
cells in the tiles. Using two coloured tetrominoes from this set yields three subcases: tiling
with two of the first coloured tetromino; tiling with one coloured tetromino of each variant;
or tiling with two of the second coloured tetromino. We focus on the first subcase. We
introduce a variable xi ∈ {0, 1} for whether a particular placement of a coloured tetromino
of the first kind in this set is used to tile the region, illustrated in Figure 4.
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(a) x1 (b) x2 (c) x3 (d) x4

Figure 4. Possible placements of a coloured tetromino in R and the associated variables. The
tetrominoes are outlined in red.

In any tiling of the checkerboard coloured region in Figure 3, each of the eight cells
must be covered exactly once, yielding the following system of eight linear equations in
four unknowns:

x1 = 1

x2 + x4 = 1

x2 + x3 + x4 = 1

x2 + x4 = 1

x1 + x3 = 1

x1 + x3 + x4 = 1

x1 + x3 = 1

x2 = 1

(2)

If we sum these equations, we obtain 4 ∑4
i=1 xi = 8 =⇒ ∑4

i=1 xi = 2, which again
reflects the fact that we must use exactly two coloured polyominoes of the first variant to
tile the region. Thus, this constraint is also automatically incorporated into the system.
However, unlike in the previous example, this system has full rank and is thus trivially
solved to yield x1 = x2 = 1 with all other variables equal to zero, i.e., we have the first
tiling solution illustrated in Figure 2. The third subcase is similar, yielding the second tiling
solution illustrated in Figure 2.

In the second subcase, unlike the first and third subcases, we are tiling with two
different coloured polyominoes. So each coloured polyomino has an associated constraint
equation that must be incorporated into the linear system (i.e., unlike the case with a single
polyomino or coloured polyomino, they are not both automatically incorporated into the
linear system). This is like the multihedral case for tiling with polyominoes [46], which
we review in the next section. The system of equations arising from the second subcase
also has full rank; however, the unique solution of the extended system with xi ∈ R is
non-binary, and thus does not correspond to a tiling solution. This tiling example, although
very simple, highlights an important point. When we combine checkerboard colouring
techniques with the ILP approach for tiling, the problem can split into several subproblems
with a reduction in subproblem complexity. Each subproblem is independently solvable,
and the solutions to the full problem were partitioned among the subproblems.

The problem we introduced above is very simple, and not only because it is a small
monohedral problem. The tetromino we used to tile the region is what we call ‘balanced’,
i.e., when we apply a checkerboard colouring to this tile, the number of black cells is equal
to the number of white cells. Thus, when tiling a region with N copies of a balanced
tile, there will always be N + 1 subcases to consider when seeking all tiling solutions: r
tiles of the second coloured variant with N − r tiles of the first coloured variant, where
r = 0, 1, . . . , N. However, we often tile with checkerboard coloured polyominoes that are
not balanced, in which case the splitting of the full problem into subproblems depends
on the ‘parity’ of the tiles and the target region, where we define parity as the number of
black squares minus the number of white squares of a tile or region (see the next section
and [47]).
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1.2. Goals and Related Work

The traditional approach to tiling finite regions of the plane with polyominoes employs
backtracking, which is the default way in computer science for exploring the search tree
of a combinatorial problem [48–52]. Although backtracking is quick for some problems, it
only refines a ‘brute-force’ solution procedure for exhaustively finding all solutions to a
combinatorial search problem. Another less commonly used ‘brute-force’ approach to tiling
with polyominoes employs either evolutionary computation [26] or genetic algorithms [53];
however, such approaches are likely considerably less efficient than backtracking. The only
other general-purpose algorithmic procedure to tiling finite regions of the plane with poly-
ominoes that we are aware of uses ILP, first introduced in [46]. There are several potential
advantages of an algebraic approach to tiling over the backtracking methods. In [46], the
authors note that with ILP the “the structure, combinatorial nature, and solvability of the
model can be analyzed”. Finally, we mention there are many pure mathematical results
for proving that a set of polyominoes tiles a region, for example, using the combinatorial
group theory approach of J.H. Conway [54–56]. However, these methods typically apply
only to special cases and thus, we cannot make them algorithmic.

It is interesting to note that the tiling problem, which is here regarded as an ILP
instance, can also be considered a satisfiability problem (SAT) [57–59], for which there
are a number of powerful solvers. Examples of suitable open-source SAT solvers include
Lingeling; see http://fmv.jku.at/lingeling/ (accessed on 6 May 2022) and MapleSAT, see
https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/maplesat (accessed on 6 May
2022). Unfortunately, however, the overhead of enforcing the conditions that we use each
tile a fixed number of times is prohibitive. Further details are provided in Appendix A.

The focus of the current article is to combine checkerboard colouring techniques
adapted from [47] with a recently introduced ILP method [46] for tiling with polyominoes.
The checkerboard colouring method [47] was originally used to identify large impossible
tiling problems, i.e., the opposite of what we aim to do here. Our checkerboard colouring
techniques often splits large tiling problems into smaller tiling subproblems, where each
subproblem is represented as a separate ILP problem. Problems that are amenable to
this approach are embarrassingly parallel. This article provides proof of concept of a
parallelizable ILP approach for tiling finite regions of the plane with polyominoes. We
construct the ILP formulations of the tiling problems in MATLAB and compute the numerical
solutions using CPLEX, a high-performance optimization package. The primary goal is to
analyze when this approach yields a potential parallel speedup.

For tiling problems solved via a parallelizable ILP optimization technique, there are
two basic aims: (i) find a single tiling solution (i.e., an optimal solution), and (ii) find all
tiling solutions. In the former case, when we apply our checkerboard colouring techniques,
we seek the subcase yielding an optimal solution computed in the least amount of time. In
the latter case, it is the subcase that takes the longest time to compute all solutions that is of
interest; if this takes less time to compute than for the full (uncoloured) problem, then we
have a potential parallel speedup.

The simple tiling examples discussed above raise many questions, namely the follow-
ing:

1. When do the checkerboard colouring techniques split the problem into multiple (≥2)
independently solvable subproblems?

2. For large problems (a large target region and/or the use of many tiles), what is an
appropriate measure of problem complexity and the work done to compute tiling
solutions?

3. Under what situations does this ‘splitting’ technique yield a potential parallel speedup
with parallel computing?

We structure the remaining parts of this article as follows. After giving some prelimi-
nary details about checkerboard colouring in Section 2, we describe how to build the ILP
model formulation for tiling in Section 3. In Section 4, we describe how large tiling prob-
lems often split into many smaller tiling subproblems with the application of checkerboard

http://fmv.jku.at/lingeling/
https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/maplesat
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colouring techniques. Section 5 deals with the theoretical issues of complexity, measures
of performance, and problem classification. Section 6 presents the numerical solution of
medium to large tiling problems, and in Section 7 we make some general comments about
algorithm performance. Concluding remarks are in Section 8. Finally, in Appendix A, we
discuss the possible application of an SAT solver to our tiling problem.

2. Preliminaries

To begin our colouring approach to tiling, we give the target region R a checkerboard
colouring, i.e., each black cell is only edge connected to white cells (and vice versa). We
colour ‘white’ cells gray in all the figures of this article so that target regions with ‘holes’
stand out as white. We rigorously define a checkerboard colouring with the formula
f (i, j) = i + j (mod 2) applied to position (i, j) of each cell in the matrix representation
of the region [60], where we identify the number +1 with black cells and the number
0 with white cells. To reverse the colouring, we instead apply the formula f (i, j) =
i + j + 1 (mod 2). Polyominoes placed in a checkerboard coloured region acquire the
colouring of the cells they cover. Changing the placement of a polyomino in R can reverse
the colouring of a polyomino, i.e., black and white cells reverse.

The parity of a checkerboard coloured polyomino or region is the number of black cells
minus the number of white cells [47]. When the number of black cells equals the number
of white cells, the polyomino or region is balanced [31] (p. 17) and the parity is zero. If the
parity of a polyomino Pi or region R is non-zero, then there are two possible parity values
denoted ±pi or ±p respectively, where pi and p are positive integers. If the parity of a
polyomino Pi or region R is zero, then pi = 0 or p = 0, respectively.

It is convenient to define a pariomino (pl. pariominoes) to be a particular checkerboard
coloured polyomino. As the polyominoes are free, we also assume that the associated
pariominoes are free. We denote the positive and negative parity pariominoes by P+

i and
P−i , respectively. Clearly, if we reverse the colouring of P+

i , we obtain P−i (and vice versa).
If the parity of a polyomino is zero, for notational convenience, we still represent the
associated pariominoes by P+

i and P−i , respectively. In the special case when the parity of a
polyomino is zero and P+

i 6= P−i , then the particular choice of which variant we label P+
i

and which P−i is arbitrary (see Figure 5).

(a) P+
i (b) P−i (c) P+

i (d) P−i (e) P+
i (f) P−i

Figure 5. Examples of pariominoes. (a,b) P+
i = P−i with pi = 0; (c,d) P+

i 6= P−i with pi = 0; (e,f)
P+

i 6= P−i with pi = ±1.

Depending on the symmetry of a polyomino Pi, the number of possible orientations
after applying rotations and reflections is 1, 2, 4, or 8. The associated pariomino will inherit
the same number of possible orientations, except in the special situation when,

(i) Pi has 1, 2, or 4 orientations, and
(ii) P+

i = P−i ,

in which case we double the number of orientations. If P+
i = P−i , this implies that there

exists a non-trivial rotation or a reflection that sends P+
i to P−i (and vice-versa), which

implies a balanced polyomino, i.e., the parity is zero. The converse statement is false,
as there are many examples where the parity of a polyomino is zero, but the associated
pariominoes are distinct (illustrated in Figure 5c,d). An example of a pariomino that has
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double the orientations of the corresponding polyomino is illustrated in Figures 6 and 7.
Each orientation of a polyomino or a pariomino represents a fixed polyomino or pariomino,
respectively. We show below that the possible orientations of a polyomino or pariomino
play a crucial role in developing our ILP colouring techniques for tiling.

Figure 6. The 4 possible orientations of a tetromino Pi.

Figure 7. The 8 possible orientations of the pariomino P+
i (= P−i ) corresponding to the tetromino Pi

of Figure 6.

3. ILP Model Formulation

In this section, we outline the ILP method for tiling. Initially, we construct binary
matrices that are the key components of our models. Then, for the reader’s convenience, we
review the derivation of the ILP formulations for the case of tiling with polyominoes [46]
and then show how we adapt this approach to cover the case of tiling with pariominoes.

3.1. Construction of Binary Matrices

A key step in the ILP approach to tiling is to represent all placements of each polyomino
in the target region R as binary matrices. The binary matrix associated with the j th
placement of a polyomino Pi in R is denoted Ai,j. We also represent the target region R as a
binary matrix denoted as B. The target region need not be rectangular and may have ‘holes’
and so, to represent it as a binary matrix, it is first positioned in the lattice of its rectangular
hull. We illustrate an example in Figure 8 along with the associated binary matrix, where
the (i, j) th entry of B is equal to the number ‘1’ if there is a corresponding cell in the (i, j) th
position of R; otherwise, the (i, j) th entry is equal to zero.

How we construct the binary matrices for each placement of a polyomino in R is
similar. The (i, j)-th entry of the binary matrix Ai,j is equal to the number ‘1’ if there
is a corresponding cell in the (i, j)-th position of R covered by a cell of the polyomino;
otherwise, the (i, j)-th entry of Ai,j is equal to zero. Figure 9 illustrates how we construct
two binary matrices corresponding to different placements of a tetromino into R. Once we
have constructed all the binary matrices, we assemble the ILP problem.
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−→


1 0 0 0 0
1 1 1 1 1
1 1 1 0 1
1 1 1 0 1
0 1 1 1 1



(a) (b)

Figure 8. Constructing the binary matrix for R: (a) the target region R; (b) binary matrix B.

We must modify the procedure for constructing the binary matrices when fitting
pariominoes into a checkerboard coloured region. Not only must the pariomino fit in the
target region, but the colouring of cells covered must coincide with the colouring of cells in
the pariomino, which generally yields a reduction in the total number of binary matrices
compared to the polyomino tiling case. We construct the binary matrix B associated with
a checkerboard coloured region in the same way as in the case without colouring. For
example, Figure 10 illustrates how we construct B associated with a checkerboard colouring
applied to the region in Figure 8. We obtain the same binary matrix if we reverse the
checkerboard colouring of R, and the results of the checkerboard colouring approach in this
work are independent of which colouring we use. Figure 11 illustrates the binary matrices
associated with two different placements of the pariomino shown in Figure 7. To distinguish
the pariominoes from the checkerboard coloured region containing them, we outline them
in red. We denote the j-th placement of a pariomino P+

i or P−i in a checkerboard coloured
target region R by Âi,j.

−→


1 0 0 0 0
1 1 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0



(a) (b)

−→


0 0 0 0 0
0 0 0 0 0
1 1 0 0 0
0 1 1 0 0
0 0 0 0 0



(c) (d)

Figure 9. Constructing the binary matrices for two placements of a tetromino in R: (a) first placement
of P1; (b) binary matrix A1,1; (c) second placement of P1; (d) binary matrix A1,2.



Algorithms 2022, 15, 164 9 of 41

−→


1 0 0 0 0
1 1 1 1 1
1 1 1 0 1
1 1 1 0 1
0 1 1 1 1



(a) (b)

Figure 10. Constructing the binary matrix for a checkerboard coloured region R: (a) the target region
R; (b) binary matrix B.

−→


0 0 0 0 0
0 1 1 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0


(a) (b)

−→


0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 0 1 0 0


(c) (d)

Figure 11. Constructing the binary matrices for two placements of a pariomino in a checkerboard
coloured region R: (a) first placement of P+

1 ; (b) binary matrix Â1,1; (c) second placement of P+
1 ;

(d) binary matrix Â1,2. The pariominoes are outlined in red.

3.2. Assembly of the Linear Systems

For the reader’s convenience, we briefly review how to assemble the linear system
of equations that makes up the ILP formulation of the polyomino tiling problem (see [46]
for further details) and then discuss the modified procedure required when tiling with
pariominoes.

Assume we wish to tile a target region R with area c using F free polyominoes {Pi}F
i=1

with areas {ci}F
i=1 and the numbers of copies {ni}F

i=1 (ni ≥ 1). The total number of
polyominoes used is N := ∑F

i=1 ni. Clearly, the total area of R must equal the sum of the
areas of the polyominoes, i.e., ∑F

i=1 cini = c. Using a combination of rotations, reflections
and translations, assume each polyomino Pi fits si ways into R. Recall the definitions of
the binary matrices Ai,j and B (see Section 3.1). We define Series i to be the set of all binary
matrices Ai,j associated with fitting the polyominoes Pi into R, given by

Series i := {Ai,j ∈ {0, 1}r×c | j = 1, . . . , si}, i = 1, . . . , F.

The total number of binary matrices Ai,j is given by n := ∑F
i=1 si, which also corresponds

to the total number of possible placements of all polyominoes in the region R.
We introduce a variable αi,j ∈ {0, 1}, associated with Ai,j, for whether the j-th place-

ment of Pi is used to tile R. The mathematical description of tiling the region R with copies
of the F free polyominoes in Pi is a natural one: we would like to know if there is a linear
combination of the binary matrices Ai,j, weighted by the respective αi,j that is equal to B.
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In this context, it is helpful to think of the binary matrix B as representing the fully tiled
region R. The problem formulation is as follows.

Seek parameters αi,j ∈ {0, 1}, 1 ≤ i ≤ F, 1 ≤ j ≤ si such that

F

∑
i=1

si

∑
j=1

αi,j Ai,j = B, (3)

subject to
si

∑
j=1

αi,j = ni, 1 ≤ ni ≤ si, i = 1, . . . , F. (4)

The constraints (4) enforce the conditions that we must use exactly ni polyominoes
from each series i to tile R. It is easy to verify that the problem formulation automatically
enforces the condition that the polyomino areas sum to the area of the target region.

It is a standard first-year university linear algebra exercise to convert matrix equations
of the type (3) into a system of linear equations. After re-arranging the left-hand side of
Equation (3) into a single matrix, we equate the non-zero entries of B with the corresponding
entries in this matrix yielding c linear equations. The ordering of equations corresponds to
reading entries in B left-to-right and top-to-bottom. Together with the constraints (4), this
yields the following binary linear system of m equations in n unknowns:

Seek α ∈ {0, 1}n such that

Mα = b̃, M ∈ {0, 1}m×n, m = c + F, n = ∑F
i=1 si, (5)

and {b̃}i =

{
1 for i = 1, . . . , c
ni for i = c + 1, . . . , m

,

α =
(
α1,1 . . . α1,s1 | α2,1 . . . α2,s2 | . . . | αF,1 . . . αF,sF

)T .

The vertical lines in the solution vector separate the unknowns according to their
corresponding series. Notice that the constraints (4) appear here as the c + k-th equations,
k = 1, 2, . . . F, namely (4), which just enforces the condition that exactly nk coefficients
associated with each series k are equal to ‘1′, and the remaining coefficients are equal to
zero. It is also helpful to note that if we neglect the rows in M corresponding to these
constraints, then the columns of this ‘reduced’ coefficient matrix arise from the entries in
the binary matrices Ai,j written row-wise.

We claim that every problem, monohedral or multihedral, has one extraneous con-
straint equation because the main linear system corresponding to the first c equations
essentially specifies the total number of squares covered. Once we impose all but one of
the F constraint equations, we can work out the last constraint. We verify this by summing
the first c equations in (5) to give

c1

s1

∑
j=1

α1,j + c2

s2

∑
j=1

α2,j + · · ·+ cF

sF

∑
j=1

αF,j = c,

recalling that c = ∑F
i=1 cini, and imposing the F− 1 constraints (4). Hence, in the mono-

hedral case, we do not have to include the single constraint in this formulation and so
m = c. However, for simplicity in our ILP formulations, we impose all the constraints in
the multihedral case and exclude the single constraint in the monohedral case.

How we construct the linear system for the pariomino tiling problem is similar to the
polyomino tiling problem, but with some important differences. Similar to the polyomino
tiling problem, when we use multiple (≥2) free pariominoes to tile a region we refer to
this problem as pari-multihedral; otherwise we refer to the pariomino tiling problem as
pari-monohedral. We note it is possible for colouring techniques applied to a monohedral
tiling problem to yield a pari-multihedral tiling problem. The notation we use for the
linear system (5) still applies, but with some small changes. First, we denote the binary
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matrices Âi,j instead of Ai,j (see Section 3.1). Second, we denote the checkerboard coloured
target region R̂, to distinguish it from the uncoloured region R. Third, the number of free
pariominoes used to tile R̂, denoted F̂, can differ from the number of free polyominoes F.
This is because each polyomino Pi with non-zero parity has two pariominoes associated
with it, namely P+

i and P−i , which are possibly distinct. Thus, generally we have F̂ ≥ F. As
in the polyomino tiling problem, the number of unknowns n is given by the total number
of ways the distinct tiles (in this case, the F̂ pariominoes) fit into the target region R̂. The
number of equations m is also determined as in the polyomino tiling problem. In the
pari-multihedral case, m = c + F̂, while in the pari-monohedral case, m = c.

The subtlety of the colouring approach relies on how we choose sets of pariominoes
that split the full (uncoloured) problem into multiple independently solvable subproblems,
covered in the next section.

4. A Splitting Method Using Parity Constraints

In [47], the authors used constraints on the parity values of the tiles to identify impos-
sible tiling problems. We adapt these techniques here to split large tiling problems into
many subproblems that admit a parallel solution strategy.

We attempt to tile a region R with parity p using F free polyominoes {Pi}F
i=1 with

copies {ni}F
i=1, ni ≥ 1. Assume the polyominoes have parity values {±pi}F

i=1 (if the parity
value is zero then for ease of notation, we still represent the parity as ±pi). Denote the
multiset of all possible sums of N = ∑F

i=1 ni parity values by {Sj}Tj=1, T ≥ 1, namely, all
possible sums of


n1 elements drawn from {−p1,+p1}, with
n2 elements drawn from {−p2,+p2}, with

...
...

nF elements drawn from {−pF,+pF},

(6)

where ni ∈ N and pi, p ∈ N∪ {0}, for i = 1 . . . F.

It is easy to prove the combinatorial result that [47]:

Proposition 1. The number of sums of parity values that we can form from (6) is

T =
F

∏
k=1

(1 + nk).

The following simple result is key to the arguments that follow [47]:

Proposition 2. A necessary (but not sufficient) condition for the polyominoes to tile a region R is
that Sj = p for at least one j ∈ {1, 2, . . . , T }.

When none of the possible parity sums equals the parity of the target region, we call
this a parity violation, which implies that it is impossible for the given polyominoes to tile
the target region. In this work, we are more interested when we know ahead of time that
the polyominoes do tile the target region R, in which case many combinations of parity
values may satisfy Proposition 2. Each solution satisfying Proposition 2 corresponds to a
separate tiling subproblem with pariominoes that may or may not tile R̂. The total number
of possible tiling solutions is partitioned among all the pariomino tiling subproblems.

It is possible to compute all solutions satisfying Proposition 2 using brute-force tech-
niques. However, this rapidly becomes intractable for large problems. The decision problem
of whether there is a solution that satisfies Proposition 2 is related to the general subset sum
problem, which is NP-complete [61]. For this reason, we apply a systematic mathematical
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procedure for solving this problem using linear Diophantine equations. We adapt the
arguments given below from [47].

If all F polyominoes have zero parity, then we must have p = 0 so Proposition 2 is
trivially satisfied. Now consider the case that at least one polyomino has non-zero parity.
Assume, without loss of generality, the first r polyominoes, 0 ≤ r ≤ F− 1 have zero parity.
Let the variable a+i ∈ N ∪ {0} denote how many of the ni non-negative elements drawn
from {−pi,+pi} are +pi, 0 ≤ a+i ≤ ni, i = r + 1, r + 2, . . . , F. We derive an equation in
the variables a+i that matches the sum of the parities of the tiles to the parity of the target
region. As we have a+i choices for how many of the ni elements drawn from {−pi,+pi}
are +pi, we must have ni − a+i choices of −pi, 0 ≤ a+i ≤ ni, i = r + 1, r + 2, . . . F. Then the
equation sj = p takes the form

(+pr+1)a+r+1 + (−pr+1)(nr+1 − a+r+1) + (+pr+2)a+r+2 + (−pr+2)(nr+2 − a+r+2) + . . .

+ (+pF)a+F + (−pF)(nF − a+F ) = p,

or after some simplification

2pr+1a+r+1 + 2pr+2a+r+2 + · · ·+ 2pFa+F = p + pr+1nr+1 + pr+2nr+2 + · · ·+ pFnF,

for r ∈ {0, 1, . . . , F − 1}, which is a linear Diophantine equation in F − r unknowns
{a+i }

F
i=r+1. We can easily verify that it is safe to divide both sides by 2, yielding the

following.

Theorem 1. The number of distinct solutions satisfying Proposition 2 is given by the number of
solutions of the following linear Diophantine equation in F− r unknowns {a+i }

F
i=r+1:

pr+1a+r+1 + pr+2a+r+2 + · · ·+ pFa+F = k ∈ Z, (7)

where k := (p + pr+1nr+1 + pr+2nr+2 + · · ·+ pFnF)/2,

for 0 ≤ a+i ≤ ni, a+i ∈ N∪ 0, i = r + 1, r + 2, . . . , F.

A necessary condition for the existence of integer solutions (and hence also for
non-negative integer solutions) of Equation (7) is gcd(pr+1, pr+2, . . . , pF) | k, where
gcd(pr+1, pr+2, . . . , pF) denotes the greatest common divisor of pr+1, pr+2, . . . , pF [62] (p. 30).
When we know there is a solution to the full (uncoloured) tiling problem, then this con-
dition is automatically satisfied. Suppose a solution (a+1 , a+2 , . . . , a+F ) exists. Consider an
arbitrary polyomino Pi. Notice that if a+i = ni or a+i = 0, then we tile the coloured region R
with ni copies of the pariomino P+

i or P−i respectively. That is, there is a single pariomino
associated with Pi in the pariomino tiling problem. On the other hand, if a+i 6= ni and
a+i 6= 0, then we use a+i copies of P+

i and ni − a+i copies of P−i in the pariomino tiling
problem, i.e., we use both P+

i and P−i . Thus, the relationship between the number of free
polyominoes F and the associated number of free pariominoes F̂ is given by

F̂ =
F

∑
i=1

F̂i where F̂i :=

{
1 if a+i = ni or 0
2 otherwise

, i = 1, 2, . . . , F.

As each solution satisfying Proposition 2 yields a separate pariomino tiling subprob-
lem, Theorem 1 yields a practical means of splitting the full (uncoloured) tiling problem
into separate subproblems that are independently solvable. Furthermore, the full set of
solutions is partitioned among the solutions of the subproblems, and thus, the problem of
finding all solutions is embarrassingly parallel.

As we saw from the simple example outlined in the introduction, there is another
mechanism that splits a tiling problem into subproblems, separate from those identified
using Theorem 1. If some parities are zero with P+

i 6= P−i , then more subproblems exist,
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as each polyomino of this type yields two choices for the pariominoes, multiplying the
number of subproblems by a factor of two in each instance.

For simplicity, assume for a tiling problem that none of the polyominoes satisfies
pi = 0 and P+

i 6= P−i , i.e., we exclude the alternate ‘splitting’ mechanism described above.
Then Algorithm 1 gives a simple procedure for finding all tiling solutions (the algorithm is
easily modified to account for the alternate ‘splitting’ mechanism if required). Our starting
point is a target region R with area c and parity p, which we aim to tile using polyominoes
{Pi}F

i=1 with areas {ci}F
i=1 and copies {ni}F

i=1, ni ≥ 1. As stated earlier, we assume the
parities p1, p2, . . . , pr are zero (0 ≤ r ≤ F− 1). We also assume that the tiling problem has
at least one solution.

Algorithm 1 To find all possible solutions of a polyomino tiling problem using
checkerboard colouring arguments and ILP

1: Input {pi}F
i=1, {ci}F

i=1, p, and c
2: S← ∅
3: Identify r from the user input of {pi}F

i=1
4: k← (p + pr+1nr+1 + pr+2nr+2 + · · ·+ pFnF)/2
5: Compute the nt (nt ≥ 1) non-negative integer solutions of (7) {yielding nt pariomino

tiling subproblems}
6: for i = 1 to nt do
7: Construct the ILP file for the ith pariomino tiling subproblem and save
8: end for
9: for all subproblems i = 1 to nt do in parallel

10: Compute the solutions of the i th ILP file using an optimizer and add to S
11: end for
12: Output S {all tiling solutions}

A small modification of Algorithm 1 yields an algorithm for computing a single
solution to one of the pariomino subproblems in the least amount of time. In line 10,
instead of calculating all solutions for each subproblem, we seek a single optimal solution
and break the ‘parallel-for-loop’ as soon as soon as we find the first optimal solution.

5. Some Theoretical Considerations

In this section, we consider the related concepts of problem complexity; measures
of algorithm performance; and problem classification. Before discussing the results from
the numerical examples of Section 6, we make some general comments that relate to the
questions raised in the introduction.

5.1. Complexity

One way to estimate the complexity of a problem is to measure the computational
work required to solve it. We can also use complexity to compare the difficulty of two
problems or the effectiveness of two algorithms. For the tiling problem, some factors that
might form a complexity measure on theoretical grounds include the number of unknowns,
the number of constraints, and the number of free variables of the associated ILP problem.

Recall that the number of binary matrices for a tiling problem yields the number
of unknowns in the resulting linear system. When we apply checkerboard colouring
techniques, if we use every pariomino P+

i and P−i , for i = 1, 2, . . . , F, the number of
unknowns in the linear systems for the pariomino and polyomino tiling problems are the
same. However, for each polyomino Pi when the corresponding pariomino used to tile
R is P+

i or P−i (but not both), then the number of binary matrices (and hence the number
of unknowns) in the linear system for the pariomino tiling problem is usually reduced,
compared to the corresponding polyomino tiling problem. However, it is possible to
construct some problems where this is not the case (see Section 6.2).
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It is also worth considering in the multihedral case the role played by the number
of constraints on the problem complexity. Each polyomino or pariomino contributes a
constraint to the associated linear systems. Assuming the ILP problem is feasible, then it
is reasonable to assume from a computational perspective that the more constraints we
have the better. This is because the linear systems are usually underdetermined, and so
it is helpful if the augmented matrix is as close to full rank as possible. As we often have
F̂ ≥ F we expect the rank of the augmented matrix for many pariomino tiling problems
to be closer to the full rank than the augmented matrix for the polyomino tiling problem
(even when the number of unknowns in the two systems is the same).

Thus to summarize, it is reasonable when we consider both the number of unknowns
and the number of constraints in an ILP problem, that in general, we see an improvement
in the solvability of a pariomino tiling subproblem compared to the solvability of the full
(uncoloured) tiling problem. However, because of the complexity of the general tiling
situation, we cannot prove the superiority either algorithmically or theoretically.

After many experiments, none of these measures seem to provide a reliable work
estimate when judged by the time it takes an ILP solver to handle the problem. This may
in part be because the ILP solver has a variety of techniques available and there are many
features of a problem hidden from our analysis, which makes a simple complexity formula
impossible. The possibly hidden structure in an ILP problem either hinders or helps the
ILP solver to find solutions [63,64]. Without a complexity formula based on theoretical
grounds, we use the runtime of a fixed computer system. In our experience, this produces
a reliable, repeatable, and practical substitute for a complexity formula. Although runtimes
differ depending on the computer architecture and even the software version, it allows us
to make practical comparisons between different tiling problems, or between subproblems
of the same tiling problem.

5.2. Measures of Performance

With the runtime as our basic measure of computational work, we also need an appro-
priate measure of improvements in runtime obtained using our checkerboard colouring
technique. In parallel computing, the speedup of an algorithm for solving a given problem
with a fixed number of processors is given by [65]

speedup =
sequential runtime

parallel runtime
.

As this article provides only proof of concept of a parallel implementation, in place of
speedup for finding all tiling solutions of a problem, we define the potential speedup for a
tiling problem to be

potential speedup

=
runtime to find all solutions of a polyomino tiling problem

longest runtime to find all solutions of a pariomino tiling subproblem
.

When seeking a single optimal solution, we define the potential speedup as

potential speedup

=
runtime to find an optimal solution of a polyomino tiling problem

shortest runtime to find an optimal solution for a pariomino tiling subproblem
.

5.3. Problem Classification

We classify the different situations arising when we apply checkerboard colouring
arguments to a polyomino tiling problem. Either we have a monohedral polyomino tiling
problem, or a multihedral polyomino tiling problem. For these two types of problems, the
full tiling problem either splits into multiple pariomino tiling subproblems, or it does not
(i.e., there is a single pariomino tiling problem to consider). In each of these four situations,
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the resulting pariomino tiling problems may or may not yield a reduction in complexity
(compared to the full uncoloured tiling problem), yielding the eight cases illustrated in
Figure 12.

Problem Type

Splitting ?

Splitting ?

Reduction?

Reduction?

Reduction?

Reduction?

Case 7

Case 8

Case 5

Case 6

Case 3

Case 4

Case 1

Case 2

monohedral

multihedral

yes

no

no

yes

no

yes

yes

no

yes

no

no

yes

Figure 12. A decision tree for the following alternatives: monohedral polyomino tiling problem
versus multihedral polyomino tiling problem; checkerboard colouring technique applied to a tiling
problem splits the problem into multiple (≥2) tiling pariomino subproblems versus no splitting;
checkerboard colouring technique applied to a tiling problem yields a reduction in complexity of the
associated pariomino tiling subproblem(s) versus no reduction in complexity.

6. Numerical Examples

We solve many tiling problems, either for all solutions, or a single (optimal) solution,
using appropriate software.

We introduce some notation that helps us refer to the number of pariomino variants
used in each tiling problem. Recall when we have a+i copies of a pariomino P+

1 with
positive parity, then we have ni − a+i copies of a pariomino P−1 with negative parity. For
notational convenience in this section, we define a−i := ni − a+i , so a+i + a−i = ni, for
i = 1, 2, . . . , F. We must be a little careful with our notation when the parity of a polyomino
is zero (recall, in this situation for notational convenience, we still refer to the P+

1 and P−1
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variants). If P+
1 6= P−1 and pi = 0 we allow ourselves a slight abuse of notation by still

using a+i to represent the number of P+
1 variants and a−i to represent the number of P−1

variants. However, we cannot use this notation when P+
1 = P−1 (and so pi = 0) as in this

case, the number of copies used is always ni.

6.1. Scientific Computing

We solved all tiling problems using MATLAB (R2020b) and CPLEX (12.8.0.0), a commercial
optimization package, see https://www.ibm.com/analytics/cplex-optimizer (accessed
on 6 May 2022), run on a MacBook Pro (OS X 10.15.7) with 16 GB memory and 2.7 GHz
Intel Core i7. In a previous study [46] we verified that CPLEX was very effective at solving
the ILP problems arising from tiling with polyominoes, and was generally faster than
two other popular high-performance optimization packages, namely Gurobi (7.5.2), see
http://www.gurobi.com (accessed on 6 May 2022), and SCIP (6.0.0), see http://scip.zib.de
(accessed on 6 May 2022). The shell commands needed in CPLEX to find either all feasible
solutions, or a single optimal solution, are given in [46].

To solve a particular instance of a tiling problem we employed three steps:

(i) Construct the linear system in MATLAB and export the associated ILP file to CPLEX;
(ii) Solve the ILP file with CPLEX and export the solution file back to MATLAB;
(iii) Extract the solution(s) from the file produced in (ii) in a form that MATLAB can read

and plot.

We provide all necessary files for other researchers to reproduce the experimental
results in this article. The collections of MATLAB files needed to carry out steps (i) and (iii)
above for the polyomino and pariomino tiling problems are freely available. The associated
repositories are POLYOMINOES (v2.1.4), see https://doi.org/10.5281/zenodo.6366101
(accessed on 6 May 2022), and PARIOMINOES (v3.0.0), see https://doi.org/10.5281/
zenodo.6366094 (accessed on 6 May 2022). For every example, we provide the ap-
propriate MATLAB ‘LP make’ files. In the polyomino tiling case, solutions are plotted in
MATLAB using the programs PLOT_MONO or PLOT_MULTI, depending on whether the prob-
lem is of the monohedral or multihedral type, respectively. In the pariomino tiling case,
solutions are plotted in MATLAB using the program PLOT_PARIOMINO. The MATLAB pro-
gram DIOPHANTINE_ND_NONNEGATIVE_BOUNDED, included in the PARIOMINOES repository,
was used to solve the linear Diophantine Equations (7) of Theorem 1. This program is
similar in construction to the related Diophantine solvers described at [47].

From a computational perspective, it would simplify the solution process if we could
encode the parity constraints of Equation (7) directly into the ILP formulation. However,
before the ILP formulation can be constructed we must first solve (7) yielding sets of
pariominoes, where each set represents a separate pariomino tiling subproblem. Then, for
each subproblem, the MATLAB programs in the repository PARIOMINOES are used to construct
an ILP file. This is a non-trivial task because before we can compute the constraints we
must compute all possible placements of the pariominoes in the checkerboard coloured
target region. In addition to fitting the pariominoes in the region (using a combination of
rotations, reflections and translations) we also ensure that the colours of squares covered
match the colours of the squares of the tiles (see Section 3 for further details).

6.2. Tiling Examples Where All Solutions Are Sought

We give tiling examples for seven out of the eight cases illustrated in Figure 12. In
all examples, we compare the solution process with and without using checkerboard
colouring techniques. In the ILP context, we use a zero objective function and refer to the
m linear equations in the resulting binary linear systems as constraints. The number of
free variables f relates to the reduced row echelon form of the augmented systems [M|b̃].
When we apply colouring techniques, we say the full (uncoloured) tiling problem yields a
‘splitting’ if there are two or more associated pariomino tiling subproblems. We say there
is a ‘reduction in complexity’ if the maximum CPLEX runtime for all pariomino tiling
subproblems is less than the runtime required to solve the full (uncoloured) tiling problem,

https://www.ibm.com/analytics/cplex-optimizer
http://www.gurobi.com
http://scip.zib.de
https://doi.org/10.5281/zenodo.6366101
https://doi.org/10.5281/zenodo.6366094
https://doi.org/10.5281/zenodo.6366094
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i.e., the potential speedup is greater than 1 (see Section 5.2). As a check of the correctness
of our results, in each example, we checked that the total number of solutions found after
solving all subproblems equaled the total number of solutions found for the uncoloured
tiling problem.

According to our classification system, monohedral tiling problems naturally fall
into one category on the tree in Figure 12. However, in contrast to the multihedral case,
it was not always possible to find completely satisfactory representatives for each case
of the monohedral tiling problems. Some cases of questionable significance yielded a
small reduction in computational time. Other contrived cases, which were found with a
satisfactory reduction in computational time, are not typical. Thus, some of the monohedral
examples labeled with an asterisk (*) indicate that their exact placement in our classification
tree is questionable.

6.2.1. Case 1

We give an example of the monohedral polyomino type, where applying colouring
techniques splits the full (uncoloured) polyomino tiling problem into multiple pariomino
tiling subproblems, with a reduction in complexity.

Example 1. Find all ways of tiling the 9-by-9 single-notched square

R = with {P1} =
{ }

,

all orientations permitted. The area of R is 80, so we need 20 copies of the L-shaped tetromino.
The associated binary ILP file, constructed with the program LPMAKE_POLYOMINOES_FIGURE2,
has n = 442 unknowns, m = 80 constraints, and f = 363 free variables. CPLEX found 1,709,594
solutions in 367.9 seconds.

Using colouring techniques we wish to tile the checkerboard coloured region R̂ shown in
Figure 13a using 20 pariominoes from the set

{P+
1 , P−1 } =

{
,

}
,

all orientations permitted.
As the tetromino and R have zero parity and P+

1 6= P−1 we automatically obtain 21 tiling
subproblems to consider with a+1 and a−1 = 20− a+1 copies of P+

1 and P−1 respectively, given by
(a+1 , a−1 ) for a+1 = 0, 1, . . . , 20. Solving the subproblems in CPLEX yielded the data for the nine
feasible solutions shown in Table 1, where we report the number of solutions found (# solns.), and
the runtime (in seconds).

Table 1. Number of tiling solutions (# solns.) and runtimes in seconds for CPLEX to find the feasible
solutions of the pariomino tiling problem in Example 1.

a+1 20 18 16 14 12 10 8 6 4

a−1 0 2 4 6 8 10 12 14 16

# solns. 406 9762 72,308 252,844 475,908 503,612 296,004 88,498 10,212

runtime
(s) 0.09 2.16 16.30 72.49 121.67 138.52 83.01 28.88 3.15
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(a) (b)

Figure 13. Target region and a tiling solution for Example 1: (a) The target region R̂, a checkerboard
coloured 9-by-9 single-notched square; (b) Successful tiling of the target region R̂ using 20 copies of an
L-shaped tetromino. The P+

1 variants are coloured light-blue and the P−1 variants coloured dark-blue
corresponding to an optimal solution of the subproblem with (a+1 , a−1 ) = (4, 16) (see Table 1).

A single (optimal) tiling solution corresponding to the subproblem with (a+1 , a−1 ) = (4, 16)
is shown in Figure 13b, i.e., using four copies of P+

1 and 16 copies of P−1 . The ILP file in this case
was constructed using the program LPMAKE_PARIOMINOES_FIGURE2 (similar programs were used
to construct the ILP files for the other cases). The subproblems with either a+1 = 20 and a−1 = 0,
or a+1 = 0 and a−1 = 20, yielded (m, n, f ) = (80, 220, 144) and (m, n, f ) = (80, 222, 145)
respectively. All other subproblems yielded (m, n, f ) = (82, 442, 362). The maximum runtime for
the infeasible solutions was 0.62 seconds. The subproblem with the maximum runtime of 138.52
seconds yielded 503,612 solutions, thus the potential speedup when using the colouring technique is
about 2.7×.

6.2.2. Case 2

We give two examples of the monohedral polyomino type, where the application of
colouring techniques splits the full (uncoloured) polyomino tiling problem into multiple
pariomino tiling subproblems, with no reduction in complexity.

Example 2 (*). Find all ways of tiling the 18 × 24 rectangle with

{P1} =
{ }

,

all orientations permitted. The area of R is 432, so we need 72 copies of the hexomino. The associated
ILP file, constructed with the program LPMAKE_POLYOMINOES_FIGURE3, has n = 2816 unknowns,
m = 432 constraints, and f = 2385 free variables. CPLEX found 414 solutions in 14.22 seconds.

Using colouring techniques, we wish to tile the checkerboard coloured region R̂ shown in
Figure 14a using 72 pariominoes from the set

{P+
1 , P−1 } =

{
,

}
,

all orientations permitted.
As the hexomino and R have zero parity and P+

1 6= P−1 we automatically obtain 73 tiling
subproblems to consider with a+1 and a−1 = 72− n1 copies of P+

1 and P−1 respectively, given by
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(a+1 , a−1 ) for a+1 = 0, 1, . . . , 72. Solving the subproblems in CPLEX yielded the data for the 23
feasible solutions shown in Table 2.

A single (optimal) tiling solution corresponding to the subproblem with (a+1 , a−1 ) = (16, 56)
is shown in Figure 14b. The program LPMAKE_PARIOMINOES_FIGURE3 was used to construct
the ILP file in this case. (Similar programs were used to construct the ILP files for the other
cases.) The subproblems with either a+1 = 0 and a−1 = 72, or a+1 = 72 and a−1 = 0, yielded
(m, n, f ) = (432, 1408, 978). All other subproblems yielded (m, n, f ) = (434, 2816, 2384). The
maximum runtime for the infeasible solutions was 6.3 seconds. The subproblem with the maximum
runtime of 15.30 seconds yielded 94 solutions, which is an increase in the runtime of approximately
7.60% compared to the full (uncoloured) tiling problem, i.e., no potential speedup was observed.

Table 2. Number of tiling solutions (# solns.) and runtimes in seconds for CPLEX to find the feasible
solutions of the pariomino tiling problem in Example 2.

a+1 16 26 27 28 29 30 31 32 33 34 35 36

a−1 56 46 45 44 43 42 41 40 39 38 37 36

# solns. 1 4 2 4 6 9 12 31 26 51 14 94

runtime
(s) 2.2 8.7 8.5 10.2 8.8 10.1 9.8 13.3 9.6 11.0 9.9 15.3

a+1 37 38 39 40 41 42 43 44 45 46 56 -

a−1 35 34 33 32 31 30 29 28 27 26 16 -

# solns. 14 51 26 31 12 9 6 4 2 4 1 -

runtime
(s) 12.8 12.6 10.6 12.6 12 10.7 8 8.8 7.6 8.1 3.7 -

(a) (b)

Figure 14. Target region and a tiling solution for Example 2: (a) the target region R̂, a checkerboard
coloured 18× 24 rectangle; (b) successful tiling of the target region R̂ using 72 copies of a hexomino.
The P+

1 variants are coloured light-blue and the P−1 variants coloured dark-blue corresponding to the
optimal solution of the subproblem with (a+1 , a−1 ) = (16, 56) (see Table 2).



Algorithms 2022, 15, 164 20 of 41

Example 3 (*). Find all ways of tiling the irregularly shaped region

R = with {P1} =
{ }

,

all orientations permitted. The area of R is 576, so we need 144 copies of the L-shaped tetromino. The
associated ILP file, constructed with the program LPMAKE_POLYOMINOES_FIGURE4, has n = 3952
unknowns, m = 576 constraints, and f = 3377 free variables. CPLEX found a single solution in 0.15
seconds.

Using colouring techniques we wish to tile the checkerboard coloured region R̂ shown in
Figure 15a using 144 pariominoes from the set

{P+
1 , P−1 } =

{
,

}
,

all orientations permitted.
As the tetromino and R have zero parity and P+

1 6= P−1 we automatically get 145 tiling
subproblems to consider with a+1 and a−1 = 144− a+1 copies of P+

1 and P−1 respectively, given by
(a+1 , a−1 ) for a+1 = 0, 1, . . . , 144. CPLEX found a single feasible solution of the subproblems with
(m, n, f ) = (578, 3952, 3376), corresponding to (a+1 , a−1 ) = (72, 72) in 0.21 seconds, which is an
increase in the runtime of 40% compared to the runtime needed to solve the full (uncoloured) tiling
problem, i.e., no potential speedup was observed. However, as the runtimes are so small, this is not a
particularly meaningful measure. The single pariomino tiling solution is shown in Figure 15b. We
constructed the ILP file in this case using the program LPMAKE_PARIOMINOES_FIGURE4 (similar
programs were used to construct the ILP files for the other cases).



Algorithms 2022, 15, 164 21 of 41

(a) (b)

Figure 15. Target region and a tiling solution for Example 3: (a) The target region R̂, a checkerboard
coloured irregularly shaped region; (b) successful tiling of the target region R̂ using 72 copies of an
L-shaped tetromino. The P+

1 variants are coloured light-blue, and the P−1 variants coloured dark-blue
corresponding to the single feasible solution of the subproblems when (a+1 , a−1 ) = (72, 72).

6.2.3. Case 3

We give two examples of the monohedral polyomino type, where the application of
colouring techniques does not split the full (uncoloured) polyomino tiling problem into
multiple pariomino tiling subproblems and reduces the complexity.

Example 4 (*). Find all ways of tiling the diamond shaped region with ‘holes’

R = with {P1} =
{ }

,

all orientations permitted. The area of R is 168, so we need 56 copies of the L-shaped trimino. The
associated ILP file, constructed with the program LPMAKE_POLYOMINOES_FIGURE5, has n = 336
unknowns, m = 168 constraints, and f = 168 free variables. CPLEX found 16 solutions in 0.05
seconds.

Using colouring techniques we wish to tile the checkerboard coloured region R̂ shown in
Figure 16a using 56 pariominoes from the set

{P+
1 , P−1 } =

{
,

}
,
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with parities ±p1 = ±1, all orientations permitted. The parity of R̂ is p = +56, thus the only
way to satisfy the parity equation (see Theorem 1) is to choose a+1 = 56 and a−1 = 0. That is, the
only way to tile R̂ is to use the pariominoes P+

1 and we have a single pariomino tiling subproblem.
We constructed the ILP file using the program LPMAKE_PARIOMINOES_FIGURE5. CPLEX found
16 solutions with (m, n, f ) = (168, 224, 60) in 0.02 seconds, thus the potential speedup when
using the colouring technique is about 2.5×. However, as the runtimes are very small, this is not a
particularly meaningful measure. The optimal solution of the pariomino tiling subproblem is shown
in Figure 16b.

Observe that for the polyomino tiling problem, we have n = 336 and for the pariomino tiling
subproblem we have n = 224, which represent the number of ways P1 fits in R and P+

1 fits in R̂,
respectively. Thus, the number of ways P−1 fits in R̂ is 336− 224 = 112, even though the single
tiling solution uses only pariominoes of type P+

1 .

(a) (b)

Figure 16. Target region and a tiling solution for Example 4: (a) the target region R̂, a checkerboard
coloured irregularly shaped region with ‘holes’; (b) successful tiling of the target region R̂ using 56
copies of an L-shaped trimino. The P+

1 variants are coloured light-blue corresponding to an optimal
solution of the single pariomino tiling subproblem.

Example 5. Find all ways of tiling the diamond shaped region with a single ‘hole’ in the middle

R = with {P1} =
{ }

,

all orientations permitted. The area of R is 84, so we need 28 copies of the L-shaped trimino. The
associated ILP file, constructed with the program LPMAKE_POLYOMINOES_FIGURE6, has n = 252
unknowns, m = 84 constraints, and f = 168 free variables. CPLEX found 731,092 solutions in
165.78 seconds.

Using colouring techniques we wish to tile the checkerboard coloured region R̂ shown in
Figure 17a using 28 pariominoes from the set

{P+
1 , P−1 } =

{
,

}
,
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with parities ±p1 = ±1, all orientations permitted. The parity of R̂ is p = +12, thus, the only way
to satisfy the parity equation (see Theorem 1) is to choose a+1 = 20 and a−1 = 8, i.e., we have a single
pariomino tiling subproblem using 20 copies of P+

1 and 8 copies of P−1 . The ILP file was constructed
using the program LPMAKE_PARIOMINOES_FIGURE6. Solving this subproblem in CPLEX yielded
731,092 solutions with (m, n, f ) = (86, 252, 168) in 156.20 seconds, thus the potential speedup
when using the colouring technique is about 1.1×. The optimal solution of the pariomino tiling
subproblem is shown in Figure 17b.

(a) (b)

Figure 17. Target region and a tiling solution for Example 5: (a) The target region R̂, a checkerboard
coloured diamond shaped region with a single ‘hole’ in the middle; (b) Successful tiling of the target
region R̂ using 28 copies of an L-shaped trimino. The 20 pariominoes P+

1 are coloured light-blue
and the 8 pariominoes P−1 are coloured dark-blue, corresponding to an optimal solution of the single
pariomino tiling subproblem.

6.2.4. Case 4

We give an example of the monohedral polyomino type, where the application of
colouring techniques does not split the full (uncoloured) polyomino tiling problem into
multiple pariomino tiling subproblems, and there is no reduction in complexity.

Example 6. Find all ways of tiling the 16 × 18 rectangle with

{P1} =
{ }

,

all orientations permitted. The area of R is 288, so we need 48 copies of the hexomino. The associated
ILP file, constructed with the program LPMAKE_POLYOMINOES_FIGURE7, has n = 892 unknowns,
m = 288 constraints, and f = 609 free variables. CPLEX found 217,266 solutions in 45.55 seconds.

Using colouring techniques, we wish to tile the checkerboard coloured region R̂ shown in
Figure 18a using 48 pariominoes from the set

{P+
1 } =

{ }
,
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all orientations permitted. We note here that P+
1 = P−1 and so we only tile with copies of a

single pariomino.
As the hexomino and R have zero parity, the parity equation (see Theorem 1) is trivially

satisfied and we obtain a single pariomino tiling subproblem. We constructed the ILP file in this
case, using the program LPMAKE_PARIOMINOES_FIGURE7. Solving this subproblem in CPLEX with
(m, n, f ) = (288, 892, 609) yielded 217,266 solutions in 50.75 seconds, i.e., an increase in the
runtime of approximately 11.42% compared to the full (uncoloured) tiling problem. Thus we do not
observe a potential speedup. An optimal solution of the pariomino tiling subproblem is illustrated in
Figure 18b.

The pariomino tiling subproblem is essentially equivalent to the full polyomino tiling problem.
Both formulations have the same binary matrices and no constraints of the form (4). Thus, the
difference in the time taken for CPLEX to solve the polyomino tiling problem and the pariomino
tiling subproblem is simply because of differences in the ordering of the unknowns in the binary
linear systems. This results from the different order in which the binary matrices are constructed
by our MATLAB programs for the polyomino and pariomino tiling cases. This situation also applies
to any monohedral tiling problem where P+

1 = P−1 (so p1 = 0), for example, any pure domino
tiling problem.

(a) (b)

Figure 18. Target region and a tiling solution for Example 6: (a) the target region R̂, a 16× 18 rectangle;
(b) successful tiling of the target region R̂ using 48 pariominoes P+

1 (= P−1 ), coloured light-blue,
corresponding to an optimal solution of the single pariomino tiling subproblem.

6.2.5. Case 5

We give four examples of the multihedral type, where the application of colouring
techniques splits the full (uncoloured) polyomino tiling problem into multiple pariomino
tiling subproblems, with a reduction in complexity.

Example 7. Find all ways of tiling the jagged-square shaped region with a single ‘hole’ in the middle

R = with {P1, P2} =
{

,

}
,

all orientations permitted. The area of R is 144, which we aim to tile using n1 = 33 copies of
an L-shaped trimino and n2 = 9 copies of the cross-shaped pentomino. The associated ILP file,
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constructed with the program LPMAKE_POLYOMINOES_FIGURE8, has n = 528 unknowns, m = 146
constraints, and f = 383 free variables. CPLEX found 731,092 solutions in 165.78 seconds.

Using colouring techniques, we wish to tile the checkerboard coloured region R̂ shown in
Figure 19a using 33 pariominoes from the set

{P+
1 , P−1 } =

{
,

}
,

with parities ±p1 = ±1, and 9 pariominoes from the set

{P+
2 , P−2 } =

{
,

}
,

with parities ±p2 = ±3, all orientations permitted. The parity equation (see Theorem 1) is given by

p1a+1 + p2a+2 = (p + p1n1 + p2n2)/2, 0 ≤ a+i ≤ ni, i = 1, 2.

After noting that p = +24 we obtain the linear Diophantine equation

a+1 + 3a+2 = 42, 0 ≤ a+1 ≤ 33, 0 ≤ a+2 ≤ 9.

The MATLAB program DIOPHANTINE_ND_NONNEGATIVE_BOUNDED was used to solve this equa-
tion yielding seven pariomino tiling subproblems, solved in CPLEX to give the data in Table 3 for the
number of pariomino tiling solutions (# solns.) and CPLEX runtimes (sec).

Table 3. Number of tiling solutions (# solns.) and runtimes in seconds for CPLEX to solve the seven
pariomino tiling subproblems in Example 7.

a+
1 a+

2 n m f # Solns. Runtime (s)

15 9 492 147 347 - 0.00

18 8 528 148 382 - 0.04

21 7 528 148 382 - 0.04

24 6 528 148 382 62,960 15.21

27 5 528 148 382 339,224 106.42

30 4 528 148 382 16,256 2.84

33 3 336 147 191 - 0.10

The fifth subproblem took the longest to solve (106.42 s), thus the potential speedup when
using the colouring technique is about 1.6×. We found an optimal solution using CPLEX for the
fourth subproblem, i.e., using 24 copies of P+

1 , 9 copies of P−1 , 6 copies of P+
2 , and 3 copies of P−2 (see

Figure 19b). We constructed the ILP file in this case, using the program LPMAKE_PARIOMINOES_
FIGURE8 (similar programs were used to construct the ILP files for the other cases).
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(a) (b)

Figure 19. Target region and a tiling solution for Example 7: (a) The target region R̂, a checkerboard
coloured jagged-square shaped region with a single ‘hole’ in the middle. (b) Successful tiling of the
target region R̂ using 33 copies of an L-shaped trimino and 9 copies of the cross-shaped pentomino.
The optimal solution corresponds to the fourth pariomino tiling subproblem in Table 3 where we use
24 copies of P+

1 , 9 copies of P−1 , 6 copies of P+
2 , and 3 copies of P−2 . The pariominoes P+

1 , P−1 , P+
2 and

P−2 are coloured dark blue, light blue, dark red, and light red, respectively.

Example 8. Find all ways of tiling the diamond-shaped region

R =

with

{P1, P2, P3} =
{

, ,

}
,

all orientations permitted. The area of R is 181, which we aim to tile using n1 = 34 copies of
the T-shaped trimino, n2 = 5 copies of Y-shaped hexomino, and n3 = 3 copies of the cross-shaped
pentomino. The ILP file, constructed with the program LPMAKE_POLYOMINOES_FIGURE9, has
n = 1685 unknowns, m = 184 constraints, and f = 1502 free variables. CPLEX found 337,680
solutions in 225.06 seconds.

Using colouring techniques we wish to tile the checkerboard coloured region R̂ shown in
Figure 20a using 34 pariominoes from the set

{P+
1 , P−1 } =

{
,

}
,
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with parities ±p1 = ±2, and 5 pariominoes from the set

{P+
2 , P−2 } =

{
,

}
,

with parities ±p2 = ±2, and 3 pariominoes from the set

{P+
3 , P−3 } =

{
,

}
,

with parities ±p2 = ±3, all orientations permitted. The parity equation (see Theorem 1) is given by

p1a+1 + p2a+2 + p3a+3 = (p + p1n1 + p2n2 + p3n3)/2, 0 ≤ a+i ≤ ni, i = 1, 2, 3.

After noting that p = +19 we obtain the linear Diophantine equation

2a+1 + 2a+2 + 3a+3 = 53, 0 ≤ a+1 ≤ 34, 0 ≤ a+2 ≤ 5, 0 ≤ a+3 ≤ 3.

The MATLAB program DIOPHANTINE_ND_NONNEGATIVE_BOUNDED was used to solve this equa-
tion yielding 12 pariomino tiling subproblems, solved in CPLEX to give the data in Table 4 for the
number of pariomino tiling solutions and CPLEX runtimes.

Table 4. Number of tiling solutions (# solns.) and runtimes in seconds for CPLEX to solve the
12 pariomino tiling subproblems in Example 8.

a+
1 a+

2 a+
3 n m f # Solns. Runtime (s)

17 5 3 1173 185 990 344 0.53

18 4 3 1621 186 1437 7528 8.32

19 3 3 1621 186 1437 53,144 43.81

20 2 3 1621 186 1437 125,104 72.01

20 5 1 1237 186 1053 - 0.39

21 1 3 1621 186 1437 117,192 72.09

21 4 1 1685 187 1500 - 1.64

22 0 3 1109 185 926 34,272 15.00

22 3 1 1685 187 1500 32 3.57

23 2 1 1685 187 1500 64 3.09

24 1 1 1685 187 1500 - 1.59

25 0 1 1173 186 989 - 0.68

The sixth subproblem took the longest to solve (72.09 s), and thus the potential speedup when
using the colouring technique is about 3.1×. We found an optimal solution using CPLEX for the
first subproblem, i.e., using 17 copies of P+

1 , 17 copies of P−1 , 5 copies of P+
2 , and 3 copies of P+

3 (see
Figure 20b). We constructed the ILP file in this case using the program LPMAKE_PARIOMINOES_
FIGURE9 (similar programs were used to construct the ILP files for the other cases).
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(a) (b)

Figure 20. Target region and a tiling solution for Example 8: (a) the target region R̂, a checkerboard
coloured diamond-shaped region; (b) successful tiling of the target region R̂ using 34 copies of a
T-shaped trimino, 5 copies of the Y-shaped hexomino, and 3 copies of the cross-shaped pentomino.
The optimal solution corresponds to the first pariomino tiling subproblem in Table 4 using 17 copies
of P+

1 , 17 copies of P−1 , 5 copies of P+
2 , and 3 copies of P+

3 . The pariominoes P+
1 , P−1 , P+

2 , and P+
3 are

coloured dark blue, light blue, red, and yellow, respectively.

Example 9. Find all ways of tiling the region

R =

with

{P1, P2, P3, P4} =
{

, , ,

}
,

all orientations permitted. The area of R is 80, which we aim to tile with n1 = 26 copies of
the domino, n2 = 3 copies of the P-shaped pentomino, n3 = 1 copies of the cross-shaped pen-
tomino, and n4 = 1 copies of the octomino. The associated ILP file, constructed with the program
LPMAKE_POLYOMINOES_FIGURE10, has n = 444 unknowns, m = 84 constraints, and f = 361 free
variables. CPLEX found 105,344 solutions in 16.83 seconds.

Using colouring techniques, we wish to tile the checkerboard coloured region R̂ shown in
Figure 21a using 26 pariominoes from the set

{P+
1 } =

{ }
,
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with parity p1 = 0, (P+
1 = P−1 ), and three pariominoes from the set

{P+
2 , P−2 } =

{
,

}
,

with parities ±p2 = ±1, and one pariomino from the set

{P+
3 , P−3 } =

{
,

}
,

with parities ±p2 = ±3, and one pariomino from the set

{P+
4 , P−4 } =

{
,

}
,

with parities ±p2 = ±4, all orientations permitted.

(a) (b)

Figure 21. Target region and a tiling solution for Example 9: (a) The checkerboard coloured target
region R̂; (b) Successful tiling of the target region R̂ using 26 copies of a domino, 3 copies of the
P-shaped pentomino, one copy of the cross-shaped pentomino, and one copy of an octomino. The
optimal solution corresponds to the first pariomino tiling subproblem in Table 5 using 26 copies of
P+

1 , three copies of P−2 , one copy of P+
3 , and one copy of P+

4 . The pariominoes P+
1 , P−2 , P+

3 , and P+
4

are coloured light blue, blue, yellow and red, respectively.

The parity equation (see Theorem 1) is given by

p2a+2 + p3a+3 + p4a+4 = (p + p2n2 + p3n3 + p4n4)/2, 0 ≤ a+i ≤ ni, i = 1, 2, 3, 4.

After noting that p = +4, we obtain the linear Diophantine equation

a+2 + 3a+3 + 4a+4 = 7, 0 ≤ a+2 ≤ 3, 0 ≤ a+3 , a+4 ≤ 1.

The MATLAB program DIOPHANTINE_ND_NONNEGATIVE_BOUNDED was used to solve this equa-
tion, yielding 2 pariomino tiling subproblems, solved in CPLEX to give the data in Table 5 for the
number of pariomino tiling solutions and CPLEX runtimes.
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Table 5. Number of tiling solutions (# solns.) and runtimes in seconds for CPLEX to solve the two
pariomino tiling subproblems in Example 9.

a+
2 a+

3 a+
4 n m f # Solns. Runtime (s)

0 1 1 282 84 200 105,344 14.28

3 0 1 302 84 220 - 0.03

The first (and only feasible) subproblem took 14.28 seconds to solve, thus the potential speedup
when using the colouring technique is about 1.2×. We constructed the ILP file, in this case, using
the program LPMAKE_PARIOMINOES_FIGURE10. We found an optimal solution using CPLEX for
the first subproblem, i.e., using 26 copies of P+

1 , three copies of P−2 , one copy of P+
3 , and one copy of

P+
4 (see Figure 21b).

Example 10. Find all ways of tiling the 8 × 16 rectangle using the following octominoes

{Pi}10
i=1 =

{
, , , , ,

, , , ,

}

all orientations permitted, with the following numbers of copies:

(n1, n2, n3, n4, n5, n6, n7, n8, n9, n10) = (1, 2, 1, 2, 2, 1, 2, 2, 2, 1).

The sum of the areas of the tiles 8 ∑8
k=1 nk equals the area of the target region as required. The

associated ILP file, constructed with the program LPMAKE_POLYOMINOES_FIGURE11, has n = 3126
unknowns, m = 138 constraints, and f = 2989 free variables. CPLEX found 96 solutions in 163.95
seconds.

Using colouring techniques, we wish to tile the checkerboard coloured region R̂ shown in
Figure 22a, using ni pariominoes from the sets {P+

i } for i = 1, 2, . . . , 7, and nj pariominoes from
the sets {P+

j , P−j } for j = 8, 9, 10, with

{P+
1 , P+

2 , P+
3 , P+

4 , P+
5 , P+

6 , P+
7 , P+

8 , P−8 , P+
9 , P−9 , P+

10, P−10} =
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{
, , , , ,

, , , , ,

, ,

}

all orientations permitted, where P+
i = P−i for i = 1, 2, . . . , 7 and P+

j 6= P−j for j = 8, 9, 10. The
parities of the pariominoes are given by

{p1, p2, p3, p4, p5, p6, p7,+p8,−p8,+p9,−p9,+p10,−p10}
= {0, 0, 0, 0, 0, 0, 0,+2,−2,+2,−2,+4,−4}.

(a) (b)

Figure 22. Target region and a tiling solution for Example 10: (a) The target region R̂, a checker-
board coloured 8 × 16 rectangle; (b) Successful tiling of the target region R̂ using 16 octomi-
noes. The optimal solution corresponds to the first pariomino tiling subproblem in Table 6 with
(a+8 , a−8 , a+9 , a−9 , a+10, a−10) = (0, 2, 1, 1, 1, 0). The pariomino P+

9 is coloured dark green to distinguish it
from P−9 , which is coloured light green.

The parity equation (see Theorem 1) is given by

p8a+8 + p9a+9 + p10a+10 = (p+ p8n8 + p9n9 + p10n+ 10)/2 for 0 ≤ a+i ≤ ni, i = 8, 9, 10.

After noting that p = 0 we obtain the linear Diophantine equation

2a+8 + 2a+9 + 4a+10 = 6, 0 ≤ a+8 , a+9 ≤ 2, 0 ≤ a+10 ≤ 1.

The MATLAB program DIOPHANTINE_ND_NONNEGATIVE_BOUNDED was used to solve this equation
yielding four pariomino tiling subproblems, solved in CPLEX to give the data in Table 6 for the
number of pariomino tiling solutions and CPLEX runtimes.
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Table 6. Number of tiling solutions (# solns.) and runtimes in seconds for CPLEX to solve the four
pariomino tiling subproblems in Example 10.

a+
8 a+

9 a+
10 n m f # Solns. Runtime (s)

0 1 1 2682 139 2545 48 47.33

1 0 1 2718 139 2581 - 33.35

1 2 0 2718 139 2581 - 49.31

2 1 0 2682 139 2545 48 54.14

The fourth subproblem took the longest to solve (54.14 s), thus the potential speedup when
using the colouring technique is about 3.0×. We found an optimal solution using CPLEX for the first
subproblem, i.e., using ni copies of the pariominoes P+

i (= P−i ) for i = 1, 2, . . . , 7, two copies of
P−8 , and one copy each of P+

9 , P−9 and P+
10 (see Figure 22b). We constructed the ILP file in this case

using the program LPMAKE_PARIOMINOES_FIGURE11 (similar programs were used to construct
the ILP files for the other cases).

6.2.6. Case 6

We could not find an example of the multihedral type, where the application of
colouring techniques splits the full (uncoloured) polyomino tiling problem into multiple
pariomino tiling subproblems and there is no reduction in complexity.

6.2.7. Case 7

We give an example of the multihedral polyomino type, where the application of
colouring techniques does not split the full (uncoloured) polyomino tiling problem into
multiple pariomino tiling subproblems and reduces the complexity.

Example 11. Find all ways of tiling the notched square-shaped region with a single ‘hole’

R =

with

{P1, P2, P3, P4} =
{

, , ,

}
,

all orientations permitted. The area of R is 116, which we aim to tile using n1 = 25 copies of the
straight tetromino, n2 = 1 copy of the straight trimino, n3 = 1 copy of the L-shaped trimino, and
n4 = 2 copies of the P-shaped pentomino. The associated ILP file, constructed with the program
LPMAKE_POLYOMINOES_FIGURE12, has n = 1376 unknowns, m = 120 constraints, and f = 1257
free variables. CPLEX found 429,800 solutions in 768.74 seconds.

Using colouring techniques, we wish to tile the checkerboard coloured region R̂ shown in
Figure 23a using 25 pariominoes from the set

{P+
1 } =

{ }
,
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with parity ±p1 = 0, (P+
1 = P−1 ), and one pariomino from the set

{P+
2 , P−2 } =

{
,

}
,

with parities ±p2 = ±1, and one pariomino from the set

{P+
3 , P−3 } =

{
,

}
,

with parities ±p3 = ±1, and two pariomino from the set

{P+
4 , P−4 } =

{
,

}
,

with parities ±p4 = ±1, all orientations permitted. As the parity of R̂ is +4, the only way to
satisfy the parity equation (see Theorem 1) is to choose 25 copies of P+

1 (=P−1 ), one copy of P+
2 ,

one copy of P+
3 , and two copies of P+

4 . We constructed the ILP file in this case using the program
LPMAKE_PARIOMINOES_FIGURE12. Solving this single subproblem in CPLEX with (m, n, f ) =
(120, 784, 666) yielded 429,800 solutions in 156.46 seconds, thus the potential speedup when using
the colouring technique is about 4.9×. An optimal solution of this pariomino tiling subproblem is
illustrated in Figure 23b.

(a) (b)

Figure 23. Target region and a tiling solution for Example 11: (a) the target region R̂, a checkerboard
coloured ‘4-notched square shape’ with a single ‘hole’ in the middle; (b) successful tiling of the target
region R̂ using 25 copies of the straight tetromino, one copy of the straight trimino, one copy of
the L-shaped trimino, and two copies of the P-shaped pentomino. The single optimal solution uses
25 copies of P+

1 (=P−1 ), one copy of P+
2 , one copy of P+

3 , and two copies of P+
4 . The pariominoes P+

1 ,
P+

2 , P+
3 , and P+

4 are coloured blue, orange, yellow and red, respectively.

6.2.8. Case 8

We give an example of the multihedral polyomino type, where the application of
colouring techniques does not split the full (uncoloured) polyomino tiling problem into
multiple pariomino tiling subproblems, and there is no reduction in complexity.
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Example 12. Find all ways of tiling the 8 × 8 square with

{P1, P2, P3, P4} =
{

, , ,

}
,

all orientations permitted. We aim to tile R using n1 = 5 copies of the straight tetromino, n2 = 7
copies of the 2 × 2 square, n3 = 1 copies of the 2 × 3 rectangle, and n4 = 2 copies of the P-shaped
pentomino. The ILP file, constructed with the program LPMAKE_POLYOMINOES_FIGURE13, has
n = 549 unknowns, m = 68 constraints, and f = 482 free variables. CPLEX found 157,288 solutions
in 78 seconds.

Using colouring techniques, we wish to tile the checkerboard coloured region R̂ shown in
Figure 24a using five pariominoes from the set

{P+
1 } =

{ }
,

with parity ±p1 = 0, (P+
1 = P−1 ), and seven pariominoes from the set

{P+
2 } =

{ }
,

with parities ±p2 = 0, (P+
2 = P−2 ), and one pariomino from the set

{P+
3 } =

{ }
,

with parities ±p3 = 0, (P+
3 = P−3 ), and two pariominoes from the set

{P+
4 , P−4 } =

{
,

}
,

with parities ±p4 = ±1, all orientations permitted. As the parity of R̂ is zero, the only way to
satisfy the parity equation (see Theorem 1) is to choose five copies of P+

1 (=P−1 ), seven copies of
P+

2 (=P−2 ), one copy of P+
3 (=P−3 ), and one copy each of P+

4 and P−4 . We constructed the ILP file
in this case using the program LPMAKE_PARIOMINOES_FIGURE13. Solving this single subproblem
in CPLEX with (m, n, f ) = (69, 549, 482) yielded 157,288 solutions in 85.3 seconds, which is an
increase in the runtime of about 9.4% compared to the full (uncoloured) tiling problem. Thus, no
potential speedup is observed. An optimal solution of this pariomino tiling subproblem is illustrated
in Figure 24b.
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(a) (b)

Figure 24. Target region and a tiling solution for Example 12: (a) the target region R̂, a checkerboard
coloured 8× 8 square; (b) successful tiling of the target region R̂ using five copies of the straight
tetromino, seven copies of the 2× 2 square, one copy of the 2× 3 rectangle, and two copies of the
P-shaped pentomino. The single optimal solution uses five copies of P+

1 (=P−1 ), seven copies of P+
2

(=P−2 ), one copy of P+
3 (=P−3 ), and one copy each of P+

4 and P−4 . The pariominoes P+
1 , P+

2 , P+
3 , P+

4 ,
and P−4 are coloured violet, blue, light blue, red, and light red, respectively.

6.3. Tiling Examples Where We Seek a Single Solution

In this section, we are concerned with finding a single (optimal) solution to the ILP
problems associated with tiling. Using checkerboard colouring techniques, we are inter-
ested in the pariomino tiling subproblem that yields a feasible solution in the least amount
of time. If this is less than the time to find an optimal solution for the full (uncoloured)
tiling problem, then we have reduced the complexity of this tiling problem.

We give a single example to illustrate this approach.

Example 13. Find a single way of tiling the 60 × 64 rectangle with

{P1, P2} =
{

,

}
,

all orientations permitted. We aim to tile R using n1 = 384 copies of the V-shaped pentomino, and
n2 = 384 copies of the L-shaped pentomino. The associated ILP file, constructed with the program
LPMAKE_POLYOMINOES_FIGURE14, has n = 43,144 unknowns, m = 3842 constraints, and f =
39,303 free variables. CPLEX found an optimal solution in approximately 24 hours.

Using colouring techniques, we wish to tile the 60 × 64 checkerboard coloured region R̂ using
384 pariominoes from the set

{P+
1 , P−1 } =

{
,

}
,

with parities ±p1 = ±1, and 384 pariominoes from the set

{P+
2 , P−2 } =

{
,

}
,
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with parities ±p2 = ±1, all orientations permitted. In the interests of space, we do not illustrate R̂;
however, it is sufficient to note that the top left square is white. The parity equation (see Theorem 1)
is given by

p1a+1 + p2a+2 = (p + p1n1 + p2n2)/2, 0 ≤ a+i ≤ ni, i = 1, 2.

After noting that p = 0, we obtain the linear Diophantine equation

a+1 + a+2 = 384, 0 ≤ a+1 , a+2 ≤ 384,

with 385 solutions {(a+1 , a+2 ) : a+1 = 384 − a+2 , a+2 = 0, 1, . . . , 384}. Due to time con-
straints, we only solved a single subproblem corresponding to (a+1 , a+2 ) = (0, 384), i.e., using
384 copies each of P−1 and P+

2 . We constructed the ILP file in this case using the program
LPMAKE_PARIOMINOES_FIGURE14. Using CPLEX yielded an optimal solution in 2.6 h, with
(m, n, f ) = (3842, 21572, 17732). Thus the potential speedup when using the colouring tech-
nique is at least 9.2×. The optimal solution is illustrated in Figure 25.

Figure 25. The tiling solution for Example 13 using 384 copies of the V-shaped pentomino, and
384 copies of the L-shaped pentomino. The optimal solution uses 384 copies of P−1 (coloured blue)
and 384 copies of P+

2 (coloured yellow). The target region R̂ is a checkerboard coloured 60× 64
rectangle with the top left square white.

7. Performance Analysis

We make some observations about the numerical results presented in Section 6; how-
ever, it is hard to make general conclusions because of the many situations that arise (see
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Figure 12). Some problems do not split into subproblems, or do not do so usefully. We give
a summary of the potential speedup results in Table 7.

Table 7. Summary of the potential speedups for Examples 1–13. Examples of questionable significance
are marked with (∗).

Example 1 2 (*) 3 (*) 4 (*) 5 6 7

Problem
Type Case 1 Case 2 Case 2 Case 3 Case 3 Case 4 Case 5

Potential
speedup 2.7× <1.0× <1.0× 2.5× 1.1× <1.0× 1.6×

Example 8 9 10 11 12 13 -

Problem
type Case 5 Case 5 Case 5 Case 7 Case 8 - -

Potential
speedup 3.1× 1.2× 3.0× 4.9× <1.0× ≥9.2× -

Most problems do split into multiple, smaller subproblems. This has advantages if
we are seeking a single solution, or all solutions because we can work in parallel. When
a problem splits into multiple pariomino tiling subproblems, the experiments show that
the CPLEX runtimes for the subproblems roughly correlate with the number of solutions
found (see Example 8). Thus a subproblem with the greatest runtime is more likely to
be small compared to the runtime of the full problem if the total number of solutions is
uniformly distributed among the subproblems. We also saw that the runtimes for infeasible
subproblems were much less than the runtimes for the feasible ones.

How a problem splits into subproblems depends on whether we are working with a
multihedral or monohedral tiling problem. There are two different situations that yield
a splitting of a polyomino tiling problem into multiple pariomino tiling subproblems.
In the monohedral case, when tiling with ni copies of a polyomino Pi where P+

i 6= P−i
and pi = 0, we automatically obtain ni + 1 subproblems to consider (see Example 1).
The second situation that yields a splitting is in the multihedral case, where the parity
equation in Theorem 1 has multiple solutions. However, we can easily create multihedral
problems that do not split by using mostly tiles where P+

i = P−i and hence pi = 0. For
example, Example 12 behaves essentially like a monohedral problem with two P-shaped
pentominoes, as zero parity tiles play no part in the parity equation of Theorem 1. In the
monohedral case when using tiles with non-zero parity, or where P+

i = P−i (so pi = 0),
the parity equation is trivially solved, which implies there is no splitting of the polyomino
tiling problem.

The numerical results for the multihedral problems uniformly show a reduction in
complexity, as measured by the longest runtime to solve a pariomino tiling subproblem.
Indeed, we could not find a tiling problem in this situation that did not yield a reduction
in complexity. We obtained the greatest gains when the number of unknowns n and the
number of free variables f for the pariomino tiling subproblem is small compared to the
corresponding values of the polyomino tiling problem.

For monohedral problems, the results were less dramatic. When the full polyomino
tiling problem is split into multiple pariomino tiling subproblems, we may (see Example 1)
or may not (see Example 2) get a reduction in complexity. In the monohedral case, when
we use copies of a tile with non-zero parity and apply checkerboard colouring techniques,
this has little effect on the associated ILP problem. Thus, any gains in the potential speedup
will probably be small. A case in point is Example 5 where both the full polyomino tiling
problem and the single associated pariomino tiling subproblem had n = 252 unknowns
and f = 168 free variables. We carefully constructed the monohedral Examples 3 and 4 to
represent Cases 2 and 3 of the decision tree in Figure 12. Because these are contrived cases,
they do not represent typical tiling problems.
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Regarding tiling problems where we seek a single (optimal) solution with ILP, prelimi-
nary results (see Example 13) show excellent promise in reducing the problem complexity
in the multihedral case. With many pariomino tiling subproblems, the likelihood increases
that there will be a subproblem solved faster than it takes to solve the full (uncoloured)
tiling problem. The advantage of this is that we might find tiling solutions to problems that
are larger than we could solve without the colouring techniques.

8. Concluding Remarks

The novel parallelizable ILP approach presented in this article shows excellent promise
in yielding a parallel speedup for solving large tiling problems. This is particularly true
when we seek a single (optimal) solution.

A potential drawback of our approach when seeking all tiling solutions is that the
number of pariomino tiling subproblems we need to solve is often very large. The current
fastest supercomputers have millions of computer cores [66], although the typical user
may only have access to thousands of cores. Thus, we expect that parallel computing
techniques [67] can solve reasonably large tiling problems. However, the number of
pariomino tiling subproblems can grow exponentially with the size of a tiling problem,
and thus, for very large problems, finding all solutions is impractical. When we seek a few
solutions, we can choose to solve only a fraction of the subproblems that we expect will
yield solutions in a reasonable amount of time.

There are several possible directions for future research regarding the checkerboard
colouring strategy presented in this article. For example, we could explore the computa-
tional benefits of adapting these techniques so that they apply to other types of problems
with different geometries, such as polyiamonds and polyhexes [21]. Another type of
problem with complex geometry that might benefit from the application of our colouring
techniques is the ‘Eternity puzzle’ [68]. The aim of this puzzle is to tile a large dodecagon-
shaped board with 209 distinct ‘polydrafters’, which are puzzle pieces constructed from 12
30-60-90 triangles placed edge-to-edge. Because of the fundamental intractability of this
puzzle, only two solutions have been found since its introduction in 1999.

Another potential area for future research is computational methods for exact cover
problems, for which Donald Knuth devised the ‘Dancing Links’ algorithm [50,69]. As tiling
with polyominoes is an example of an exact cover problem, it might be possible to adapt
our checkerboard colouring approach to that class of problems, which includes Sudoku [70],
the N-queens problem [71], and edge-matching puzzles [72].

The traditional algorithmic approach to tiling with polyominoes uses backtracking,
which is a recursive procedure in computer science for finding the solutions to a combinato-
rial search problem [50–52]. A different approach for tiling used evolutionary computation
with a fitness function [26]. It would be interesting to compare the performance of our par-
allelizable ILP method to tiling with that of the backtracking and evolutionary computation
approaches.
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Appendix A. Satisfiability Problem (SAT) Approach

If a tiling problem is formulated in the ILP format, assume there are m equations
labeled E1 through Em, each corresponding to a cell in the target region to be covered, and
k equations, labeled T1 through Tk, each specifying the number of times we use a particular
tile. Assume there are n variables, each associated with a placement of a particular tile in
the region. This results in a (typically sparse) linear system of size (m + k)× n, to which
we must impose the additional constraints that the entries of the solution x are binary.

From a satisfiability problem (SAT) standpoint, the variables x are Boolean, so this
constraint is automatically imposed. Each covering equation becomes a clause, joined by
AND operators (∩) in a single Boolean formula, whose first part is as follows:

(E1 ∩ E2 ∩ · · · ∩ Em ∩ · · · ).

For example, if a covering equation E1 had the form:

x1 + x3 + x7 + x9 = 1,

then the corresponding Boolean clause combines these variables using the OR operator
(∪) is as follows:

(x1 ∪ x3 ∪ x7 ∪ x9).

In fact, if the Boolean statement (E1 ∩ E2 ∩ · · · ∩ Em) is true, then we have guaranteed
that we have covered all the cells in the region. However, in fact, SAT seeks any and all
values of the variables that make the statement true; one such value has all the variables
true, resulting in all the cells being covered, but many times. The correct formulation of
the problem must impose the additional constraint that each tile can only be used a certain
number of times, which guarantees that any solution will cover each cell exactly once. Thus,
it is crucial to specify the number of times we use each tile.

If for a given tile, this limit is 1, then we could replace each ∪ in the Boolean clause
by an exclusive OR operator, and we would be done. However, SAT has no exclusive OR
operator. Moreover, this idea would fail if the limit was greater than 1.

Thus, for each tile, we need to impose a corresponding count constraint within the
limited grammar allowed by SAT. If a tile count constraint is 1, and the tile has 100 possible
placements in the region, this means we need to attach 100 clauses to the SAT formula for
this single tile. Suppose we represent these tile placements by the variables x1 through x100,
these clauses become:

(x1 ∪ ¬x2 ∪ · · · ∪ ¬x99 ∪ ¬x100) ∩ (¬x1 ∪ x2 ∪ ¬x3 ∪ · · · ∪ ¬x100) ∩ · · ·
∩ (¬x1 ∪ ¬x2 ∪ · · · ∪ ¬x99 ∪ x100).

Of course, we will need to add such a string of clauses for every single tile. However, if a
tile with 100 configurations has a larger count constraint, say 2, then we need to write (100

2 )
such clauses and append these to our Boolean sentence. Things grow radically worse as
the constraint and tile placement counts grow. In some of our problems, the number of tile
placements of a single tile may run into the thousands, and the number of count constraints
may be in the hundreds.

Thus, the SAT formulation of our problem would only be suitable for problems of
very restricted size, and much smaller than we can handle using the ILP approach.
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