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Abstract: A significant challenge for organisations is the timely identification of the abnormalities
or deviations in their process executions. Abnormalities are generally due to missing vital aspects
of a process or possession of unwanted behaviour in the process execution. Conformance analysis
techniques examine the synchronisation between the recorded logs and the learned process models,
but the exploitation of event logs for abnormality detection is a relatively under-explored area in
process mining. In this paper, we proposed a novel technique for the identification of abnormalities
in business process execution through the extension of available conformance analysis techniques.
Non-traditional conformance analysis techniques are used to find correlations and discrepancies
between simulated and observed behaviour in process logs. Initially, the raw event log is filtered into
two variants, successful and failed, based upon the outcome of the instances. Successfully executed
instances refer to an ideal conduct of process and are utilised to discover an optimal process model.
Later, the process model is used as a behavioural benchmark to classify the abnormality in the failed
instances. Abnormal behaviour is compiled grounded on three dimensions of conformance, control
flow-based alignment, trace-level alignment and event-level alignment. For early predictions, we
introduced the notion of conformance lifeline presenting the impact of varying fitness scores during
process execution. We applied the proposed methodology to a real-world event log and presented
several process-specific improvement measures in the discussion section.

Keywords: process mining; conformance analysis; knowledge discovery; process analytics; business processes

1. Introduction

Business processes in service-oriented organisations are managed by their service
management systems, which are responsible for systematising offered services in the form
of business processes [1]. These management systems are also responsible for executing
business processes in the most effective manner so that customers (both internal and ex-
ternal) receive the best services possible. Service-related business processes are the direct
interaction links between an organisation and its service recipients, such as healthcare
services interacting with patients and physicians, banking services interacting with their
customers, and telecommunications services interacting with their clients. The data gener-
ated during the execution of these processes is used to analyse and enhance their execution.
The objective of such an analysis is to enhance the quality of the customer experience,
thereby increasing the competitive advantage of the business and contributing directly to
its success.

Over the last few decades, corporations have become increasingly competitive in their
pursuit of regulatory compliance. There has been a continuous interest in research for
business process improvement, particularly in forecasting business process outcomes and
their implications on process improvement. Businesses must predict the expected outcomes
of business processes with the utmost degree of precision possible. Early prediction can
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have a significant impact on customers’ satisfaction with the services they are receiving [2].
The biggest challenge for organisations is the timely identification of the abnormalities or
deviations in their process executions. These deviations from the usual process execution
may result in the inability to achieve the desired business objectives driven by the process.
Failure to execute a process could be caused by a number of factors, the identification
of which requires a thorough investigation and root cause analysis. On the other hand,
the success criteria of any process could be dependent on a variety of elements, such as the
prompt completion of an order and delivery for an online purchase process. In other words,
the process is executed successfully when its services’ objectives are met, and vice versa.

Process mining techniques enable organisations to gain insight into their processes by
utilising the event data captured by services management systems. A process is a collection
of discrete activities or events designed to achieve a particular business objective. Process
mining techniques are focused on three main areas: (i) process discovery, dealing with the
discovery of the process models based on the behaviour of events [3], (ii) conformance
analysis, identifying inconsistencies between actual process executions and behaviour of the
process observed through the discovered process model [4], and (iii) process enhancement,
establishing a feedback mechanism for the improvement of the process model through
the learning of conformance analysis. Once a process model is discovered, conformance
checking apprehends the reality of synchronisation between the recorded logs and the
discovered model. Customer-centric organisations are focused on using the collected data
to measure the conformance of their business processes. This is one of the ways to make
sure that their service level is up to the standards for customer satisfaction. We further
explored the conformance checking techniques in this work to identify, spot on and classify
the anomalies and their severity in the execution of the business process. Furthermore,
customer-centric organisations use service management systems that interact with their
customers and execute the business processes. This execution generates a large amount
of data as events in the executing process are recorded by the system and these data are
used for gauging the performance of the process. The recorded events may be logged at
more than one information system, it is vital to first convert the raw process data recorded
by heterogeneous systems in the form of an event log, which enables data to be used for
process mining.

The concept of anomaly encompasses a wide range of definitions. An anomaly may
be an unusual execution, a noise in the log caused by an adverse event or a data input
error or even a fraud attempt [5]. We applied our methodology using a case study of
a telecommunication organisation’s call centre business process. A customer uses the
online diagnostic service to interact with an organisation’s customer services centre. Every
time the customer is interacting with the organisation, the process for the diagnosis of the
customer complaint is initiated. End to end interaction of each customer is recorded in
the system as an instance and based upon the outcome, labelled as failed or successful.
For example, if a customer’s service-related query is resolved then the case is successful,
otherwise it is failed. The failure of a process in such an environment can have many
repercussions on the business. It is vital to diagnose the reasons for process failure, identify
the improvement areas and provide root cause analysis for the abnormal behaviour in
the process.

Conformance analysis is the technique in process mining, during which events in
the event log are replayed on to the activities in the process model. Examining the syn-
chronisation between the recorded logs and the learned process models, conformance
analysis techniques provide an in-depth analysis of real-world, complex business processes.
The conventional approach to conformance analysis is the identification of deviations
from routine execution; however, routine execution of a business process is not necessarily
referred to as “optimal execution”. Using historical logs, we determined the ideal execution
of a business process so that conformance analysis techniques can accurately investigate
deviations in faulty instances. This technique led to the identification of the root cause
analysis for predicting business process execution abnormalities.
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In this paper, we provided a 360-degree perspective of process mining for profiling
abnormal behaviour in business process execution. First, we proposed a mechanism
for converting services-related process data generated from heterogeneous sources into
an event log. This event log is the starting point for the application of process mining
techniques. Secondly, we split the process log into successful and failed process instances.
This allowed us to individually understand the behaviour of the cases that leads to either
of the process outcomes. Thirdly, we discovered the optimal process model using the
successfully executed cases representing the best-case scenario of the process. Finally, this
discovered model is then used as a standard to compare the behaviour of recently executed
cases through several conformance checking techniques [4]. We used three techniques
of conformance checking to profile the difference between the behaviours of successful
cases and failed cases. We identified the existence of anomalies in the process execution
by performing causality analysis, and then performed a deep analysis of the different
behaviours between successful and failed cases using trace level and event-level alignment-
based conformance testing. Finally, root cause analysis is presented for business users to
identify and rectify the causes of process deviations resulting in process failure. We found
that cases with higher fitness scores are most likely to be successful while decreasing fitness
scores during instance execution predicts the trace will lead to the failed instance.

The main contributions in this research are highlighted as follows:

• We demonstrated the method to convert the heterogeneous sourced services-related
business process data into an event log. The starting point for data to be considered
for process mining is the event log. Using a real-world example, we demonstrated
how services management system data can be converted into an event log.

• We used several techniques of conformance analysis to identify the reason for failures
in process execution. This is a non-traditional application of conformance analysis for
identifying and analysing the root causes of process anomalies.

• The concept of a conformance lifeline is introduced to measure the fitness score
throughout the process. The decline in fitness in failure cases relative to the optimal
process reflects the underlying execution anomaly.

The remainder of the paper is structured as follows. Section 2 gives an overview of
related research. In Section 3, the methodology is described in detail and Section 4 mentions
the preparation of the dataset. The discovery of the optimal process model describing the
behaviour of perfectly executed process instances is presented in Section 5. In Section 6,
conformance analysis techniques are applied using the optimal process model and recent
logs with a mixture of successful and failed instances for abnormality detection. Section 7
presents the concept of the conformance lifeline for a deep dive into the evaluation of
abnormal behaviour.

2. Literature Review

Process mining techniques are generally used by far to analyse the execution of busi-
ness processes and suggest process improvements. There are three main types of techniques
considered in process mining: process discovery, conformance analysis and process en-
hancement [6]. Techniques for process discovery use an event log as an input to produce a
process model without having any prior knowledge about the process and its execution
steps. Four highly commended process discovery techniques are presented in the literature:
Alpha Miner [7], ILP Miner [8], Inductive Miner [9] and Heuristic Miner [10]. The second
type is conformance checking, which compares the event log with the discovered process
model to identify the conformance of the log concerning the behaviour of the process
exhibited in the identified process model [11]. The third type of process mining is an
enhancement that covers the improvement in an existing business process using the results
of the conformance analysis. Identified issues in the process execution are presented back
to the information systems in the form of suggestions/feedback. This feedback, when
incorporated into the systems results in the rectification of the concerns leading to improved
process execution. Although process mining promises a more in-depth analysis of execut-
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ing processes, managing actual business processes is a challenging task. The authors of [12]
proposed a solution to extract meaningful knowledge from complex business processes,
termed ‘Contrail processes’. The proposed solution is based on hierarchical clustering to
break down large process logs into more manageable sub logs.

The recent literature demonstrates that process mining techniques have been utilised
for anomaly detection and root cause analysis of business processes. In [13], the perfor-
mance sequence diagram analysis algorithm is used to derive behavioural characteristics
from both successful and failed business process event logs. Both pattern sets are evaluated
from the viewpoints of control flow and time, with the identified variations indicating
possible shortcomings in the respective business processes. The authors of [13] were able
to find the cause of failures in the business process when the technique was implemented
on several synthetic logs. In a recent work by Maeyens et al. [14], behaviour profiling
of machine logs is presented using the process mining techniques. A successful events
log is used to construct a process model which presents the ideal scenario of the machine.
The model was then used as a benchmark to analyse the difference in behaviour by other
machines. The difference in execution between successful and failed cases are used to
derive root cause analysis of failures. In similar work, Tariq et al. [15] proposed an online
process prediction framework using process mining features. The authors discovered
the process using heuristic mining. Conformance analysis was used to model features
presenting process context. The authors of [15] picked highly predictive features using
machine learning in real-world business algorithms. Through machine learning, these
features are used to predict the future outcome of the executing process. After the initial
clustering of cases, process mining techniques are augmented to extract features. The pre-
diction is then tested at four different stages of the process, referred to as cut-off times
of the process, and it is demonstrated that the proposed solution is very promising for
the earliest prediction. In a systematic review, Silva et al. [16] mentioned the complexities
of the machine-oriented industrial equipment inspection. This emphasises the need for
clustering techniques, such as segmentation of the large-scale industrial event logs and
timely prediction of abnormalities, especially in the context of Industry 4.0.

Our work can be seen as an extension of [14,15] in which we presented the conformance
in several depths for pinpoint identification of the fault, making it easier for business users
to identify the root cause of the failure in process execution. In contrast to [13,14], our
work is focused on the generic implementation of anomaly detection using conformance
analysis. The conformance lifeline technique allows for a further breakdown of process
traces and allows analysis of the event log at any given stage of the process. Gupta et al.
in [17] proposed a multi-stage method to identify anomalous traces and executions of
event logs generated by process-aware information systems and a root cause analysis
technique for anomalous traces. To detect deviations, the event log is converted into
a sequential dataset and application of window-based and Markovian techniques are
presented. The authors of [17] used decision tree classifiers to obtain the rules explaining
the root causes of anomalous transactions, while in this work we used several model-related
properties such as fitness score, misalignment and causality analysis to determine the cause
of abnormality in the business process. Root cause analysis by enriching the process log
and application of the classification techniques is presented in [18] by Suriadi et al. Relevant
information about root cause analysis is determined and the event log is enriched with
this information. As for classification techniques, the J.48 vlassification tree is applied
on an enriched log and data mining analysis is performed. In contrast, we solely used
process mining techniques, such as conformance checking, to present RCA to business
users which allowed the knowledge about the case abnormality to be extracted from
within the event log. In another work [19], techniques based upon the mixture of process
mining and machine learning are described. Security violations in the audit trail are
identified using the α-algorithm and any behavioural deviations from the identified model
are classified as violations. The methodology focuses on the security domain in a business
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process environment, which differs from a services-related business environment, we also
considered four process discovery algorithms to compete for the best model.

3. Proposed Methodology

This section presents the methodology for anomaly detection using process mining
techniques on the services-related business process data. This section describes the in-
novative technique proposed in this study for detecting anomalous behaviour during
the execution of real-world business processes. Successful business process execution is
used as a benchmark to detect irregularity in the process execution. The behaviour of the
events in the successful cases is compared with the behaviour of unsuccessful cases. This
comparison is made at several checkpoints during the execution of the process instance.
These checkpoints are based on the time spent on a specific case from the process start,
referred to as the time threshold.

At first, the raw event log is filtered into two variants, successful and failed instances.
The successfully executed cases are used to discover an optimal process model, which
represents the ideal behaviour of execution by process instances.Later, the process model
has been used as a behavioural benchmark to classify the abnormality in the failed instances.
Abnormal behaviour is compiled, grounded on three dimensions of conformance, which
are control-flow based, case-level alignment and event-level alignment. The proposed
framework is detailed in Figure 1. An optimal process discovery is performed using the
sub-log containing successful cases. Conformance analysis techniques are used to identify
the abnormal behaviour of the cases which lead to the failure of the process execution and
process improvement is established using knowledgeable feedback from the business users.

Figure 1. Proposed framework for anomaly detection using conformance analysis.

A trend of fitness f, calculated as Equation (2), is used as a normalised trend for
the fitness of events within the duration threshold. It is expected that in complex real-
world processes, the fitness score of all the traces is higher at the start of the process.
The reason is that generally, the early portion of the process is very similar in behaviour for
both successful and unsuccessful execution of process instances. As the process executes,
the fitness score is expected to decrease for the unsuccessful cases, as it is likely that there
must be a deviation from the ideal behaviour of process instances.

The fitness score of all the cases should be high at the start of the process and also near
the end. The reason for the increased fitness of unsuccessful instances both at the beginning
and at the end is that all types of cases behave similarly in both scenarios. This is because
process initiation is generally the same for all cases, and practically all cases eventually
converge on the same end classes. Therefore, it is hard to differentiate between successful
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and unsuccessful cases at start and endpoints. Thus, the fitness score of unsuccessful cases
is expected to be the same as successful cases.

The fitness score drops with a difference in the behaviour of unsuccessful cases when
aligned with the optimum process model. Hence, it is expected that the portion of the
process which is well aligned with the same portion of successful instances will have a
higher fitness score. At the same time, more deviation of fitness score should be observed
during other portions of the process between successful and failed cases.

4. Data Preparation

This section presents the pre-processing steps to utilise the raw event data. Data
from services-oriented processes are collected from their respective service management
systems [20]. Data are then converted to the form of an event log, making it feasible for
deeper analysis.

4.1. Event Log Generation

Service-related data are generated when a business process is executed using several
heterogeneous information systems. These data are generally in the form of unorganised
information, which is usable as an input to other information systems such as analytical
tools and dashboards. Data are mainly in several scattered output files; thus, combining
them into a sequential data structure is vital for further analysis. Therefore, raw event data
generated from real-world business process execution are not suitable for running process
mining techniques without converting the data into a standard event log format. A sample
event log from a public dataset BPI challenge ‘Process Discovery Contest event log’ 2019 is
represented in Table 1.

Table 1. Sample Log From Process_Discovery_Contest_2019 (Single case).

Case ID Activity Variant Variant Index z_2 z_1 z_4 z_3 z_6 z_5 z_8 z_7 z_9 lifecycle:transition z_10 z_11

10001 Start Variant 1 1 Start Start Start Start Start Start Start Start Start Start Start Start

10001 c Variant 1 1 0.848165 0.797125 0.680985 0.195904 FALSE 0.229026 0.612067 0.384933 TRUE complete 0.821351 FALSE

10001 h Variant 1 1 0.848165 0.797125 0.680985 0.195904 FALSE 0.229026 0.612067 0.384933 TRUE complete 0.821351 FALSE

10001 j Variant 1 1 0.848165 0.797125 0.680985 0.195904 FALSE 0.229026 0.612067 0.384933 TRUE complete 0.821351 FALSE

10001 af Variant 1 1 0.848165 0.797125 0.680985 0.195904 FALSE 0.229026 0.612067 0.384933 TRUE complete 0.821351 FALSE

10001 ao Variant 1 1 0.848165 0.797125 0.680985 0.195904 FALSE 0.229026 0.612067 0.384933 TRUE complete 0.821351 FALSE

10001 m Variant 1 1 0.848165 0.797125 0.680985 0.195904 FALSE 0.229026 0.612067 0.384933 TRUE complete 0.821351 FALSE

10001 d Variant 1 1 0.848165 0.797125 0.680985 0.195904 FALSE 0.229026 0.612067 0.384933 TRUE complete 0.821351 FALSE

10001 a Variant 1 1 0.848165 0.797125 0.680985 0.195904 FALSE 0.229026 0.612067 0.384933 TRUE complete 0.821351 FALSE

10001 g Variant 1 1 0.848165 0.797125 0.680985 0.195904 FALSE 0.229026 0.612067 0.384933 TRUE complete 0.821351 FALSE

10001 an Variant 1 1 0.848165 0.797125 0.680985 0.195904 FALSE 0.229026 0.612067 0.384933 TRUE complete 0.821351 FALSE

10001 End Variant 1 1 End End End End End End End End End End End End

Three primary attributes must exist for an event log to be considered for process
mining: (i) unique Case_ID, representing a single process instance including multiple
events in an ordered sequence, (ii) Event_ID, the representation of a single event that
belongs to a specific case. (iii) Timestamp, a description of the time when a particular event
occurred during the execution of a process’s instance. Event data extracted in this step are
not specific to an underlying process model; thus, this is a generic approach that should be
taken for all types of service-oriented business processes.

A Case_ID may contain several Event_IDs, and each Event_ID may have several at-
tributes reflecting the nature of an event, including Timestamp, description of the activity
performed, resources involved during those activities and cost factor. Generally, events
belonging to a specific Case_ID have similar attributes throughout the process log, and they
are also in the form of an order.

The term ‘trace’ refers to an execution path of events that are part of a unique process
instance. The trace reflects the order in which the activities of this path are executed from
the start of the process till the end. Thus, a trace [xyz] shows activities where x, y and z are
related events. Event x is completed before starting an event y, and that event y is executed
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before event z. So an event log is an ordered execution of events that belongs to a case.
Definitions of events, trace and event log are described by Van der Aalst in [6] as:

Definition 1 (Event, attribute). Let θ be the set of all possible events e in a trace. A trace t
represents a sequence of activities or events such that θ. Events can be characterised by a variety of
attributes, for example, an event may have an executor, as well as a cost and time stamp. Let AT be
a set of names for attributes belonging to an event e. Then, e ε θ , and name of an attribute n ε AT,
#n(e) = value of attribute n for event e,
it is also possible that event e has no attribute named n, then
#n(e) =⊥ (null)

For understanding, the following standard attributes of e are considered:

• #activity (e) is the activity associated with event e.
• #time (e) is the timestamp associated with event e.
• #resource (e) is the resource associated with event e.
• #trans (e) is the transaction type associated with event e.

Definition 2 (Case, Trace). Let κ be the set of all possible case identifiers in an event log. Like
events, cases can also be characterised by various attributes, e.g., an event may have an executor,
an associated cost and time stamp.

For any case c in a given log, c ε κ and name n ε AT so #n(c) is a value of attribute n for c.
Each case has a mandatory attribute trace, #trace(c) ε θ∗,
A trace is a finite sequence of events σ ε θ∗. Each trace should have at least one event and each

event may repeat itself in a trace.

Definition 3 (Event log). An event log L is a set of cases where L ⊆ κ, such that each log contain
at least one case and each case has at least one event, i.e., c1, c2, c3 . . . ε L.

Using these definitions, an event log is generated for the real-world data extracted
from a CDP. The set of questions Q = q1, q2, q3 . . . qn is treated as the events and each
end-to-end individual customer interaction is considered as a unique case c, such that c
where Q ε c.

4.2. Customer Diagnostic Process as an Example of Real-World Business Processes

In this paper, a real-world customer diagnostic process (CDP) at BT is considered as a
case study to, (a) determine how to extract the data from a complex business environment,
and (b) analyse the underlying process execution. Data are extracted from the business
process management system (BPMS) installed at the customer relationship department
(CRD). CDP is a term referred to the service-related business process where customers
interact with service providers for the solution of their service-related queries, using a
semi-automated chat service.

The event log generated as a result of the execution of CDP is collected at the database
servers of the relevant department of the organisation. Customers use this semi-automated
chat facility to contact CRD to solve their service-related queries. These queries could
be of different types, compassing different products and services. A predefined set of
system-generated questions is used to conduct diagnostics of the problem that customers
face. As with chat servers, customers are initially asked for the standard information,
such as their service type, location and nature of the problem they are currently facing.
The flow of the questions depends on the answers given by the customer, so the flow of
questions generated by the system is highly variable. During the series of questions and
customer replies, the system identifies the possible workaround to resolve the service-
related complaint. In Figure 2 the generic flow of CDP is presented.
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Figure 2. Cross functional diagram of a customer diagnostic process—an example of service-related
business process.

The majority of customers get their issues handled during the call, and this is consid-
ered successful execution of the diagnostic process. Whereas, it is also possible that the
customer’s query is not resolved during this process, which may happen due to several
reasons. These reasons could include the customers failing to respond to the questions
within the allotted time period or not providing discreet information about the problem. It
is also possible that the system could not identify the root cause of the customer’s problem,
or a solution is not possible to be implemented remotely.

In all such scenarios, process execution is considered either completely failed in
resolving the issues or partially failed as the customers have been given some timeline for
the diagnosis by involving human engineers. It is observed that the execution of such a
diagnostic process can have a direct impact on customer satisfaction with the organisation,
or even customer churn out in some cases. Each customer’s interaction with CDP is referred
to as a process instance, and it is recorded in the log by a unique case identifier.

Each question in the process is a trigger that defines the execution of the process from
that point; thus, each question is referred to as an event that occurred during a process.
A Case_ID can have multiple events and each event belongs to a single Case_ID. The sample
flow of events is presented in Figure 3 where each event is a representation of the questions
initiated from the system and customers as required to reply. It is observed that events
may repeat themselves within a process instance (represented as Case_ID). A series of these
questions lead to the completion of the diagnostic process.

Figure 3. Flow of events in the customer diagnostic process—start point, end point and events.

The raw event log contained around 4155 instances referred to as cases in the collected
dataset, 2,776,635 total events and 1933 unique events. These cases are related to several
customer categories that interact with the organisation’s call centre. The details of the
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products with the abstracted product names are mentioned in Table 2. The duration of the
cases varied between 1 min and 280 min. approx. Figure 4 shows the time of customer
instances in seconds.

Table 2. Categories of customers in the diagnostic process dataset.

Category Number of Instances

Product-A customers 2737

Product-B customers 232

Product-C customers 2

Product-D customers 68

Product-E customers 10

Product-F customers 19

Product-G customers 1036

Undetermined customers 51

Figure 4. Duration of cases in collected dataset from CDP. Screenshot of data explorer in ProM 6.10.

4.3. Checkpoints during Process Execution

This section presents the steps to create checkpoints in the executing instances. Several
techniques can be used to divide the complete trace of the process into several segments.
The technique used by Khan et al. in [21] used the percentage of the time spent from the
starting date and time (Sdt) of the process until target date and time (Edt), where (Edt)
is an initial target for the process to be completed, as defined at the start of the process.
Another technique is to create checkpoints based on the fixed duration checkpoints for the
executing process instance. However, both of these techniques do not consider the domain
knowledge of businesses. Process owners should be able to identify certain points in the
process execution at which the identification of possible anomalies may be beneficial.

In this work, a hybrid approach to checkpoint creation is used. Time-based thresholds
are used as suggested in [21], and domain knowledge of business users provides major
steps in the process of marking the time-based checkpoints. For experiments, two sub-logs
are created from the event log of CDP as illustrated in Figure 5: one sub-log with only
successful cases and the other with unsuccessful (failed) cases. Subsequently, each of these
individual event logs is split into several segments contains the events that occurred during
the identified period. The end-state of each case in the considered event log is labelled as
either successful or failed.
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Figure 5. The process of event log splitting.

4.4. Time-Based Division of Process Instances

Successful and failed cases are segmented into several sub-logs based upon the time-
based threshold presenting the duration of cases since the start of execution. The threshold
is a cut-off time that refers to the duration of the process’s portion used as an ‘active phase’
of the case for future outcome prediction. In the rest of the section, the cut-off time (25%,
50%, 75% and 90%) is expressed as time thresholds, calculated as Equation (1).

τ = (Et− St) ∗ i (1)

For each i:
τ = Cut off time threshold
St = Start time of the 1st event in the log
Et = End time of the last event of i

Figure 6 shows the cut-off time mentioned in comparison to the total time (Et− St).
For each of the cut-off portions of the process instance, where i = threshold % of the time.

Figure 6. Cut-off times for end-state prediction.

5. Optimal Process Discovery

This section illustrates how an ideal model is generated from a highly variable and
heterogeneous business process log. This optimal process model most closely approximates
the behaviour of cases as they are executed in the event log. Since an optimal process
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model should support the majority of possible behaviours in an event log, it should
not be over-generalised to allow every behaviour in an actual business process. In the
experimental setup, a noise threshold to filter out the lower frequency events is set as 10%.
This threshold is to avoid the behaviour of those cases to contribute to process discovery
which is less frequent.

Several process discovery algorithms are used to play-in the event log of successful
cases to discover the process model which correctly represents the ideal behaviour, leading
to the successful execution of a business process. This optimal process model tends to
represent the behaviour of execution of those instances which directly leads to the success
of the process. Yet, there could be some behaviour not captured in the event log which
can lead to successful execution and an optimal process model should provide a buffer to
accommodate such behaviours. To avoid the representational biases, we used DPN (data
Petri nets) for the representation of all models generated through several algorithms during
the discovery phase.

The quality of the discovered models is vital to be verified as each process discovery
algorithm has its strengths and limitations [3]. The quality of any process model can be
analysed with the help of four quality criteria: fitness, precision, generalisation and simplicity.
As generalisation and simplicity are not easy to quantify using any statistical methods
and they are proportional to the fitness and precision, the purpose is mainly served by
considering two main quality criteria, presented as below:

(a) Fitness is formally defined as a measure used to evaluate the quality of the process
model by calculating the events mismatch when an actual log is replayed with the discov-
ered process model. If a process model can replay all the traces in the process log without
any inconsistencies, it is said to have perfect fitness. The fitness (also referred to as replay
fitness) of a process model is defined in [3] as the validity of the conformance of the log
events when a replay of the events in the log is performed using Petri net tokens over its
discovered model. Equation (2) presents the fitness f of the trace σ for a given event log L
on pre-discovered process model N.

f itness(σ, N) =
1
2

log
(

1− m
c

)
+

1
2

log
(

1− r
p

)
(2)

where m = missing tokens, c = number of consumed tokens, r = number of tokens remaining
after replay and p = total number of tokens produced for a Petri net.

In Equation (2), σ presents the considered trace of the process log for replaying the
log into the process model, and η presents the Petri net model discovered through a miner
algorithm. The number of missing tokens m, number of consumed tokens c, number of
remaining tokens r and number of produced tokens p are all associated with the log σ.
The first part represents the proportion of missing tokens relative to the number of tokens
consumed. The second part calculates the remaining token fraction relative to the total
tokens generated through the log. The closer the value of fitness f to 1, the higher the fitness
of the model and the better the conformance related to the considered event log. Fitness is
the most vital metric for gauging the quality of the process model [3].

(b) Precision is a measure to quantify the behaviour allowed by the process model.
A discovered process model is considered 100% precise if replay only allows the behaviour
which is present in the event log. The overall precision of the model is presented in the
range of 0–1, where 1 is the highest precision average. A precision close to zero refers to
the underfitting behaviour of the model where not all possible traces can be mapped into
the model. In contrast, the model allows the behaviour in the process that does not exist in
the log. If precision is too high, equal or close to 1, the process model does not allow more
behaviours than the one already observed in the log.

To define precision, the approach presented in [22] is used. Let E ⊆ E be the set of
events in an event log L . M is the corresponding process model having a set of states S. Let
A be the set of activities and assume the default classifier e = #activity(e) ∈ A is the activity
associated with event e ∈ E. Precision of overall can be defined as follows in Equation (3):
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assume that M is the process model that represents the event log L, such that each event e
fits into the M. The state before occurrence of e can be computed as #state(e) ∈ S. Now, let
enM(e) ⊆ A be the set of activities enabled in M in #state(e). Similarly, enL(e) is the set of
activities that were earlier executed in the model M, thus having the same history.

precision(L, N) =
1
|E|∑

|enL(e)|
|enM(e)| (3)

The precision of the trace is calculated based on the behaviour which is observed vs. the
behaviour which is possible. If the precision is very high then model does not allow for much
more behaviour then originally observed in the log, thus |enM(e)| ≈ |enL(e)|. If the precision
is very low then it means that model allows for much more behaviour than observed in the
log, thus |enM(e)| � |enL(e)|. Figure 7 presents the two trace variations from CDP with 40
and 41 instances respectively, generated through ProM tool. Possible behaviour in the given
trace variant is t93, t98, t95, t97, t96, t94 and t92 whereas observed behaviour is t98.

Figure 7. Two trace variations from CDP with 40 and 41 instances respectively, generated through
the ProM tool.

Optimal Model for Service-Oriented Business Processes

It is vital that the process model used for compliance analysis be of the highest
possible quality. This section applies four well-known process discovery algorithms from
the literature to discover the model encapsulating the behaviour of log instances.

Alpha miner is one of the earliest algorithms developed for detecting concurrency in
event logs. It was the first in kind algorithm to discover several properties of event log such
as loops, parallel parts, and the conditional joins [23]. Heuristic miner mines the perspective
of the control flow in the event log. It focuses on the order of events with a specific case,
irrespective of the order of events in the overall event log. The timestamp of the events
identifies the control-flow perspective. The Inductive miner identifies the behavioural split
in the control flow of an event log and marks it with an operator. For the split sub-logs,
the same step is repeated, thus forming a process tree. The formation of a process tree
allows improved soundness of a process model. ILP Miner, derived from integer linear
programming (ILP) based replay algorithm. It uses the strategy of decomposing, which
merges the smaller fragments of decomposed event logs into a single event log [8].

A comparison of the average fitness and precision of the four process models dis-
covered using successful cases from the event log is shown in Figure 8. Based on the
best quality parameters, one of these models is selected, representing the behaviour of
process instances. A fitness close to 1 indicates that the maximum number of behaviours
observed in the log is re-playable from the process model. Precision should ideally be
between 0.7 and 0.8, which shows that model is not too precise to reject any new legitimate
behaviour nor too general to allow any possible behaviours. As shown in Figure 8, fitness
calculated through the Heuristic miner algorithm is 96.4, which is the highest among others,
Alpha miner had the second highest fitness score of 0.71 and Inductive miner resulted
in the lowest fitness score, which is an average of 0.61. The most increased fitness of the
Heuristic miner represents the directly followed behaviour of the events in the log.

On the other hand, the Inductive miner could not handle the incomplete traces from
the event log, which is a common scenario with real-world business processes. Like fitness,
the best average precision of the log is 0.83 with a Heuristic miner, and the lowest is 0.29
with the Inductive miner.
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Figure 8. Comparison of fitness and precision—process discovery by four techniques.

6. Setup for Conformance Analysis

A subset of the CDP event log is used for experiments including three different
classes of customers, ‘Product-A’, ‘Product-B’ and ‘Product-C’. After initial pre-processing,
3000 cases of varying lengths are used for experiments. The length of a trace ranges from
2 events in a trace to the max of 192 events in a trace, with an average size of 113 events
per trace. The number of unique event classes in the dataset is 64, and the total number
of events in the process log is 8100. A diverse variety of cases are among the event log,
with the number of starting event classes between 1 to 3 and end-event classes up to 7.
Starting event classes present the number of the starting point of traces in the event log,
and similarly, end-event classes define the number of endpoints in the traces.

The cases are labelled as either successful or failed, depending on how they have been
executed and their outcome. Balanced classes for both successful and failed cases are used
to evaluate the event log. For conformance testing, the ProM tool is used (v 6.10) on a
3.3 GHz Intel Core i5 8th generation desktop machine with 16 GB of RAM.

6.1. Fitness Calculation for Different Checkpoints

As presented in an earlier section, the event log is divided into several sub-logs based
on the time threshold using the cut-off time (25%, 50%, 75% and 100%). Each sub log
contains traces of the length 1

m of length Ln where n is the total length of the trace and m is
the number of segments as shown in the Figure 9.

Figure 9. Segmentation of the entire process trace into several sub logs.
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In this work, for CDP the presented value of m is three as the domain experts rec-
ommend three logical portions. Each sub-log may contain a different number of events.
For instance, sub-log A contains traces with the start of the process till around 33% of the
trace execution, sub-log B includes the middle portion of the trace, and sub-log C contains
the final 33% of the trace. The goal is to identify the failure by earliest identifying the
decreasing trend of the fitness score. The value of fitness is generated using the ProM tool
through the following steps:

1. Convert XES file for each of the sub-log. The plug-in used is the ‘XES converter’ in
ProM Lite 1.2.

2. Use XES log to discover the process model using the Heuristic miner algorithm
through the plug-in ‘Interactive Heuristic Miner’ in Prom 6.9.

3. Extract the data Petri net for each sub-log.
4. Use the ‘Multidimensional Conformance Analysis’ plug-in in ProM 6.10 to extract

case-level fitness.

Figure 10 shows the screenshot with each row presenting a sub-log, and the fitness score
is mentioned at the left corner. Table 3 presents the fitness score of some traces in tabular
form. Each row in the Table 3 presents the complete trace, divided into the three phases.

Figure 10. Trace level average fitness. Group size represents the number of traces with same events
and sequence. Screenshot of Multi-perspective Conformance Analysis plugin for ProM Lite 1.3.

Table 3. Fitness of cases in each relative phase of process execution.

Case_ID 1st Phase 2nd Phase 3rd Phase

122512092 0.97 0.60 0.71

122373345 0.97 0.36 0.92

122449625 0.97 0.80 0.88

122474226 0.97 0.54 0.80

122576970 0.97 0.44 1.00

122548386 0.96 0.73 0.00

122455056 0.96 0.79 0.83

122515716 0.95 0.60 0.60

122535683 0.95 0.53 0.00

122535651 0.95 0.61 0.92

122599947 0.95 0.00 0.00

122404265 0.95 0.50 0.60

122422896 0.94 0.50 0.90
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6.2. Causality Analysis for Abnormality Detection

This section presents the methodology for anomaly detection using process mining
techniques on the services-related business process data. Three conformance testing ap-
proaches from the literature are adapted in this study to be applicable to complex business
processes. The first technique is ‘causality analysis’, presented initially by Verbeek et al.
in [24].

Causality analysis focuses on the characterisation of all possible paths in an event
log. For this, process instances are required to be expressed in terms of process model
notation. Causality analysis is independent of the type of notation used, e.g., Petri net,
BPMN or UML activity diagrams. This work focuses primarily on Petri nets as it is the most
comprehensive used notation of the process model for mining processes. Additionally, Petri
nets support the heterogeneity present in service oriented business processes. We have
proposed our technique using the standard concept of causality matrix to find the difference
in behaviour between different variations of the process instances. Causality analysis is
performed on the CDP event log for each of the two types of instances (successful and failed
cases). The causality matrix is advantageous for analysing the direct relationship between
activities to establish credible causal connections between events in each class. The objective
is to compare the matrices of each type of instance to extract the behavioural differences
between them. The behaviour of events in successful cases provides the optimal scenario
for executing business operations. As indicated in unsuccessful cases, any variation from
successful cases’ behaviour is critical to analyse the root cause for improving the efficiency
of the processes. This suggests that instances that fail to execute successfully are undesirable
for business users and that fixing these deviations will indeed enhance process efficiency.

The causality relationship is converted to numbers and normalised using min-max
normalisation to project the value in the range of +1 and −1. A plug-in in ProM Lite 1.1
‘Convert Data-aware Causal Net’ by Maandhardt et al. is used to generate the matrix
in Figure 11. For instance, the directly followed relationship is mentioned in the form
of dependency measure value in Figure 11 as a causal activity matrix’s strengths scaled
between −1.0 (weakest-red) to 1.0 (strongest-green). The characteristics of the causal
activity matrix are as follows:

• A value of 1.0 shows that a direct causal relationship exists with certainty. These
values are represented as dark green in the matrix.

• A score between 0.5 and 0.9 implies that there is a strong likelihood of a direct causal
relationship. These values are represented with different shades of green from lighter
to dark, dependent upon the value.

• A value of 0.0 to 0.4 implies that it is not clear whether a direct causal relationship
exists or not. These values are represented with different shades of green from lighter
to dark, dependent upon the value.

• A score between −0.1 and −0.5 implies that there is a high probability that no direct
causal relationship exists. These values are represented with different shades of yellow
from lighter to dark, dependent upon the value.

• A value of −0.6 to −1.0 indicates that there is a certainty that no direct causal relation-
ship exists. These values are represented with different shades of red from lighter to
dark, dependent upon the value.

By using the plug-in ‘Discovery of Resources Causal Matrix’ plugin in the ProM tool,
causality matrices are generated for each of the variants of the event log, i.e., successful and
failed cases. Figure 11 presents the behaviour of events directly following each other in the
successful cases. The exhaustive list of unique events in the CDP process log is shown in
Figure 11.

A closer view of this causality matrix is shown in Figure 12, yet the actual IDs of the
events are abstracted due to data protection purposes. It can be observed that ‘Event-1’
directly follows ‘Event-2’ for 98% of the cases. Additionally, ‘Event-1’ is never followed
by any of the events in the log. ‘Event-7’ never follows ‘Event-1’, while ‘Event-1’ followed
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‘Event-7’ for 81% of the cases in the event log. Like ‘Event-6’, some events do not have any
preceding events.

Figure 11. Causal activity matrix for successful cases. Matrix’s strengths scaled between −1.0
(weakest-red) to 1.0 (strongest-green).

Figure 12. Closer view of the activity matrix for successful cases. Matrix’s strengths scaled between
−1.0 (weakest-red) to 1.0 (strongest-green).

Similarly, the behaviour of events in the failure cases is presented in Figure 13. Cases in
the CDP log labelled as ‘failed’ are used to construct this causality matrix. Figure 13 clearly
indicates that the behaviour of events in unsuccessful situations is not comparable to that in
successful cases. For instance, ‘Event-13’ follows ‘Event-1’ for 94% of cases. This is opposed
to the behaviour observed in successful cases, where there was no direct predecessor of
‘Event-1’. Additionally, there is a very weak correlation between ‘Event-26’ and ‘Event-6’.

Figure 13. Causal activity matrix for failed cases. Matrix’s strengths scaled between −1.0 (weakest-
red) to 1.0 (strongest-green).

6.3. Difference between Causality Matrices

This section presents the distinction between instances that are referred to as successful
and instances that are referred to as failed. Figure 14 shows the difference between the
direct relationships of both successful Figure 11 and unsuccessful cases Figure 13. Values
in Figure 14 are calculated as a difference between causality scores in both matrices of
successful and failed instances. Details of the scores in Figure 14 are as follows:

• A value of score 0 shows that there is no difference in sequence for the corresponding
activities. These values are represented as dark blue in the matrix.

• A value of score 2 presents the maximum difference between corresponding actives in
successful and unsuccessful matrices. This means that there exists a totally opposite
behaviour of events to each other such that, if A→ B relation in one class of instances,
its B→ A exists in the other class.
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• Values between 0.01 and 1.99 are represented with different shades of blue to red,
dependent upon the scores. Higher scores show a greater difference in the causality of
the corresponding events, and vice versa.

Figure 14. Difference between two causality matrices. A small portion of the matrix is presented.
Matrix’s strengths scaled between 0.00 (No difference-Blue) to 2.00 (Max difference-red).

The dark blue colour presents that there is no difference between the direct relationship
of events, whereas the colour ranging from white to red shows the difference in the causal
relation ranging between 0.01 and 1.99. For instance, a dissimilarity of 1.99 is observed
between ‘Event-8’ and ‘Event-12’. The reason for this divergence is that the former event
never directly followed the later event in any of the successful cases but always followed in
the failed cases.

Although causality analysis provides a difference in directly followed relationships
between two variants of cases, there are still several limitations. First, to compare two
causality matrices belonging to different categories of instances (successful and failed), it
is essential that both matrices are of equal size. It means that the same number of event
classes should be there in both types of instances. This is very rare in a business process
environment as one set of cases may have fewer or more event classes than another. The
next two sections present techniques to interpret such complex event data.

6.4. Trace-Level Alignment for Abnormality Detection

In this section, trace-level alignment details are used to measure the variation between
the optimal process model and the replay of the event log with the failed cases (Section 6).
Control flow-based approaches, like the one in Section 6.2, usually do not look at the
timestamps of the events or other event properties that are usually found in real-world
logs. All of the properties of events in the log are important for a thorough process mining
analysis. One such aspect of the analysis is observing the ‘overall behaviour’ of the complete
trace, which is discussed in this section.

At the trace level, several types of deviations are possible from an optimal pro-
cess, as presented by Van der Aalst in [6]. The trace-level analysis is performed on
following characteristics:

(i) Model move: an activity that should have occurred in accordance with the ideal process
model but is not recorded in the log.

(ii) Log move: an event which is present in the log but cannot be mapped to any activity in
the process model, incorrect data: data which are there in the log but not possible to
map with a process model,

(iii) Missing data: refers to some missing data in the log.

Separate cost functions can be specified for each type of deviation identified because
of the conformance analysis. The default value of cost function is used, which is 1 for all
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type of deviations [25]. A screenshot of the ProM plug-in ‘Multi-perspective Conformance
Analysis’ for alignment calculation is shown in Figure 15.

Figure 15. Case-level alignment: the optimal model is replayed with the log of failed cases.

For each of the traces which are part of the event log with failed cases, the corre-
sponding alignment is calculated over the Petri net discovered for the successful cases.
In Figure 15, a coloured view of the log presents the alignment checking results generated
through the ProM 6.10 tool. Each row represents a group of an end-to-end execution
of similarly executed traces with events classes highlighted with a specific colour. The
green colour represents the exact alignment of the event with the optimal process model,
whereas log moves and model moves are highlighted with yellow and purple. Model
moves (grey and purple) identify those events present in the log with successful cases; thus,
this behaviour is replicated in the optimal process model.

There may be several reasons for missing events in the log with failed cases, such as
failed cases miss those essential events which must be present in the instance for successful
execution. The start of the process is generally misaligned as the model is expected to have
a starting point with an event ‘Asset selection’, but failed instances (highlighted as grey in
Figure 15) are skipping the starting event. This information may not always be helpful to
consider such behaviour as an abnormality as the process starting point for failed cases
could deliberately be different. Yet this information is useful for further in-depth analysis of
each specific case. Similarly, model moves (highlighted as yellow in Figure 15) are explicitly
such events that are present in the failed cases but never observed in the successful log.
These events could be the most important to analyse as they could lead to the failure of the
process. Detailed analysis of the trace alignment is presented with several other matrices
for the conformance in Table 4.

Three different subsets of real-world logs captured at different timings, including
successful and failed cases, are used for detailed experiments. Each log is mentioned in
Table 4 as A, B, C. For each of the logs, an optimal process model is generated, and failed
cases are used to analyse the conformance. In Table 4, ‘A’ presents the results from the log
containing cases for customers with a mixture of BT product services. The average fitness
of the model is very high in successful cases, which is around 9% improved than the failed
cases. This difference is a direct repercussion of the behaviour which is present in the failed
cases. Fitness is computed against the alignment between the optimal process model and
failed cases.
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Table 4. Trace-level alignment results from the log containing cases for customers belonging to
mixture of BT products.

A: All Customers B: Product-A Customers C: Product-B Customers

Successful Cases Failure Cases Successful Cases Failure Cases Successful Cases Failure Cases

Event classes 64 64 64 64 62 62

Number of moves observed 14,021 14,073 17,118 11,623 9255 7243

Number of moves possible 57,070 56,140 69,397 43,704 22,964 17,748

Average fitness % 96.4 87.6 90 88.8 87.7 70.4

% Event violations 2.3 11 5.9 8.8 8.6 24.1

Number of correct events 8064 7978 9532 6094 5118 3908

Number of wrong events 36 762 200 178 264 960

Number of missing events 150 220 394 408 216 278

The change in fitness results from the deviations that caused the nonconformity in the
failed cases. Degradation in fitness directly relates to the event violations, rising from 2.3%
to 11% in the failed cases. Event violations represent those events that are present in the
failed cases but have not been able to be replayed using a process model constructed by
the successful cases. It is clear that the presence of misalignments in the failed cases has
increased the number of wrong events (the events which are not in the log but expected
according to the model) from 36 to 762 and the number of missing events (the events which
are in the log but not expected according to the model) from 150 to 220.

A similar trend is observed in Table 4 for B and C event logs. In B, the model’s fitness
replayed with failed cases showing a decrease from 90% to 88.8%, and % event violations
increase from 5.9% to 8.8%. More obvious degradation in the process model’s quality is
observed when the third event log is analysed. With average fitness decreasing to around
17%, the highest difference of wrong events is observed with the increase from 264 to
960 events.

6.5. Event-Level Alignment for Abnormality Detection

There is a noticeable difference in the control flow and alignment of the successful
and failed cases. As a business user, this information is helpful, but it does not incorpo-
rate the exact details of the abnormalities in the execution, which causes the process to
be unsuccessful.

To locate the exact position in the process where abnormality exists, the ‘multi-
perspective process explorer’ is used as mentioned in [25]. This plugin for ProM is devel-
oped to get insights into the process instances by measuring fitness and precision at each
event level. One of the ways to find abnormalities in the overall process execution can be
to look at the difference in event-level behaviour between the cases with anomalies (failed
cases) and correctly executed cases (successful cases). The techniques presented in [25]
are exploited in this work for the identification of the deviations at the event level from
the optimal process model. For instance, consider Figure 16 showing the identified events
(with life-cycle transition) in red.

An event ‘End Call’ is a part of an optimal process model, but its transaction fit-
ness is 0%, which means that no instance of the failed event log traversed this portion
of the model. This information is useful when considering deep investigation for the
abnormality analysis.

It is possible to analyse the event level fitness of the process model, highlighting the
impact of the alignment of failed event log on the optimal model. In Figure 17, another
event, ‘Event-X’, is reviewed where the transition fitness is 95.45%, with 188 correct events
(the events which are present in the log and expected from the model). 5.5% fitness
decreases (in Figure 17) at this transition resulted due to 9 missing events. IDs of the
missing events can be extracted from the ProM plug-in ‘multi-perspective process explorer’.
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This analysis is helpful for business users to identify several missed events at the level
of each transaction. Further assessing those cases where there are nine missing events,
a behaviour can be observed, leading to the failure of the cases. Another level of analysis is
place-level analysis where the fitness is measured at the places in the Petri net model where
transition fitness is less than the average fitness of the overall event log.

Figure 16. Event-level alignment at the identified events (with life-cycle transition) in red. Screenshot
of Multi-perspective Conformance Analysis plugin for ProM Lite 1.3.

Figure 17. Event-level alignment at the identified events when failed cases are traversed with optimal
process model. Screenshot of Multi-perspective Conformance Analysis plugin for ProM Lite 1.3.

In CDP, the average fitness of the log is 96.4, as shown in Table 4. The next step is to
further explore all of the event classes where event-level fitness is less than 96.4. In Figure 18,
an event class ‘Event-Y’ has a place fitness of 94.3%, thus place level analysis is performed.
It is identified that at place p15, the event violation is 52.3%. This means that for each 52
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out of 100 cases, misalignment is observed. A total of 394 wrong events are identified at
p15, and details of these wrong events are also determined to be presented to the business
users. At p15, the event ‘XXX’ is observed 232 times and ‘YYY’ is monitored 162 times.
A behavioural deviation in failed cases, along with the information about its placement, is
essential for business users to rectify of these deviations.

Figure 18. A behavioural deviation in failed cases. Screenshot of Multi-perspective Conformance
Analysis plugin for ProM Lite 1.3.

7. Conformance Lifeline

As seen in an earlier section, the fitness of the unsuccessful cases varies from the
fitness of successful cases, showing that there is a behaviour change in the control flow of
the failed cases. When this change is checked at several checkpoints during the process
execution, a fitness score line is projected, which can be further analysed to provide root
cause analysis in the next section.

This section presents the difference in fitness score between successful and failed
cases as a conformance lifeline. The term ‘Conformance lifeline’ is adopted from healthcare
where an electrocardiogram (ECG) is used as a test to check a patient’s heart’s rhythm and
electrical activity.

In Figure 19, the average fitness scores of successful cases with the failed cases are
compared for all the instances belonging to an individual sub log. It can be seen that there
is an apparent difference between fitness scores for events at the very start of the process
execution. Successful cases had a fitness score of 0.97 compared to 0.88 for the failed cases.
This gap further opened up when the process was almost halfway completed. At 50%
of the process execution, the overall fitness of the failed cases had a steep degradation.
The average fitness score of the failed cases is around 20% less than the score of successful
cases. The fitness gap again shrinks back to around 10% near the end of the process.
Successful cases present an average fitness score of 83% with a score of 72% for failed cases.
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Figure 19. Difference between average fitness of successful and failed instances at each phase
of process.

Root Case Analysis Using Conformance Lifeline

This section provides the usability of the conformance lifeline technique as a root cause
analysis to identify abnormalities in the overall event log and also for individual cases
during the process execution.

The first realisation, in Figure 19, is that the portion of the business process which
is under sub-log B is the main contributor to the overall fitness score difference. This
information is very straightforward for business users and allows quick improvement
measures. Domain experts can identify those activities/events executed during the middle
portion of the process. This will help the domain experts to tune the specific portion of the
process without changing the overall structure of the process.

Furthermore, a deep-dive analysis of failed cases is done in this work to realise the
root cause of the fitness score gap. The fitness of each failed case is generated for three
sub-logs and presented in the form of a coloured plot in Figure 20, where the fitness of
each of the traces from the failed cases is reviewed to look for the trend. All of the instances
started with an average fitness of 0.88 with a maximum fitness of 1.0. Except for 20% of the
traces, all other traces show a decrease in their fitness score. Some cases terminated at the
end of sub log A or sub log B (showing 0 fitness). The rest of the cases showed no fitness
improvement in the middle portion of the process.

Figure 20. Fitness of individual failed cases generated for three sub-logs and presented in the form
of a coloured plot. Calculated through Multi-perspective Conformance Analysis plugin for ProM
Lite 1.3.

It is also presented in Figure 20 that 832 cases out of a total of 907 in the second phase
are below the average fitness of successful cases, presented as a red line. The total number
of cases that are identified as failed and yet had a lower fitness value than successful cases
is 75. This shows that a decrease in the fitness score allows the prediction of an anomaly
with an accuracy of 91.73%.
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As businesses strive to reduce process execution irregularities, the deviation from the
ideal business process execution is not acceptable. Additionally, abnormalities in processes
may use more resources than anticipated during process planning. Loss of service quality
and problems with auditing and fraud are few additional effects of non-conformance in
process execution. The techniques used for the early prediction of business processes in this
research extend the outcomes of process mining by identifying the ’outcome’ of the process
at any time or phase of the process during its live execution. As a result, organisational
business users can estimate whether their business processes are executing according to
plan or, at the very least, according to the specifications specified in a documented standard
process model.

8. Conclusions

Process mining techniques enable organisations to gain insights into their processes
through the use of event data collected during the execution of those processes. Process
mining techniques are focused on three main areas, (i) process discovery, dealing with the
discovery of the process models based on the behaviour of events, (ii) conformance analysis,
identifying inconsistencies between actual process executions and behaviour of the process
observed through the discovered process model, and (iii) process enhancement, establishing a
feedback mechanism for the improvement of process model through learnings gained from
the conformance analysis. Conformance analysis gives a 360-degree view of the retrieved
event log for analysing anomalous business process behaviour. This paper presents novel
techniques of conformance analysis for a deep dive analysis of the real-world complex
business processes for service-oriented organisations. Individual fitness trends for process
instances in the event log are examined for early detection of abnormalities in real-world
business processes. The fitness trend enables failure forecasting as well as root cause
investigation of issues that cause failure in a business process. Three conformance analysis
techniques from the literature are used to find similarities and relevant discrepancies
between simulated and observed behaviour in process logs. Using a real-world business
process, the proposed framework and conformance techniques are validated. This work
focuses on service-oriented business processes whose execution traces are challenging to
mine. The results of ‘case-level’ and ‘event-level’ conformance testing are presented to
illustrate the variances in patterns across various types of process instances. A conformance
analysis solution is augmented with root cause analysis for abnormality prediction based
on a decreasing fitness score. The concept of a ‘conformance lifeline’ is introduced for the
early prediction of process instance execution anomalies. As the proposed techniques are
based on historic event logs with a labelled outcome, yet in the future, we will explore the
opportunities to include autonomous techniques for the identification of the success or
failure of an execution business process.
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