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Abstract: Combinatorial optimization problems (COPs) are a class of NP-hard problems with great
practical significance. Traditional approaches for COPs suffer from high computational time and
reliance on expert knowledge, and machine learning (ML) methods, as powerful tools have been used
to overcome these problems. In this review, the COPs in energy areas with a series of modern ML
approaches, i.e., the interdisciplinary areas of COPs, ML and energy areas, are mainly investigated.
Recent works on solving COPs using ML are sorted out firstly by methods which include supervised
learning (SL), deep learning (DL), reinforcement learning (RL) and recently proposed game theoretic
methods, and then problems where the timeline of the improvements for some fundamental COPs is
the layout. Practical applications of ML methods in the energy areas, including the petroleum supply
chain, steel-making, electric power system and wind power, are summarized for the first time, and
challenges in this field are analyzed.

Keywords: combinatorial optimization problem; machine learning; supervised learning;
reinforcement learning; game theory; refinery scheduling; steel-making; electric power system;
wind power

1. Introduction

The optimization problem in energy areas has always been a hot topic with the de-
velopment of the various types of industries over the past decades. Due to the natural
mathematical similarities between energy models and COPs, many energy problems can
be regarded as COPs. To figure out the above issues, an increasing amount of individuals
and groups have begun to employ the multi-agent system framework, such as game the-
ory, and intelligent learning approaches, such as machine learning methods, considering
their satisfactory solution and implementation flexibility. In this work, we specifically
concentrate on the interdisciplinary part among COP, ML, game theory and energy areas
presented as Figure 1.

COP is the sub-field of the optimization problems and can be seen almost everywhere
in the resource allocation, scheduling, and routing scenarios over the industrial fields.
The task of COPs is to search and find the maximum or minimum of an objective function
with a discrete domain rather than a continuous space [1–3]. In other words, the objective
of COP, in mathematics, is to seek an optimal object combination from a collection of objects,
in which the solution is either a discrete set or can be simplified to a discrete set [4].
Basically, a COP is established as either a maximization problem or a minimization one,
just depending on the specific scenarios of given objective functions. In algorithmic,
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maximization and minimization problems, they are treated equivalently in consideration
of the same computational logic.

Meanwhile, in consideration of the abundant COP characteristics in energy scenarios,
people have started to treat various industrial energy issues, such as crude oil scheduling,
pipeline scheduling, electricity scheduling, and steel making, as well as other energy issues,
as COPs. For instance, the task of crude oil scheduling is to utilize limited production equipment
for oil manufacturing to achieve a certain objective, such as maximizing profits or minimiz-
ing cost [5–9]. A general pipeline operation can be presented as pumping a certain amount
of product into the pipeline at the starting point while receiving the same volume of product
at the other end of the pipeline [10]. For multi-product pipeline problems, delivery planning and
production injection are two essential tasks in real pipeline operations [11,12]. The electricity
scheduling aims to improve efficiency, reliability and security through automation and modern
communication technologies, which are generally based on the optimization of the whole
electricity system [13–16]. Steel making continues to be of high concern around the world since
steel is a metal that is widely in usage in the construction of roads, bridges, railways, and other
infrastructures, and even a tiny optimization of the manufacturing process will lead to a huge
decrease in cost [17]. Any of the manufacturing, such as casting [18], charge calculation and
melt [19], and emission [20].

COPs
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Oil Transportation;

Production Planning;

...

Seq2Seq Problem;

Multi-Node Allocation;
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Supervised Learning 

for ILP;
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Figure 1. The interdisciplinary areas of COP, ML and energy areas.

Furthermore, there are numerous COPs in energy scenarios where many energy nodes
are involved and modeled as different decision makers to optimize the operation efficiency
of the whole energy system. Herein, game theory is a general framework that facilitates
the comprehension of decision making in cooperative and competitive situations where
agents have their own beliefs [21]. According to the type of information and the behaviors
of players in the game environment, games can be generally grouped into four categories.
First, static game with complete information. A static game is a simultaneous-move
game where players must take action at the same time. With complete information, each
player in the game has access to so-called common knowledge, including payoff functions
and strategies as well as utility functions. The objective for each player is to formulate
their strategies and maximize their benefits based on common knowledge. A famous
example is the prisoner’s dilemma. It introduces a situation where two individuals act
for their own best interests and explores the corresponding decision-making policy taken
by both [22,23]. Besides, Cournot competition is another instance conceptually similar
to the prisoner’s dilemma. This game model describes a dual-industry competition scenario
where the product output is the competition objective for both industries, and independent
decisions are required to be made by them both simultaneously to compete against each
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other [24,25]. Second, static game with incomplete information. As opposed to the game
with complete information, a game with incomplete information, also known as a Bayesian
game, describes such situations where players possess only partial information about other
players. For maximizing the benefits or minimizing the penalties of their own, each player
needs to form the behavior expectations of others to support their own decision making.
A typical instance is called matching pennies. This is a zero-sum game in which two
players place a penny on the table at the same time and the profit depends on whether
the pennies match [26,27]. Auction is another example of a game with an incomplete
information, in which each bidder is required to make a decision only with the utility
function of his own, without knowing other bidders’ willingness toward the good. The
third class is the dynamic game with complete information. On the other hand, the move
mechanism in dynamic games is sequential in contrast to the static games. Players act
one by one and adjust the strategies accordingly to achieve the objectives on their own.
The Stackelberg game is a game formulation that belongs to this category. It is a strategic
game, where a leader and a follower move sequentially and compete for quantity [28].
Dynamic game with incomplete information is the forth class. Correspondingly, a dynamic
game with incomplete information presents a game scenario in which players sequentially
make actions without full information about others to maximize their payoffs. Many
primary game models take this form. In the model of job market signaling [29], workers
and employers both seek the one that matches their expectations. The employers generally
offer the workers a competitive salary equivalent to their expected ability. Another instance
is initial public offerings [30], where the owner of a firm and a set of potential investors
are modeled as players. The objective of the firm owner is to decide what fraction to sell
to the potential investors and how much while the investors need to decide whether
to take or refuse. In addition, games can also be generally classified into cooperative and
non-cooperative, i.e., competitive games according to the interests of players in the game.

Under the framework of game theory, ML methods can be hopefully designed to help
players or agents in the game environment to effectively form and update their strategies or
policies. ML is a method for autonomous data analyzing [31], which is a branch of artificial
intelligence. The idea behind it is that the system with a learning algorithm inside can learn
from data and hence reinforce its experience in recognizing patterns and making decisions
on its own. With the naturally interdisciplinary characteristics of both above, people have
begun to investigate further a series of ML learning approaches which integrate both
their merits and may hopefully enhance the decision-making strategy of the intelligent
system. According to the signal feature of the learning environment, we generally divide
all ML methods into three categories: supervised learning, unsupervised learning and
reinforcement learning. The objective of supervised learning methods is to establish a math-
ematical mapping relationship of a collection of data that maps the inputs to the expected
outputs [32]. As opposed to supervised learning, the data that unsupervised learning ap-
proaches take only contain the inputs. Their goal is to seek underlying structures in the data
and present them, such as the clustering of distinguishable data [33–35]. Reinforcement
learning (RL) is a reward-oriented learning approach, where agents are required to continu-
ously explore the environment and maximize its accumulative reward [36–39]. Moreover,
since abundant RL scenarios involve the participation of more than one single agent, an in-
creasing amount of studies has been implemented in recent years, which has directly led
to the development of multi-agent RL (MARL). In addition, the agents in the multi-agent
system not only interact with the environment, but have to deal with those actions of other
agents, which can be treated as a part of the environment, and therefore the equilibrium
points in the system must be considered [40,41]. This is where the principles of game
theory emerge. With the development of relevant game theory and ML methods, more
and more individuals and institutes have started to integrate both of them on industrial
issues, such as device-to-device (D2D) communication using the Stackelberg game and
MARL method [42], anti-jamming for internet of satellites through the deep RL approach
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and Stackelberg game [43], moving target defense using MARL in Bayesian Stackelberg
Markov games [40], etc.

In this work, we mainly survey the COPs in energy areas, using a series of modern
ML approaches, i.e., the interdisciplinary areas of COPs, ML and energy areas. We first
list the categories of the classical COPs, such as the traveling salesman problem (TSP),
maximum independent set (MIS) and minimum spanning tree (MST), etc., then investigate
the ML techniques that can effectively address the above COPs, where the SL, DL and
RL, as well as game-theoretic approaches, are mainly concerned due to their unique
abilities. The research works of COPs in energy areas with ML methods are specifically
studied afterwards. We mainly survey the petroleum supply chain, steel-making, electric
power system, and wind power, which are currently popular applications in energy fields
since the resource consumption is fairly high and even a little optimization can help save
numerous costs. Finally, we also find some important deficiencies when investigating
the above materials, and the challenges of this cross area are also summarized. On the
one hand, we hopefully notice that game theory can be appropriately integrated into ML,
DL and RL methods for handling the COPs in consideration of the typical issues, such as
accuracy, efficiency, and scalability. On the other hand, the applications in energy areas
are frequently represented in a complicated manner since the objective functions are often
formulated as NP-hard problems with a great many constraints. The learning methods
above can probably be a category of promising technique in dealing with these issues.

In addition, the contents are analyzed as follows. The search identified 274 documents
containing the theoretical conclusions of various algorithms and the results of applica-
ble approaches. Background information contains relevant knowledge in COPs [44–54],
deep learning [55–61] and reinforcement learning [36,62–68]. Supervised learning, re-
inforcement learning and game theoretic methods are introduced in learning methods,
where supervised learning includes methods of B&B [69–74], sequence to vector [57,75–77],
GNN [78–82] and end-to-end architecture [83,84]. A few sources are relevant to reinforce-
ment learning [85–88], and different types of games were demonstrated [89–92]. Another
aspect mentioned was classic COPs [71,72,84,85,93–97], where ILP, MIS, MC, MVC and TSP
were introduced. The rest of the literature references demonstrate application. The aspects
contain petroleum supply chain [10,11,98–107], steel-making [108–111], electric power sys-
tem [112–119], and wind power [120–123]. The aforementioned references were mostly
searched from Google Scholar with related key words, such as “optimization”, “combinato-
rial optimization problem”, “machine learning”, “supervised learning”, “reinforcement
learning”, “game theory”, “refinery scheduling”, “steel-making”, “electric power system”,
“wind power”, etc.

The rest of this review is organized as follows. In Section 2, we introduce the back-
ground of combinatorial optimization problems and several popular approaches of ML
in addressing this kind of issue over the past years. The sub-fields of combinatorial opti-
mization problems and more details of these ML methods are further discussed in Section 3.
In Section 4, we concentrate on some specific applications in energy field and investi-
gate how the ML algorithms are applied to these issues. In Section 5, we summarize
the challenges over these energy applications in which the ML methods are deployed.
Then, some conclusions are drawn in facing the development of the ML theory in Section 6.

2. Background

In this section, we present a basic overview of COPs and the corresponding ML learn-
ing approaches for resolving them. Several primary COPs and corresponding applications
are first reviewed. Then we investigate the attention mechanism and graphic neural net-
works (GNNs) as well as their typical categories and implementations. Moreover, since
both of them can also be regarded as the policy network of RL agents, we further study how
this framework is deployed and how it works. At the end of this section, we concentrate
on RL and MARL approaches, in which the related game theories are considered a natural
combination to improve the performance of the agents in specific scenarios.
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2.1. Combinatorial Optimization Problem

The optimization problem can be viewed in terms of a decision problem, in which
the total value of current solutions is mathematically evaluated by the objective function
established in advance. Through a series of decisions, the task is to search and find
the optimal value among different solutions. Typical COPs can be summarized as follows:

2.1.1. Traveling Salesman Problem

We herein would like to take the visit of cities as an example. The objective of the trav-
eling salesman problem (TSP) is to seek the shortest possible path that allows the salesman
to visit each city only once and returns to the origin city given the city list and connection
distances between any two city nodes. TSP is utilized as a basic formulation for many
optimization approaches, such as vehicle routing [44], scheduling [45], path planning [46],
logistics [47], DNA sequencing [48] and the computing system [49]. In these applications,
the city nodes in the graph represent, for instance, customers, soldering points, or DNA
fragments, and each city pair or the distance represents the traveling time duration or cost,
or the measurement between DNA fragments. Corresponding algorithms for coping with
TSP include reinforcement learning [50], simulated annealing [51], genetic algorithm [52],
ant colony [53], tabu search [54], or some mixed ones [124–126].

2.1.2. Maximum Independent Set

Maximum independent set (MIS) is a typical central problem in distributed graph
algorithms, also known as the maximal stable set, which is an independent set that does not
belong to any other independent sets. That is to say, an independent vertex set of a graph
is a subset of the vertices such that no two vertices in the subset indicate an edge of this
graph. Given a vertex cover of a graph, all vertices not in the cover define an inde-
pendent vertex set. In addition, a MIS is also a dominating set in the graph, and each
independent dominating set must be maximally independent. Many meaningful appli-
cations can be mathematically established as MIS problems, such as the communication
system [127,128], computational system and graph coloring problem [129]. For handling
MIS problems, some early researchers in studying graphs proposed some interesting
algorithms [130–132]. Afterwards, more individuals and groups started to deploy a series
of approaches with higher efficiency, such as the ML method [133], small messages rather
than large messages [134], local search [135] and exact algorithm [136].

2.1.3. Minimum Spanning Tree

For an edge-weighted undirected graph, a minimum spanning tree (MST) is a tree
that connects all vertices while not having any cycles and has a minimum total edge
weight. That is, the sum of edge weights is supposed to be as small as possible for a span-
ning tree. There are many applications related to the MST problem. The direct ones
consist of communication networks [137], transportation networks [138], water supply
networks [139], and electrical grids [140]. Other practical cases based on MST include
COVID-19 pandemic transmission forecasting [141], clustering [142], constructing trees
for broadcasting [143], image registration and segmentation [144], circuit design [145] and
emotion recognition [146]. There do exist several primary algorithms, namely, classic
algorithm and faster algorithm; however, in consideration that such MST-like models will
facilitate the development of multifarious industrial areas, more and more individuals
have turned to design a variety of intuitive algorithms to figure out such issues, such
as reinforcement learning [147], genetic algorithm [148] and fast parallel algorithm [149].

2.1.4. Maximum Cut Problem

The maximum cut (MC) problem is to find a cut such that the amount of edges
between two complementary sets in a graph is as large as possible. The applications
of the max-cut problem include theoretical physics [150–152], very large scale integration
(VLSI) design [153,154], and the protein-folding problem [155,156], Accordingly, various
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approaches and algorithms, such as eigenvalues [157], randomized heuristics [158], har-
mony search and genetic algorithm [159], and scatter search [160] have been proposed
to address this problem over the past decades.

2.1.5. Bin Packing Problem

The bin packing problem (BPP) is one of the most classical COPs, where a series
of items with different sizes are required to be packed into a series of bins with positive
integer capacities such that the number of bins used is minimized. Generally, there are
two types of BPPs: online BPP, and offline BPP. The online BPP considers a situation
in which the items keep appearing in a given order and they need to be placed inside
the bins one by one, while the latter one concerns modifying the given list of items. BPP
has many variations, such as 2D packing [161], 3D packing [162], linear packing [163],
packing by weight [164], packing by cost [165], and so on. Such problems have arisen
in resource allocation with an increasing frequency over the past years, such as edge
computing [166], cloud storage [167], parcel delivery [168], aircraft maintenance task
allocation [169] and product transportation [170]. For the online version, there are a diverse
set of online algorithms designed for BPP. Single-class algorithms consist of next fit [171],
next-k-fit [172], first-fit [173], best-fit [174] and worst-fit [175]. Refined algorithms include
harmonic-k [176] and refined-harmonic [177]. On the other side, the offline algorithm
is able to observe all the items before beginning to place them into bins. Multiplicative
approximation is the simplest approach utilized by the offline algorithm. The members
in this family are first-fit-decreasing [178], next-fit-decreasing [179] and modified first-fit-
decreasing [178]. Additive approximation [180] and exact algorithms [181] are also widely
mentioned in solving BPPs.

2.2. Deep Learning

Deep learning (DL) is a member of ML methods, where multiple layers of artificial
neurons or neural networks (NNs) are structured to learn the representation of data [55].
The structures of NNs can be quite fruitful, such as deep neural networks (DNNs), con-
volutional neural networks (CNNs), recurrent neural networks (RNNs), attention mecha-
nism, graph neural networks (GNNs), etc. In this work, we mainly concentrate on attention
mechanism and GNNs in consideration of the natural connection between COPs and these
two techniques.

2.2.1. Attention Mechanism

Some COPs are typical sequence-to-sequence (Seq2Seq) [56] problems, (for example,
TSP), which require an encoder to map the input sequence into a d-dimensional space,
and then use a decoder to map it to the output sequence, and the sequences are usually long
(due to large problem size) and variable in length. With the rapid development of DNNs
in the ML approach over the past years, people have started to realize that conventional
encoders, such as RNNs, fail to utilize the information of previous segments in a relatively
long sequence. Thus, a novel technique that mimics cognitive attention, namely attention
mechanism, was proposed afterwards.

The idea behind is that the network should devote more attention to those smaller but
more important parts of the input data. It was first used to deal with the Seq2Seq model,
especially for neural machine translation [57]. Then the encoder–decoder architecture was
widely known. The decoder utilizes the most relevant segments of the input sequence,
which are encoded as a fixed-length vector by the encoder in a flexible manner to obtain
the variable-length target consequence [58].

Nevertheless, the decoder here can just partially obtain the information from the input
sequence. This would probably cause trouble, especially for those long or complicated
sequences in which the dimensionality of the representation ingredient is constrained to be
the same as for shorter or simpler sequences. Afterward, the proposal of self-attention
and transformer models [59] revolutionized the implementation of attention by dispensing
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recurrence and convolutions used in RNNs [60] and CNNs [61], respectively, and relying
solely on a self-attention mechanism alternatively.

(1) Additive Attention

Additive attention, proposed by Dzmitry Bahdanau [57] and therefore regarded as Bah-
danau attention, is the first type of attention. The objective of this type of attention is
to enhance the performance of the Seq2Seq model especially in machine translation tasks
through aligning the decoder with the relevant inputs and correspondingly employing the
attention mechanism. The method in this work, on the other hand, replaces the fixed-length
vector with a variable-length one, to improve the translation performance of the basic
encoder–decoder model. With time passing by, this method has been implemented more
and more often due to its high performance, such as automatic music transcription [182],
Fastformer [183], classification [184] and image search [185].

(2) Pointer Networks

Considering those problems, such as sequence sorting, where the sequence size is
variable, and diverse COPs cannot be figured out by conventional Seq2Seq and neural
turing machines [186], the pointer network was proposed by Vinyals et al. [76] to learn
the conditional probability of an output sequence and hence to resolve variable-sized
output problems. The attention is utilized as the pointer for choosing a member of the in-
put sequence as the output. Pointer networks can be widely employed in dependency
parsing [187], code completion [188], dialogue context generation [189], etc.

(3) Multiplicative Attention

Multiplicative attention is also referred to as Luong attention, proposed by Thang
Luong [190]. This attention mechanism was established based on the additive attention
mechanism. The differences are as follows: First, the way that the alignment score is
calculated; And secondly, the position at which the attention mechanism is introduced
in the decoder. The overall architecture of the attention decoder is distinguishable from mul-
tiplicative attention since the context vector is leveraged only after the RNN has produced
the output for that time step. There are various applications that can be supported by this
attention mechanism, such as aspect category and sentiment detection [191], time series
forecasting [192], and the prediction of air pollutant concentration [193]. As COPs usually
have variable sequence sizes (e.g., when solving TSP formulated as a sequence-to-sequence
structure, the number of cites to go is variable, forming a variable input size), pointer
networks are used most frequently.

2.2.2. Graphic Neural Networks

Graph structures are common in COPs, so we need to encode graphs reasonably.
In addition, the graph-structured representation is more suitable for some COPs than se-
quence representation. For instance, the permutation invariant property in the TSP cannot
be characterized in the sequence representation. GNNs belong to the category of NNs
and are widely utilized in DL methods [55], especially in those scenarios where the data
are expressed by graph structures. Considering the representation superiority of graph
data, people have begun to leverage the characteristics of graphs to design various types
of ingenious GNN structures through integrating other techniques, such as graph convolu-
tional networks [194], graph attention networks [195], and graph recurrent networks [196]
over different applications, which range from node-type, edge-type, to graph-type pre-
dictive assignments. In general, GNNs are customarily employed to resolve those issues
in which the graph-structured data are represented. Five typical problem categories are
listed as follows.

(1) Graph Classification Problem

Fundamentally, the goal of graph classification is to divide the whole graph into
domains with disparate features. In other words, the entire graph is required to be separated
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into different segments in this classification scenario. There are numerous applications
of this classification, such as document categorizing [197], social recommendation [198],
protein function prediction [199], etc.

(2) Graph Grouping Problem

Graph grouping is a class of grouping methods, the task of which is to put together
graph data that have similar features [200]. There are also two sub-fields of graph grouping.
The first is node clustering, which is based on density. High edge weight or long edge
distance corresponds to high density. On the other hand, the graphs are regarded as objects
and, hence, grouped based on similarity.

(3) Node Classification Problem

For node classification cases, the nodes in the graph are used to represent the label
of samples. The objective of this task is to decide which label each node belongs to via
checking their neighbor labels. With each node being tagged a specific label, all nodes
in this graph system can be grouped into different classifications. The training approach
in this type of case is a semi-supervised learning method [201], where only a portion
of nodes in the graph are tagged.

(4) Link Prediction Problem

To predict whether or not two nodes in a graph exist a link is the research objec-
tive of this scenario. This function is widely investigated in a recommendation system
consisting of friend recommendation [202], movie recommendation [203] and commerce
recommendation [204]. Some COPs are well structured and can be reflected in these typical
problems, e.g., MIS can be regarded as a node classification problem with two categories
representing whether a node is included in MIS. For more COPs, abundant works are
reshaping the graph to using GNNs.

2.3. Reinforcement Learning

Many COP environments involve more than one node or executor and can therefore be
considered for inclusion in the game theory framework due to their advantage in figuring
out multi-player problems. Meanwhile, RL is a reward-oriented approach to help improve
the performance of the player or agent. At this point, the two aforementioned techniques
are naturally integrated to address COPs.

2.3.1. Single-Agent Reinforcement Learning

RL, especially single-agent RL, is a human-like learning method in which the agent
acts like a human and is trained to obtain the expected objective through a series of positive
or negative rewards across time [36]. During the learning phase, the RL agent is required
to continuously observe the environment and take actions based on its perceptions and
rewards offered by the environment. This learning mode makes the agent gradually collect
experience and perform better by reinforcing those good behaviors while abandoning
the bad ones. In general, RL methods are grouped into two categories, i.e., the model-based
RL [62] and the model-free one [63].

In model-based learning approach, the system is able to utilize the predictive model,
which is not available in a model-free algorithm, and execute sequential decision mak-
ing [64]. In contrast to the large amounts of interaction required in the model-free learning,
a transparent advantage of model-based learning is the usage of predictive comprehension
over the environment model [65].

On the other hand, the model-free algorithm is more flexible since it does not need
any prior information about the environment system. All the agents supposed to do
is to explore and learn. The model-free algorithm consists of value-based learning and
policy-based learning.
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Furthermore, Sarsa [66] and Q-learning [67] are the most fundamental online and
offline policy learning approaches in value-based learning, respectively. Policy-based
learning includes the actor–critic method [68] and the trust region policy optimization
(TRPO) method [205], where the policy gradient is implemented, and a continuous strategy
is available.

2.3.2. Multi-Agent Reinforcement Learning

Multi-agent RL (MARL) is a sub-field of RL that is becoming increasingly relevant and
is extremely impressive. Considering that there exist more than one agent in the systems
over enormous applications, such as communication networks [206,207], cyber–physical
systems [208,209], financial activities [210,211], and social communities [212], research indi-
viduals and groups have started to transfer single-agent RL (SARL) models to the MARL
ones. An obvious distinction between SARL and MARL is the number of agents in the envi-
ronment. Hence, the research objective on MARL is to investigate how multiple agents are
going to interact with each other in a common system and how this system evolves [213].
Specifically, the goal of each agent in this multi-agent system is, by treating other agents
as part of the environment, to constantly optimize its policy for maximizing the expected
long-term rewards.

According to the types of agents, MARL can be generally divided into homogeneous
MARL [214], where all agents in the system are homogeneous and able to play an inter-
changeable role, and heterogeneous MARL [215], in which agents possess different action
space and state space.

2.3.3. Multi-Agent Reinforcement Learning with Game Theory

Since the agents in MARL are continuously interacting with the environment and
other agents, some interaction modes can be identified and classified, such as cooperative,
competitive, or a mix of both. From this moment, researchers have started to integrate
MARL with game theory in consideration that game theory is such a study of mathematical
models of strategic interactions among rational agents.

(1) Cooperative MARL [216]

In cooperative scenarios, agents are designated as collaborators to achieve the goal
of the common system while interacting with the environment. A series of coordination
settings, such as sharing sensing information, sharing the same reward function or sharing
the policies, are widely investigated and studied [217]. The corresponding applications
include rescue operations [218], cooperative exploration [219], resource allocation [220], etc.

(2) Competitive MARL [221]

In those situations with competitive settings, the interests of agents are in conflict.
In other words, the more that one or a portion of agents earn, the more others lose, which
is also known as a zero-sum game [222]. There are numerous MARL cases with com-
petitive settings that have been studied over the past years, such as Atari games [223],
pricing strategies in electronic market [224], sports game [225], etc. Notably, the compu-
tational complexities for figuring out two-player and multi-player zero-sum games are
quite distinguishable.

(3) Mixed MARL [226]

Mixed MARL is a combination of fully cooperative and fully competitive situations.
That is, both cooperative and competitive behaviors are going to appear in this setting,
which therefore makes this type of learning architecture notoriously challenging and
burdensome to handle [213]. Compared to the above two scenarios, mixed MARL seems
not to be so popular due to its complicated optimization procedure and computational
process in finding stationary Nash or a related equilibrium. Multi-player poker game [227]
and multi-player online battle arenas, such as DOTA 2 [228] and StarCraft 2 [229], are



Algorithms 2022, 15, 205 10 of 43

several classical applications using mixed settings, in which human-level or superhuman-
level is achieved.

3. Learning to Solve COPs

Recent works for solving COPs with ML methods are presented systematically in this
section. Firstly, they are categorized based on the ML approach: supervised learning, rein-
forcement learning, and game theoretic methods, basically presented according to the years
that they were proposed. Then, the categorization is based on fundamental problems
in COPs, including integer programming (ILP), MIS, maximum clique (MC), MVC, and
TSP. Figure 2 shows an overview of how ML methods are applied to solve all kinds of fun-
damental COPs.
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Figure 2. ML methods for COPs. Recent works are categorized firstly based on the ML approach and
then the fundamental problems in COPs.

3.1. Methods
3.1.1. Supervised Learning

Combining with Branch and Bound

Traditional approaches for COPs have the same challenges: high computational
complexity and dependence on expert knowledge. There have been rich works studying
how to replace some components of traditional approaches with supervised learning
methods to respond to those challenges. Most of them focus on a classical algorithm called
branch and bound (B&B) [69], which is broadly applied for ILP-formed COPs. Table 1
summarizes them.
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Alvarez et al. [70] proposed to approximate the scoring strategy of strong branching
(SB) with supervised learning for solving mixed ILP problems. Similarly, He et al. [71]
proposed to speed up the traditional B&B method with imitation learning. He et al. clearly
formulated B&B search as a sequential decision-making process and learned the node
selection (prioritizing) policy as well as a node-pruning policy using DAgger. Compared
to traditional approaches, this method learns problem-solving patterns from experience,
which speeds up the future process. Meanwhile, the sequential decision-making process
takes the effects on the future into account when choosing actions. It may be also treated
as a simple reinforcement learning approach since it involves the concept of learning
from demonstration, but essentially, it directly fits the policy with collected data, which is
more like a kind of supervised learning.

Moreover, Khali et al. [72] proposed to solve the scoring problem of SB as a learning-to-
rank problem as opposed to a regression or classification problem, and enabled an on-the-fly
solver, where the transition from traditional to ML approaches is seamless. That is, instead
of learning a policy offline as [70,71], Khali et al. proposed a three-phased online method
for a given mixed ILP problem. Firstly, SB is used as the branching strategy for a limited
number of nodes. Then, the dataset collected in phase iis fed into a learning-to-rank
algorithm. At last, the learned model replaces SB for branching until termination.

Table 1. Supervised learning approaches combining with traditional algorithms, such as branch
and bound.

Reference Year Advantage or Novelty

Alvarez et al. [70] 2014 approximated SB with
supervised learning

He et al. [71] 2014

formulated B&B as sequential
decision-making process and

learned it with imitation
learning

Khali et al. [72] 2016
solved the scoring problem

of SB with a learning-to-rank
algorithm, online algorithm

Baltean et al. [73] 2018

used supervised learning
to select quadratic
semi-definite outer

approximation of cutting
planes

Hottung et al. [74] 2020
learned the container

pre-marshaling problem
(CPMP)

Baltean et al. [73] applied the above idea to the selection of quadratic semi-definite
outer approximation of cutting planes. They used NNs to learn cut selection offline, thereby
reducing the computational complexity during testing. Hottung et al. [74] applied the idea
for the container pre-marshaling problem (CPMP) (the Container Pre-Marshaling Problem
is concerned with the re-ordering of containers in container terminals during off-peak times
so that containers can be quickly retrieved when the port is busy), using DNNs to learn the
branching strategy and predict bounding bounds.

Sequence2Vector

Sequence-to-sequence is a typical structure of COPs. To deal with those problems,
encoders are needed to obtain the vector-form embeddings. Early encoders are RNNs, such
as LSTM [75], which can cope with the relationship between an element in the sequence
and the previous elements, but RNNs tend to “forget“ the information of previous ele-
ments when sequences are long. Bahdanau et al. [57] proposed an attention mechanism
to solve the problem of long-range dependencies. By calculating the similarity between
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two elements, the importance of the previous elements is decided, and the mixed infor-
mation of the sequence is obtained. That is, the decoder can obtain the information of all
states from the encoder instead of the current state. Based on the attention mechanism,
Vinyals et al. [76] proposed pointer network (Ptr-Net), which solved the problem that
the length of the output sequence depends on the input sequence and became a milestone
breakthrough in solving COPs. The main idea of Ptr-Net is to point to each element of the in-
put sequence instead of the mixed information and to obtain the probability distribution
over the elements of the input sequence.

Vinyals et al. [76] applied Ptr-Net for the convex hull problem, Delaunay Triangulation,
and small-scale planar TSP problems, obtaining higher accuracy than LSTM and LSTM
with attention.

Zheng et al. [77] then applied Ptr-Net for the permutation flow shop scheduling
problem (PFSP) (the Permutation Flow-shop Scheduling Problem involves the determina-
tion of the order of processing of n jobs on m machines). They showed that the average
relative percentage deviation (ARPD) of Ptr-Net is better than the LSTM and LSTM with
attention. They also found that the element order of the input sequence has some impact
on the results.

Graph Neural Networks

Another typical form of COPs is graph based, which characterized the permutation-
invariant property of nodes. GNNs [78–80] are a commonly used architecture to encode
the input of the graph structure. The input is a vector representing a node or an edge,
then the information of nodes and edges is integrated according to the local neighbor
structure of the graph, which is used for updating the embedding after. Works related to
this approach are summarized in Table 2.

Table 2. Supervised learning methods using graph neural networks.

Reference Year Advantage or Novelty

Nowak et al. [81] 2017 encode source and target
graphs

Joshi et al. [82] 2017 just encode source graph

Selsam et al. [230] 2018 model SAT as an undirected
graph

Li et al. [231] 2018 solve SAT, MIS, MVC and MC
with GNNs

Lemos et al. [232] 2019 solve graph coloring problem
(GCP) with GNNs

Prates et al. [233] 2019 solve problems involving
numerical information

Nowak et al. [81] discussed how to apply GNN [78] to the quadratic assignment
problem (QAP) (examples of matching and TSP are given). For two graphs, A and B with
the same number of nodes, GNN is used to encode them into two normalized adjacency
matrices, E1 and E2, respectively, and then the loss related to E1 and E2 is calculated
for autoregressive learning. For the TSP problem, A and B are the input graph and
the ground truth TSP cycle. Finally, the solution is generated by the adjacency matrix
obtained from the input graph with beam search.

Instead of using the one-shot autoregressive method as [81], Joshi et al. [82] only
used Graph ConvNet to obtain the adjacency probability matrix from the input TSP
graph, and then directly calculated the loss related to ground-truth TSP cycle. During the
test, Joshi et al. tried three kinds of search methods and compared them: greedy search
(greedily selecting the next node from its neighbors with the highest probability), beam
search (expanding the b most probable edge connections among the node’s neighbors),
and beam search with shortest tour heuristic (selecting the shortest tour among the set of b
complete tours as the final solution at the end of beam search). Experiments show that
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for TSP problems with a fixed number of nodes, the quality of the solution outperforms
previous DL approaches.

Selsam et al. [230] solved the satisfiability (SAT) problem with GNNs [78,234]. Due
to the permutation invariance and negation invariance properties of SAT, Selsam et al.
modeled SAT as an undirected graph with one node for every literal and clause, one edge
between each literal and clause, and one edge between literal and complementary literal.
Then, the message-passing method [235] is used to update the embedding of each node,
and the resulting embeddings are fed into MLP to obtain the literals’ votes, which are then
used to calculate the loss with the true label. The model parameters of [230] are independent
of the problem size due to two aggregation operators: to form the incoming message by
summing the messages of one node’s neighbors, and to form the logit probability by
calculating the mean of literal votes.

Similar to [230], Lemos et al. [232] solved the graph coloring problem (GCP) (the graph
coloring problem (GCP): does a graph G accept a C-coloring?) with GNNs [78,80,232].
They took the vertex-to-color adjacency matrix as input, and finally used MLP to obtain
the logit probability and calculated the loss with true labels.

Selsam et al. [230] and Lemos et al. [232] successfully solved some NP-hard problems
involving symbolic relationships (e.g., whether an edge is connected), and Prates et al. [233]
further applied GNNs [79] to solve the NP-hard problems involving numerical information
(in this paper, they focused on a variant of TSP: does graph G admit a Hamiltonian path
with cost < C?). In order to encode the weights of edges, Prates et al. used a vertex-edge
adjacency matrix as input, and represented an edge using the concatenation of weight and
C, which is a 2-d vector ∈ R2. Then, similar to [230,232], the refined edge embeddings are
fed into an MLP to compute the logit probability.

Li et al. [231] solved four NP-hard problems with GCN [236,237]: SAT, MIS, MVC
and MC. Taking MIS as an example, the graph is presented by an N × N binary adjacency
matrix, and then mapped to an N-dimensional real-valued vector through GCN, indicating
how likely each vertex is to belong to the MIS. Finally, the solution is obtained from this real-
valued vector. A basic method to obtain it is greedy search using the vector as the heuristic
function. However, Li et al. pointed out that this search method can become confused when
there are multiple optimal solutions for the same graph. Therefore, a further improvement
is using GCN to generate multiple probability maps, which is integrated into the tree search
procedure (breadth-first account for the diversity of solutions).

End-to-End Architecture

Some recent works focus on how to integrate combinatorial building blocks into neural
network architectures as layers so that combinatorial optimization solvers can be embedded
into NNs as black boxes, enabling end-to-end optimization.

Vlastelica et al. [83] and Paulus et al. [84] proposed such approaches to integrate
ILP solvers. The NN-based solver takes the parameters of the ILP (objective function
weight c, constraint parameters A and b) as network weights, inputs an integer solution y,
outputs the value of the objective function, and computes loss with the given optimal value.
Paulus et al. [84] addressed two main difficulties in achieving the end-to-end optimization:
(1) the value of objective function in integer programming is piece-wise and thus non-
differentiable; (2) the constraints of ILP are not necessarily active. Vlastelica et al. [83] used
the continuous interpolation method to solve the differentiating problem of the objective
function weight c and applied this solver for three graph-structure problems: shortest path
problem, min-cost problem and TSP. Paulus et al. [84] implemented the differentiation of c
as well as A and b using gradient surrogate methods, and conducted experiments on the
weighted set cover problem, KNAPSACK, and keypoint matching problem.
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3.1.2. Reinforcement Learning

Parameterization of Policy Network

As pointed out by Bello et al. [85], training strategies for COPs with supervised
learning require a large number of labels, while the optimal labels for many COPs are not
easy to obtain. However, it is relatively easy to evaluate the quality of a given solution.
Therefore, Bello et al. proposed to use evaluation as a reward feedback in an RL paradigm
to solve the labeling problem, which is another milestone work. More other works follow
the same structure and shape the parameterization of the policy network as shown in
Table 3, which is the similar concept of an encoder in supervised learning.

Table 3. Works on policy network of reinforcement learning.

Reference Year Advantage or Novelty

Bello et al. [85] 2016 used evaluation as reward
feedback in RL paradigm

Hu et al. [238] 2017 solved the 3D BPP problem
using RL

Nazari et al. [239] 2018 the properties of the input
sequence is not static

Khalil et al. [95] 2017 formulated partial solutions
as decision sequence

Venkatakrishnan et al. [240] 2018 improved scalability on larger
testing graph than training set

Manchanda et al. [241] 2020 billion-sized graphs

Song 2020

combined information
from both graph-based

representation and ILP-form
representation

Bello et al. [85] modeled the 2D Euclidean TSP problem as a sequential decision
problem. At each step, a distribution over the next city to visit in the tour is output by
the policy, which forms the travel strategy by the chain rule at the terminal step, and the
objective is to shorten the travel distance. The policy model is based on Ptr-Net proposed
by Vinyals et al. [76] without glimpse, which reads the state s (the city sequence, one city
at a time), encodes it as a d-dimensional embedding with an LSTM, and decodes it with
an LSTM to obtain the action (the distribution of the next city). Bello et al. used the travel
distance to indicate the reward and train the policy with an actor–critic method.

Hu et al. [238] applied [85] to the 3D BPP problem to learn the order of packing items
into bins, and proved that it outperforms the well-designed heuristic approach.

A major limitation of [85] is that it assumes the problem is static over time, thus it
cannot be used to solve problems, such as VRP, where the properties of the input sequence
keep changing. To solve this problem, Nazari et al. [239] proposed a new policy model
which leaves out the encoder RNN. They dealt with the static elements and dynamic
elements in the input separately, that is, the embeddings of the static elements are input
to the RNN decoder and then input to an attention mechanism with glimpses similar
to Ptr-Net together with the embeddings of the dynamic elements. Finally, the probability
vector of the next destination is output.

For another typical form of CO problem-graph structure, Khalil et al. [95] proposed
a training method combining GNNs with reinforcement learning to remove the depen-
dence on sample labels, called S2V-DQN. Khalil et al. presented a partial solution as an
ordered list S (a decision-making sequence). At each time step, a node is greedily se-
lected to join S so that the evaluation value Q is maximized. The embedding of each node
in list S is obtained by Structure2Vec [242] according to its graph structure (the properties
of the node and its neighbor), and Q depends on the embeddings of the candidate nodes
and the embedding of the whole graph. Parameters are trained using n-step Q-learning
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and fitted Q-iteration. Khalil et al. tested S2V-DQN on MVC, MC, and 2-D TSP, showing its
applicability to multiple different problems, graph types, and graph sizes.

Venkatakrishnan et al. [240] focused on the scalability of methods on graph structure
problem: can a graph neural network trained at a certain scale perform well on orders-of-
magnitude larger graphs [240]? To address this problem, Venkatakrishnan et al. proposed
G2S-RNN. Instead of mapping the graph structure to a fixed-length vector to obtain
the embeddings of the vertices, G2S-RNN uses a discrete-time dynamical system to process
the graph structure. The nodes’ embeddings are updated by multiple rounds of convolution,
and finally, the entire time-series vector is used as the embedding of the graph, which
makes the embeddings’ length variable (related to the number of convolution layers). Then,
Seq2Vec takes the embedding as input to obtain the vector representation of each node,
and Q-learning is used to update the policy.

Manchanda et al. [241] focused on larger graph structures. They tested [95] on MC
and show that S2V-DQN fails on graphs beyond 2000 nodes. Based on the observation
that, although the graph may be large, only a small percentage of the nodes are likely
to contribute to the solution set [241], Manchanda et al. proposed a two-stage method
called GCOMB, which uses supervised learning to prune poor nodes and learns the node’s
embedding with GCN, and searches for solutions on good nodes with Q-learning. The
experiment results show that the efficiency is successfully improved on billion-sized graphs.

Song et al. [243] proposed CoPiEr which uses information from both graph-based
representation and ILP-form representation. The trajectories are generated by algorithms
using two kinds of representations, respectively, following an exchange between two trajec-
tories. Specifically, two trajectories are evaluated by the reward function, and the one with
a higher reward is used as a demonstration for the algorithm based on the other trajectory.

Reinforcing Methods

Some works pay more attention to improving the optimization process rather than
designing the policy network, which is shown in Table 4.

Table 4. Works on reinforcing methods of reinforcement learning.

Reference Year Advantage or Novelty

Deudon et al. [86] 2018 enhanced the framework with
2-opt

Emami et al. [87] 2018
learned permutation instead

of decision sequences point by
point

Kool et al. [88] 2018

re-designed the baseline
of REINFORCE algorithm

as the cost of a solution
from the policy defined by

the best model
Ma et al. [244] 2019 solved COPs with constraints

Abe et al. [245] 2019
used CombOpt inspired by

AlphaGo Zero to replace
Q-learning

Barrett 2020 explored the solution space
during test time

Kwon et al. [246] 2020 handled equally optimal
solutions

Based on Bello et al. [85], Deudon et al. [86] proposed a policy network with only
attention mechanism and enhanced the framework with 2-opt. Instead of using LSTM,
the decoder maps three last sampled actions (visited cities) to a vector, and 2-opt is used
to improve the output solution.
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The previous idea of using reinforcement learning to solve COPs is usually to generate
decision sequences point by point, which is a greedy heuristic. On the contrary, Emami et al. [87]
proposed the Sinkhorn policy gradient (SPG) algorithm to learn permutation so that in addition
to TSP-type problems, it can also solve other issues, for example, maximum weight matching.
The state of SPG is a permutation instance of size N, and the action is an N×N permutation
matrix. To use a deterministic policy gradient method, such as DDPG, Emami et al. used
Sinkhorn layers to approximate the permutation matrix and added a term to the critic loss
to de-bias the policy gradient.

Kool et al. [88] improved [85] on two aspects: (1) They used an attention mechanism
instead of LSTM for encoding, which introduces invariance to the node input order and
enables parallel computation. (2) They designed the baseline of REINFORCE algorithm
as the cost of a solution from the policy defined by the best model, which is similar to self-
play that improves itself by comparing with the previous solutions.

Ma et al. [244] focused on COPs with constraints, for example, TSP with time win-
dow (TSPTW), and proposed to solve them using hierarchical RL. Ma et al. compared
two hierarchical structures: one is that the lower layer is to make the solution satisfy
the feasible region constraints, and the higher layer is to optimize the objective function;
the other is that the lower layer is to optimize the solution of an unconstrained TSP, and the
higher layer is to give an instance of TSP with constraints. They proved that in the TSP
experiment the first structure is better. Ma et al. also proposed graph pointer network
(GPN), which uses LSTM to encode a graph with context provided by GNN to obtain more
transferable representations.

Abe et al. [245] addressed the problem that previous methods obtained poor empirical
performance on some graphs due to the limited exploration space of the Q-learning method.
They proposed CombOpt inspired by AlphaGo Zero to replace Q-learning. While the origi-
nal AlphaGo Zero is designed for two-player games with a terminal state of win/lose/draw,
Abe et al. modeled the state value of AlphaGo by “how likely the player is going to win”,
and extended it to COPs by a reward normalization technique relating to “how good it is
compared to random actions”.

Barrett et al. [247] addressed the necessity of exploration of the solution space during
test time since many COPs are too complex to learn only through training. They designed
a reward structure to motivate the agent to find better solutions when testing by adding
or removing a node. This method is complementary to many training methods.

Kwon et al. [246] addressed the problem that for some COPs with equally opti-
mal solutions, previous works always learn one of them, which is a biased strategy.
They pointed out that previous works are sensitive to the selection of the first node, thus
they used the idea of entropy maximization to improve exploration. In addition, they
proposed a new baseline for policy gradient to avoid local minima.

Improvement RL

The previous works usually use NNs to generate COP solutions in one shot. Despite
the efficiency, there is always a certain gap from the optimal in such methods. Another type
of work learns the improvement heuristic, which improves an initial solution iteratively.

Chen et al. [97] proposed a method of making incremental improvement until con-
vergence by locally rewriting feasible strategies, called NeuRewriter. Chen et al. modeled
the rewriting process as MDP, where the state is the partial solution, the action is the desired
local region and the associated rewriting rule. They trained the policy with the advantaged
actor–critic algorithm and applied NeuRewriter to three problems—expression simplifi-
cation, online job scheduling, and vehicle routing problems (VRP)—where NeuRewriter
performs better than strong heuristics.

Wu et al. [248] proposed to use deep RL to automatically improve an initial solution
based on neighborhood search. The architecture is based on self-attention, where the action
is a node pair for pairwise local operators. Learning with the actor–critic algorithm,
the model generates a probability matrix for each pair.
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Lu et al. [249] proposed a new framework to improve heuristic methods with re-
inforcement learning for capacitated vehicle routing problems (CVRP). They divided
heuristic operators into two classes, improvement operators and perturbation operators.
According to each state, a certain class of operators is selected first, and then a specific
operator is selected within the class. Specifically, given recent solutions, the method for se-
lecting a class is a threshold-based rule. If a local minimum is reached, the perturbation
operator is activated to generate a new solution, otherwise, the improvement operator is
activated. They used reinforcement learning to select the specific improvement operator,
where the problem, solution, and running history are used as the features of the state,
and different operators are used as actions. Lu et al. designed two kinds of rewards: one
is +1 if the solution is improved, otherwise −1, and the other is to take the total distance
achieved by the problem instance during the first improvement iteration as a baseline.

3.1.3. Game Theoretic Methods

Single-Player Game

Some COPs are modeled as reinforcement learning problems, in which the idea
of single-player games and self-play can be applied.

Laterre et al. [89] used the concept of self-play on 2D and 3D BPP problems and
proposed the ranked reward algorithm. When applying MCTs to solve a BPP problem
modeled as MDP, the reward for all non-terminal states is usually set to 0 and for the ter-
minal state, is obtained according to the quality of the solution. Laterre et al. reshaped
the reward function by storing the agent’s recent performance against which new solutions
are compared, earning the reward related to whether or not it outperformed itself. In this
approach, ranked reward reproduces the benefits of self-play for single-player games, re-
moves the requirement of training data, and obtains a well-suited adversary. Experiments
show that it outperforms ranked-free strategies on BPP problems.

Xu et al. [250] proposed a method to transform certain COPs into Zermelo games
to use self-play-based neural MCTS. The Zermelo game is a two-player, finite information
game with perfect information. During the game, two players alternate actions, and finally
one wins and one loses. Xu et al. modeled a type of COP (the highest safe rung (HSR)
problem (Highest safe rung (HSR): consider throwing jars from a specific rung of a ladder
where the jars could either break or not. If a jar is unbroken during a test, it can be used next
time. The highest safe rung is a rung that for any test performed above it, the jar will break.))
as a Zermelo game, mainly using its recursive property. The state–space convergence and
solution quality of the algorithm prove to be good, but it faces the common time-consuming
problem of the neural MCTS algorithm.

Drori et al. [90] modeled some COPs of choosing edges over graphs as a single-player
game, represented by a decision tree. Drori et al. used the graph attention network to en-
code the line-graph variant of the original graph, and then used the attention mechanism
to select actions (add/remove an edge). Finally, they updated the network weights through
the evaluation oracle of the leaf nodes, where perfect information game theory proved
that a similar mechanism could approximately converge to an optimal policy. Drori et al.
conducted experiments on four problems of minimum spanning tree, shortest path, TSP,
and VRP, and demonstrated linear running times with good optimality gaps.

Competitive Game

Shahadat et al. [91] regarded each strategy of the TSP problem as a player and it-
eratively updated them through competition and reinforcement to obtain the optimal
strategy. Specifically, Shahadat et al. first randomly initialized some strategies, each
of which has a payoff equal to 0. In each round of iteration, for the player Xi, an op-
ponent player Xj is chosen to compare; if Xj wins, then Xi imitates the strategy of Xj
(copy some sequence from the opponent) to update itself, and rewards the winning player
according to probabilistic utility theory, otherwise, Xi updates itself according to the current
global best player and the local best player (the strongest strategy that Xi has explored).
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If the update does not exceed its previous performance, the strategy of Xi is updated again
with a local search strategy 2-opt.

Cooperative Game

In tasks involving cooperation among multiple agents, the concept of equilibrium and
communication in game theory tends to lead to good solution quality.

Kulkarni et al. [92] proposed to use probability collectives to solve the small-scale
multi-depot multiple traveling salesmen problem (MDMTSP). This method is a kind
of cooperative approach, and the main idea is to treat each salesman as an agent, and
each route as a strategy that forms an agent’s strategy set. In each iteration, each agent
independently updates the probability distribution over its own strategy set to select
a specific action that has the highest probability of optimizing its own utility (private utility)
until the probability distribution can no longer be changed (to reach Nash equilibrium).
As a cooperative approach, the private utility is allocated by the global utility, so the global
objective is optimized in each iteration, too. In order to deal with the problem of node-
repeated-selection in TSP, Kulkarni et al. also used heuristic methods, including node
insertion and elimination, and neighboring and node swapping. This method solves
the MDMTSP of 3 depots, 3 vehicles, and 15 nodes in a short time, but Kulkarni et al. also
pointed out that it can only solve small-scale problems with few constraints.

3.2. Problems

In this section, the historical solution process of classical COPs are concerned, focusing
on the change of methods and the data scale of the experiments, so as to guide application
to practical problems. It can also reflect how the ML algorithms proposed in recent years
move the field forward. Some problem-specific solutions not mentioned in Section 3.1
are added.

3.2.1. Integer Linear Programming

ILP is a general form for many discrete COPs and is of great practical significance.
Table 5 presents ML methods proposed in recent years to solve the ILPs.

To solve MILP problems, B&B is a common approach, which builds an optimization tree
and selects variables for branching at each step, and prunes according to the results of LP-
relaxation. In the branching stage, strong branching (SB) gives the score of candidate nodes
to guide the selection. Alvarez et al. [70] proposed to treat the scoring stage of SB as a regression
problem and used supervised learning for fitting to solve binary MILP problems. The method
effectively improves operation efficiency. He et al. [71] formally modeled the decision process
of B&B as MDP, and treated node selection and node pruning as classification problems. They
set the label of expand and prune according to whether the node is optimal, and then used the
imitation learning method to deal with the problem of imperfect information. On larger-scale
problems, the method of He et al. further reduces the computational time and the gap with
the optimal solution on MILP problems. Khalil et al. [72] further regarded the SB scoring
problem as a learning-to-rank problem where nodes are labeled by binary ranking, that is, nodes
with scores close to the highest score are ranked higher than others. The ranking strategy is
learned by supervised learning methods. In addition, the method proposed by Khalil et al.
seamlessly transfers the branching strategy from the SB- to ML-based method when applied
to a given problem, instead of learning the strategy offline. Gasse et al. [93] also formulated B&B
as MDP and learned the policy by behavioral cloning. They treated the binary tree as a bipartite
graph and used GCNN to encode the state to improve the generalization ability of the algorithm
on test instances.

The work of Kruber et al. [251] concerned the issue of the decomposition of MIPs.
A MIP problem can be decomposed in many ways, and some of them can well reflect
the structure of the original model for which the MIP can be reformulated to an easier
form to solve, while some decompositions are not suitable. Kruber et al. proposed to use
supervised learning to train a classifier to decide whether a given decomposition of MIP is
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worth continuing to be reformulated. Kruber et al. tested the classifier on both structured
instances (such as set covering, BPP, VRP, etc.) and unstructured instances with a total
of 1619 decompositions.

Table 5. Methods for ILPs.

Method Reference Year Description Scale

SL

Alvarez [70] 2014
learning SB

scoring decisions
on binary MILP

hundreds
variables, 100

constraints

He [71] 2014

using Dagger
to learn binary
branching and
pruning policy

on MILP

200–1000
variables,
100–500

constraints

Khalil [72] 2016
learning ranking
policy derived

by SB, on-the-fly

50,000 and
500,000 nodes

Kruber [251] 2017

learning
to decide
whether a

decomposition
of MIP is
suitable

−

Gasse [93] 2019
using GCNN
to encode the

bipartite graph
−

Paulus [84] 2021

an end-to-end
trainable

architecture
to learn

constraints and
cost terms of ILP

1–8 variables,
2–16 constraints

RL Tang [94] 2020
learning to cut
plane with RL

on IP

variables ×
constraints = 200,

1000, 5000

Paulus et al. [84] directly used the mathematical gradient substitution method to en-
able the loss between the objective function and the optimal objective function to be passed
to the parameters c of cost function and the parameters A and b of the constraints, thereby
realizing an end-to-end black-box solver. Paulus et al. showed high accuracy of this method
on very small-scale ILP problems.

Tang et al. [94] used reinforcement learning to improve the cutting plane method
(specifically, Gomory’s method [252]) for solving IPs. Tang et al. modeled the process
of selecting cutting planes as an MDP, where the state is the current feasible region and
the reward is the change in the value of the objective function between episodes. In order
to deal with the problem that the policy is independent of the order of the constraint
parameters and the input length is variable, Tang et al. used the attention network and
LSTM, respectively. In the experiment, Tang et al. considered problems of three scales with
the number of variables, and the number of constraints being about 200, 1000, and 5000.

3.2.2. MIS, MVC, MC

MIS, MC, and MIS problems are COPs over graphs and are equivalent problems
mathematically, thus, the methods for these problems are similar. Table 6 represents
the surveyed works on this problem.
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Table 6. Methods for MIS, MC, MVC.

Method Reference Year Problem Description Scale
(Vertice)

SL Li [231] 2018 MIS, MC,
MVC

using GCN
to generate

multiple
probability
maps and

doing
tree-search

on them

1000–100,000

RL

Khalil [95] 2017 MC, MVC

using
S2V-DQN to
select desired

node once
a time

50–2000

Venka-
takrish-

nan [240]
2018 MIS, MC,

MVC

using
Graph2Seq to

handle
variable

graph size
trained by
Q-learning

25–3200

Abe [245] 2019 MC, MVC

using
CombOpt
to solve

the problem
of limited

exploration
space

100–5000

Barrett [247] 2020 MC

using
ECO-DQN to

improve
the solution
during test

time

20–500

Song [243] 2020 MVC

co-training
algorithms

with
graph-based

and
ILP-based
representa-

tions

100–500

Manch-
anda [241] 2020 MC, MVC

learning
to prune poor

nodes
in order to
generalize
to larger

graph

50 K–65 M

Karal-ias [96] 2020 MC

traing GNN
in unsuper-

vised way by
constructing

a differen-
tiable loss
function

up to 1500
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With the development of deep networks, GNNs are widely used to solve problems
based on graph structures, including COPs. Khalil et al. [95] used GNNs to solve MC
and MVC firstly. As described in Section 3.1.2, they proposed to select the desired node
once a time, using the Structre2Vector network to embed nodes that are learned by Q-
learning, and tested this method on graphs with 50–2000 nodes. Li et al. [231] regarded
the output of GCN as an n-dimension real-valued probability map. Instead of convert-
ing the probability map to the discrete solution directly, they proposed to generate mul-
tiple maps and used a breadth-first tree search to obtain the complete solution. They
showed that this method generalized well on graphs with 1000 nodes to 100,000 nodes and
10 million edges. Venkatakrishnan et al. [240] proposed Graph2Seq-RNN based on [95],
which uses a discrete-time dynamical system to deal with the graph and enables the net-
work to perform well on graphs with different sizes from the trained one. Experiments
are performed on graphs with 25–3200 vertices and various edge probabilities, notably,
the policy is trained on graphs of size 15 and edge probability 0.15. Abe et al. [245]
proposed CombOpt to solve the problem of limited exploration space in the Q-learning
method, which uses a reward normalization technique relating to comparison with random
actions. The training set includes graphs with 40–50 nodes for MC and 80–100 nodes
for other problems, and the testing set includes graphs of various sizes from 100 to 5000.
Manchanda et al. [241] extended the method of [95,231] to graphs with 50 K to 65 M nodes
with up to 1.8 B edges by learning to prune poor nodes that have little contribution to the so-
lution set. Karalias et al. [96] proposed a principle method to construct the differentiable
loss function from discrete problems, and trained a GNN to minimize this loss function
in an unsupervised way, following selecting a node according to the vector output by GNN.

Rather than improve the training process, Barrett et al. [247] focused on improving
the solution during test time. They proposed ECO-DQN with a reward structure to guide
exploration, that is, adding or removing a node from the solution. They tested this method
on graphs with 20–500 vertices and showed that it beat S2V-DQN in most cases.

Song et al. [243] used both graph-based and ILP-based representations of COPs.
They solved a problem with two algorithms based on two kinds of representation separately
and exchanged the information between two solutions. Experiments were performed
on graphs of sizes 100–500 and showed good generalizing ability and solution quality.

3.2.3. Traveling Salesman Problems

Due to the natural structure of the TSP, it is easy to treat the strategy as a decision
sequence, where nodes are selected one by one and form a route. There are two ways
to deal with the input structure: a sequence or a graph. Generally, the graph representation
characterizes the structure better since the order of depots in input has the property of being
permutation invariant. Recent works on this problem are presented in Table 7.

The first attempt to apply the sequence-to-sequence model into COPs is made by
Vinyals et al. [76]. They proposed Ptr-Net based on the attention mechanism, which enables
a variable length of input and is trained with supervised learning. Nodes are selected
according to the probability distribution over candidate nodes set as output by Ptr-Net.
They tested it on small-scale TSPs with fewer than 50 nodes and found that Ptr-Net seems
to break for 40 nodes and beyond. Bello et al. [85] improved [76] by learning the probability
distribution with REINFORCE, removing the reliance on training data. Active search
was used to construct the final solution. Experiments were performed on TSP20, 50,
and 100. Refs. [86–88,239,246] used similar architecture based on S2S. Emami et al. [87]
proposed to learn the permutation matrix of nodes instead of the probability sequence
using the Sinkhorn policy gradient and test it on TSP-20, obtaining better performance.
Kwon et al. [246] proposed POMO to solve the problem that equivalent optimal solutions
are unequally selected by previous methods.

To solve problems such as VRP where the input status changes over time, Nazari et al. [239]
proposed a variant of [85] which embeds the static elements and dynamic elements in the input
separately. Experiments suggest this method can obtain better results than classical heuristics.



Algorithms 2022, 15, 205 22 of 43

Nowak et al. [81] proposed to apply GNN to COPs. It is trained in a supervised
such way that the loss between the bedded origin graph and target graph with the same
number of nodes is calculated. Nowak et al. tested the method on TSP20 and mentioned
a performance gap with Ptr-Net [76]. Khalil et al. [95] further proposed S2V-DQN to remove
training data, as described in Section 3.1.2. Joshi et al. [253] improved [81] by replacing
the self-regression approach and compared different search methods. Prates et al. [233]
focused on COPs with numerical information (in this case, TSP with cost constraints) and
proposed to embed edges with weights and constraints and trained the GNNs with labels.
Ma et al. [244] also focused on COPs with constraints and proposed to use the graph
pointer network and hierarchical RL architecture, where two levels aim at optimization
and making solutions feasible, respectively.

Table 7. Methods for TSP.

Problem Method Reference Year Description Scale

TSP

S2V

Vinyals [76] 2015 Ptr-Net <50

Bello [85] 2016 Ptr-Net +
REINFORCE 20, 50, 100

Deudon [86] 2018 attention+REIN-
FORCE+2-opt 20, 50, 100

Emami [87] 2018 attention+Sinkhorn
Policy Gradient 20

Kool [88] 2019

Transformer+REIN-
FORCE with

baseline relating
to the best model

so far

20, 50, 100

Kwon [246] 2020 attention+REINFORCE 20, 50, 100

G2V

Nowak [81] 2017 GNNs 20

Khalil [95] 2017
GNNs +

Q-learning,
S2V-DQN

50–2000

Joshi [253] 2019 GCNs + beam
search 20, 50, 100

Prates [233] 2019 GNNs, message
passing 20–40

Ma [244] 2019
Graph pointer Net-
work+hierarchical

RL
250, 500, 750, 1000

improve-ment RL Wu [248] 2021 transformer+AC 20, 50, 100

end-to-end Vlaste-lica [83] 2020

an end-to-end
trainable

architecture
to learn cost terms

of ILP

5, 10, 20, 40

game Kulkar-ni [92] 2009 Probability
Collectives 3 depots, 3 vehicles

Shaha-dat [91] 2021 competitive game
among strategies -



Algorithms 2022, 15, 205 23 of 43

Table 7. Cont.

Problem Method Reference Year Description Scale

VRP

S2V
Nazari [239] 2018 RNN + attention +

policy gradient

10, 20, 50, 100
customers, 20, 30,

40, 50 vehicle
capacity

Kwon [246] 2020 attention +
REIN-FORCE 20, 50, 100

improve-ment RL
Chen [97] 2019

using NeuRewriter
to find a local

region and
the associated
rewriting rule

20, 50, 100

Lu [249] 2020 use RL to choose
operators 20, 50, 100

Wu [248] 2021 transformer + AC 20, 50, 100

Some RL improvement methods are proposed to solve TSP. Chen et al. [97] proposed
NeuRewriter to learn region-picking and rule-picking policies and improved a feasible
solution by locally rewriting. They tested NeuRewriter on Capacitated VPR of sizes 20, 50,
and 100. Lu et al. [249] proposed to use RL to choose heuristic improvement operators, and
the other class of operators, namely perturbation operators, was used to avoid the local
optimum. Wu et al. [248] proposed an attention mechanism-based architecture to choose
a node pair for pairwise local operators without human guidance, which outperforms other
deep models on TSP and CVRP instances.

Game theoretic methods have also been applied in TSPs. Kulkarni et al. [92] proposed
to solve MTSPs using probability collectives, where agents try to maximize their own
utility, which is assigned by a global utility independently. They obtained good solutions
in a short time on small-scale MTSPs. Shahadat et al. [91] created a competitive game
among strategies over TSPs. At each step, two strategies were compared, and the winner
was used as a demonstration to the loser.

4. Applications in Energy Field

This section mainly focuses on applications in problems in the energy field [254].
Applications in several aspects were surveyed, including petroleum supply chain, steel-
making, electric power system, and wind power. The results of the review are reported,
respectively, as follows.

4.1. Petroleum Supply Chain

Three scenarios of the petroleum supply chain were focused on: refinery production
planning, crude oil scheduling, and oil transportation, each of which plays a significant role
in the supply chain by a sequence of operation processes. Then a brief review of progress
on application to solutions of the aforementioned problems in the petroleum supply chain
was presented, for these processes are major concerns of worldwide petroleum supply
systems. Table 8 gives a brief summary of applications surveyed.
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Table 8. Application in petroleum supply chain.

Senario Problem Reference Year Approach

Refinery
Production
Planning

refinery product
profits

[99] 2007 stochastic algorithm

strategic refinery
production planning

[98] 2017 Cournot oligopoly-
type game

refinery operation
problem

[100] 2017 Cournot
oligopoly model

gasoline industry
investment

[101] 2020 three-phase
Stackelberg game

Refinery
Scheduling

refinery production
and operation

[105] 2009 DP + mixed genetic

crude oil
scheduling

[104] 2010
fuzzy and

chance-constrained
programming

refinery planning
and crude oil

operation scheduling

[255] 2011 Lagrangian decomposi-
tion

scheduling refinery
problem

[256] 2011 logic-expressed
heuristic rules

oil-refinery
scheduling

[102] 2015 heuristic algorithm

refinery crude
oil scheduling

[257] 2020 line-up competition
algorithm

crude oil
operation scheduling

[258] 2020 NSGA-III

crude oil
supply problem

[259] 2020 MILP clustering

tank blending
and scheduling

[260] 2020 discretization-
based algorithm

oil blending
and processing
optimization

[261] 2020
discrete-time-

presented multi-
periodic

MILP model
crude oil

refinery operation
[262] 2020

unit-specific
event-based

time representation

Oil
Transportation

refinery product
profits

[99] 2007 stochastic algorithm

long-term
multi-product

pipeline scheduling

[10] 2014
MILP-based

continuous-time
approach

multi-product
treelike pipeline

scheduling

[12] 2015 continuous-time MILP

long-distance
pipeline transportation

[263] 2015
outer-approximation-

based iterative
algorithm

crude oil
pipeline scheduling

[264] 2016 two-stage stochastic
algorithm

pipeline scheduling [11] 2017 SM + ACO
fuel replenishment

problem
[107] 2020 adaptive large

neighborhood search
refined oil

pipeline transportation
[265] 2020

parallel computation
+ heuristic rules

+ adaptive search
refined oil

transportation
[266] 2021 improved variable

neighborhood search
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4.1.1. Refinery Production Planning

Refinery production planning is the precondition of all the operations, as it defines
the number of end products to be produced and predicts the total profits of the whole
production process. The ML model based on game theory was investigated to deal with
refinery production planning problems.

Tominac et al. [98] presented a structure based on game theory according to a Cournot
oligopoly-type game to solve strategic refinery production planning problem, as the model
involves multiple refineries and markets. The results show rational and robust decisions
and are mutual best responses in the competitive planning game. Ravinger [99] built
a Cournot oligopoly model embedding a stochastic algorithm to cope with product profits
problem for refineries. This model with an oligopolistic market structure takes into account
key characteristics of refineries and yields a solution concerning investment decisions
under demand shock. Tominac [100] also constructed a Cournot oligopoly model for re-
finery operation problems in multiple markets competition, which is an optimal strategic
production planning problem. The model takes into account both economic objectives and
process constraints to tackle such MILP. On the aspect of economy, Babaei et al. [101] used
a three-phase Stackelberg game theory approach based on a multi-agent method to analyze
the gasoline industry investment by the government under massive consumption and
shortage of production in developing countries. The results show that profit is maximized
for investors under the management of production volume.

From producing point of view, the ML approach based on game theory regards
each refinery as a single rational agent, where each considers both their profits and in-
tegrated profits in the game to achieve Nash equilibrium. Therefore, with cooperation,
i.e., transporting products to each other refinery, the whole supply system maximizes profit.
However, transportation costs cannot be easily considered in this game model since none
of the agents would be willing to take the risk. Therefore, dealing with transportation costs
in the ML approach based on game theory would be another challenge.

4.1.2. Refinery Scheduling

Refinery scheduling is a significant production operation in the upstream petroleum
supply chain in which many complex chemical sub-operations are involved, including
crude oil unloading, crude oil mixing, production unit operation, products blending,
and refined oil distribution [102]. These scheduling optimization problems are stochasti-
cally uncertain and have multiple constraints and objective functions [103]. It is difficult
to optimize the model with such complexity, not to mention large-scale scheduling prob-
lems. Therefore, different models and algorithms with built-in ML mechanisms were
surveyed, where each approach either simplifies the model or reduces the time of solving.

Crude oil scheduling sometimes can involve uncertain conditions, especially when
dealing with product demands or ship arrival time at the terminal. To solve crude oil
scheduling problems under uncertain conditions, Wang et al. [104] developed a two-stage
robust model which transforms fuzzy programming and chance-constrained programming
into deterministic counterpart problems at the first stage and proposes the second stage
based on the scenario. The experiment shows that the feasible rate raised from 32% to 97%
compared to the approach proposed by Cal et al. Li et al. [105] suggested a hybrid
mechanism combining DP and mixed genetics to improve the general DP algorithm, which
is computationally expensive to solve the model with inequality constraints. The algorithm
successfully solves multi-stage production and operation DP problems in refineries under
uncertain market demand and yields an adaptive and effective solution.

Among all the literature works investigated, many applications of heuristic aim to sim-
plify the model and thus make the algorithm computationally cheaper to obtain the opti-
mization. Shah et al. [102] proposed a heuristic algorithm based on a decomposed network
to solve the oil-refinery problem. The authors decomposed the problem into two separate
scheduling problems and generated multiple integer cuts at the end of each iteration,
which significantly reduces the computational time due to fewer iterations being needed.
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Similarly, A MIP model integrating logic-expressed heuristic rules was reported by Li [256]
to simplify the model of the scheduling refinery problem as well as to improve the efficiency
of the solution without losing optimization guaranteed. Yue et al. [257] first proposed
a heuristic rule of the oil transport sequence. Then an asynchronous continuous-time CO
model based on a line-up competition algorithm was built to transform the original refinery
crude oil scheduling problem (RCSP), a MINLP, into a CO problem that makes it easier
to obtain the optimal solution, and then solve it within a relatively short computational
time. The total cost of scheduling, the objective function, is proved to reduce by 2.1% com-
pared to other approaches mentioned. To solve the crude oil operation scheduling problem
for refineries, which is a multi-objective optimization problem, an NSGA-III based method
was proposed by Hou et al. [258]. As a meta-heuristic algorithm, NSGA-III improves
population diversity by adaptively updating reference points compared to NSGA-II.

There are some sources involving the use of other techniques. Assis et al. [259] pre-
sented a MILP clustering mechanism to cope with the operational management of the
crude oil supply (OMCOS) problem consisting of the scheduling of vessel traveling be-
tween a terminal and platforms. The authors used the clustering solution as a pre-step
to simplify operations and reduce the total number of vessel routes. Beach et al. [260] pro-
posed a discretization-based algorithm which can approximate non-convex mixed-integer
quadratically constrained programming (MIQCP) as a MILP. To solve the tank blending and
scheduling problem, the authors combined the algorithm with a rolling horizon approach,
which is evaluated to be supportive of using industrial datasets. Li [261] reported a discrete-
time-presented multi-periodic MILP model for oil blending and processing optimization
problem. Shown by numerical results, this formulation is computationally effective, as it
reduces solving time. Mouret et al. [255] proposed an approach involving Lagrangian
decomposition to solve refinery planning and crude oil operation scheduling integration,
which is a large-scale MINLP. The authors introduced a hybrid dual problem to update
Lagrange multipliers and then solve each problem separately. Bayu et al. [262] reported
a unit-specific event-based time representation based on the state task network (STN),
an extension of a previous benchmark given by Yadav and Shaik, to solve crude oil refinery
operation involving desalting. The proposed model makes it possible to inform the decision
maker of resources consumed, such as wash water and sludge.

To conclude this section, the built-in ML algorithm could help simplify the COP model
or reduce the solving time with certain architecture constructed. Yet not every part of the
production process was considered for refinery scheduling, i.e., the omitted elements, such
as dependence on uncertain parameters and uncertainties under non-linear constraints,
would cause the results to be different.

4.1.3. Oil Transportation

Now it is time to focus on the intermediate operation that connects upstream and
downstream of the petroleum supply chain: oil transportation. The oil transportation
system consists of several methods among crude oil fields, refineries, storage terminals,
and sales companies: pipeline, trucks, railway, and tankers [106]. The determination is
made with respect to different factors, such as distance, oil type, cost, etc. In this section,
applications to problems concerning pipeline scheduling were mainly investigated.

Oil transportation through pipeline usually involves multi-product scheduling prob-
lems. Mostafaei et al. [10] introduced a MILP-based continuous-time approach for the
long-term multi-product pipeline scheduling problem, which is a MINLP. Compared
to work performed by Cafaro et al., the formulation proposed by Mostafaei et al. allows
25% less total operation cost. Focusing on the same topic, Mostafaei et al. [12] also pre-
sented their work of a continuous-time MILP to address the scheduling of multi-product
treelike pipeline scheduling consisting of a single refinery and several downstream de-
pots. The proposed model is proved to be significantly more computationally efficient.
Like Mostafaei et al., who focused on pipeline scheduling between a single refinery and
multiple terminals, Zhang et al. [11] also concentrated on multiple pump stations, which
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is a crucial structure for long-distance pipelines. The authors presented a hybrid compu-
tational approach embedding SM into ACO. Therefore, with such an architecture, two
sub-models are more interactive than other multi-step models in previous literary works.

Now, the reader may look at other approaches. Oliveira et al. [264] presented
a two-stage stochastic MILP model to determine the scheduling of pipeline-transported
oil and sequence of ships at the terminal, which is a system with supply uncertainty.
Zhang et al. [263] developed a continuous-time scheduling model embedding an outer-
approximation-based iterative algorithm to tackle the long-distance pipeline transportation
problem. Gao et al. [266] proposed an improved variable neighborhood search algorithm
(IVNS) for scheduling refined oil transportation with multiple trips and due times. To im-
prove local optimization ability, a greedy strategy is built based on the initial solution
obtained by the forwarding insertion heuristic. Therefore, the results converge faster with-
out losing the quality of the solution. Wang et al. [107] constructed an adaptive large
neighborhood search (ALNS) heuristic to cope with the fuel-replenishment problem (FRP),
a VRP with multiple deliveries, trips, and compartments, where different products are
involved. Wang [265] proposed an improved simulated annealing (ISA) algorithm incor-
porating parallel computation, heuristic rules, and adaptive search to tackle refined oil
pipeline transportation problems in order to optimize computation and special constraints.
To simplify the structure, the author presented an approach that separates one pipeline
transportation scheduling problem into initial-station input scheduling and sub-problems
of distribution scheduling at each station along the pipeline. The resulting scheduling
plan was proved to be efficient and effective applying to a real instance. Based on previ-
ous research of a petroleum products distribution system, where an object-oriented Petri
nets (OOPN) framework is proposed, Li et al. [267] presented a queue theory to improve
the safety of the existing model, for the OOPN model only shows boundedness and no
deadlock without evidence of safety. The improved model was shown to be effective.

So far, the references surveyed in this section were all focused on treelike pipelines
with multiple destinations, i.e., the models were built on a single refinery concerning
several terminals, while in reality, the pipeline for oil transportation would be more like
a complicated network. With such complexity, whether the current algorithm would still
be competent is worth questioning.

4.2. Steel-Making

The scheduling problem in steel making is another complicated combinatorial problem
in the industrial field. Like petroleum refinery scheduling, steel-making scheduling also
involves numerous chemical operations and materials blending. Table 9 gives a brief
summary of the applications surveyed.

To deal with dynamic uncertainty involved in steel-making workshops, Lin et al. [108]
introduced a deep RL-based algorithm to the crane scheduling problem. Then a DQN
algorithm was built into the crane action value network model. The resulting schedul-
ing showed that the task completes faster using this model, thus improving efficiency.
Zhou [109] proposed an improved gray wolf optimization algorithm based on a deep deter-
ministic strategy gradient algorithm (DDPG-GWO) to deal with problems such as the local
optimum and poor stability of the solution without using the gray wolf algorithm. DDPG
can help train the agents, thus avoiding the above problems. It is proven that DDPG-GWO
can obtain a more accurate solution in less computational time. Jia [110] aimed at solving
batch machine scheduling problems and presented a batch optimization algorithm based
on Ptr-Net, which is trained by RL. To improve the performance of Ptr-Net, a hybrid
genetic algorithm is introduced, due to its capability for global search. As a crucial link
during the steel-making process, the operation and scheduling problem of steel-making
and continuous casting has complicated constraints with uncertainty. To realize intelligent
optimization, Ma et al. [111] discussed an integrated framework based on ML with rolling
optimization algorithm and rule mining.
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There were not enough clues to show the application of the algorithm based on game
theory that was used in steel making. Most of the references surveyed were relevant to the
ML-based algorithm with modification to approaches to solve COPs.

Table 9. Application in steel making.

Problem Reference Year Approach

crane scheduling
problem

[108] 2021 deep RL-based
algorithm + DQN

scheduling of
steelmaking and

continuous casting

[109] 2021 DDPG-GWO

batch machine
scheduling

[110] 2021 Ptr-Net

steel-making
operation and

scheduling

[111] 2022 integrated framework +
ML

4.3. Electric Power System

The scheduling problem in electric power systems is another industrial field that draws
attention. Similar to the petroleum supply chain, the electric system is also a multivariate
non-linear system with high uncertainty and complexity. Nevertheless, unlike liquid or gas-
formed petroleum products, this power cannot be stored due to the special physical feature
of electricity. Therefore, solving such a system requires more consideration and is thus
more complicated [268]. Table 10 gives a brief summary of the applications surveyed.

ML-based approaches were first surveyed to solve CO scheduling problems in the elec-
tric system. Yan et al. [112] proposed an improved Ptr-Net combining the deep RL
algorithm to obtain end-to-end self-learning calculation for the topology control strategy
of distribution network fault recovery. Dong et al. [113] constructed an optimization
dispatch model based on the RL framework using the Markov decision process. Then
the model was trained by the AC algorithm and deep deterministic policy gradient al-
gorithm. Then the system was divided into multiple agents concerning data interaction,
and the optimization model was transformed into an MARL model. Compared to the SARL
algorithm, the training process can converge more stably. Aiming at transient voltage
stability in energy internet (EI), Cao et al. [114] proposed a deep RL algorithm based
on CNN to improve decision-making optimization to balance the power supply–demand.
This algorithm has a more accurate prediction compared to conventional ML algorithms,
and it also satisfies the expectation of system stability. Zhang et al. [115] focused on hy-
brid energy coordinated control optimization problems for hybrid energy storage systems.
The authors designed a deep RL framework embedding a neural network model to solve
the formulated decision-making problem. Li et al. [116] focused on the scheduling problem
of charging stations to predict the power supply capacity required and conduct a neural net-
work mapping model based on DL. Experiments show the capability of dealing with the sizing
problem of station charging capacity. Huang et al. [117] suggested a hybrid approach based
on the original differential evolution (DE) algorithm, combining the ant system to tackle
the optimal reactive power dispatch (ORPD) problem. Having been tested on a real system,
the approach can achieve lower power losses during transmission with better results and
performance compared to previous methods. Yuce et al. [118] aimed at optimizing the
smart scheduling of energy-consuming devices, utilizing artificial neural network/genetic
algorithm (ANN-GA). The best performance was found in a Levenverg–Marquardt-based
learning algorithm with which the maximized use of renewable sources and reduced
energy demand were achieved. With a great interest in generation expansion planning,
Huang et al. [119] presented an investment planning model embedding a double-layer
optimization construction and three types of agents built with the Q-learning algorithm
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and GA, considering a change in electricity price and generation cost. The model is effective
and was practicably proved by two real-world instances.

Now, research on models that involve game theory are concentrated. This ML ap-
proach considers the perspective of the economic market and treats each decision maker
as an individual agent. The objective is usually the total profit. To improve the efficiency
of the energy system, Sheikhi et al. [269] proposed a model based on cloud computing (CC)
framework that modifies the classic energy hub (EH) to support managing communication
between utility companies and smart energy hubs (S.E. hub). The approach is applied
for users to obtain demand side management (DSM) while the Nash equilibrium is achieved
by a subgradient optimization algorithm. Fan et al. [270] drew their interest in energy hub
and studied the multi-neighbor cooperative economic scheduling problem, where EHs
compose a community to exchange energy with each other to minimize operational cost.
The authors built a model of a bargaining, cooperative game for this management problem
and found the Nash equilibrium to ensure optimal operations. Peng et al. [271] built
a bottom-up inter-regional transaction model for electricity pricing mechanism. The results
quantitatively showed the relationship between the retailers’ behavior and benefit and
cost of electricity under the certain economic assumption. Chen et al. [272] proposed
a mechanism based on the Stachelberg game for demand response (DR) scheduling opti-
mization problems with load uncertainty. The authors took into account the users’ optimal
consumption as well as the price of electricity to model the interaction between the service
provider and users for the smart grid. The results reached a balanced demand versus
supply. For the same interest, Li et al. [273] also reported an optimization framework based
on the Stachelberg game to deal with scheduling of the DR energy system, setting profits
of the integrated energy operator (IEO) as the objective. The game was built into a MINLP
formulation and solved with an introduced sequence operation theory. The results were
verified to be applicable by real-world instances.

More widely used ML approaches are shown in this section on the aspect of manage-
ment, where each energy hub is considered an agent bargaining with each other. Unlike
the petroleum supply chain, the electric power system has a shorter supply chain, and
the problem is closer to the market.

Table 10. Application in electric power system.

Problem Reference Year Approach

energy-consuming
device optimization

[118] 2000 ANN-GA

optimal reactive
power dispatch

[117] 2012 DE + ant
system

DR scheduling
optimization

[272] 2012 Stachelberg-ML
mechanism

energy system
efficiency

[269] 2015 CC

generation
expansion planning

[119] 2016 Q-learning + GA
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Table 10. Cont.

Problem Reference Year Approach

charging stations
scheduling

[116] 2017 NN + DL

multi-neighbor
cooperative economic

scheduling
[270] 2018 bargaining

cooperative game

electricity pricing [271] 2018
bottom-up

inter-regional
transaction model

power supply-
demand

[114] 2019 RL + CNN

hybrid energy
storage

[115] 2019 RL + NN

distribution
network fault

recovery

[112] 2021 improved Ptr-Net

optimization
dispatch

[113] 2021
AC + deep

deterministic policy
gradient algorithm

DR energy
system

[273] 2021 Stachelberg-ML
optimization

4.4. Wind Power

The scheduling problem in wind power is another issue that people are concerned
about in the energy field that involves the application of game theory to solve combinatorial
problems. Table 11 gives a brief summary of applications surveyed.

Marden et al. [120] focused on energy production optimization problems in wind farms and
suggested a model-free distributed learning strategy, an algorithm without building a model
of interaction between wind turbines based on game theory and cooperative control. This
learning strategy was demonstrated to achieve maximum energy production. Quan et al. [121]
proposed a non-parametric neural network-based prediction intervals (PIs) with a built-in
Monte Carlo simulation method for wind power prediction problems. The stochastic security-
constrained unit commitment (SCUC) model was then solved by a heuristic genetic algorithm
and the model was presented to be robust. Mei et al. [122] proposed a min-max game model
for the static reserve capacity planning problem with large-scale integration of wind power.
The authors then introduced a two-stage relaxation algorithm to cope with the min-max
game. The application showed robustness and efficiency. Liu et al. [123] analyzed the
capacity planning model based on cooperative game theory in a low-carbon economy and
presented an improved strategy for the union of wind-farm and grid companies. The model
built a balanced and reasonable profit separating mechanism.

Not many references were surveyed for wind power field. The presented results
showed an application of ML approaches with game theory, considering wind turbines
as independent agents, similar to that in an electric power system.
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Table 11. Application in wind power.

Problem Reference Year Approach

energy production
optimization

[120] 2013 model-free
distributed learning

wind power
prediction

[121] 2014 non-parametric
NN

static reserve
capacity planning

[122] 2014 two-stage
relaxation

capacity planning [123] 2015 cooperative
game theory

5. Challenge
5.1. Developing Game Theoretic Learning Methods

There are three main challenges to solving COPs: (1) Accuracy—the policy space
of a COP is always huge and hard to explore. For large-scale COPs, the optimal solution
is even unknown. Therefore, it is hard to find the best optimization direction, escape
from the local optimal, and bound the optimization gap. (2) Efficiency—solving a COP
has been proved to be NP-hard, and all algorithms seek to solve it in considerable time.
(3) Scalability—despite having the same structure, when the data or scale of a COP is
changed, the solution distribution can be totally different.

Game theory has been widely used to solve complex optimization problems, and been
integrated into ML, especially RL. Single-player algorithms (e.g., self-play) can improve
the policy by beating an opponent, which is a useful way to improve the accuracy, and multi-
player algorithms (e.g., centralized training decentralized execution methods) realize coop-
eration when agents make decisions independently, which may be used to solve complex
COPs that include several independent components whose policies are changeable, im-
proving scalability. However, as summarized in Section 3, more than half of the current
methods use RL to update the policy, while few use the idea of game theory.

5.2. Challenge of Application in Energy Field

Given three scenarios in the petroleum supply chain to illustrate the application of the
learning approach for COPs, it is undeniable that COPs in the petroleum supply chain are
significantly complicated, where each scenario requires a different approach.

Refinery production planning involves strategic decisions of each refinery, considering
both productions of other refineries and the demand of the market. This scenario is con-
sidered a multi-player game, and ML approaches based on game theory are widely used,
where each refinery is seen as a single agent (player) competing or cooperating in the game,
considering both their own profits and integrated profits in the game to achieve Nash equi-
librium. Yet most of the ML approaches using game theory are applied to the aspect of mar-
ket taking profits as the objective, although cases may differ in the real production process.
Hence, more ML methods on the aspect of industrial production are to be investigated.
Refinery scheduling is a more micro scenario which focuses on operations inside a sin-
gle refinery where complex chemical sub-operations are involved. Since no player is
involved in this scenario, no learning approach based on game theory is used when solv-
ing the problems. Rather, traditional COP frameworks, such as MILP and MINLP with
machine learning improvement, such as heuristic algorithm, are more often utilized. Oil
transportation including crude oil transportation and refined oil transportation is a classic
programming problem that many industrial fields are facing. Problems of transporting
through pipeline are mainly surveyed. Again, no learning approaches based on game
theory are used due to lack of players in this scenario, and the traditional COP frameworks’
embedding approaches, such as the stochastic algorithm, are introduced.

Steel making has a similar production operational process to refinery scheduling,
and hence they utilize the same scheduling problems and approaches. Traditional COP
frameworks are widely used with the RL-based algorithm introduced for improvement.
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Through investigation, two points of view and corresponding methods to solve
scheduling problems in electric power system were discovered. ML-based learning ap-
proaches aim at solving CO scheduling problems concentrating on operation, which is
similar to approaches for refinery scheduling. On the other hand, ML methods using
game theory consider each energy hub as an agent deciding with decentralization. Nei-
ther approach provides the decision maker with solutions as the blueprint for the whole
system, i.e., the methods emphasize the single stage or partial process in the operation
instead of having a macro view. Plus, ML methods based on game theory build the model
on the aspect of the economic market rather than industrial production, which may generate
application problems.

Not many applications for wind power were surveyed. The existing studies build mod-
els concerning power generated from and stored in the wind farm. Further investigation
in this field is needed, and more surveys of the wind power system are to be conducted.

Many applications of learning methods are utilized to simplify the model from MINLP
to MIP, thus reducing the computational cost. However, such simplification may yield prob-
lems, such as poor generalization, low accuracy, limited scalability, expensive computation,
etc. For instance, an easily computed algorithm achieving a lower gap to the objective may
not be able to establish accurate solutions [71], and an adaptive approach for a specific
large-scale problem may propose too strong assumptions a priori and thus have poor
generalization [10]. With the growing complexity and scale of problems in the energy field,
more attention should be paid to uncertainty, which makes the simplification of the models
more difficult.

5.3. Application Gap

How to apply new methods in reality is always a big challenge. As investigated
in Section 4, plenty of problems in the real world are formulated as ILP or MIP, which are
traditionally solved by B&B and other heuristic algorithms. However, from Figure 2, we
can see that general or specific ML-based algorithms for ILP lack attention.

We believe there are several reasons for this phenomenon. Firstly, ILP is more difficult
to be solved using machine learning methods than structured problems, such as TSP and
MIS. In machine learning areas, natural language processing and computer vision have
developed rapidly in recent years, whose structures are the sequence and the graph, respec-
tively. Therefore, strong machine learning algorithms are proposed to solve problems with
those two structures and can be applied in COPs conveniently. ILP, as a traditional opti-
mization problem with constraints, is more about logic and mathematics than recognition
and neural. Secondly, ILP is well solved by some traditional solvers (e.g., Gurobi, and SCIP),
and thus is hard to beat. Although traditional solvers are stable, they depend on large
amounts of data and experience and are not very useful for new situations in the applica-
tion. Last but not least, there are few real-world datasets for researchers since large-scale
COPs are usually faced by businesses that are private or state owned.

6. Conclusions

This paper investigates ML methods based on game theory to solve COPs in en-
ergy fields.

Section 2 is the introduction of the background of combinatorial optimization problems
and several popular approaches of ML in addressing this kind of issue over the past years.
COPs can be stated as minimization or maximization problems associated with the given
objective function(s). A few classical COPs are mentioned, including the traveling salesman
problem, minimum spanning tree problem, and knapsack problem, following which several
methods are presented: attention mechanisms can handle problems of fixed-length vectors
with limited access to input information in neural networks; GNNs which belong to DL
methods are designed for graph-expressed data structure; RL can be applied for models
involving strategic interactions among rational agents.
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Sub-fields of COPs and more details of these ML methods are further discussed
in Section 3. The approaches can cover the shortage of traditional methods for COPs: SL
improves the computational performance of traditional approaches; reinforcement learning
evaluates the quality of a given solution to avoid the difficulty of obtaining labels in SL; and
game theory can be applied to problems modeled as RL. The applications on corresponding
COPs are demonstrated chronologically.

Section 3 concentrates on some specific applications in energy field and investigates
how the ML algorithms are applied to these issues. Although algorithms based on game
theory have been applied in energy fields, there still exists space for further exploration.
Among three scenarios of the petroleum supply chain, only refinery production planning
involves the application of approaches with game theory, while no clue of game is found
in the background of refinery scheduling and oil transportation. The review of steel-making
also shows no discovery of application on game theory, as the operation is rather similar
to that of petroleum production. There are more widely used ML approaches in the electric
system and wind power on the aspect of management, where each energy hub or wind
turbine is considered as an agent bargaining with each other.

Section 5 is the summary of the challenges over these energy application in which
the ML methods are deployed. Consequently, the existing COPs in energy fields can be
solved by applying ML algorithm under certain conditions, and there still exists space
for learning methods to develop and apply to a wider range of problems.

Future Work

According to the investigation, great efforts have been made by introducing ML
approaches to overcome the high computational complexity of traditional approaches
for COPs. In the energy field, there exist large-scale COPs that can be studied by ML meth-
ods. However, current researchers still face the challenge of balancing poor generalization,
low accuracy, limited scalability, expensive computation, etc. To overcome these challenges,
some possible ideas for future working direction are as follows.

1. Further investigation of the application of approaches based on game theory to tackle
systematic problems is of vital significance. Currently, there are limited applications
in petroleum supply chain. Refineries can be modeled as rational independent agents,
while it is possible to model oil fields, pipelines, or transportation tasks as agents
as well. Building such a system by approaches based on game theory in which
each scene in the petroleum supply chain is a game dependent on each other is
worth expecting.

2. Studies on a systematic framework to handle the increasing uncertainty in CO schedul-
ing problems in the energy field are worth investigating. With the development
of complexity caused by uncertainty in real-world problems, the algorithms also need
to consider adapting to the trend.

3. It is worth studying the application of ML approaches to COPs without the framework
of a traditional COP solver. Subtle modification may not be able to fully demon-
strate the strengths of ML algorithms. By resolving the problem of complexity due
to the large scale, ML algorithms may have better performance on COPs.
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214. Rădulescu, R.; Legrand, M.; Efthymiadis, K.; Roijers, D.M.; Nowé, A. Deep multi-agent reinforcement learning in a homogeneous
open population. In Proceedings of the Benelux Conference on Artificial Intelligence, 2018; Springer: Berlin/Heidelberg, Germany,
2018; pp. 90–105.

215. Yu, Y.; Wang, T.; Liew, S.C. Deep-reinforcement learning multiple access for heterogeneous wireless networks. IEEE J. Sel. Areas
Commun. 2019, 37, 1277–1290. [CrossRef]

216. Gupta, J.K.; Egorov, M.; Kochenderfer, M. Cooperative multi-agent control using deep reinforcement learning. In Proceedings
of the International Conference on Autonomous Agents and Multiagent Systems, 2017; Springer: Berlin/Heidelberg, Germany, 2017;
pp. 66–83.

217. OroojlooyJadid, A.; Hajinezhad, D. A review of cooperative multi-agent deep reinforcement learning. arXiv 2019,
arXiv:1908.03963.

218. Liu, Y.; Nejat, G. Multirobot cooperative learning for semiautonomous control in urban search and rescue applications. J. Field
Robot. 2016, 33, 512–536. [CrossRef]

219. Liu, I.J.; Jain, U.; Yeh, R.A.; Schwing, A. Cooperative exploration for multi-agent deep reinforcement learning. In Proceedings
of the International Conference on Machine Learning, Online, 18–24 July 2021; pp. 6826–6836.

220. Khan, M.I.; Alam, M.M.; Moullec, Y.L.; Yaacoub, E. Throughput-aware cooperative reinforcement learning for adaptive resource
allocation in device-to-device communication. Future Internet. 2017, 9, 72. [CrossRef]

221. Abramson, M.; Wechsler, H. Competitive reinforcement learning for combinatorial problems. In Proceedings of the International
Joint Conference on Neural Networks. Proceedings (Cat. No. 01CH37222), Washington, DC, USA, 15–19 July 2001; Volume 4,
pp. 2333–2338.

222. Crawford, V.P. Learning the optimal strategy in a zero-sum game. Econom. J. Econom. Soc. 1974, 42, 885–891. [CrossRef]
223. McKenzie, M.; Loxley, P.; Billingsley, W.; Wong, S. Competitive reinforcement learning in atari games. In Proceedings

of the Australasian Joint Conference on Artificial Intelligence, 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 14–26.
224. Kutschinski, E.; Uthmann, T.; Polani, D. Learning competitive pricing strategies by multi-agent reinforcement learning. J. Econ.

Dyn. Control 2003, 27, 2207–2218. [CrossRef]
225. Movahedi, Z.; Bastanfard, A. Toward competitive multi-agents in Polo game based on reinforcement learning. Multimed. Tools

Appl. 2021, 80, 26773–26793. [CrossRef]
226. McKee, K.R.; Gemp, I.; McWilliams, B.; Duéñez-Guzmán, E.A.; Hughes, E.; Leibo, J.Z. Social diversity and social preferences

in mixed-motive reinforcement learning. arXiv 2020, arXiv:2002.02325.
227. Brown, N.; Sandholm, T. Superhuman AI for multiplayer poker. Science 2019, 365, 885–890. [CrossRef] [PubMed]
228. Ye, D.; Chen, G.; Zhang, W.; Chen, S.; Yuan, B.; Liu, B.; Chen, J.; Liu, Z.; Qiu, F.; Yu, H.; et al. Towards playing full moba games

with deep reinforcement learning. Adv. Neural Inf. Process. Syst. 2020, 33, 621–632.
229. Vinyals, O.; Babuschkin, I.; Czarnecki, W.M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D.H.; Powell, R.; Ewalds, T.; Georgiev, P.;

et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 2019, 575, 350–354. [CrossRef]
230. Selsam, D.; Lamm, M.; B‘̀unz, B.; Liang, P.; de Moura, L.; Dill, D.L. Learning a SAT solver from single-bit supervision. arXiv 2018,

arXiv:1802.03685.
231. Li, Z.; Chen, Q.; Koltun, V. Combinatorial optimization with graph convolutional networks and guided tree search. Adv. Neural

Inform. Process. Syst. 2018, arXiv:1810.10659.
232. Lemos, H.; Prates, M.; Avelar, P.; Lamb, L. Graph colouring meets deep learning: Effective graph neural network models

for combinatorial problems. In Proceedings of the 2019 IEEE 31st International Conference on Tools with Artificial Intelligence
(ICTAI), Portland, OR, USA, 4–6 November 2019; pp. 879–885.

233. Prates, M.; Avelar, P.H.; Lemos, H.; Lamb, L.C.; Vardi, M.Y. Learning to solve np-complete problems: A graph neural network
for decision tsp. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February
2019; Volume 33, pp. 4731–4738.

234. Li, Y.; Tarlow, D.; Brockschmidt, M.; Zemel, R. Gated graph sequence neural networks. arXiv 2015, arXiv:1511.05493.
235. Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural message passing for quantum chemistry. In Proceedings

of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1263–1272.
236. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering.

Adv. Neural Inform. Process. Syst. 2016, arXiv:1606.09375.
237. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.

http://dx.doi.org/10.1016/j.comnet.2015.12.017
http://dx.doi.org/10.1109/TSMCA.2007.904825
http://dx.doi.org/10.1016/S1389-0417(01)00013-4
http://dx.doi.org/10.1109/JSAC.2019.2904329
http://dx.doi.org/10.1002/rob.21597
http://dx.doi.org/10.3390/fi9040072
http://dx.doi.org/10.2307/1913795
http://dx.doi.org/10.1016/S0165-1889(02)00122-7
http://dx.doi.org/10.1007/s11042-021-10968-z
http://dx.doi.org/10.1126/science.aay2400
http://www.ncbi.nlm.nih.gov/pubmed/31296650
http://dx.doi.org/10.1038/s41586-019-1724-z


Algorithms 2022, 15, 205 42 of 43

238. Hu, H.; Zhang, X.; Yan, X.; Wang, L.; Xu, Y. Solving a new 3d bin packing problem with deep reinforcement learning method.
arXiv 2017, arXiv:1708.05930.

239. Nazari, M.; Oroojlooy, A.; Snyder, L.; Takác, M. Reinforcement learning for solving the vehicle routing problem. Adv. Neural
Inform. Process. Syst. 2018, arXiv:1802.04240.

240. Venkatakrishnan, S.B.; Alizadeh, M.; Viswanath, P. Graph2seq: Scalable learning dynamics for graphs. arXiv 2018,
arXiv:1802.04948.

241. Manchanda, S.; Mittal, A.; Dhawan, A.; Medya, S.; Ranu, S.; Singh, A. Gcomb: Learning budget-constrained combinatorial
algorithms over billion-sized graphs. Adv. Neural Inform. Process. Syst. 2020, 33, 20000–20011.

242. Dai, H.; Dai, B.; Song, L. Discriminative embeddings of latent variable models for structured data. In Proceedings of the
International Conference on Machine Learning, New York, NY, USA, 24–26 June 2016; pp. 2702–2711.

243. Song, J.; Lanka, R.; Yue, Y.; Ono, M. Co-Training for Policy Learning. Uncertainty in Artificial Intelligence. 2020; pp. 1191–1201.
Available online: https://arxiv.org/abs/1907.04484 (accessed on 1 May 2022).

244. Ma, Q.; Ge, S.; He, D.; Thaker, D.; Drori, I. Combinatorial optimization by graph pointer networks and hierarchical reinforcement
learning. arXiv 2019, arXiv:1911.04936.

245. Abe, K.; Xu, Z.; Sato, I.; Sugiyama, M. Solving np-hard problems on graphs with extended alphago zero. arXiv 2019,
arXiv:1905.11623.

246. Kwon, Y.D.; Choo, J.; Kim, B.; Yoon, I.; Gwon, Y.; Min, S. Pomo: Policy optimization with multiple optima for reinforcement
learning. Adv. Neural Inform. Process. Syst. 2020. 33, 21188–21198.

247. Barrett, T.; Clements, W.; Foerster, J.; Lvovsky, A. Exploratory combinatorial optimization with reinforcement learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 3243–3250.

248. Wu, Y.; Song, W.; Cao, Z.; Zhang, J.; Lim, A. Learning Improvement Heuristics for Solving Routing Problems. IEEE Trans. Neural
Netw. Learn. Syst. 2021. [CrossRef]

249. Lu, H.; Zhang, X.; Yang, S. A learning-based iterative method for solving vehicle routing problems. In Proceedings of the
International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

250. Xu, R.; Lieberherr, K. Learning self-game-play agents for combinatorial optimization problems. arXiv 2019, arXiv:1903.03674.
251. Kruber, M.; Lubbecke, M.E.; Parmentier, A. Learning when to use a decomposition. In Proceedings of the International Conference

on AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, Padova, Italy, 5–8 June 2017;
Springer: Berlin/Heidelberg, Germany, 2017; pp. 202–210.

252. Gomory, R. An Algorithm for the Mixed Integer Problem; Technical Report; RAND Corp.: Santa Monica, CA, USA, 1960.
253. Joshi, C.K.; Laurent, T.; Bresson, X. An efficient graph convolutional network technique for the travelling salesman problem.

arXiv 2019, arXiv:1906.01227.
254. Golmohamadi, H. Operational scheduling of responsive prosumer farms for day-ahead peak shaving by agricultural demand

response aggregators. Int. J. Energy Res. 2020, 45, 938–960. [CrossRef]
255. Mouret, S.; Grossmann, I.E.; Pestiaux, P. A new Lagrangian decomposition approach applied to the integration of refinery

planning and crude-oil scheduling. Comput. Chem. Eng. 2011, 35, 2750–2766. [CrossRef]
256. Li, M. Modeling Method Research on Refinery Process Production Shceduling. Ph.D. Thesis, Shandong University, Jinan, China,

2011.
257. Yue, X.; Wang, H.; Zhang, Y.; Shi, B. Optimization of refinery crude oil scheduling based on heuristic rules. Comput. Appl. Chem.

2020, 2, 147–154.
258. Hou, Y.; Wu, N.Q.; Li, Z.W.; Zhang, Y.; Zhu, Q.H. Many-Objective Optimization for Scheduling of Crude Oil Operations based

on NSGA-III with Consideration of Energy Efficiency. Swarm Evol. Comput. 2020, 57, 100714. [CrossRef]
259. Assis, L.S.; Camponogara, E.; Grossmann, I.E. A MILP-based clustering strategy for integrating the operational management

of crude oil supply. Comput. Chem. Eng. 2020, 145, 107161. [CrossRef]
260. Beach, B.; Hildebrand, R.; Ellis, K.; Lebreton, B. An Approximate Method for the Optimization of Long-Horizon Tank Blending

and Scheduling Operations. Comput. Chem. Eng. 2020, 141, 106839. [CrossRef]
261. Li, M. Refinery Operations Optimization Integrated Production Process and Gasoline Blending. J. Phys. Conf. Ser. 2020,

1626, 12111. [CrossRef]
262. Bayu, F.; Shaik, M.A.; Ramteke, M. Scheduling of crude oil refinery operation with desalting as a separate task. Asia-Pac. J. Chem.

Eng. 2020, 15, e2539. [CrossRef]
263. Zhang, S.; Xu, Q. Refinery continuous-time crude scheduling with consideration of long-distance pipeline transportation. Comput.

Chem. Eng. 2015, 75, 74–94. [CrossRef]
264. Oliveira, F.; Nunes, P.M.; Blajberg, R.; Hamacher, S. A framework for crude oil scheduling in an integrated terminal-refinery

system under supply uncertainty. Eur. J. Oper. Res. 2016, 252, 635–645. [CrossRef]
265. Wang, H. Batch Optimization Combined with AI Ideas for Refinery Oil Pipeline Networks. Ph.D. Thesis, China University

of Petroleum, Beijing, China, 2020.
266. Gao, H.; Xie, Y.; Ma, J.; Zhang, B. Optimization of refined oil distribution with multiple trips and multiple due time. Control Decis.

2021, 1–10. [CrossRef]
267. Li, M.; Huang, Q.; Zhou, L.; Ni, S. Research on modeling of petroleum products distribution system based on object-oriented

Petri nets. Comput. Eng. Appl. 2015, 51, 55–61.

https://arxiv.org/abs/1907.04484
http://dx.doi.org/10.1109/TNNLS.2021.3068828
http://dx.doi.org/10.1002/er.6017
http://dx.doi.org/10.1016/j.compchemeng.2011.03.026
http://dx.doi.org/10.1016/j.swevo.2020.100714
http://dx.doi.org/10.1016/j.compchemeng.2020.107161
http://dx.doi.org/10.1016/j.compchemeng.2020.106839
http://dx.doi.org/10.1088/1742-6596/1626/1/012111
http://dx.doi.org/10.1002/apj.2539
http://dx.doi.org/10.1016/j.compchemeng.2015.01.012
http://dx.doi.org/10.1016/j.ejor.2016.01.034
http://dx.doi.org/10.13195/j.kzyjc.2021.0190


Algorithms 2022, 15, 205 43 of 43

268. Li, Z.; Su, T.; Zhang, L. Application Analysis and Prospect of Artificial Intelligence Technology in Smart Grid. Telecom Power
Technol. 2020, 37, 2.

269. Sheikhi, A.; Rayati, M.; Bahrami, S.; Ranjbar, A.M.; Sattari, S. A cloud computing framework on demand side management game
in smart energy hubs. Int. J. Elect. Power Energy Syst. 2015, 64, 1007–1016. [CrossRef]

270. Fan, S.; Li, Z.; Wang, J.; Longjian, P.; Ai, Q. Cooperative Economic Scheduling for Multiple Energy Hubs: A Bargaining Game
Theoretic Perspective. IEEE Access 2018, 6, 27777–27789. [CrossRef]

271. Peng, X.; Tao, X. Cooperative game of electricity retailers in China’s spot electricity market. Energy 2018, 145, 152–170. [CrossRef]
272. Chen, J.; Bo, Y.; Guan, X. Optimal demand response scheduling with Stackelberg game approach under load uncertainty

for smart grid. In Proceedings of the IEEE Third International Conference on Smart Grid Communications, Tainan, Taiwan, 5–8
November 2012.

273. Li, Y.; Wang, C.; Li, G.; Chen, C. Optimal Scheduling of Integrated Demand Response-Enabled Integrated Energy Systems with
Uncertain Renewable Generations: A Stackelberg Game Approach. Energy Convers. Manag. 2021, 235, 113996. [CrossRef]

http://dx.doi.org/10.1016/j.ijepes.2014.08.020
http://dx.doi.org/10.1109/ACCESS.2018.2839108
http://dx.doi.org/10.1016/j.energy.2017.12.122
http://dx.doi.org/10.1016/j.enconman.2021.113996

	Introduction
	Background
	Combinatorial Optimization Problem
	Traveling Salesman Problem
	Maximum Independent Set
	Minimum Spanning Tree
	Maximum Cut Problem
	Bin Packing Problem

	Deep Learning
	Attention Mechanism
	Graphic Neural Networks

	Reinforcement Learning
	Single-Agent Reinforcement Learning
	Multi-Agent Reinforcement Learning
	Multi-Agent Reinforcement Learning with Game Theory


	Learning to Solve COPs
	Methods
	Supervised Learning
	Reinforcement Learning
	Game Theoretic Methods

	Problems
	Integer Linear Programming
	MIS, MVC, MC
	Traveling Salesman Problems


	Applications in Energy Field
	Petroleum Supply Chain
	Refinery Production Planning
	Refinery Scheduling
	Oil Transportation

	Steel-Making
	Electric Power System
	Wind Power

	Challenge
	Developing Game Theoretic Learning Methods
	Challenge of Application in Energy Field
	Application Gap

	Conclusions
	References

