
Citation: Fedorchenko, E.; Novikova,

E.; Shulepov, A. Comparative Review

of the Intrusion Detection Systems

Based on Federated Learning:

Advantages and Open Challenges.

Algorithms 2022, 15, 247. https://

doi.org/10.3390/a15070247

Academic Editors: Theodore B.

Trafalis and Frank Werner

Received: 31 May 2022

Accepted: 6 July 2022

Published: 15 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Review

Comparative Review of the Intrusion Detection Systems Based
on Federated Learning: Advantages and Open Challenges
Elena Fedorchenko 1,*,† , Evgenia Novikova 1,*,† and Anton Shulepov 1,2

1 Saint Petersburg Institute for Informatics and Automation, Federal Research Center of the Russian Academy
of Sciences, 199178 Saint Petersburg, Russia; ao-shyleo@yandex.ru

2 Faculty of Computer Science and Technology, Saint Petersburg Electrotechnical University “LETI”,
197376 Saint Petersburg, Russia

* Correspondence: doynikova@comsec.spb.ru (E.F.); novikova@comsec.spb.ru (E.N.)
† These authors contributed equally to this work.

Abstract: In order to provide an accurate and timely response to different types of the attacks, intru-
sion and anomaly detection systems collect and analyze a lot of data that may include personal and
other sensitive data. These systems could be considered a source of privacy-aware risks. Application
of the federated learning paradigm for training attack and anomaly detection models may signifi-
cantly decrease such risks as the data generated locally are not transferred to any party, and training
is performed mainly locally on data sources. Another benefit of the usage of federated learning for
intrusion detection is its ability to support collaboration between entities that could not share their
dataset for confidential or other reasons. While this approach is able to overcome the aforementioned
challenges it is rather new and not well-researched. The challenges and research questions appear
while using it to implement analytical systems. In this paper, the authors review existing solutions for
intrusion and anomaly detection based on the federated learning, and study their advantages as well
as open challenges still facing them. The paper analyzes the architecture of the proposed intrusion
detection systems and the approaches used to model data partition across the clients. The paper ends
with discussion and formulation of the open challenges.

Keywords: artificial intelligence; data partition; federated learning; Internet of Things; intrusion
detection; machine learning; system architecture

1. Introduction

In order to provide an efficient response in a timely manner, the intrusion and anomaly
detection systems collect and analyze a lot of data. Training an efficient analysis model for
anomaly or attack detection also requires large volumes of data. These data often include
confidential or sensitive data such as IP addresses, unique device or application identifiers,
and location data that constitute personal data. Thus, there is a trade-off between data
privacy and the security of the data subject. The paradigm of federated learning (FL)
addresses this challenge and proposes a practical solution to build distributed intelligent
systems in a privacy-preserving manner [1,2]. Moreover, recent research has shown that
the analysis models trained in federated mode show comparable efficiency in the attack
and anomaly detection [3–5]. Nevertheless, the application of the FL paradigm faces a set
of important practical and theoretical design challenges. The key issues are as follows [1,6]:

• Edge device heterogeneity that may result in different data formats and attributes,
and may require customizing local models.

• Non-IID (identically and independently distributed) data. It is a natural case that
clients could have different features and/or label distribution as the data sources may
be located in different geographical locations or time zones. The non-IID data also
correspond to the cases with concept shift and/or drift, and skew in data amount held
by different clients.

Algorithms 2022, 15, 247. https://doi.org/10.3390/a15070247 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15070247
https://doi.org/10.3390/a15070247
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-6707-9153
https://orcid.org/0000-0003-2923-4954
https://doi.org/10.3390/a15070247
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15070247?type=check_update&version=1


Algorithms 2022, 15, 247 2 of 26

• Bias introduced by data owners’ behavior, as the availability of the devices may change
during the training process, and clients with more stable behavior may have a stronger
impact on the results of training.

• FL system parameters tuning such as resource use on clients, learning throughput
(number of clients, model complexity, etc).

The latter challenge tightly relates to the problem of the available datasets that could
be used to train models and evaluate the parameters of the FL systems.

FL has recently become a highly researched problem, and there are now numerous
studies in the scientific literature devoted to various theoretical and applied FL aspects. For
example, in [7–9], the authors study the problem of the local model aggregation to ensure its
robustness to the non-IID distribution of data across clients. Li et al. [10] address this prob-
lem by applying techniques of contrasting learning that utilize embeddings of the feature
or model space to some intermediate representation space [11]. The challenges of construct-
ing communication-efficient FL protocols in the context of resource constraint clients are
discussed in [12–14]. For example, Zhang et al. [14] focus on accelerating computation and
reducing communication overhead in FL frameworks secured by homomorphic encryption.

Other security and privacy aspects of the FL are studied in [15–17].
There are numerous studies that analyze the applicability of FL to different practical

tasks. By now, the researchers have proposed various FL-based approaches to solve
problems in digital healthcare [18,19], security [20–24], e-commerce [25–27], etc.

Though the FL is a relatively novel research field, there is a need for systematization
of the developed approaches devoted to different FL aspects. In this paper, the authors
research existing approaches for intrusion detection based on federated learning in the
context of the outlined challenges with a particular focus on architectural solutions and
datasets used to evaluate the suggested approach. In [28], it is noted that FL-enabled
IDS approaches for the Internet of Things (IoT) have just begun to develop, and the main
motivation for this research is to understand what solutions for the problems mentioned
above have been proposed, how efficiently they address them, and what obstacles are still
needed to overcome. This could help researchers in the field of intrusion detection to define
their goals more exactly, and determine experimental settings as well as techniques to face
these challenges more clearly.

Thus, the contribution of the paper is as follows:

• The review of the architectures of the federated learning systems, including supported data
partitions and requirements to the clients’ availability and their computational resources.

• The review of the datasets that were used to evaluate the system and approaches to
model federated settings.

• Comparative analysis of the proposed systems.

While there are multiple surveys on federated machine learning [6,15,18,29] that
focus on different issues of the federated learning, there is a lack of surveys related to the
intrusion detection systems based on federated learning. For example, in [15], the authors
presented the most comprehensive survey on the open theoretical problems and challenges
in FL. Rieke et al. [18] investigate possible usage scenarios of FL in healthcare systems,
define typical FL settings, and discuss the research questions specific for this application
domain. In [30], the authors focus on security and privacy issues in federated learning,
and Novikova et al., in [29], evaluate the privacy-preserving mechanisms in FL systems
and their applicability to driver and/or vehicle activity recognition. The closest survey
to this one is [31]. The authors also review FL-based approaches to intrusion detection in
IoT. However, unlike them, we focus on IDS architectural solutions and evaluate them in
the context of the FL characteristics such as communication scheme and data partition,
we evaluate the used datasets and achieved accuracy, and discuss what performance
metrics are used. Thus, the novelty of the paper consists of the analysis of existing research,
advantages, and open challenges of federated learning for intrusion detection.

The rest of the paper is organized as follows. A brief description of the federated
learning systems is presented in Section 2. The typical architectural solutions for intrusion



Algorithms 2022, 15, 247 3 of 26

detection systems are given in Section 3. Section 4 discusses the research methodology and
comparative criteria for the FL-based IDS systems and presents a detailed description of
the selected approaches and their comparative analysis. The paper ends with a summary
of the most important results of the research and guidance for future research.

2. Federated Learning Systems

The key idea of the FL consists of training local models directly on clients that generate
or own data, then their parameters are aggregated to produce a global model that is
distributed across all collaborating clients [1]. Thus, it is possible to outline three main
components of the FL:

1. Clients that own data and train local model;
2. Server that coordinates the whole training process and computes the global model;
3. Communication environment.

FL systems are characterized by three important properties:

1. Communication scheme or FL topology [18];
2. Computational and network resources available to collaborating clients;
3. Type of the data partition.

The communication scheme defines how the federated learning process is orchestrated.
The role of the coordinating server could be implemented by a designated server that is
often represented by a trusted entity. This case corresponds to the centralized architecture
of the FL systems. In the case of a decentralized FL system, the functions of the aggregating
server are implemented by collaborating clients [6]. Figure 1 shows the communication
schemes of the federated learning process. It is necessary to mention that there are also hy-
brid communication schemes that are represented either by a hierarchy of the decentralized
federations or by a peer-to-peer network of federations with a centralized communication
scheme [18].

(a) (b)

Figure 1. Overview of the communication scheme in FL systems: centralized communication
topology (a), decentralized communication topology (b).

Depending on the client’s computational and memory resources, and their network
bandwidth characteristics, it is possible to outline cross-device and cross-silo settings. In
cross-device settings, the clients have limited computational resources and low network
bandwidth, their behavior is not stable, and they could drop out from the learning process.
In contrast to the cross-device settings, the clients in cross-silo settings are characterized by
a stable behavior and powerful computational and networking resources.

Type of the data partition defines how data are distributed across the clients. This
notion is quite semantically similar to the notion of data partition commonly used in
the distributed warehouses [32]. Usually, a dataset is characterized by two dimensions:
(1) number of attributes and (2) number of samples. If the clients have similar sets of the



Algorithms 2022, 15, 247 4 of 26

attributes then the data are horizontally partitioned. In the case of vertically partitioned
data, the clients have different data attributes for the same set of samples. This type of data
partition is natural to many situations, for example, communication organization may have
data about person’s contacts, while the financial organization may have information about
their financial state, and mining such data may give interesting insights into fraud detection
activity. Figure 2 shows the schema of these data partition types. In the real world cases,
the data could be partitioned across the clients partly vertically, partly horizontally—this
case corresponds to the most complex type of the data partition, a hybrid one.

(a) (b)

Figure 2. Types of the data partition: horizontally partitioned data (a), vertically partitioned data (b).

These FL properties define different types of the FL systems as well as the requirements
to the throughput of the training process, choice of the aggregation function, etc.

FL paradigm is considered as a privacy-preserving computational paradigm because
data are processed locally; they are not transferred to some entity in order to perform their
processing. FL clients exchange model parameters only that are needed to form a global
aggregated model. Thus, this reduces the risks of unauthorized access to the data when
they are transmitted via communication channels or processed by the party. However,
it was shown that there are theoretical FL-specific attacks that enable attackers to make
inference on dataset characteristics and even recreate samples from it [29,30]. Such attacks
are known as inference attacks and require capturing model parameters such as neural
network gradients in order to perform it. Thus, the practical complexity of the inference
attack is much higher than the attacks targeting data directly as it requires not only gaining
access to model parameters but also applying specific techniques to analyze them. The latter
depend on attacker’s knowledge about trained analysis model, type of the analysis system,
and their computational capabilities. Though inference attacks have high complexity, the
additional privacy-preserving techniques have been proposed:

• Mechanisms based on differential privacy (DP);
• Data and model encryption techniques that include multi-party secure computations

(MPC), homomorphic and functional encryption;
• Trusted execution environment (TEE).

The mechanisms based on differential privacy use random noise to mask user inputs,
and, therefore, their application requires finding a balance between model accuracy and
data owner privacy. They are suitable for the cross-device settings as they can tolerate
client’s dropouts.

Encryption-based techniques use different protocols to secure either input data or the
whole training process. Their application significantly limits the choice of architectural
solutions and places high demands on both computing resources and bandwidth of the
computer network [29]. For example, the current solutions based on multi-party secure
computations require two or three trusted computational entities to be set up in order to



Algorithms 2022, 15, 247 5 of 26

perform secure model training. Thus, this type of privacy-preserving mechanism is more
suitable for cross-silo FL setting, the exception is constituted by the secure aggregation
protocol proposed by K. Bonawitz et al. [33]. It is a lightweight encryption protocol that
could be applied in cross-device settings.

TEE is a hardware-based solution; it provides a trusted environment for secure and
verified code execution and strict data access control. TEEs are widely used in industrial
IoT devices; thus, it could be a natural choice to design secured and privacy-protected
industrial FL-based systems.

In [6], the set of design patterns, including privacy-enhancing techniques for FL
architectures, is proposed. It includes three client management patterns (client registry,
client selection, and client clustering), four model management patterns, three model
training patterns, and four model aggregation patterns. The authors associate the patterns
with the stages of the federated learning lifecycle and map them to the existing software or
research papers.

3. Intrusion Detection Systems

An intrusion detection system (IDS) is an essential part of any information security
system, and is aimed to detect attacks and anomalies in the information systems. Depending
on the type of the input data, it is possible to outline host-based and network-based IDS.
The network-based IDS monitors and analyzes the network traffic, while the host-based
IDS collects and analyzes logs of the operating system and applications.

The typical architectural solution of the IDS includes components for data collection
and processing, analysis, and attack (or anomaly) detection and response (see Figure 3).
The basic components of the IDS also include a data repository that stores collected raw
data and triggered alerts, and a knowledge base that contains information about attack
detection rules, signatures, or malicious activity patterns. There are two main approaches
to detect attacks or anomalies in the information system: signature-based and based on
artificial intelligence (AI) [34]. The signature-based approaches detect attacks using pattern-
matching techniques to find a known attack; that is why the attack knowledge base has
to be kept constantly updated in order to preserve high level of the attack detection. This
type of IDS demonstrates high performance in detecting known types of the attacks; to
detect unknown or zero-day attacks, the AI-based approaches are adopted. Currently,
researchers have proposed a wide variety of AI-based solutions including adaptive res-
onance theory [35], genetic algorithms [36,37], clustering [38], fuzzy logic [36], and deep
networks such as convolutional neural networks [39,40], recurrent neural networks [41],
deep auto-encoders [42], etc.

Further classification of the IDS is based on how these components are connected
and coordinated in the system. Thus, there are monolithic, distributed, hierarchical, and
agent-based systems [43,44]. The distributed IDS assumes that each node of the information
system has its own IDS which are able to communicate with each other, and there is one
dedicated IDS server that is responsible for the final data analysis and decision-making. In
the concept of the hierarchical IDS, the local IDSs are grouped in clusters and each cluster
has a selected head, a node that communicates with other clusters [45].

The architecture of the IDS is usually selected based on the type of the monitored
information system and available computational, energy, and network bandwidth resources.
For example, the typical IDS architecture for cloud intrusion detection is a distributed one.
The primary reason for this choice is the necessity to analyze large volumes of network
traffic, and acceleration of the computations on the data streams.

For the IoT-based systems, such as Smart Home systems, the recommended IDS
architecture is a distributed hierarchical agent-based one [43]. This is explained by a fact
that modern Smart Home systems are usually shipped with a set of cloud-based services
provided by a product manufacture. In this case, the software IDS agent is installed
on a home “smart” router using specialized middleware. Such an agent is capable of
implementing different functions, including monitoring data flows from sensors, their



Algorithms 2022, 15, 247 6 of 26

preliminary analysis, and forwarding the analysis results to the master component located
in the service provider cloud. The typical architecture of the Smart Home IDS is given in
Figure 4. This architecture, on one hand, allows selecting a node with the more powerful
resources; on the other hand, it supports fast preliminary analysis of the locally generated
data with further advanced analysis implemented by a service provider. Another certain
advantage of such approach is the ability to apply knowledge on the security incidents
across different controlled Smart Home systems. The only serious drawback is significant
privacy risks for the Smart Home users due to possible data leakage.

Figure 3. Basic IDS architecture.

Figure 4. The high-level overview of the hierarchical distributed IDS for Smart Home systems.

The hierarchical distributed architecture for the IDS is also proposed for attack and
anomaly detection in cyber-physical systems such as smart grids [46–48]. Typically, the
smart grids are composed of different collaborating entities, including power stations,
end users represented by Smart Home energy management systems, and legal controlling
entities. The hierarchy of the local IDS systems could be constructed either based on type
of the collaborating entity [46,47] or based on “intrusion boundaries” that limit the damage
propagation in case of the successful attack [48].

Thus, it is possible to outline that modern IDS systems and FL-based systems share
two common properties that define the choice of architectural solution: they are, namely,
communication scheme (or topology) and requirements to the computational resources of
the nodes with IDS agents. The architecture of the decentralized FL system correlates with
the distributed IDS with peer-to-peer IDS agents, while centralized communication scheme
of the FL system is close to the hierarchical IDS, in which local IDS agents or clusters of
peer-to-peer agents communicate with the master IDS component to produce final decision.
The characteristics of the cloud environment of the IDS are close to cross-silo FL settings,



Algorithms 2022, 15, 247 7 of 26

when the collaborating entities have enough computational and storage resources. An IDS
for an IoT-based environment must consider similar constraints imposed by controlled
devices as the FL system for cross device settings, i.e., power consumption, computing
resources, and bandwidth availability.

There is no obvious matching for data partition property of the FL systems, though
this property is extremely important when designing analytical system based on the FL
principles. The majority of the existing FL frameworks support horizontally partitioned
data [49]. In terms of the intrusion and anomaly detection, the network-based IDS could be
considered as clients with horizontally partitioned data, as they typically operate with a
certain set of attributes extracted from the network traffic, and the case of host-based IDS
could be considered as the case of vertically partitioned data, as they operate with logs
from different applications that have different format. Similarly, IDS agents in the cloud
environment tent to have similar sets of analyzed attributes, while IDS agents deployed in
the IoT-based settings need to process various features characterizing same objects as they
collect data from a large variety of heterogeneous sensors.

The main benefit of the application of the FL technology for the IDS is the ability to
reduce risks associated with sensitive and personal data processing. When the collaborating
entities are presented by the commercial organizations, critical infrastructures, the usage of
the FL increases the trust level between them and their security service provider as they
also do not need to share their sensitive data, and at the same time they enable sharing
knowledge about attacks and anomalies in the privacy-preserving manner. For the IoT-
based environment, FL also allows reducing the network traffic which is an important
factor in the condition of the energy-efficient networking and enables support of large scale
of heterogeneous devices and sensors.

At the same time, the application of federated learning imposes certain requirements
on the computational power of the entity that performs local model training, as well as
on its storage capacity in order to store the data for training. Therefore, when designing
a system, it is extremely important to evaluate the throughput of the FL-based analysis
system. The need to consider these issues determined the main goals of this study, and the
evaluation criteria and the results of the research are presented in the next sections.

4. Intrusion Detection Systems Based on Federated Learning

There are some reviews on federated learning for intrusion detection in Internet of
Things. The theoretical and practical reviews can be outlined. For example, in [31], the
challenges and future directions of FL-enabled IDS are considered, while in [28], the authors
evaluate the FL-enabled IDS approach on an experimental basis.

The review provided in [31] is rather broad. The authors analyzed 15 research papers
related to the FL-based IDS, but they are focused on the peculiarities of the proposed
approaches and do not compare them nor outline the FL-specific parameters for comparison
(i.e., FL architecture, ML model, dataset partition, aggregation function, etc.).

In [28], the authors outlined and compared 12 papers related to the application of
FL to improve IDS efficiency. They considered attacks studied, datasets, ML model, FL
implementation, aggregation function, training parties, and training rounds. However, the
authors described them rather briefly and focused on the experimental evaluation of the
FL-enabled IDS approach. Besides, while in [28] 12 papers are considered, only 5 of them
use IoT datasets for the experiments [20–24].

In this paper, we selected for comparison the last papers related to the FL-based IDS.
We searched for the “federated learning intrusion detection” keywords on the ScienceDirect
website. As a result we found eight papers. We excluded two papers related to the
poisoning attacks against FL-based systems [50,51] as in this paper we are interested in the
existing FL-based intrusion detection solution. Finally we obtained six papers [28,52–56].
In addition, we added to the review several papers from the considered reviews that use
IoT datasets for the experiments and are valuable for the FL-based intrusion detection
area: [20–23,57]. The final list of the analyzed papers is [20–24,28,52–57].



Algorithms 2022, 15, 247 8 of 26

We formulated the following research questions (RQ) for our review:

RQ1. Which FL architectures are used for the intrusion detection systems?
RQ2. Which data partitions and datasets are used to test the proposed solutions?
RQ3. Which types of attacks can be detected using the developed solutions?
RQ4. Which ML methods are used to detect attacks and/or anomalies?
RQ5. How do the authors implement their solutions?
RQ6. How do the authors test their solutions?
RQ7. What metrics do the authors use to validate their solutions?

Considering the formulated questions we outlined the following aspects while review-
ing the papers:

• FL architecture, i.e., what communication topology (centralized or decentralized)
is used;

• Data partition and dataset used;
• Attacks detected;
• ML method used to detect attacks and/or anomalies;
• Software implementation, including FL frameworks used;
• Conducted experiments;
• Used metrics and advantages.

In the paper, we are focused on the FL-based intrusion detection systems for IoT. We
do not experimentally test the approaches to evaluate them. We review them considering
the outlined aspects to highlight the open challenges and research directions. As there are
no designated datasets for evaluating FL, the authors paid particular attention to how the
data partition across the clients was modeled, and if the authors modeled the bias in the
test data to evaluate its impact on the ML model efficiency.

4.1. Comparative Analysis of Federated-Learning-Based Intrusion Detection Systems

In this subsection we review the outlined papers considering the criteria specified above.

4.1.1. The Federated Learning-Based Intrusion Detection Systems for Smart Home Settings

There are several papers that consider Smart Home test cases.
An FL-enabled IDS approach based on a multiclass classifier [28].
In [28], the authors evaluate an FL-enabled IDS approach based on a multiclass

classifier. They consider different data distributions for the detection of different attacks in
an IoT scenario.

Federated learning architecture. The authors used centralized architecture. Namely,
they applied an IBM framework for Federated Learning (IBMFL) [5]. It was set up for
10 clients that corresponded to 10 IoT devices and one aggregating server.

ML method. The authors applied a multi-class probabilistic classification model using
multinomial logistic regression (softmax regression) [58].

Implementation. The authors used the IBM framework for Federated Learning IBMFL [5]
and FedAvg [59] and Fed+ [60] aggregation methods. To implement the logistic regression
algorithm, the Scikit-learn SGDClassifier (stochastic gradient descent) was used.

Dataset. The authors used the ToN_IoT dataset for the experiments [61]. They im-
plemented three different partitions for the selected ToN_IoT dataset: (1) based on the
destination IP address; (2) balanced the data considering the attacks across the clients;
(3) hybrid approach, where the authors used the Shannon entropy to find the compromise
between the attack types balance and the destination IP address [62]. The considered attacks
are backdoor, DoS, DDoS, injection, MITM, password, ransomware, scanning, and XSS.

Experiments. The authors used a Lenovo laptop with an AMD Ryzen 7 4800H with
Radeon Graphics, and 16 GB of RAM for the experiments. Based on the different data
distributions the authors created three scenarios of the experiments, namely, basic scenario
using the partition (1), the balanced scenario using the partition (2), and the mixed scenario
using the partition (3). The model was trained on 300 rounds for each scenario with



Algorithms 2022, 15, 247 9 of 26

aggregation after each epoch. Additionally, the authors measured the accuracy of the
model trained by each client independently from other parties in a distributed scenario.
Finally, they measured the accuracy of the model trained in centralized mode that is equal
to 0.724 using multinomial logistic regression.

The results of the experiments demonstrated that Fed+ provides higher average
accuracy than FedAvg for the considered federated scenarios. For the basic scenario,
accuracy is about 0.8725 using Fed+ and 0.8718 for the distributed method. For the balanced
scenario, the accuracy is 0.9039 for Fed+ and 0.9065 for the distributed setting. For the
mixed scenario, accuracy using Fed+ is 0.8869 and 0.877 for the distributed case.

Used metrics:

• Accuracy, which is calculated as ratio of (true positives + true negatives) to the (true
positives + false positives + false negatives + true negatives);

• Precision, which is calculated as ratio of true positives to the (true positives + false positives);
• Recall, which is calculated as ratio of (true positives) to the (true positives + false negatives);
• F1-score, which is calculated as ratio of (recall × precision) to (recall+precision) multi-

plied on 2;
• False positive rate (FPR), which is calculated as ratio of false positives to the (false

positives + true negatives).

Advantages:

• The impact of non-independent and identically distributed data is considered;
• Different aggregation methods are considered;
• Different data distributions are considered;
• Different training rounds are considered;
• The attacks detection is considered to deploy the most effective countermeasures

dynamically;
• The Fed+ is used firstly for the FL-enabled IDS for IoT.

Limitations:

• The research is only focused on the impact of different data distributions;
• The network traffic from IoT_ToN dataset is used without consideration of the IoT

devices telemetry.

A federated self-learning anomaly detection system for IoT—DÏoT [20].
In [20], a federated self-learning anomaly detection system for IoT—DÏoT—is pre-

sented. The authors use the federated learning approach for the intrusion detection based
on anomalies in the device type communication behavior. To detect anomalies, the authors
represent the network packets as symbols and use language analysis techniques.

Federated learning architecture. The authors implemented the centralized architecture.
The IoT devices are connected to the local security gateways that implement an anomaly
detection service that trains models locally; these models are aggregated in the global
detection model by the external IoT security service connected to multiple gateways.

The federated learning process is organized as follows. In the first step, each security
gateway requests the initial gated recurrent unit (GRU) model for the specific IoT device
profiles (type#k) from the IoT security service (initially the model is random) and obtains it
in the second step. In the third step, the security gateways retrain the global model locally.
Then, in the fourth step, the security gateways send the model updates to the IoT security
service. It aggregates the local models to enhance the global model [1]. In the final step, IoT
security service shares the updated global model for type#k devices with security gateway
and uses it for anomaly detection.

ML model. The authors used the gated recurrent unit (GRU) model.
Implementation. To implement the described architecture, the following tools are used:

• Server-side application—the flask [63] and flask_socketio [64] libraries;
• Client-side application—the socketIO-client [65] library and the gevent asynchronous

framework [66], which provides a clean API for concurrency and network related tasks;
• Gated recurrent unit (GRU) network—the Keras [67] library with Tensorflow backend;



Algorithms 2022, 15, 247 10 of 26

Dataset. The authors collected three datasets—activity dataset, deployment dataset,
and attack dataset—using a laboratory network. It incorporated a laptop with Kali Linux
where hostapd was used to create a gateway acting as an access point with WiFi and
Ethernet interfaces. IoT devices were connected to this access point. The authors used
tcpdump on the gateway to collect the network traffic packets from the IoT devices.

The activity dataset incorporates traffic representing device activity for 33 IoT devices
(i.e., IP cameras, smart power plugs and light bulbs, sensors, etc.) as well as traffic collected
during two to three, during which actions were triggered only occasionally.

The deployment dataset was collected from 14 Smart Home IoT devices installed in a
realistic Smart Home deployment setting during one week.

Attack dataset was collected for the devices infected with Mirai malware [3] including
the traffic when Mirai was in a standby mode.

Used aggregation method. Global model aggregation:

G =
n

∑
i=1

si
s

Wi, (1)

where n—number of clients; W1, . . . , Wn—clients’ associated model weights; s1, . . . , sn—
associated number of data samples used for training; s = ∑n

i=1 si.
Used metrics:

• False positive and true positive rate;
• Average detection time: 257 ± 194 ms;
• Processing performance of GRU—average processing time per symbol (packet) for

prediction—0.081 (±0.001) ms for the desktop utilizing its GPU and 0.592 (±0.001) ms
when executed on the laptop with CPU;

• On average, training a GRU model for one device type took 26 min on the desktop
and 71 min on the laptop hardware.

Advantages:

• Implemented;
• Collected dataset of network traffic of test IoT devices communication behavior (33 de-

vices, 23 types), dataset of consumer IoT devices (14 devices), dataset of infected with
Mirai malware (5 devices) [3];

• Experiments with real IoT devices;
• For Mirai malware: 95.6% detection rate and ≈257 ms at detecting compromised devices;
• No false alarms;
• Does not require any human intervention or labeled data to operate;
• Learns anomaly detection models autonomously, using unlabeled crowdsourced data

captured in client IoT networks.

A framework based on federated learning for detection of malware in IoT de-
vices [22].

In [22], the authors propose the framework based on federated learning for detection
of malware in IoT devices.

Federated learning architecture. The authors implement the centralized architecture.
The proposed framework incorporates clients (with single device per client) and a server.
The server implements the following functionality: initializes the model; aggregates the
models sent by the clients into a global model; coordinates the collaborative normalization,
the collaborative grid searches, and the collaborative threshold selection. It is cross-silo FL
when there are few powerful and reliable federated clients.

ML methods. The authors used supervised and unsupervised federated models (mul-
tilayer perceptron and autoencoder). They tested different number of hidden layers and
hidden neurons. After each hidden layer, the exponential linear unit (ELU) activation func-
tion was used. The model updates were computed using stochastic gradient descent (SGD).



Algorithms 2022, 15, 247 11 of 26

Implementation. For aggregation, the authors used mini-batch aggregation and multi-
epoch aggregation from the FedAVG. The training of multi-epoch aggregation was repeated
for 30 rounds.

Dataset. The authors used the N-BaIoT dataset that models network traffic of nine
real commercial IoT devices of different types [68]. The malware threat is considered (the
devices are uncorrupted or infected by Mirai or BASHLITE). In the supervised case for
each device, the data were split chronologically between three parts: the train set—79%, the
unused set (the authors left a small set of samples unused between the train part and the
test part for each file in the dataset as soon as the features of packets captured in a very short
time interval are highly correlated)—1%, and the test set—20%. In the unsupervised case,
the benign data were split between four sets: the train set—39.5%, a threshold-selection
set—39.5%, the unused set—1%, and the benign part of the test set—20%.

The authors also outline three data scenarios via the dataset rebalancing to balance
the number of samples and the proportions of classes for the devices. In the first case, they
saved the original dataset balance for every device: 7.87% benign traffic and 92.13% attack
traffic. In the second case, they outlined for every device 50% benign traffic and 50% attack
traffic. In the third case, the authors outlined 95% benign traffic and 5% attack traffic.

In addition, the authors selected for each device the same number of samples—
100,000 samples for the supervised solution and 10,000 for the unsupervised one.

Experiments. The authors evaluated the performance of FL models (federated with
mini-batch avg and federated with multi-epoch avg). In addition, they compared it to two
traditional approaches (naive decentralized approach and centralized approach). For the
experiments, the authors used eight clients, each owning data of one of the nine devices
from the N-BaIoT dataset, while one device was kept for testing.

For the supervised solution, the training was conducted for four epochs, for the unsu-
pervised solution—120 epochs. The experiments were repeated five times; thus, the results
of each experiment represent the average over 45 runs (nine devices and five executions).

For the supervised methods, the experiments showed that the centralized method’s
performance was higher than the distributed one. The results obtained for mini-batch avg
were very close to the centralized ones. Multi-epoch avg showed an insignificant decrease
in the accuracy on known devices and an accuracy exceeding the centralized one on the
new device.

For the unsupervised methods, the experiments showed that centralizing the data
gives higher performance than the naive method, while the multi-epoch avg and the
mini-batch avg methods demonstrate the results close to the centralized one.

The authors also considered the data poisoning attacks and their impact on the model
performance and demonstrated that it is reduced substantially.

Used metrics:

• True positive rate, which is calculated as ratio of true positives to the (true positives +
false negatives);

• True negative rate, which is calculated as ratio of true negatives to the (true negatives
+ false positives);

• Accuracy, which is calculated as ratio of (true positives + true negatives) to the (true
positives + false positives + false negatives + true negatives);

• F1-score, which is calculated as ratio of true positives to the (true positives + 1/2 of
(false positives + false negatives)).

Advantages:

• Implemented (code is available at [69]);
• The N-BaIoT dataset was used for the experiments;
• Preserves the security and privacy of the model;
• Obtained results for FL methods are close to the results obtained using centralized

models while preserving the privacy;
• The malware threats are considered;
• The cyberthreats against federated learning framework are considered;



Algorithms 2022, 15, 247 12 of 26

• Different data partitions are investigated.

Limitations: performance is reduced substantially in case of data poisoning attacks;
scalability is not considered due to the dataset limitations.

FL-based edge cloud architecture for attack detection [23].
In [23], the authors propose an edge cloud architecture for attack detection.
Federated learning architecture. The authors implement hierarchical architecture in the

cloud. The proposed architecture incorporates the following layers: data perception layer
(IoT devices with sensors); edge layer (IoT gateways responsible for normalizing the data
and containing LocKedge module); network layer (secures data transfer); data management
layer (the cloud that is responsible for deciding the number of neurons per layer and the
weights of the neural network algorithm); application layer (applications management);
business layer (IoT applications and services management). Thus, the detection module is
implemented at the edge in the IoT system.

ML methods. LocKedge (Low-Complexity Cyberattack Detection in IoT Edge Comput-
ing) based on traditional neural network (NN) that performs multi-class classification to
detect different types of attacks. The authors used the principal components analysis (PCA)
method to extract the most important features. For the neural network model, the authors
chose the ReLU as activation function in hidden layers and softmax activation function for
the multi-class classification problem.

Implementation. The authors implemented their solution both in centralized and
federated learning mode. In the federated learning mode, the edge nodes implement
detection and training. They send weights to the cloud to update the global training model.
Thus, the workload of the central cloud is reduced.

The authors used a Raspberry Pi 3B+ to implement the edge gateway (1.4 GHz ARM-
based quad-core processor with 400% CPU usage at maximum and 1 GB RAM) with
installed Raspberry Pi OS. They used the Python 3 programming language to implement
the detection solution.

Dataset. The authors used the BoT-IoT dataset [70] (5% extracted from the original
dataset). The dataset is generated considering the following IoT devices: a weather station, a
smart fridge, remotely activated motion activated lights, and a smart thermostat. It includes
the following types of attacks: DDoS (HTTP, TCP, UDP), DoS (HTTP, TCP, UDP), OS
fingerprinting, server scanning, keylogging, and data exfiltration attacks.

For the edge case, the authors divided the BoT-IoT dataset into four smaller client
datasets according to the source IP address. Each dataset then was divided into a training
and testing set.

Experiments. The authors compared the complexity of traditional neural network and
the proposed LocKedge method. The experiments for different number of the neurons
showed that that the neural network complexity is higher than LocKedge complexity, while
the training time of LocKedge is lower than neural network.

Then, the authors compared the performance of the centralized LocKedge with the
neural network model (without the feature processing). They varied the number of neurons
in the hidden layer from 6 to 46. The accuracy of the centralized LocKedge (about 0.999) is
higher than NN (0.997).

The authors also evaluated the average detection rate for each attack type using
LocKedge, NN, DNN, recurrent neural network (RNN), and convolutional neural network
(CNN). The comparison shown that the LocKedge demonstrates results better than, or close
to, other methods, except the DoS-HTTP and data theft attack. The authors also compared
the centralized LocKedge with such machine learning algorithms as K-nearest neighbors
(KNN), decision tree (DT), random forest (RF), and support vector machine (SVM). The
average detection rate of the centralized LocKedge is higher than the other methods in
most classes.

According to the paper, the precision of the centralized LocKedge, as well as F1-score,
are higher than the values obtained by the other solutions.



Algorithms 2022, 15, 247 13 of 26

The authors also analyzed the performance of the training and detection at the edge.
They performed feature extraction using joined training dataset, while the detection models
were trained separately. They evaluated the resulting global model using four different
test datasets after each communication round. The number of communication rounds
is 1000 and the number of local epochs was set to 1. The accuracy stopped increasing
and the loss stopped decreasing after about 350 communication rounds, giving results
comparable to the centralized approach. In terms of F1-score, detection rate, and precision,
some types of attacks (DoS-HTTP, DDoS-HTTP and theft-data) give worse results than in
centralized mode.

Finally, the authors evaluated the edge computing capacity. The authors loaded traffic
of 400 to 2400 samples per second to the PI3. The rate of 2400 samples per second leads to
100% of the CPU usage of a core among a quad-core. The authors also found out that the
CPU usage increases exponentially as the attack rate increases, and they conclude that the
maximum attack rate for the Pi3-based edge is 9600 samples per second. The memory usage
of the PI3 also increases with the attack rates growth. It can process up to 1800 samples
per second.

Used metrics:

• Complexity of the algorithms;
• The training time performance (the time of reading data for the training phase);
• Accuracy (the total number of correctly predicted samples in all tests);
• Detection rate (DR) (the number of the actual positives that are predicted as positive);
• Precision (the ratio of true positives to the (true positive + false positive);
• Recall (the ratio of true positives to the (true positive + false negative);
• F1-score (2 multiplied by the ratio of (precision * recall) to the (precision + recall);
• CPU and RAM usage.

Advantages:

• Novel attack detection mechanism LocKedge is introduced; the experiments show
the higher performance of the proposed mechanism compared to other ML methods;

• The real traffic BoT-IoT dataset is used;
• The edge computing capacity is evaluated.

Limitations: detection rate of DoS-HTTP, DDoS-HTTP, and theft-data attacks is lower
than for other types of attacks.

A distributed ML-based IDS between organizations [57,71].
In [57,71] authors proposed a hierarchical distributed IDS based on FL. Sarhan et al. [57]

adopted FL to design a distributed ML-based IDS between organizations. The two-level
hierarchical approach is suggested to cope with heterogeneity of the IT ecosystem of the
organizations and to enable knowledge sharing between organizations even in the case that
they do not trust each other. In order to achieve the letter requirement, the smart contract
running on a permissioned blockchain is adopted. The training process includes two levels
of aggregation: local aggregation, when the aggregation is performed on the intermediate
level, and the global one that is implemented by a global server.

Federated learning architecture. The proposed architecture includes two levels of the
hierarchy; the top level is represented by a global server that is running a blockchain smart
contract. This entity is also known as the reducer. It is hosted on a cloud-decentralized
blockchain, and runs FL tasks using a smart contract. The intermediate level is represented
by a combiner or aggregating server of the collaborating organizations. The combiner
aggregates local models from the smart IoT endpoints that perform local models directly
on data.

ML methods. The trained model is a deep feed-forward (DFF) neural network with
the following architecture: input layer that consists of neurons equal to number of data
features, four middle layers with Relu activation function, and an output layer that consists
of one sigmoidal neuron.

ML methods. Aggregation function is FedAvg.



Algorithms 2022, 15, 247 14 of 26

Implementation. Custom.
Dataset. NFBoT-IoT-v2 with NetFlow 9 attributes constructed from BoT-IoT dataset [70,72]

with four types of attack: DDoS, DoS, reconnaissance, and theft.
Experiments. The authors considered two experimental scenarios. One scenario

corresponds to the collaborating entities. The authors modeled the cooperation of two orga-
nizations with two smart endpoints each. Thus, to model partition across four collaborating
endpoints, the authors split the dataset in such a manner that each client had malicious
samples of at least two attack types. Another scenario corresponds to a non-collaborating
entity. In this scenario, the training of the intrusion detection model was performed on the
part of the dataset that belongs to the selected party.

Used metrics:

• Accuracy;
• Detection rate;
• False alarm rate (FAR)—the percentage of benign data samples incorrectly classified;
• F1-measure.

Advantages:

• Hierarchical FL-based IDS supports large-scale deployments and solves the problem
of aggregation of large number of local updates from the numerous IoT endpoints.

• Some types of the “unseen” attacks are reliably detected. However, this is true only
for DDoS and DoS attacks.

• Application of the blockchain smart contracts provides a defense mechanism against
data/model poisoning attacks.

Blockchained-federated-learning-based cloud intrusion detection scheme for IoT [53].
Federated learning architecture. The architecture of the proposed solution includes

four layers—application layer, federated-learning layer, chaincode layer, and blockchain
layer. The architecture is centralized.

Privacy-preserving mechanism. Hyperledger fabric (blockchain).
ML method. A semi-supervised learning algorithm based on divergence for local

model training (decision tree and multilayer perceptron) and FedAvg algorithm for global
model training.

Implementation. Implemented (custom).
Dataset. KDDCup99 dataset.
Experiments. The authors deployed the testbed for the experiments using Ubuntu

operating system. They used hyperledger fabric for the blockchain project. Four hosts
simulating different organizations are connected to a blockchain network; three of them
simulate regional service parties (for local models), while the last simulates global service
party (for global model). The authors compared their solution—semi-supervised learning
algorithm based on divergence for local model training (decision tree and multilayer
perceptron)—with random forest and SVM (50-iteration training). They concluded that
the multilayer perceptron is the most suitable for real scenarios. After that, the authors
compared the results of the global model with CNN and DNN (100-iteration training) using
AUC. The average AUC of the three models are 0.908, 0.849, and 0.899, respectively.

Used metrics:

• TP, FN, FP, and TN;
• Accuracy;
• Precision;
• Recall;
• F1-score;
• AUC (area under curve)—the area of ROC curve;
• Time.

Advantages:

• Implemented;
• Preserves the security and privacy of the model;



Algorithms 2022, 15, 247 15 of 26

• Describes and analyzes privacy-preserving mechanism;
• Discusses the optimal block file segmentation size in the fabric storage scheme (64 KB);
• Outperforms other models selected for comparison considering the selected metrics;
• The following threats are considered: DoS, Probe, R2L, and U2R.

Limitations: While the paper describes the IDS for IoT, the dataset selected for the
experiments is not the IoT dataset. Data partition is not considered.

4.1.2. The Federated-Learning-Based Intrusion Detection Systems for Industrial
Cyber-Physical Systems

Some researches consider industrial cyber-physical systems case.
A federated deep learning for intrusion detection in industrial cyber-physical sys-

tems [21].
In [21], the federated deep learning is used for intrusion detection in industrial cyber-

physical systems. The authors propose a deep learning model based on a convolutional
neural network and a gated recurrent unit designed for detection of the denial-of-service,
reconnaissance, response injection, and command injection attacks. In addition, the authors
develop a federated learning framework and a Paillier public-key cryptosystem-based
secure communication protocol to ensure the security and privacy of model parameters.
The proposed intrusion detection scheme incorporates the following stages: (1) system
initialization; (2) local model training by industrial agents; (3) model parameters encryption
by industrial agents; (4) model parameters aggregation by the cloud server; (5) local model
updating by industrial agents.

Federated learning architecture. The proposed framework includes three types of
entities, namely, a trust authority (it bootstraps the whole system, generates public and
private keys, and establishes secure communication channels), a cloud server (builds a
comprehensive intrusion detection model), and industrial agents (builds a local intrusion
detection model based on its own data and updates the parameters of the intrusion detection
model via interaction with the cloud server).

Implementation. The authors implemented the proposed attack detection model using
the Keras API [73]. The federated learning framework was built using Python framework
Flask.2. The authors used for the experiments the Ubuntu 18.04.3 LTS platform with an
Intel Xeon E5-2618L v3 CPU and an NVIDIA GeForce RTX 2080TI GPU (64 GB RAM).

Dataset. The authors used a gas pipelining system’s dataset for the experiments [74].
The authors divided the dataset into training part (80%) and testing part (20%). They
further divided the training part into even partitions for the industrial agents to implement
local model training. The authors considered the following attacks: DoS, DDoS, command
injection, response injection attacks, reconnaissance attacks, response injection attacks, and
command injection attack.

Experiments. The authors implemented Schneble’s [75], Nguyen’s [20], and Chen’s [76]
models and compared them with their solution. In addition, the authors compared them
with the local intrusion detection models built by each industrial agent and with the in-
trusion detection model generated in the centralized mode. The authors used 3, 5, and 7
industrial agents for the experiments and 2, 4, 6, 8, and 10 communication rounds. They
trained all models on the same testing data. The experiments demonstrated that the pro-
posed intrusion detection model allows obtaining higher performance than other models
selected for comparison, as well as the local intrusion detection models. Furthermore, its
performance is close to the ideal model results.

Used metrics:

• Accuracy = 99.20% for three industrial agents, 99.20% for five industrial agents, and
99.20% for seven industrial agents;

• Precision = 98.86% for three industrial agents, 98.85% for five industrial agents, and
98.85% for seven industrial agents;

• Recall = 97.34% for three industrial agents, 97.45% for five industrial agents, and
97.47% for seven industrial agents;



Algorithms 2022, 15, 247 16 of 26

• F-score = 98.08% for three industrial agents, 98.13% for five industrial agents, and
98.14% for five industrial agents.

Advantages:

• Implemented;
• Preserves the security and privacy of the model;
• The experiments are performed on a real industrial cyber-physical systems (CPS) dataset;
• Outperforms other models selected for comparison considering the selected metrics;
• The following threats are considered: DoS, DDoS, command injection, response injec-

tion attacks, reconnaissance attacks, response injection attacks, and command injec-
tion attack;

• The cyberthreats against a federated learning framework are considered: eavesdrop-
ping of data resources, eavesdropping of model parameters.

Limitations: Limited with industrial CPSs. Unfortunatly, the paper does not provide
the experiment results by attack types.

A collaborative learning model for attack detection in industrial IoT [24].
In [24], the collaborative learning model for IoT is proposed. The cores of the approach

are the smart “filters” for attack detection and prevention on IoT gateways.
Federated learning architecture. The authors propose to use data collected from the

network to train the model on the gateway and then share it with other gateways using a
center server that aggregates the models. Thus, the authors use centralized architecture.

ML model. Deep neural network to train models on the gateways and the average
gradient update algorithm to aggregate these local models into the global model.

Implementation. Prototype for the experiments.
Dataset. KDD [77], NSLKDD [78], UNSW-NB15 [79], and N-BaIoT [68].
Detected attacks. The authors used an anomaly-based approach; thus, they demon-

strate an ability to detect the attacks from the selected datasets with rather high accuracy,
namely, denial-of-service (DoS), attack from remote to local machine (R2L), unauthorized
access to local administrator user (U2R), probing attack, Mirai, and BASHLITE.

Experiments. The authors distribute the dataset into different subnetworks (two
and three) to train the local models. Using the selected datasets, the authors conducted
the experiments using their intrusion detection solution and the following methods for
comparison: centralized learning model for classification and anomaly detection, K-nearest
neighbors classifier, K-means, decision tree, multilayer perceptron, logistic regression,
and support vector machine. According to the provided results of the experiments, the
proposed solution outperforms the other methods on the selected datasets.

Used metrics:

• True positive (TP), true negative (TN), false positive (FP), and false negative (FN).
• Accuracy (ACC), which is calculated as follows:

ACC =
1

M + 1

M+1

∑
m=1

TPm + TNm

TPm + TNm + FPm + TFNm
, (2)

where M + 1—the total number classes for normal and attack traffic. The obtained
values are as follows: for two subnets: 97.52% for the KDD dataset, 93.99% for the
NSL-KDD dataset, 95.6% for the UNSW dataset, and for N-BaIoT dataset from 67.53%
to 99.84%, depending on the IoT device; for three subnets: 97.54% for the KDD dataset,
93.37% for the NSL-KDD dataset, 95.67% for the UNSW dataset, and for N-BaIoT
dataset from 67.27% to 99.84%, depending on the IoT device.

• Privacy.
• Time.

Advantages:

• Implemented;
• Preserves the security and privacy of the model;



Algorithms 2022, 15, 247 17 of 26

• Outperforms other models selected for comparison considering the selected metrics;
• Anomaly-based and thus can detect attacks of various types;
• The performance in terms of accuracy, privacy, and time is evaluated.

Limitations: Unfortunately, the paper does not provide the experiment results by
attack types. While the approach is proposed for Industry 4.0, only one from the tested
datasets is devoted to IoT and it contains traffic from the Smart Home IoT devices. While
the authors conduct the performance evaluation, they do not provide the characteristics of
the testbed for the experiments. Unfortunately, it is also impossible to evaluate privacy and
time performance results as soon as the metrics used are not explained. The details of the
privacy-preserving mechanism and dataset partition are not provided.

FL-based intrusion detection in cyber-physical settings in the example of the water
treatment facility [4].

In [4], authors also study the problem of the intrusion detection in cyber-physical
settings in the example of the water treatment facility. The key distinction from the previous
research is that the authors focus on the case of vertically partitioned data and propose a
way to model it by grouping readings from the sensors on the basis of the stages of the
technological process.

Federated learning architecture. The authors propose to supplement every technolog-
ical process with an intelligent agent-hub that not only registers data from sensors but
also performs local training using them. These hubs are coordinated by an additional
aggregating server located together with the central server of the SCADA system. This
server is also responsible for controlling the global model performance and initiation of its
training process.

Implementation. To implement the proposed approach, the authors used Federated
AI Technology Framework [80] that is considered by the IEEE P3652.1 Federated Machine
Learning Working Group as a standard-setting FL framework [15].

ML model. The choice of the ML model was defined by the algorithms available in
FATE framework for vertically partitioned data. The authors evaluated gradient boosting
decision trees (GBDT) with Paillier homomorphic encryption.

Dataset. The SWAT2015 dataset [81] was used in the experiments. This dataset models
the functioning of the secure water treatment facility during 12 days and it contains both
network data and data from sensors. In [4], a dataset with readings from physical sensors
was used. To model vertically partitioned data, it was split into five groups based on
technological process.

Detected attacks. The SWAT dataset contains a set of attacks that are targeted to inject
control signals in order to manipulate the system state and cause the sensor’s degradation.

Experiments. The authors performed two series of the experiments in which the goal
was to compare the efficiency of the federated learning in CPS use case. In the first series,
the authors modeled the FL settings with five clients with vertically partitioned data, and in
the second case, they performed experiments on the initial dataset to evaluate the impact of
the FL.

Used metrics:

• Accuracy;
• Time of the training and inference time.

Advantages:

• Preserves the security and privacy of the model as the additional homomorphic
encryption is implemented to secure clients inputs;

• The accuracy of GBDT in FL mode is comparable with GBDT in centralized mode,
reaching 99% of the accuracy;

• The performance in terms of accuracy, privacy, and time is evaluated.

Limitations:

• Major limitation of the approach is the duration of the inference—it takes approxi-
mately 40 min, which is unacceptable for intrusion detection;



Algorithms 2022, 15, 247 18 of 26

• The choice of the metrics assessing the models are limited by the FATE framework;
• The aggregation algorithm does not tolerate clients’ dropouts.

4.1.3. The Federated-Learning-Based Intrusion Detection Systems for Specific Areas

While most papers consider Smart Home infrastructures or industrial IoT architectures,
there are also specific test cases, such as agricultural IoT or Internet of Medical Things.

A federated-learning-based intrusion detection system for agricultural IoT infras-
tructures [52].

In [52], the authors introduced a federated-learning-based intrusion detection system
for agricultural IoT infrastructures.

Federated learning architecture. The authors used the centralized architecture where
the devices train local models of the same structure using different local datasets. They
share the updates from their model with an aggregation server that produces an improved
detection model. The developed FELIDS system protects data privacy through local learning.

ML methods. The FELIDS uses deep neural networks, convolutional neural networks,
and recurrent neural networks. The authors provide the following parameters for the global
classifier: batch size = 100; local epochs = 1; global epochs = 50; learning rate = 0.01–0.5;
regularization is L2; global loss function is categorical_crossentropy; activation function is
ReLu; classification function is softmax, and optimizer is Adam.

Implementation. The authors used Google Colaboratory [82] for the experiments and
the Python 3 programming language. To implement the proposed system the authors
used NumPy, Pandas, TensorFlow, Keras, Scikit-learn, and SMOTE libraries. The Sherpa.ai
FL framework [83] was used for the federated learning. To evaluate the training energy
consumption, the authors used carbontracker [84].

Dataset. The CSE-CIC-IDS2018, MQTTset, and InSDN real-world traffic datasets
are used for the experiments. The authors considered the following types of attacks:
conventional network-based attacks, namely, denial-of-service (DoS), distributed denial-of-
service (DDoS), brute force, web-based, infiltration, and botnet (CSE-CIC-IDS2018 daaset);
IoT protocol-based attacks, including DoS, BruteForce, Malformed, SlowITe, and Flood
(MQTTset that contains message queue telemetry transport (MQTT)-protocol-based com-
munications between IoT devices); sophisticated network-based attacks, including network
and application DoS attacks, DDoS attacks, password guessing, web applications-based
attacks, probes, botnets, and U2R attacks (InSDN dataset).

The authors used the independent and identically distributed (IID) data partition
among the clients. In this case, the data distribution for the clients is consistent with the
data distribution in the entire dataset. They also used non-independent and identically
distributed (non-IID) data partition among the clients. In this case, the data distribution for
the clients is not consistent with the data distribution in the entire dataset.

Experiments. The authors first conducted the experiments for the centralized model
and obtained the best results for the InSDN dataset: 98.54% accuracy for DNN, 97.71%
for CNN, and 97.84% for RNN. They obtained the worst results for the MQTTset dataset:
90.40% accuracy for DNN, 90.76% for CNN, and 90.05% for RNN.

The authors provide the following learning scenario based on the FedAvg algorithm:
(1) a generic neural network model is generated by the FELIDS server (the set of initial
model weights, the neural network architecture, the hyperparameters, and local and global
epochs are identified); (2) the clients download the generic model from the FELIDS server;
(3) the generic model is retrained by the clients locally using their private data computing
new local set of weights; (4) the clients share the updated model parameters with the server;
(5) the FELIDS server aggregates the parameters and creates an updated global model;
(6) the updated global model parameters are shared by the server with the clients; (7) the
clients use the updated parameters to retrain the model using new local data.

The authors used different sets of clients: 5, 10, and 15. A total of 50 communication
rounds were used.



Algorithms 2022, 15, 247 19 of 26

It should be noted that a secure gRPC channel is used for communication between the
clients and the server.

The results of the experiments show that the FELIDS system accuracy is close to
the centralized model after 50 rounds, but it preserves the privacy of the client’s data. It
also should be noticed that there is a gap in accuracy between the best and worst clients,
especially for the non-IID case.

Additionally, in the paper, the time complexity (linear, depends on the number of
clients, layers, number of local epochs, number of local examples for the client and aggre-
gated local models parameters) and power consumption (quadratic complexity, depends
on the total federated rounds, the total number of clients, the time, the energy power of
client and server) were evaluated. It was tested on the experiments using the Intel CPU
Core i5-6300U @ 2.4 GHz, 8.00 GB of RAM, and Ubuntu 20.04.3 LTS. The experiments
showed that the time and energy consumption grow with number of clients and rounds,
but do not depend on the data distribution technique. According to the experiments, the
most efficient method in terms of time and energy consumption is DNN.

Used metrics:

• Time complexity;
• Power consumption;
• True positive (the number of correctly classified as attacks attack samples);
• False positive (the number of wrongly classified as attacks benign samples);
• True negative (the number of correctly classified benign samples);
• False negative (the number of wrongly classified as benign attacks samples).
• Accuracy (the ratio of correct classifications number to the total input number), which

is calculated as the ratio of (true positive + true negative) to the (true positive + true
negative + false positive + false negative);

• Precision (the ratio of correct attack classifications to the total number of attack results
predicted), which is calculated as the ratio of true positive to the (true positive +
false positive);

• Recall (the ratio of correct attack classifications to the total number of all samples that
should have been identified as attacks), which is calculated as the ratio of true positive
to the (true positive + false negative);

• F1-score (the harmonic mean between precision and recall), which is calculated as the
ratio of (precision × recall) to the (precision + recall) multiplied by two.

Advantages:

• Implemented;
• The MQTTset dataset that contains MQTT-protocol-based communications between

IoT devices is used for the experiments;
• The time complexity and power consumption are calculated;
• The time complexity and power consumption are evaluated on the experiments;
• Two data partition cases are considered;
• The results are close to the centralized model’s accuracy while preserving data privacy.

Limitations: Limited application area—agricultural Internet of Things; the gap be-
tween the performance results for the best and worst clients, especially for the non-IID case.

The results of comparison are summarized in Table 1.



Algorithms 2022, 15, 247 20 of 26

Table 1. Comparison of the federated learning architectures.

Ref. FL Architecture Dataset Attacks Data Partition ML Method Implemen-Tation Conducted Experiments and
Best Accuracy Used Metrics

[20] centralized generated Smart
Home dataset Mirai malware by device type language analysis

techniques, GRU

flask, flask_ socketio,
socketIO-client
libraries, gevent
asynchronous

framework, Keras
library with

Tensorflow backend

FL-scenario anomaly detection
performance and time, 95.6%

detection rate

FP, TP, average
detection time,

processing
performance of

GRU

[28] centralized
(10 clients) ToN_IoT

Backdoor, DoS,
DDoS, Injection,

MITM, Password,
Ransomware,
Scanning, XSS

by IP address,
balanced

considering the
attacks, hybrid

approach

multinomial
logistic regression

(scikit-learn
SGDClassifier)

IBMFL, FedAvg and
Fed+

centralized mode (0.724), three
FL-based scenarios

(basic—0.8725, balanced—0.9039,
hybrid—0.8869) and distributed

method (basic—0.8718,
balanced—0.9065,
hybrid—0.9065)

accuracy,
precision, recall,

F1-score, FPR

[22]
centralized
(8 clients),

cross-silo FL
N-BaIoT Mirai or

BASHLITE

chronologically;
original, balanced

by attacks, 5%
attack traffic

multilayer
perceptron and

autoencoder

FedAVG, 30 rounds
of training

4 epochs of training for
supervised solution and 120

epochs for unsupervised, close
results to the centralized method

TP, TN, accuracy,
F1-score

[23]
hierarchical

architecture in
the cloud

BoT-IoT

DDoS (HTTP, TCP,
UDP), DoS (HTTP,

TCP, UDP), OS
Fingerprinting,

Server Scanning,
Keylogging, Data

exfiltration

by source IP
address

LocKedge (NN
based), PCA to
extract features

Raspberry Pi 3B+ for
the Edge gateway,
Raspberry Pi OS,

Python 3

centralized LocKedge accuracy
(about 0.999) and time, at the

Edge—1000 rounds, DoS-HTTP,
DDoS-HTTP and theft-data give
worse results than in centralized

mode, others—better; edge
computing capacity: maximum
attack rate is 9600 samples per

second, memory—up to
1800 samples per second

complexity of the
algorithms, the
training time
performance,
accuracy, DR,

precision, recall,
F1-score, CPU and

RAM usage

[57] hierarchical NFBoT-IoT-v2
DDoS, DoS,

Reconnaissance,
Theft

balanced by the
attacks/by the
selected party

DFF Custom, FedAvg collaborating entities and
non-collaborating entity scenario

accuracy, detection
rate, FAR,

F1-measure



Algorithms 2022, 15, 247 21 of 26

Table 1. Cont.

Ref. FL Architecture Dataset Attacks Data Partition ML Method Implemen-Tation Conducted Experiments and Best
Accuracy Used Metrics

[53]

centrilized,
hyperledger

fabric for
privacy

KDD-Cup99 DoS, Probe, R2L,
U2R -

decision tree and
multilayer

perceptron—local
model,

FedAvg—global
model training

custom

compare local model with random
forest and SVM (50 iterations);

compare the global model with CNN
and DNN (100 iterations), the

average AUC is 0.908

TP, FN, FP, TN,
AUC, precision,
recall, F1-score,

time

[21]

centralized,
Paillier

public-key
crypto-system-
based secure

communication
protocol

gas pipelining
system’s dataset

DoS, DDoS,
command

injection, response
injection,

reconnaissance,
command
injection

even partitions

convolutional
neural network

and a gated
recurrent unit

Keras API, Flask.2

local models, centralized mode, FL
mode (99.20 for 7 agents, close to

centralized mode results); from 2 to
10 rounds

accuracy,
precision, recall,

F-score

[24] centralized (2 or
3 subnets)

KDD, NSLKDD,
UNSW-NB15,

N-BaIoT

anomalies, tested
on DoS, R2L, U2R,

probing attack,
Mirai, BASHLITE

by subnets, not
detailed

DNN to train local
model, average
gradient update

algorithm for
global model

Prototype, not
detailed

for 2 and 3 subnets comparison with
other methods; for 2 subnets the best

ACC: KDD—97.52%,
NSL-KDD—93.99%, UNSW—95.6%,

N-BaIoT—99.84%; for 3 subnets:
KDD—97.54%, NSL-KDD—93.37%,
UNSW—95.67%, N-BaIoT—99.84%

time, privacy, TP,
FP, TN, FN, ACC

[52]
centralized,

secure gRPC
channel

CSE-CIC-
IDS2018,
MQTTset,

InSDN

DoS, DDoS, brute
force, web-based,

infiltration, botnet,
Malformed,

SlowITe, Flood,
password

guessing, probes,
U2R

IID, Non-IID

deep neural
networks,

convolutional
neural networks,
recurrent neural

networks

Google
Colaboratory,

Python 3, NumPy,
Pandas, TensorFlow,
Keras, Scikit-learn,

and SMOTE
libraries, Sherpa.ai

FL framework

for the centralized model; FL
scenario (accuracy close to the

centralized): 5, 10, and 15 clients, 50
communication rounds

time complexity,
power

consumption, TP,
FP, TN, FN,

accuracy,
precision, recall,

F1-Score

[4] centralized SWAT 2015 signal injection vertical
partition

GBDT with
Pailllier HE FATE framework 2 scenarios: centralized scenario and

FL scenario with 5 clients
accuracy, time

complexity



Algorithms 2022, 15, 247 22 of 26

5. Discussion and Conclusions

The analysis of the research papers allowed the authors to make following conclusions.

• The majority of the research papers are devoted to the design of network-based
intrusion detection systems. The datasets that are used to evaluate the suggested
approaches are represented either by PCAP packets or features extracted from them.
Thus, while in [28] the authors used the ToN_IoT dataset, they do not consider the
IoT telemetry data. Only in [52] is the MQTTset dataset that contains MQTT protocol-
based communications between IoT devices used for the experiments. As it was
stated in Section 3, this case corresponds to the horizontally partitioned data. The
explanation of this fact is closely related to the current state of FL frameworks and
libraries, the training time of the FL algorithms for vertically partitioned data, and the
requirements to the computational and memory resources are extremely high. In [4],
it was shown that inference time for decision trees in case of vertically partitioned
data takes approximately 40 min.

• The proposed architecture for an IoT-based environment is typically centralized [20–22,28,52].
The clients are represented either by an IoT device directly or by a smart router that
collects data from a set of IoT devices. The hierarchical architecture is presented
in [23,57].

• The typical experimental scenario includes splitting one dataset across n clients in
such a way that clients have datasets with different types of the attacks. In major cases,
the class distribution in a client’s dataset is balanced, and balancing dataset allows
achieving higher results in intrusion detection efficiency. Only few works study the
problem of the accuracy degradation due to imbalance in training data [22,28,52].

• The typical metrics that are used to evaluate the efficiency of the FL-based IDS systems
are machine learning metrics that characterize the analysis model efficiency: accuracy,
precision, recall, and F-measure. Only few research papers analyze the impact of
the FL on the computational performance, impact on network traffic, and CPU load.
Namely, in [52], the proposed FL-based algorithm is evaluated in terms of time and
power consumption, and in [23], the complexity of the algorithms and the training
time performance are considered. Thus, it is almost impossible to evaluate practical
feasibility of the FL for intrusion detection.

• Scalability is often considered a certain advantage of FL; however, only few research
papers focus on this problem [23,52,57], and the number of clients in the experiments
rarely exceeds 10.

• A few works study the privacy issues in FL-based IDS, and propose novel algorithms
with differential privacy mechanisms to increase the security of the data inputs. In this
case, the authors focus on the evaluation of the analysis model efficiency, the issues
relating to practical recommendations on how to select parameters of the differential
privacy mechanisms in case the client’s data imbalances are not discussed.

Thus, it is possible to conclude that, despite the certain benefits of FL for intrusion
detection, such IDS systems are still a subject of the theoretical research. The research
has shown that almost all practical challenges that are formulated at the beginning of
the article are still open. Little effort has been spent on the analysis of the bias of the
clients’ data; different techniques are suggested for how to model it in the conditions of the
lack of real-world datasets suitable for federated learning. In future research we plan to
proceed with experimental evaluation of the federated learning application for the intrusion
detection in the Internet of Things considering the outlined challenges, such as the bias of
the clients’ data.

Author Contributions: Conceptualization, E.F. and E.N.; methodology, E.N.; validation, E.F.; investi-
gation, E.F., E.N. and A.S.; writing—original draft preparation, E.F. and A.S.; writing—review and
editing, E.F. and E.N.; visualization, E.N.; project administration, E.N.; funding acquisition, E.N. All
authors have read and agreed to the published version of the manuscript.

Funding: This research is supported by the grant of RSF #22-21-00724 in SPC RAS.



Algorithms 2022, 15, 247 23 of 26

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
DP Differential Privacy
TEE Trusted Execution Environment
FL Federated Learning
ML Machine Learning
IDS Intrusion Detection System
NIDS Network Intrusion Detection System
IoT Internet of Things
GBDT Gradient Boosting Decision Trees

References
1. McMahan, H.B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-Efficient Learning of Deep Networks from

Decentralized Data. In Proceedings of the AISTATS, Fort Lauderdale, FL, USA, 20–22 April 2017.
2. Lwakatare, L.E.; Raj, A.; Bosch, J.; Olsson, H.H.; Crnkovic, I. A Taxonomy of Software Engineering Challenges for Machine

Learning Systems: An Empirical Investigation. In Proceedings of the Agile Processes in Software Engineering and Extreme
Programming, Montreal, QC, Canada, 21–25 May 2019; Kruchten, P., Fraser, S., Coallier, F., Eds.; Springer International Publishing:
Cham, Switzerland, 2019; pp. 227–243.

3. Antonakakis, M.; April, T.; Bailey, M.; Bernhard, M.; Bursztein, E.; Cochran, J.; Durumeric, Z.; Halderman, J.A.; Invernizzi, L.;
Kallitsis, M.; et al. Understanding the Mirai Botnet. In Proceedings of the 26th USENIX Security Symposium (USENIX Security
17), Vancouver, BC, Canada, 16–18 August 2017; USENIX Association: Vancouver, BC, Canada, 2017; pp. 1093–1110.

4. Novikova, E.; Doynikova, E.; Golubev, S. Federated Learning for Intrusion Detection in the Critical Infrastructures: Vertically
Partitioned Data Use Case. Algorithms 2022, 15, 104. doi: 10.3390/a15040104. [CrossRef]

5. Ludwig, H.; Baracaldo, N.; Thomas, G.; Zhou, Y.; Anwar, A.; Rajamoni, S.; Ong, Y.J.; Radhakrishnan, J.K.; Verma, A.; Sinn, M.;
et al. IBM Federated Learning: An Enterprise Framework White Paper V0.1. arXiv 2020, arXiv:2007.10987.

6. Lo, S.K.; Lu, Q.; Zhu, L.; Paik, H.-Y.; Xu, X.; Wang, C. Architectural Patterns for the Design of Federated Learning Systems. arXiv
2021, arXiv:2101.02373.

7. Ek, S.; Portet, F.; Lalanda, P.; Vega, G. A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and
Comparison. In Proceedings of the 2021 IEEE International Conference on Pervasive Computing and Communications (PerCom),
Kassel, Germany, 22–26 March 2021; pp. 1–10. [CrossRef]

8. Yurochkin, M.; Agarwal, M.; Ghosh, S.S.; Greenewald, K.H.; Hoang, T.N.; Khazaeni, Y. Bayesian Nonparametric Federated
Learning of Neural Networks. In Proceedings of the ICML, Long Beach, CA, USA, 9–15 June 2019.

9. Mansour, A.B.; Carenini, G.; Duplessis, A.; Naccache, D. Federated Learning Aggregation: New Robust Algorithms with
Guarantees. arXiv 2022, arXiv:2205.10864.

10. Li, Q.; He, B.; Song, D. Model-Contrastive Federated Learning. arXiv 2021, arXiv:2103.16257.
11. Lopez-Martin, M.; Sanchez-Esguevillas, A.; Arribas, J.I.; Carro, B. Supervised contrastive learning over prototype-label embed-

dings for network intrusion detection. Inf. Fusion 2022, 79, 200–228. [CrossRef]
12. Shahid, O.; Pouriyeh, S.; Parizi, R.M.; Sheng, Q.Z.; Srivastava, G.; Zhao, L. Communication Efficiency in Federated Learning:

Achievements and Challenges. arXiv 2021, arXiv:2107.10996.
13. Juvekar, C.; Vaikuntanathan, V.; Chandrakasan, A. GAZELLE: A Low Latency Framework for Secure Neural Network Inference.

In Proceedings of the 27th USENIX Conference on Security Symposium (SEC’18), Baltimore, MD, USA, 15–17 August 2018;
USENIX Association: Boston, MA, USA, 2018; pp. 1651–1668.

14. Zhang, C.; Li, S.; Xia, J.; Wang, W.; Yan, F.; Liu, Y. BatchCrypt: Efficient Homomorphic Encryption for Cross-Silo Federated
Learning. In Proceedings of the 2020 USENIX Conference on Usenix Annual Technical Conference, Virtual Event, 15–17 July 2020;
USENIX Association: Boston, MA, USA, 2020.

15. Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawit, K.; Charles, Z.; Cormode, G.; Cummings,
R.; et al. Advances and Open Problems in Federated Learning. In Foundations and Trends in Machine Learning; Now Publishers:
Boston, MA, USA, 2021.

16. Truex, S.; Liu, L.; Chow, K.H.; Gursoy, M.E.; Wei, W. LDP-Fed: Federated learning with local differential privacy. In Proceedings
of the Third ACM International Workshop on Edge Systems, Analytics and Networking, Heraklion, Greece, 27 April 2020.

http://doi.org/10.3390/a15040104
http://dx.doi.org/10.1109/PERCOM50583.2021.9439129
http://dx.doi.org/10.1016/j.inffus.2021.09.014


Algorithms 2022, 15, 247 24 of 26

17. Shokri, R.; Shmatikov, V. Privacy-preserving deep learning. In Proceedings of the 2015 53rd Annual Allerton Conference on
Communication, Control, and Computing (Allerton), Monticello, IL, USA, 29 September–2 October 2015; pp. 909–910. [CrossRef]

18. Rieke, N.; Hancox, J.; Li, W.; Milletarì, F.; Roth, H.R.; Albarqouni, S.; Bakas, S.; Galtier, M.N.; Landman, B.A.; Maier-Hein, K.; et al.
The future of digital health with federated learning. NPJ Digit. Med. 2020, 3, 119. [CrossRef]

19. Antunes, R.S.; André da Costa, C.; Küderle, A.; Yari, I.A.; Eskofier, B. Federated Learning for Healthcare: Systematic Review and
Architecture Proposal. ACM Trans. Intell. Syst. Technol. 2022, 13, 1–23. [CrossRef]

20. Nguyen, T.D.; Marchal, S.; Miettinen, M.; Fereidooni, H.; Asokan, N.; Sadeghi, A.R. DÏoT: A Federated Self-learning Anomaly
Detection System for IoT. In Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems
(ICDCS), Dallas, TX, USA, 7–9 July 2019; pp. 756–767.

21. Li, B.; Wu, Y.; Song, J.; Lu, R.; Li, T.; Zhao, L. DeepFed: Federated Deep Learning for Intrusion Detection in Industrial
Cyber–Physical Systems. IEEE Trans. Ind. Inform. 2021, 17, 5615–5624. [CrossRef]

22. Rey, V.; Sánchez Sánchez, P.M.; Huertas Celdrán, A.; Bovet, G. Federated learning for malware detection in IoT devices. Comput.
Netw. 2022, 204, 108693. [CrossRef]

23. Huong, T.T.; Bac, T.P.; Long, D.M.; Thang, B.D.; Binh, N.T.; Luong, T.D.; Phuc, T.K. LocKedge: Low-Complexity Cyberattack
Detection in IoT Edge Computing. IEEE Access 2021, 9, 29696–29710. [CrossRef]

24. Khoa, T.V.; Saputra, Y.M.; Hoang, D.T.; Trung, N.L.; Nguyen, D.; Ha, N.V.; Dutkiewicz, E. Collaborative Learning Model for
Cyberattack Detection Systems in IoT Industry 4.0. In Proceedings of the 2020 IEEE Wireless Communications and Networking
Conference (WCNC), Seoul, Korea, 25–28 May 2020; pp. 1–6. [CrossRef]

25. Long, G.; Tan, Y.; Jiang, J.; Zhang, C. Federated Learning for Open Banking. arXiv 2020, arXiv:2108.10749.
26. Ahmed, U.; Srivastava, G.; Lin, J.C.W. Reliable customer analysis using federated learning and exploring deep-attention edge

intelligence. Future Gener. Comput. Syst. 2022, 127, 70–79. [CrossRef]
27. Li, J.; Cui, T.; Yang, K.; Yuan, R.; He, L.; Li, M. Demand Forecasting of E-Commerce Enterprises Based on Horizontal Federated

Learning from the Perspective of Sustainable Development. Sustainability 2021, 13, 13050. [CrossRef]
28. Campos, E.M.; Saura, P.F.; González-Vidal, A.; Hernández-Ramos, J.L.; Bernabé, J.B.; Baldini, G.; Skarmeta, A. Evaluating

Federated Learning for intrusion detection in Internet of Things: Review and challenges. Comput. Netw. 2022, 203, 108661.
[CrossRef]

29. Novikova, E.; Fomichov, D.; Kholod, I.; Filippov, E. Analysis of Privacy-Enhancing Technologies in Open-Source Federated
Learning Frameworks for Driver Activity Recognition. Sensors 2022, 22, 2983. [CrossRef]

30. Lyu, L.; Yu, H.; Yang, Q. Threats to Federated Learning: A Survey. arXiv 2020, arXiv:2003.02133.
31. Agrawal, S.; Sarkar, S.; Aouedi, O.; Yenduri, G.; Piamrat, K.; Bhattacharya, S.; Maddikunta, P.K.R.; Gadekallu, T.R. Federated

Learning for Intrusion Detection System: Concepts, Challenges and Future Directions. arXiv 2021, arXiv:2106.09527.
32. Bellatreche, L.; Boukhalfa, K.; Richard, P. Data Partitioning in Data Warehouses: Hardness Study, Heuristics and ORACLE

Validation. In Proceedings of the 10th International Conference on Data Warehousing and Knowledge Discovery (DaWaK ’08),
Turin, Italy, 2–5 September 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 87–96. [CrossRef]

33. Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedone, A.; McMahan, H.B.; Patel, S.; Ramage, D.; Segal, A.; Seth, K. Practical Secure
Aggregation for Privacy-Preserving Machine Learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’17), Dallas, TX, USA, 30 October–3 November 2017; Association for Computing Machinery:
New York, NY, USA, 2017; pp. 1175–1191. [CrossRef]

34. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J. Survey of intrusion detection systems: Techniques, datasets and challenges.
Cybersecur 2019, 2, 20. [CrossRef]

35. Bukhanov, D.G.; Polyakov, V.M. Detection of network attacks based on adaptive resonance theory. J. Phys. Conf. Ser. 2018,
1015, 042007. [CrossRef]

36. Yunwu, W. Using Fuzzy Expert System Based on Genetic Algorithms for Intrusion Detection System. In Proceedings of the 2009
International Forum on Information Technology and Applications, Chengdu, China, 15–17 May 2009; Volume 2, pp. 221–224.
[CrossRef]

37. Dave, M.H.; Sharma, S.D. Improved Algorithm for Intrusion Detection Using Genetic Algorithm and SNORT. Int. J. Emerg.
Technol. Adv. Eng. 2014, 4, 273–276.

38. Ranjan, R.; Sahoo, G. A New Clustering Approach for Anomaly Intrusion Detection. Int. J. Data Min. Knowl. Manag. Process.
(IJDKP) 2014, 4, 29–38. [CrossRef]

39. Li, Z.; Qin, Z.; Huang, K.; Yang, X.; Ye, S. Intrusion Detection Using Convolutional Neural Networks for Representation Learning.
In Proceedings of the International Conference on Neural Information Processing (ICONIP), Guangzhou, China, 14–18 November
2017; Springer: Cham, Switzerland, 2017; Volume 10638. [CrossRef]

40. Jianwei, H.; Chenshuo, L.; Yanpeng, C. An Improved CNN Approach for Network Intrusion Detection System. Int. J. Netw. Secur.
2021, 23, 569–575. [CrossRef]

41. Vinayakumar, R.; Soman, K.; Poornachandran, P. Evaluation of Recurrent Neural Network and Its Variants for Intrusion Detection
System IDS. Int. J. Inf. Syst. Model. Des. 2017, 8, 43–63. [CrossRef]

42. Song, Y.; Hyun, S.; Cheong, Y.G. Analysis of Autoencoders for Network Intrusion Detection. Sensors 2021, 21, 4294. [CrossRef]
[PubMed]

http://dx.doi.org/10.1109/ALLERTON.2015.7447103
http://dx.doi.org/10.1038/s41746-020-00323-1
http://dx.doi.org/10.1145/3501813
http://dx.doi.org/10.1109/TII.2020.3023430
http://dx.doi.org/10.1016/j.comnet.2021.108693
http://dx.doi.org/10.1109/ACCESS.2021.3058528
http://dx.doi.org/10.1109/WCNC45663.2020.9120761
http://dx.doi.org/10.1016/j.future.2021.08.028
http://dx.doi.org/10.3390/su132313050
http://dx.doi.org/10.1016/j.comnet.2021.108661
http://dx.doi.org/10.3390/s22082983
http://dx.doi.org/10.1007/978-3-540-85836-2_9
http://dx.doi.org/10.1145/3133956.3133982
http://dx.doi.org/10.1186/s42400-019-0038-7
http://dx.doi.org/10.1088/1742-6596/1015/4/042007
http://dx.doi.org/10.1109/IFITA.2009.107
http://dx.doi.org/10.5121/ijdkp.2014.4203
http://dx.doi.org/10.1007/978-3-319-70139-4_87
http://dx.doi.org/10.6633/IJNS.202107_23(4).03
http://dx.doi.org/10.4018/IJISMD.2017070103
http://dx.doi.org/10.3390/s21134294
http://www.ncbi.nlm.nih.gov/pubmed/34201798


Algorithms 2022, 15, 247 25 of 26

43. Gajewski, M.; Batalla, J.M.; Mastorakis, G.; Mavromoustakis, C.X. A distributed IDS architecture model for Smart Home systems.
Clust. Comput. 2017, 22, 1739–1749. [CrossRef]

44. Shterenberg, S.I.; Poltavtseva, M.A. A Distributed Intrusion Detection System with Protection from an Internal Intruder. Autom.
Control Comput. Sci. 2018, 52, 945–953. [CrossRef]

45. Schueller, Q.; Basu, K.; Younas, M.; Patel, M.; Ball, F. A Hierarchical Intrusion Detection System using Support Vector Machine
for SDN Network in Cloud Data Center. In Proceedings of the 2018 28th International Telecommunication Networks and
Applications Conference (ITNAC), Sydney, Australia, 21–23 November 2018; pp. 1–6. [CrossRef]

46. Saghezchi, F.B.; Mantas, G.; Ribeiro, J.; Al-Rawi, M.; Mumtaz, S.; Rodriguez, J. Towards a secure network architecture for smart
grids in 5G era. In Proceedings of the 2017 13th International Wireless Communications and Mobile Computing Conference
(IWCMC), Valencia, Spain, 26–30 June 2017; pp. 121–126. [CrossRef]

47. Zhang, Y.; Wang, L.; Sun, W.; Green, R.C., II; Alam, M. Distributed Intrusion Detection System in a Multi-Layer Network
Architecture of Smart Grids. IEEE Trans. Smart Grid 2011, 2, 796–808. [CrossRef]

48. Javed, Y.; Felemban, M.; Shawly, T.; Kobes, J.; Ghafoor, A. A Partition-Driven Integrated Security Architecture for Cyberphysical
Systems. Computer 2020, 53, 47–56. [CrossRef]

49. Kholod, I.; Yanaki, E.; Fomichev, D.; Shalugin, E.; Novikova, E.; Filippov, E.; Nordlund, M. Open-Source Federated Learning
Frameworks for IoT: A Comparative Review and Analysis. Sensors 2021, 21, 167. [CrossRef] [PubMed]

50. Zhang, Z.; Zhang, Y.; Guo, D.; Yao, L.; Li, Z. SecFedNIDS: Robust defense for poisoning attack against federated learning-based
network intrusion detection system. Future Gener. Comput. Syst. 2022, 134, 154–169. [CrossRef]

51. Ibitoye, O.; Shafiq, M.O.; Matrawy, A. Differentially private self-normalizing neural networks for adversarial robustness in
federated learning. Comput. Secur. 2022, 116, 102631. [CrossRef]

52. Friha, O.; Ferrag, M.A.; Shu, L.; Maglaras, L.; Choo, K.K.R.; Nafaa, M. FELIDS: Federated learning-based intrusion detection
system for agricultural Internet of Things. J. Parallel Distrib. Comput. 2022, 165, 17–31. [CrossRef]

53. Hei, X.; Yin, X.; Wang, Y.; Ren, J.; Zhu, L. A trusted feature aggregator federated learning for distributed malicious attack
detection. Comput. Secur. 2020, 99, 102033. [CrossRef]

54. Zhao, R.; Yin, Y.; Shi, Y.; Xue, Z. Intelligent intrusion detection based on federated learning aided long short-term memory. Phys.
Commun. 2020, 42, 101157. [CrossRef]

55. Kumar, K.S.; Nair, S.A.H.; Guha Roy, D.; Rajalingam, B.; Kumar, R.S. Security and privacy-aware Artificial Intrusion Detection
System using Federated Machine Learning. Comput. Electr. Eng. 2021, 96, 107440. [CrossRef]

56. Astillo, P.V.; Duguma, D.G.; Park, H.; Kim, J.; Kim, B.; You, I. Federated intelligence of anomaly detection agent in IoTMD-enabled
Diabetes Management Control System. Future Gener. Comput. Syst. 2022, 128, 395–405. [CrossRef]

57. Sarhan, M.; Lo, W.W.; Layeghy, S.; Portmann, M. HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a
Collaborative IoT Intrusion Detection. arXiv 2022, arXiv:2204.04254.

58. Dankmar, B. Multinomial logistic regression algorithm. Ann. Inst. Stat. Math. 1992, 44, 197–200.
59. Li, X.; Huang, K.; Yang, W.; Wang, S.; Zhang, Z. On the Convergence of FedAvg on Non-IID Data. In Proceedings of the 8th

International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020.
60. Yu, P.; Wynter, L.; Lim, S.H. Fed+: A Family of Fusion Algorithms for Federated Learning. arXiv 2020, arXiv:2009.06303.
61. Alsaedi, A.; Moustafa, N.; Tari, Z.; Mahmood, A.; Anwar, A. TON_IoT Telemetry Dataset: A New Generation Dataset of IoT and IIoT

for Data-Driven Intrusion Detection Systems. IEEE Access 2020, 8, 165130–165150. . [CrossRef]
62. Evaluating-FL-for-Intrusion-Detection-in-IoT-Review-and-Challenges Datasets (2021). Available online: https://github.com/

Enrique-Marmol/Evaluating-FL-for-Intrusion-Detection-in-IoT-review-and-challenges (accessed on 15 March 2022).
63. A Micro Web Framework Written in Python. Available online: https://flask.palletsprojects.com/en/2.1.x/ (accessed on

15 March 2022).
64. Flask Socketio. Available online: https://flask-socketio.readthedocs.io/en/latest/ (accessed on 15 March 2022).
65. Flask Socketio Client. Available online: https://github.com/socketio/socket.io-client (accessed on 15 March 2022).
66. Gevent Asynchronous Framework. Available online: https://github.com/gevent/gevent (accessed on 15 March 2022).
67. Keras Deep Learning Library. Available online: https://faroit.github.io/keras-docs/2.0.2/ (accessed on 15 March 2022).
68. Meidan, Y.; Bohadana, M.; Mathov, Y.; Mirsky, Y.; Shabtai, A.; Breitenbacher, D.; Elovici, Y. N-BaIoT—Network-Based Detection of

IoT Botnet Attacks Using Deep Autoencoders. IEEE Pervasive Comput. 2018, 17, 12–22. doi: 10.1109/MPRV.2018.03367731. [CrossRef]
69. Fed_IoT_Guard. 2021. Available online: https://github.com/ValerianRey/fed_iot_guard (accessed on 30 March 2022).
70. Moustafa, N. The Bot-IoT Dataset. 2019. Available online: https://research.unsw.edu.au/projects/bot-iot-dataset (accessed on

13 July 2022).
71. Chai, H.; Leng, S.; Chen, Y.; Zhang, K. A Hierarchical Blockchain-Enabled Federated Learning Algorithm for Knowledge Sharing

in Internet of Vehicles. Trans. Intell. Transport. Sys. 2021, 22, 3975–3986. [CrossRef]
72. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the Internet of

Things for network forensic analytics: Bot-IoT dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [CrossRef]
73. Keras: Python Deep Learning Library. Available online: http://keras.io/ (accessed on 26 March 2022).
74. Morris, T.; Gao, W. Industrial Control System Traffic Datasets for Intrusion Detection Research. In Proceedings of the International

Conference on Critical Infrastructure Protection, Arlington, VA, USA, 17–19 March 2014; Volume 441, pp. 65–78. [CrossRef]

http://dx.doi.org/10.1007/s10586-017-1105-z
http://dx.doi.org/10.3103/S0146411618080230
http://dx.doi.org/10.1109/ATNAC.2018.8615255
http://dx.doi.org/10.1109/IWCMC.2017.7986273
http://dx.doi.org/10.1109/TSG.2011.2159818
http://dx.doi.org/10.1109/MC.2019.2914906
http://dx.doi.org/10.3390/s21010167
http://www.ncbi.nlm.nih.gov/pubmed/33383803
http://dx.doi.org/10.1016/j.future.2022.04.010
http://dx.doi.org/10.1016/j.cose.2022.102631
http://dx.doi.org/10.1016/j.jpdc.2022.03.003
http://dx.doi.org/10.1016/j.cose.2020.102033
http://dx.doi.org/10.1016/j.phycom.2020.101157
http://dx.doi.org/10.1016/j.compeleceng.2021.107440
http://dx.doi.org/10.1016/j.future.2021.10.023
http://dx.doi.org/10.1109/ACCESS.2020.3022862
https://github.com/Enrique-Marmol/Evaluating-FL-for-Intrusion-Detection-in-IoT-review-and-challenges
https://github.com/Enrique-Marmol/Evaluating-FL-for-Intrusion-Detection-in-IoT-review-and-challenges
 https://flask.palletsprojects.com/en/2.1.x/
https://flask-socketio.readthedocs.io/en/latest/
https://github.com/socketio/socket.io-client
https://github.com/gevent/gevent
https://faroit.github.io/keras-docs/2.0.2/
http://dx.doi.org/10.1109/MPRV.2018.03367731
https://github.com/ValerianRey/fed_iot_guard
https://research.unsw.edu.au/projects/bot-iot-dataset
http://dx.doi.org/10.1109/TITS.2020.3002712
http://dx.doi.org/10.1016/j.future.2019.05.041
http://keras.io/
http://dx.doi.org/10.1007/978-3-662-45355-1_5


Algorithms 2022, 15, 247 26 of 26

75. Schneble, W.; Thamilarasu, G. Attack Detection Using Federated Learning in Medical Cyber-Physical Systems. In Proceedings of
the 28th International Conference on Computer Communications and Networks, Valencia, Spain, 29 July–1 August 2019.

76. Chen, Y.; Qin, X.; Wang, J.; Yu, C.; Gao, W. FedHealth: A Federated Transfer Learning Framework for Wearable Healthcare. IEEE
Intell. Syst. 2020, 35, 83–93. [CrossRef]

77. KDD Dataset. Available online: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (accessed on 15 March 2022).
78. University of New Brunswick Dataset. Available online: https://www.unb.ca/cic/datasets/nsl.html (accessed on 15 March 2022).
79. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive dataset for network intrusion detection systems (UNSW-NB15 network

dataset). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, Australia,
10–12 November 2015; pp. 1–6. [CrossRef]

80. FATE. An Industrial Grade Federated Learning Framework. Available online: https://fate.fedai.org/ (accessed on 25 June 2022).
81. Secure Water Treatment (SWaT). Available online: https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/(accessed on

25 June 2022).
82. Google Colaboratory. 2021. Available online: https://colab.research.google.com/ (accessed on 30 March 2022).
83. Rodríguez-Barroso, N.; Stipcich, G.; Jiménez-López, D.; Ruiz-Millán, J.A.; Martínez-Cámara, E.; González-Seco, G.; Luzón, M.V.;

Veganzones, M.A.; Herrera, F. Federated Learning and Differential Privacy: Software tools analysis, the Sherpa.ai FL framework
and methodological guidelines for preserving data privacy. Inf. Fusion 2020, 64, 270–292. [CrossRef]

84. Anthony, L.F.W.; Kanding, B.; Selvan, R. Carbontracker: Tracking and predicting the carbon footprint of training deep learning
models. arXiv 2020, arXiv:2007.03051.

http://dx.doi.org/10.1109/MIS.2020.2988604
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unb.ca/cic/datasets/nsl.html
http://dx.doi.org/10.1109/MilCIS.2015.7348942
https://fate.fedai.org/
https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
https://colab.research.google.com/
http://dx.doi.org/10.1016/j.inffus.2020.07.009

	Introduction
	Federated Learning Systems
	Intrusion Detection Systems
	Intrusion Detection Systems Based on Federated Learning
	Comparative Analysis of Federated-Learning-Based Intrusion Detection Systems
	The Federated Learning-Based Intrusion Detection Systems for Smart Home Settings
	The Federated-Learning-Based Intrusion Detection Systems for Industrial Cyber-Physical Systems
	The Federated-Learning-Based Intrusion Detection Systems for Specific Areas


	Discussion and Conclusions
	References

