f_f algorithms

Article

The Need for Speed: A Fast Guessing Entropy Calculation for
Deep Learning-Based SCA

Guilherme Perin !, Lichao Wu 2 and Stjepan Picek 3*

check for
updates

Citation: Perin, G.; Wu, L.; Picek, S.
A Fast Guessing Entropy Calculation
for Deep Learning-Based SCA.
Algorithms 2023, 16, 127. https://
doi.org/10.3390/a16030127

Academic Editor: Christos D.

Zaroliagis

Received: 25 January 2023
Revised: 12 February 2023
Accepted: 17 February 2023
Published: 23 February 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Niels Bohrweg 1,

2333 CA Leiden, The Netherlands

Faculty of Electrical Engineering, Mathematics & Computer Science, Delft University of Technology,
Mekelweg 5, 2628 CD Delft, The Netherlands

3 Digital Security Group, Radboud University, Houtlaan 4, 6525 XZ Nijmegen, The Netherlands

*  Correspondence: stjepan.picek@ru.nl

Abstract: The adoption of deep neural networks for profiling side-channel attacks opened new
perspectives for leakage detection. Recent publications showed that cryptographic implementations
featuring different countermeasures could be broken without feature selection or trace preprocessing.
This success comes with a high price: an extensive hyperparameter search to find optimal deep
learning models. As deep learning models usually suffer from overfitting due to their high fitting
capacity, it is crucial to avoid over-training regimes, which require a correct number of epochs.
For that, early stopping is employed as an efficient regularization method that requires a consistent
validation metric. Although guessing entropy is a highly informative metric for profiling side-
channel attacks, it is time-consuming, especially if computed for all epochs during training, and the
number of validation traces is significantly large. This paper shows that guessing entropy can be
efficiently computed during training by reducing the number of validation traces without affecting
the efficiency of early stopping decisions. Our solution significantly speeds up the process, impacting
the performance of the hyperparameter search and overall profiling attack. Our fast guessing entropy
calculation is up to 16 x faster, resulting in more hyperparameter tuning experiments and allowing
security evaluators to find more efficient deep learning models.

Keywords: side-channel attacks; deep learning; guessing entropy; validation phase; fast
guessing entropy

1. Introduction

Side-channel attacks (SCA) explore the unintentional leakages (power consumption,
time, and electromagnetic emissions) from electronic devices running secret-sensitive
operations such as embedded cryptographic algorithms. Profiling SCA, one of the most
popular attack methods, is widely considered by developers and manufacturers when
assessing worst-case security with the strongest adversary assumptions [1,2]. This attack
assumes an adversary has a clone (open) device to build the strongest possible probabilistic
model from collected side-channel measurements. Thus, the adversary applies the model
to the victim’s devices to recover the secret. If the profiling model is correct and can learn
existing side-channel leakages, a profiling attack phase usually requires fewer side-channel
measurements compared to non-profiling attacks [3-5].

Template attacks are the most classic form of profiling SCA [1]. Template attacks
theoretically represent the strongest profiling model because of the typical underlying
statistical distribution of side-channel leakages following multivariate Gaussian (or nor-
mal) distributions. Machine learning methods have also been considered for profiling
attacks [6,7], while their statistical parameters are learned from side-channel measurements
rather than directly computed. Both Gaussian templates and machine learning models

Algorithms 2023, 16, 127. https:/ /doi.org/10.3390/a16030127

https:/ /www.mdpi.com/journal/algorithms


https://doi.org/10.3390/a16030127
https://doi.org/10.3390/a16030127
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-7509-4337
https://doi.org/10.3390/a16030127
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16030127?type=check_update&version=1

Algorithms 2023, 16, 127

20f16

require feature selection. In the case of protected cryptographic implementations, the in-
ability to make efficient feature selection (by selecting leakage samples with the highest
Signal-to-Noise Ratio—SNR) may become a limiting factor to building optimal profiling
models. Indeed, an effective feature selection requires a strong correlation between the
leakages and processed intermediate data. For instance, in the presence of masking coun-
termeasures, evaluators select the best features (or points of interest) by knowing the secret
random masks. Then, one can deploy worst-case security evaluations to emulate the adver-
saries having access to the source code and secret shares during profiling. Additionally,
template and machine learning-based models are susceptible to desynchronization effects
in side-channel measurements, thus bringing additional challenges.

In recent years, the adoption of deep neural networks (DNNSs) for profiling SCA
has provided competitive (and, in some cases, superior) results compared to template
attacks and classical machine learning-based methods, especially against AES implementa-
tions [8,9]. Without feature selection, which implies considering a weaker adversary, deep
learning-based SCA can break cryptographic implementations protected with different
countermeasures, such as Boolean masking and timing desynchronization [10]. Their high
complexity follows the high learning capacity of DNNs; the expensive hyperparameter
tuning becomes a limitation to fully exploring the full potential of deep learning (DL) to
find vulnerabilities in software and hardware implementations.

To make the hyperparameter tuning process more efficient, one tries to define appro-
priate hyperparameter ranges, which directly reflect the number of trainable parameters.
Indeed, smaller DNNs may limit the learning capacity of a model, underfitting the profiling
side-channel traces and providing poor attack performance. On the other hand, adding
too many network layers results in larger models that can easily overfit and learn a subop-
timal profiling model, thus reducing the possibility of fitting the existing leakages. One
straightforward way to avoid this problem is by allowing larger models to be trained with
regularization, restricting the model’s capacity during training. Dropout, weight decay, and
data augmentation are well-known methods for regularization, but their indirect influence
on the attack performance adds newly introduced hyperparameters to the tuning process.
Alternatively, early stopping is a very efficient regularization mechanism that monitors
a validation metric and saves model parameters (weights and biases) when the training
reaches the best generalization moment.

An efficient early stopping implementation in profiling SCA requires monitoring the
most appropriate metric. Reducing cross-entropy loss has been widely considered as the
main training objective [11]. This is especially advantageous when security evaluations
follow worst-case assumptions where learning an optimal model, which has good general-
ization, should also provide the smallest possible validation loss value. Unfortunately, in
profiling SCA, collected leakages are normally extremely noisy because of the environmen-
tal noise and implemented countermeasures. This usually leads the profiling process to
end up in a suboptimal model. In those cases, as also empirically demonstrated in [12], val-
idation loss and accuracy are inconsistent with SCA performance (i.e., key recovery) when
the model is trained on protected datasets and, sometimes, overfits. Although the model
can be optimized through gradient descent by minimizing the generic loss functions (such
as categorical cross-entropy or negative log-likelihood), the calculation of guessing entropy
(GE) from a set of validation traces is consistent and highly informative concerning the
profiling model generalization in SCA. The main reason is that GE measures the summation
likelihood for each possible key guess over a set of traces instead of assessing the individual
probabilities of expected classes only, as is the case of machine learning metrics. Therefore,
applying empirical GE as an early stopping metric tends to be reliable in assessing model
generalization during training. However, empirical GE provides significant overheads
depending on the validation set size. If early stopping is adopted with hyperparameter
tuning, the process becomes very slow and, in some cases, impractical.

Contributions: To address the unsolved problem of having a highly efficient early
stopping metric for profiling SCA, we propose a fast guessing entropy calculation by simply



Algorithms 2023, 16, 127

30f16

reducing the number of validation traces when accessing model generalization during
training. By doing so, we show that the trained models do not suffer in performance,
but the training process becomes significantly faster, allowing more detailed tuning. Our
fast GE method (denoted FGE) is especially important when security evaluators relax
adversaries’ assumptions and do not assume the knowledge of secret random masks. For
this reason, deep learning-based profiling attacks tend to become more difficult, requiring a
larger number of model search attempts. We compare the FGE method with state-of-the-art
metrics for early stopping and guessing entropy in a deep learning-based SCA context.
We show that FGE estimation is highly competitive and provides superior results with a
negligible time overhead in all scenarios. With FGE, training with early stopping becomes
faster, allowing hyperparameter tuning to deploy more search attempts and increasing the
chances of selecting the model with higher performance. Our code is publicly available
at https://github.com/AlSyLab/fge_sca (accessed on 26 January 2023).

2. Background

In this section, we start by providing details about deep learning-based SCA and
commonly used metrics. Afterward, we discuss the datasets we use in our experiments.

2.1. Deep Learning-Based SCA

Profiling SCAs consider the strongest adversary with access to a clone device running
the target cryptographic algorithm. The adversary can query the clone device with any set
of plaintext P = (po, p1, .., pn—1) and chosen keys K = (Ko, K1, ..., Ky_1), and measure
side-channel traces X = (xg, x1,...,Xn_1). These traces (Xprof) are used for training the
classification algorithm (i.e., to build a machine learning model). This phase is known
as the training or profiling phase. During this phase, a validation set, X,,;, containing V
traces, is selected from the profiling set to validate the model. Next, the adversary obtains
measurements from the target device, where traces (X,1,c) are also captured with a known
input but unknown (secret) key. The previously trained model is then exploited to recover
the secret key k* used in the target device. This phase is known as the attack or test phase.

The template attack is the first introduced profiling approach in SCA [1]. This attack is
also the best possible if sufficient (infinite) training traces are available [13]. Over the years,
machine learning and deep learning algorithms have been shown to be more powerful
in realistic scenarios, where noise and countermeasures further reduce the measurement
quality [8,9]. While the profiling attack assumes a more powerful attacker than a non-
profiling one, it requires significantly fewer traces than direct attacks to break the target:
sometimes, only one trace could be sufficient.

Profiling SCA considers different methods to build or learn the statistical parameters
representing a profiling model f (). The template attack assumes that side-channel leakages
follow a multivariate Gaussian distribution [1]. The profiling phase consists of computing
statistical parameters for a Gaussian mixture model (0 is given by mean and covariance
parameters). Thus, the model is built for each possible hypothetical leakage class (e.g., all
possible Hamming weight values of a byte). In the attack phase, the adversary computes
the probability that a new side-channel measurement (under attack) belongs to a specific
class by using the computed probability density function from the approximate statistics.

In the case of machine learning (including deep learning), the statistical parameters
6 (e.g., weights and biases in the case of neural networks) are learned from profiling
traces X, during the training phase. The deep neural network can skip feature selection
from X, which is an advantage over classic machine learning techniques and template
attacks [14].

In the attack phase, the adversary obtains a probability vy that the set of attack traces
Xattack process the key byte k € K, according to:

0-1
o= ) log pl(d;, k)|xi], 1
i=0


https://github.com/AISyLab/fge_sca

Algorithms 2023, 16, 127

40f16

where [(d;, k) is the leakage function computed from public information d; and the key
hypothesis k. In our case, as we attack AES implementations running encryption executions,
the leakage function is given by I(d;, k) = S — box(d; & k) for the Identity leakage model or
1(d;, k) = HW(S — box(d; @ k) for the Hamming weight (HW) leakage model. The public
value d; is the corresponding plaintext byte. The recovered (guessed) key byte k from
Xattack 18 then obtained as:
k = argmax([vg]). 2)
keK
If the model is good (i.e., it learned the leakage), then the recovered key is k* or at least
k* is among the best guesses.

2.2. Metrics

The training process has the minimization of the selected loss function as the main
goal. In this paper, we consider the categorical cross-entropy (CCE) as the loss function. As
demonstrated in [12], due to the imbalanced dataset problem, the validation loss function
values (including CCE) can be inconsistent with SCA metrics, which is also the case of
SCA-based loss functions, as already proposed in [15,16]. Therefore, we must select a more
efficient validation metric to assess the model’s performance for SCA.

Metrics such as guessing entropy are commonly used by an adversary to estimate the
required effort to obtain the key [17]. A side-channel attack outputs a key guessing vector
g = [81,82,- -+, §|x|] in decreasing order of probability, i.e., g1 represents the most likely
key candidate and g|i| the least likely key candidate. Guessing entropy is the average
position of k* in g. Commonly, the averaged value is calculated over multiple independent
experiments to obtain statistically significant results. In this paper, this GE method is
called empirical GE, and it is evaluated on a set of V validation traces, where the results of
multiple key rank executions are averaged and performed on a partition Q from V.

2.3. Datasets
We consider three datasets commonly used in research on deep learning-based SCA.

2.3.1. ASCAD

We evaluate ASCAD datasets (https://github.com/ANSSI-FR/ASCAD, accessed on
26 January 2023) that contain side-channel measurements collected from the first-order pro-
tected software implementations of AES-128 running on an 8-bit AVR microcontroller [18].
There are two versions of the ASCAD dataset. The first version, ASCADf, has a fixed key
and 60,000 traces. We split the dataset into 50,000, 5000, and 5000 for profiling, validation,
and attack sets, respectively. The second version of the ASCAD dataset, ASCADr, has fixed
and random keys, and it consists of 300,000 traces. In this case, we consider 200,000 for
profiling (with random keys), 10,000 for validation, and 10,000 for the attack set. Both
validation and attack sets have a fixed key. For both versions, we attack the third key byte
(the first masked byte) by using the trimmed intervals already extracted and released by
the authors of the dataset. Thus, we use a pre-selected window of 700 features for ASCAD,
while for ASCADr, the window size equals 1400 features. For all experiments, the datasets
are labeled according to the leakage model from the third S-box output byte in the first
AES encryption round, i.e., S — box(p; @ k;) and HW (S — box(p; @ k;)) for the Identity and
Hamming weight leakage models, respectively.

2.3.2. CHES CTF 2018

This AES dataset was released as part of the Capture-the-Flag (CTF) (https://chesctf.
riscure.com/2018/content?show=training, accessed on 26 January 2023) competition in
the Cryptographic Hardware and Embedded Systems (CHES) workshop in 2018. Four
sets of 10,000 traces featuring encryption operations of a first-order masked software
implementation were released for profiling purposes. These four sets were measured from
four different STM32 platforms, namely A, B, C, and D. Two additional sets of 1000 traces


https://github.com/ANSSI-FR/ASCAD
https://chesctf.riscure.com/2018/content?show=training
https://chesctf.riscure.com/2018/content?show=training

Algorithms 2023, 16, 127

50f16

were released as attack traces from devices C and D. In our experiments, we consider
the three first sets A, B, and C, containing random keys and random inputs, as a set of
30,000 profiling traces. The set from device D, containing the fixed key, is then used as
an attack and validation set. As side-channel measurements from CHES CTF contain
650,000 samples points per trace, we performed a window resampling on the traces and
concatenated two intervals representing the mask processing before encryption and target
intermediate operation, i.e., the S-Box in the first encryption round. The resulting dataset
contains 4000 sample points. Both trace intervals are selected through a visual trace
inspection. Note that source code and secret mask shares are not provided for this dataset.

2.4. Leakage Models

A leakage model is a function that maps the hypothetical data value toward the
(approximation of) physical leakage of the device. Common leakage models take either
the Hamming weight of the hypothetical data (assuming that the physical leakage is
proportional to the number of ones in the intermediate value) or the direct value of the
physical leakage (usually denoted as the identity leakage model).

3. Related Works

Optimizing performance in DL-based profiling SCA has received significant attention
in recent years. Due to the expensive trial-and-error cost in the profiling phase, enhanc-
ing the performance in DL-based profiling SCA is challenging. In recent years, the SCA
community has considered two main alternatives to improve the attack efficiency: (1) by
defining small neural network models that are faster to train and easier to tune [8,9] and
(2) by reducing the number of the required profiling traces during training [19]. Both
solutions can have severe impacts on the attack or generalization performance. The first
approach may result in models that underfit for more noisy leakages or leakages obtained
from other devices (portability problem [20]). The second alternative speeds up the process;
still, it may result in limited learnability due to the eventually low number of profiling
traces. To obtain small neural network models, one needs to use appropriate techniques.
Zaid et al. [8] and Wouters et al. [21] worked on designing methodologies for finding effi-
cient neural network architectures. They both reported state-of-the-art results at the time
while using significantly smaller neural networks than related works. Rijsdijk et al. [9] and
Wau et al. [22] investigated advanced hyperparameter tuning techniques such as reinforce-
ment learning and Bayesian optimization, respectively. The obtained results managed to
further reduce the required number of attack traces to reach GE of 1, but with non-negligible
computational complexity due to the tuning procedure. Perin et al. showed that even a
random search could find very successful neural network models and that ensembles of
neural networks can significantly outperform single models [23]. An alternative approach
was followed by Perin et al., where the authors pruned neural networks while maintaining
good performance [24]. The authors showed it was possible to remove up to 90% of the
neurons and maintain the performance.

Besides the methods mentioned above, a third alternative uses efficient and reliable
validation metrics to evaluate training and implement faster hyperparameter tuning (which
can provide faster convergence) with larger models and larger profiling sets. Empirical
GE (described in Section 2.1) can be very expensive to compute with larger validation sets,
especially if used during training to detect the best training epoch. In a recent publication,
Zhang et al. proposed a Guessing Entropy Estimation Algorithm (GEEA) to reduce the
computational limitation cost of empirical GE for the full attacked key scenarios, which
computes faster than empirical GE calculation on separate key bytes [15]. Indeed, empirical
GE executes multiple key rank executions over multiple partitions of the dataset V, each
containing Q measurements. GEEA, on the other hand, only requires one execution over
the Q measurements.

Let us consider s(kg, x;,d;) as a score indicating the probability that a measurement
x; process key k, for a input (i.e., plaintext) d;. The GEEA first requires the calculation of



Algorithms 2023, 16, 127 6 of 16

pairwise subtractions of scores concerning the correct key, resulting in mean and variance
for each key guess k¢ € K as follows:

1!
it = g 1 [k i di) — s (ke i, )] )
i=0
1 ¢l
Ok, = 0 ,';0 [s(kg, xi,di) — s(ke, xj,d;) — ,“kg]zf @)

where k. is the correct key. Then, the guessing entropy value is obtained as:

GE=1+ % c1>(\/@‘k), ©)

k=0,kg ke Tk

where @() is the cumulative density function of a normal Gaussian distribution NV'(0,1).

Alternative solutions were proposed as new validation metrics for early stopping,
stopping training sooner, and speeding up the process. In [25], the authors considered a
mutual information (MI) approach between the output probabilities and validation labels
to monitor the best epoch during training. The work of [26] monitors the epoch when the
training achieves the minimal difference between the number of profiling and validation
traces required to achieve a 90% success rate. The authors proposed a routine to abort
training if this difference increases after reaching its minimum value. In our work, we also
consider the mutual information metric for comparison. The method proposed in [26] is
not considered in our comparative analysis as it is directly adapted to datasets with fixed
keys in the profiling set, which is not the case of ASCADr. The method requires estimating
the number of traces to reach a success rate of 90%, which implies obtaining the evolution
of the success rate concerning the number of validation traces. This means that the success
rate is computed Q times for each epoch, adding a significant time overhead to the process.
Finally, Paguada et al. suggested an optimized early stopping algorithm that efficiently
integrates the GE metric into the training phase [27].

As we can see, none of the mentioned approaches compute GE directly from the
validation traces at the end of each training epoch. GEEA was proposed as a fast and more
stable GE estimation, but it is not suggested to be used during network training. On the
other hand, although GE can be a potential metric candidate, its computation could be very
slow if more validation traces are considered (which is required for GE stability), finally
providing significant overheads to the training process. Therefore, the SCA community
did not consider directly applying GE (including GEEA) as the early stopping metric,
especially in the hyperparameter search processes. This work provides a novel evaluation
metric called fast guessing entropy and shows that significantly reducing the number
of validation traces for GE estimation during training is reliable and efficient for early
stopping, benefiting hyperparameter tuning optimization. Further information about deep
learning-based side-channel analysis and challenges can be found in [28].

4. Fast GE for Early Stopping

Running a hyperparameter search without pre-selecting efficient ranges for each
hyperparameter may fail to find powerful attack models. A solution could be searching
for small models with restricted search ranges, as proposed in [8,21] or by setting the
objective of the search as being a small model, as proposed by Rijsdijk et al. [9]. Small
models are usually self-regularized, but they still suffer from a limited fitting capacity,
which is particularly problematic for noisy and protected targets. An alternative is to allow
larger models and add regularization to prevent overfitting [29]. Although regularization
improves model generalization, regularized models with increased size require more
training epochs, reducing the efficiency in a hyperparameter search process. As the number



Algorithms 2023, 16, 127

7 of 16

of training epochs is a critical hyperparameter to be determined, early stopping may
become a standard approach.

To allow efficient early stopping with GE, we propose a fast GE calculation to reduce
the empirical GE overheads. When used as an early stopping metric, FGE provides very
small overheads to the training process, usually between 1.5% and 3.3%, while, e.g., empiri-
cal GE shows overheads between 18.59% and 28.19%, as reported in Section 5. Our idea
consists in reducing the number of validation traces when computing GE for each processed
epoch, which has multiple benefits in DL-based SCA. The pseudo-code showing how FGE
is obtained is provided in Algorithm 1. As the algorithm shows, the main application of
FGE is for the hyperparameter search process.

Algorithm 1 Hyperparameter search with early stopping and fast guessing entropy.

1: Set © as the set of models
2: for new search attempt S do
3: Generate new hyperparameter set H

4: Initialize model parameters 0
5: Select a small validation set Xy fast
6: for Epoch E in Epochs do
7: Train neural network model F3 (0, X,rof, Yprof)
8: Compute FGE: GEfast [E] = GE (9, Xvulffast/ Yvalffast)
9: Save model parameters 6[E] at epoch E
10: end for
11:  Retrieve model parameters from best epoch: @[S] = 0[argmin(GE4s)]
12: Select a full validation set X,
13: Compute GE(Opest, Xoar, Yoar) and the corresponding number of validation traces to
reach GE =1, Ngg1[S].
14: end for

15: Return best model: Opess 1oder = @Olargmin(Ngpy)] (model that requires a minimum
number of validation traces to reach GE = 1).

If the model converges, the attack is successful, and GE for a small number of valida-
tion traces can also indicate the best epoch to stop training efficiently. Using large validation
sets for the metric calculation may obscure the real performance of the model: a model that
overfits may also slowly decrease guessing entropy to 1 after processing enough validation
traces. In contrast, FGE is more sensitive to the model’s performance change, thanks to
its low usage of the validation traces. This situation is illustrated in Figure 1. As we can
see in Figure la, with Q = 3000 validation traces for empirical GE, the best epoch will
be returned at the moment when GE is equal to 1. If the next epochs indicate a model
that requires even fewer traces to succeed (which means better generalization), empirical
GE will not capture that. On the other hand, using fewer traces allows us to obtain this
convergence and recover the key with fewer attack traces, as shown in Figure 1b. Of course,
the question here is: why would this be a problem if reaching a GE of 1 allows an adversary
to recover the key? We can observe two main problems in this scenario. First, empirical GE
with more traces provides more overhead and limits the number of hyperparameter search
attempts, preventing us from finding a model that eventually breaks the target (which is
the example of the model found in Figure 1). Second, from the current model, we would
select trained parameters before it reaches its best attack performance or generalization
capacity, which can also indicate overfitting on the validation set, possibly opening issues
in portability scenarios (when the device used for profiling is different from the device used
for attacks [20]). If a model generalizes, then GE will eventually decrease, and FGE should
show this behavior too.



Algorithms 2023, 16, 127

8 of 16

150 A
® ES Fast GE —— Fast GE
§ 200 ~ ES Emp. GE § Emp. GE
£ 1501 | £ 1001
(AN} [UN}
[®)] [®)]
£ 100 A £
0 @ 50 -
$ 504 g
(G] Q
O l T T T T T 0 ] T T T
0 50 100 150 200 0 250 500 750 1000
Epochs Attack Traces
(a) GE vs. epochs (b) GE vs. attack traces

Figure 1. Fast GE vs. empirical GE (ES = Early Stopping). In the left figure, we mark with a dot the
epoch when GE is the lowest. Notice that FGE provides very similar results to empirical GE, making
it an adequate choice for choosing when to stop the training process. In the right figure, we notice
that FGE provides faster GE convergence, especially when the number of attack traces is limited.

5. Experimental Results

This section provides experimental results for (1) machine learning models obtained
through a random search, (2) hyperparameter tuning for different validation metrics, and
(3) state-of-the-art models and different validation metrics.

5.1. Hyperparameter Search Ranges

In this work, we only consider convolutional neural networks (CNNs) as they contain
many hyperparameters to tune. Therefore, it becomes more challenging to find good
hyperparameter combinations than, e.g., multilayer perceptrons. Consequently, the tuning
of CNNs benefits more from an efficient evaluation strategy than tuning some simpler
neural network architectures. Moreover, CNNs demonstrated good performance even
in the presence of various hiding and/or masking countermeasures, and numerous SCA
works consider only them, see, e.g., [8-10,30].

Convolutional neural networks commonly consist of convolutional layers, pooling
layers, and fully connected layers. The convolution layer computes the output of neurons
connected to local regions in the input, each computing a dot product between their weights
and a small region connected to the input volume. Pooling decreases the number of
extracted features by performing a down-sampling operation along the spatial dimensions.
Finally, the fully connected layer computes the hidden activations or the class scores.

Table 1 provides the selected ranges for the hyperparameter tuning processes. These
selected ranges result in a search space containing 2.7 x 10° possible combinations. As we
can see, we allow CNNs to contain up to eight hidden layers, combining convolution and
dense layers. A pooling layer always follows each convolution layer. As the ASCADf and
ASCADr datasets contain 50,000 and 200,000 profiling traces, respectively, larger models
would tend to overfit.



Algorithms 2023, 16, 127

9o0f 16

Table 1. Hyperparameter search space for CNNs (c in convolution filters indicates the convolution
layer index).

Ranges
Hyperparameter :
Min Max Step
Batch Size 100 1000 100
Convolution Layers 1 4 1
Convolution Filters 2 x 2071 16 x 2¢-1 2
Kernel Size 4 20 1
Stride 1 4 1
Pooling Size 1 4 1
Pooling Stride 1 4 1
Dense layers 1 4 1
Options
Neurons 10, 20, 30, 40, 50, 100, 200, 300, 400, 500
Activation function ReLU, ELU, or SELU
Learning Rate 5x1073,1x1073,5x 10741 x107%,5x 1075,1 x 107>
Pooling Type Average, Max
Weight Initializer He, Random Uniform, Glorot Uniform
Optimizer Adam, RMSprop

5.2. Random Hyperparameter Search with Different Validation Metrics

We compare different early stopping metrics in a random hyperparameter search
process for the two ASCAD datasets and different leakage models. The results for the
CHES CTF dataset are only provided for the Hamming weight leakage model. Each
randomly selected CNN is trained for 200 epochs, and we save the trained weights at the
end of each epoch. At the end of the training, each early stopping metric indicates the best
training epoch, and we restore the trained weights from that epoch. Then, as the training is
finished, we compute GE for the attack set containing a larger number of traces. Note that
200 epochs is a relatively small number for training epochs, and, as shown in this section,
stopping the training after 200 epochs may also deliver good results for some cases.

Table 2 gives the number of validation traces V considered for each early stopping
metric, while the partition Q is the number of the traces used to calculate each specific
metric. For instance, GE is the average of multiple key rank executions over Q traces,
randomly selected from a larger set V for each key rank execution. This way, we set V
greater than Q so that sampling each data in Q preserves a certain randomness. By doing so,
the obtained results would indicate a better generalization capacity of models. For mutual
information, we apply V validation traces. FGE estimation considers only 50 traces for Q
and 500 for V. We tested other values for Q and V, from 20 to 200 (with a step of 10 traces),
and 50 was the minimum value for Q and V, which still preserves the best results for FGE.
This range was selected to align with the usually required number of attack traces reported
in related works. More precisely, state-of-the-art techniques commonly require between
100 and 200 attack traces to break the considered datasets. At the same time, by considering
a less than 100 attack traces setting, we allow for further improvements in the results.

Table 2. Number of validation traces for each early stopping method.

ASCADf ASCADr CHES CTF
\ Q 4 Q 14 Q
Fast GE 500 50 500 50 500 50
Emp. GE 5000 3000 10,000 5000 5000 3000
GEEA 5000 3000 10,000 5000 5000 3000

MI 5000 5000 10,000 10,000 5000 5000




Algorithms 2023, 16, 127

10 of 16

We execute 500 searches for each dataset, considering the Hamming weight and
identity leakage models. Table 3 provides the average time overhead in percentage for
each considered metric. As we can see, the FGE estimation provides a maximum of 3.35%
overhead among the four considered scenarios. For the ASCADr dataset, the overhead is
only 1.19% and 1.49%, which can be considered negligible for the training time compared
with its counterparts. As expected, the empirical GE and GEEA methods provide the largest
overheads, although GEEA is faster than empirical GE. The mutual information method
provides the second-best results, which is related to the more straightforward calculation
than guessing entropy.

Table 3. Average time overhead of different early stopping methods.

ASCADf ASCADr CHES CTF
HW Identity HW Identity HW
Fast GE 2.66% 3.35% 1.19% 1.49% 2.74%
Emp. GE 20.70% 28.19% 18.59% 24.21% 20.61%
GEEA 11.48% 23.95% 9.31% 20.17% 13.56%
MI 9.28% 7.46% 7.81% 6.30% 11.28%

Table 4 provides the % that each metric can select a generalizing model with early
stopping (model that reaches GE = 1 in the attack phase, which is indicated by line 13 in
Algorithm 1) from the random search. Together with GEEA, the fast GE is a highly efficient
metric (top two performance in all considered scenarios). Most importantly, we verified
that FGE is always superior to the situation where no early stopping is used (200 epochs
in the table) and with negligible overhead. For the case of the identity leakage models,
FGE shows the best results.

Table 4. Percentage of times a generalizing DNN was selected from each metric and from the training
with all 200 epochs.

ASCADf ASCADr CHES CTF
HwW Identity HwW Identity HW
Fast GE 56.52% 43.46% 49.63% 34.13% 21.85%
Emp. GE 59.66% 43.16% 50.00% 33.23% 20.79%
GEEA 59.66% 43.46% 54.34% 29.30% 21.18%
MI 50.74% 37.38% 43.84% 33.53% 19.78%
200 epochs 49.75% 40.42% 45.83% 32.62% 15.06%

Figure 2 shows the results for the ASCADf dataset. When side-channel traces are
labeled according to the Hamming weight leakage model, the correct key is recovered with
514 traces for the GEEA metric and 534 traces (the second best) with FGE early stopping
metric. In the case of the identity leakage model, the best results are achieved for the FGE
metric, where 101 attack traces are needed to achieve a GE equal to 1, which is aligned with
state-of-the-art results [8,9,21]. The good performing results from the mutual information
metric and the GE obtained with 200 epochs indicate the effectiveness of early stopping
metrics in preventing the best model from overfitting. Again, we confirm that FGE is highly
competitive in both leakage models and requires 10 x fewer validation traces.



Algorithms 2023, 16, 127

11 of 16

-
o
S

— Fast GE === #traces for GE = 1: 534
- =1:846
=1:514
- =1m
= AllEpochs GE ==~ #traces for GE = 1: 632

©
o

- =1:103
= AllEpochs GE ==~ #traces for GE = 1: 110

=

=)

=3
2

~

o
o
=]

40

5
S
Guessing Entropy

Guessing Entropy

N

o
N
o

o
o

10° 10t 102 10° 10° 10t 102 10°
Attack Traces Attack Traces

() (b)

Figure 2. GE results from best models selected from different early stopping metrics for the AS-
CADf dataset. (a) Hamming weight leakage model. (b) Identity leakage model.

For the ASCADr dataset, the results for FGE are also very promising, as shown in
Figure 3. For the Hamming weight leakage model, FGE provides the best results, followed
by the mutual information metric. In the case of the identity leakage model, the best result
is obtained with all 200 epochs, showing that this number of epochs is appropriate for this
best model found through a random search. The best results are obtained with the FGE
metric when early stopping is considered.

125 4 = FastGE === #traces for GE = 1: 285 — Fast GE === #traces for GE = 1: 37
He =1 ] — GE =3, 1:531
== =1 — GEEA =i =1:230

1 “-- : —_— -t 1:52
=== #trac = 4 = AllEpochs GE ==~ #traces for GE = 1: 29

—

N o

a S
o -3
=] o

o

S
IS
S

Guessing Entropy
Guessing Entropy

25 A 20 i
"\\
0 0
10° 10t 102 10° 10° 10t 102 10°
Attack Traces Attack Traces
(a) (b)

Figure 3. GE results from best models selected from different early stopping metrics for the AS-
CADr dataset. (a) Hamming weight leakage model. (b) Identity leakage model.

Figure 4 provides results for the CHES CTF dataset. The FGE metric provides the
second-best results after GEEA. The results for the CHES CTF dataset are only shown for
the Hamming weight leakage model, as this dataset provides bad results with the identity
leakage model, as discussed in [9].

\

10° 10t 102 10°
Attack Traces

Guessing Entropy

254

Figure 4. GE results from best models selected from different early stopping metrics for the CHES
CTF 2018 dataset (Hamming weight leakage model).

Furthermore, the performance of the best models selected from empirical GE as an
early stopping metric provided less efficient results. As already mentioned in [15], empirical
GE requires a very large validation set, and a more stable GE estimation can be obtained
with the selection of larger validation sets. Of course, using larger validation sets provides
an estimation of model generalization, and this is especially important for models that
provide suboptimal performance and require more traces to show GE reduction for the
correct key. However, computing GE for this large number of traces is undesirable as an
early stopping metric due to significant time overhead.



Algorithms 2023, 16, 127

12 of 16

5.3. Hyperparameter Tuning with Different Validation Metrics

This section analyzes how the evaluated early stopping metrics perform with Bayesian
optimization (BO) for the hyperparameter search [22]. For that, we consider the open-
source Bayesian Optimization method provided in the keras-tuner [31] Python package.
We run Bayesian Optimization for 100 searches with ASCAD datasets and the Hamming
weight and identity leakage models. We repeat each search process five times for each
different early stopping metric. The guessing entropy results without early stopping (“all
epochs” labels in the figures from the previous section) are omitted because keras-tuner
inherently implements early stopping and, for this reason, it is not possible to select the
best model by ignoring early stopping. The results reported in this section are extracted
from the best-found model out of the five search attempts.

The results from BO for the ASCADf dataset are shown in Figure 5. The best results are
obtained with FGE for both Hamming weight and Identity leakage models. In particular,
for the Identity leakage model, as shown in Figure 5b, the best-found model achieves GE
equal to 1 with less than half of the attack traces needed for GEEA. In these experiments,
mutual information provides less efficient results.

== Fast GE === #traces for GE = 1: 455 125 - == Fast GE === #traces for GE = 1: 72
125 4 —cE === #traces for GE = 1: 883 —cE === #traces for GE = 1: 177
—— GEEA -~ #traces for GE = 1: 587 —— GEEA  --- #traces for GE = 1: 157
2 —_ - 2 100 1 —_ -
2 M #traces for GE = 1: 1650 2 M #traces for GE = 1: 3000
g 1007 ; g -~
k= ! k= A\
& 454 ; & 751
o o
£ £
@ @ 50
a 1 a
o 50 @
3 hy 3
25 N 25 \\
0 04

10t 102 10% 10° 10t 102 10°
Attack Traces Attack Traces

@) (b)

Figure 5. GE results from best models found with BO with different early stopping metrics for the
ASCADf dataset. (a) Hamming weight leakage model. (b) Identity leakage model.

= S
=)
Ed

Figure 6 provides BO results for the ASCADr dataset. For the Hamming leakage
model, GEEA and FGE provide the best results. For the Identity leakage model, the results
for FGE are superior, and only 60 attack traces are required for key byte recovery, while
empirical GE requires 10x more attack traces to succeed. Again, the mutual information
metric delivers the worst results.

= FastGE  —=- #traces for GE = 1:338
125 — Gt === #traces for GE = 1: 1234 125 A
= GEEA | === #traces for GE = 1: 274
—_™ -~ #traces for GE = 1: 2255

~ #traces for GE = 1: 60
races for GE = 1: 430

for GE = 1:133
—_— === #traces for GE = 1: 5000

-
1=}
o

Guessing Entropy
Nooo N

& S &
7
Guessing Entropy

[

S &
=g . L "
2
] // }
<

|
01 0
10° 10t 10? 10° 1 102 10°
Attack Traces Attack Traces
(a) (b)

Figure 6. GE results from best models found with BO with different early stopping metrics for the
ASCADr dataset. (a) Hamming weight leakage model. (b) Identity leakage model.

Running hyperparameter tuning with Bayesian optimization for the CHES CTF dataset
and the Hamming weight leakage model, the results obtained with FGE are significantly
better than other validation metrics, as shown in Figure 7. We can see that FGE returns the
best model that reaches GE equal to 1 in the attack phase with only 232 traces, while other
metrics always require significantly more attack traces.



Algorithms 2023, 16, 127 13 of 16

s for GE = 1: 232

125 4 = FastGE | ===
-1 s for GE = 1: 751

—_GE
— GEEA

Guessing Entropy

254

10° 10! 102 10°
Attack Traces

Figure 7. GE results from best models found with BO with different early stopping metrics for the
CHES CTF dataset (Hamming weight leakage model).

5.4. State-of-the-Art Models with Different Validation Metrics

The works of [8,9,21] proposed hyperparameter tuning for the ASCADf dataset and
their models reported state-of-the-art results. In this section, we also verify whether FGE
can improve the performance of those best models even more. This way, we provide attack
results when applying early stopping to three CNN architectures. As the results for these
CNN were reported for the Identity leakage model, we only consider that scenario in
our analysis.

As shown in Figure 8, for the CNN models from [8,9], our FGE metric provides
the best results. The results for the CNN model from [21] also put FGE among the best-
performing metrics.

-
N
o

=
=)
S
)

—— GEEA === #traces for GE=1: 161
80 1 —_— -== #traces for GE=1: 64
= AllEpochs GE ==~ #traces for GE=1: 73

=
o
o

@
S

a
S

Guessing Entropy
o
3
Guessing Entropy

N
o

o
o

10t 102 10° 10° 10t 102 10°
Attack Traces Attack Traces

@) (b)

= S
=)
>

-
N
S]

-
=)
o

@
S

Guessing Entropy
s o
o o

N
=3

o

-
o

2
-
=)

102 10°
Attack Traces

()

Figure 8. Performance of different validation metrics on state-of-the-art CNN architectures,
ASCADf dataset. (a) CNN from [8]. (b) CNN from [21]. (c) Best CNN from [9].

6. Conclusions and Future Work

Profiling attacks are important during security evaluations because evaluators can
determine if the device leaks information with high assurance. This is especially possible
because assumptions during a profiling analysis consider that the target faces an adversary
that can learn existing side-channel leakages in a supervised learning setting.

In a recent publication [32], Bronchain et al. showed through the lens of perceived
information (PI) [33] how different profiling methods perform against protected crypto-
graphic implementations. Their analysis allows security evaluators to conclude about the
target’s leakages with the worst-case security. For that, the evaluator assumes that the
adversary has knowledge of all intermediate secret shares during profiling and the source
code. Consequently, such an evaluation provides conditions to implement optimal profiling
models, where assumptions about the target (e.g., leakage model) contain as few errors



Algorithms 2023, 16, 127

14 of 16

as possible. Moreover, the evaluator can build a profiling model with sufficient traces,
thus minimizing estimation errors.

The case of deep learning for profiling SCA brings a new perspective on profiling
attacks. The main reason for that is related to the ability of a deep neural network to
perform efficiently without feature selection. In practice, this means that the attacked
interval contains several low SNR points of interest, and selecting the most leaky points
of interest with a high SNR becomes more challenging. The advantages for security
evaluations come from the fact that neural networks as profiling models can learn existing
leakages even without feature selection and, in practice, deliver close to optimal results.
The results for CNN architectures from Figure 8 are an example of this case. Of course,
to reach an optimal deep learning profiling model, costly hyperparameter tuning needs to
be implemented, especially for more protected targets.

Therefore, hyperparameter tuning must be as efficient as possible to reach optimal
deep learning models without worst-case security assumptions. For that, assessing the
model generalization during training becomes crucial, requiring fast and efficient validation
metrics. We propose using a fast GE metric that requires significantly fewer validation traces
in the GE calculation. Our results indicate that FGE as a validation metric delivers efficient
and competitive early stopping results. Our technique is validated in different scenarios and
shows good results with negligible time overheads. More precisely, FGE allows up to 16 x
faster guessing entropy calculation, resulting in more hyperparameter tuning experiments
or fewer attack traces needed to reach a guessing entropy of 1. Thus, we consider FGE the
method of choice for practical deep learning-based SCA hyperparameter tuning.

In future works, we will explore the efficiency of different validation metrics in
portability settings and with different countermeasures in future work. Additionally,
as this work contains results for convolutional neural networks only, it would be interesting
to assess FGE performance with architectures such as multilayer perceptrons and residual
neural networks.

Author Contributions: Conceptualization, G.P.; Methodology, S.P.; Software, G.P.; Validation, L.W.
and S.P,; Investigation, G.P., LW. and S.P.; Writing—original draft, G.P., L.W. and S.P. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The source code used for the experiments reported in this manuscript
is available as a GitHub repository at https://github.com/AISyLab/fge_sca, accessed on 26 Jan-
uary 2023.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SCA Side-channel Attack

SNR Signal-to-Noise Ratio

DNN Deep Neural Network

AES Advanced Encryption Standard
DL Deep Learning

GE Guessing Entropy

FGE Fast Guessing Entropy

HW Hamming Weight

CCE Categorical Cross-Entropy

ASCAD ANSSI SCA Database


https://github.com/AISyLab/fge_sca

Algorithms 2023, 16, 127 15 of 16

ASCADf ASCAD with a fixed key

ASCADr ASCAD with random keys

CTF Capture The Flag

CHES Cryptographic Hardware and Embedded Systems
GEEA Guessing Entropy Estimation Algorithm
MI Mutual Information

CNN Convolutional Neural Network

ReLU Rectified Linear Unit

SELU Scaled Exponential Linear Unit

ELU Exponential Linear Unit

PI Perceived Information

BO Bayesian Optimization

ES Early Stopping

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Chari, S.; Rao, J.R.; Rohatgi, P. Template Attacks. In Proceedings of the Cryptographic Hardware and Embedded Systems—CHES
2002, Redwood Shores, CA, USA, 13-15 August 2002; Springer: Berlin/Heidelberg, Germany, 2003; pp. 13-28.

Schindler, W.; Lemke, K.; Paar, C. A Stochastic Model for Differential Side Channel Cryptanalysis. In Proceedings of the
Cryptographic Hardware and Embedded Systems—CHES 2005, 7th International Workshop, Edinburgh, UK, 29 August-1
September 2005; Rao, J.R., Sunar, B., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005;
Volume 3659, pp. 30—46. [CrossRef]

Kocher, P.C,; Jaffe, ].; Jun, B. Differential Power Analysis. In Proceedings of the Advances in Cryptology—CRYPTO "99, 19th
Annual International Cryptology Conference, Santa Barbara, CA, USA, 15-19 August 1999; Wiener, M.]., Ed.; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 1999; Volume 1666, pp. 388-397. [CrossRef]

Brier, E.; Clavier, C.; Olivier, F. Correlation Power Analysis with a Leakage Model. In Proceedings of the Cryptographic
Hardware and Embedded Systems—CHES 2004: 6th International Workshop, Cambridge, MA, USA, 11-13 August 2004; Joye,
M., Quisquater, J., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3156, pp. 16-29.
[CrossRef]

Gierlichs, B.; Batina, L.; Tuyls, P; Preneel, B. Mutual Information Analysis. In Proceedings of the Cryptographic Hardware and
Embedded Systems—CHES 2008, 10th International Workshop, Washington, DC, USA, 10-13 August 2008; Oswald, E., Rohatgi,
P, Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5154, pp. 426—442. [CrossRef]
Banciu, V.; Oswald, E.; Whitnall, C. Reliable information extraction for single trace attacks. In Proceedings of the 2015 Design,
Automation & Test in Europe Conference & Exhibition, DATE 2015, Grenoble, France, 9-13 March 2015; Nebel, W., Atienza, D.,
Eds.; ACM : New York, NY, USA, 2015; pp. 133-138.

Lerman, L.; Bontempi, G.; Markowitch, O. A machine learning approach against a masked AES—Reaching the limit of
side-channel attacks with a learning model. J. Cryptogr. Eng. 2015, 5, 123-139. [CrossRef]

Zaid, G.; Bossuet, L.; Habrard, A.; Venelli, A. Methodology for Efficient CNN Architectures in Profiling Attacks. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2020, 2020, 1-36. [CrossRef]

Rijsdijk, J.; Wu, L.; Perin, G.; Picek, S. Reinforcement Learning for Hyperparameter Tuning in Deep Learning-based Side-channel
Analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021, 2021, 677-707. [CrossRef]

Cagli, E.; Dumas, C.; Prouff, E. Convolutional Neural Networks with Data Augmentation Against Jitter-Based Countermeasures—
Profiling Attacks Without Pre-processing. In Proceedings of the Cryptographic Hardware and Embedded Systems—CHES
2017—19th International Conference, Taipei, Taiwan, 25-28 September 2017; Fischer, W., Homma, N., Eds.; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10529, pp. 45-68. [CrossRef]

Masure, L.; Dumas, C.; Prouff, E. A Comprehensive Study of Deep Learning for Side-Channel Analysis. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2020, 2020, 348-375. [CrossRef]

Picek, S.; Heuser, A.; Jovic, A.; Bhasin, S.; Regazzoni, F. The Curse of Class Imbalance and Conflicting Metrics with Machine
Learning for Side-channel Evaluations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 2019, 209-237. [CrossRef]

Lerman, L.; Poussier, R.; Bontempi, G.; Markowitch, O.; Standaert, EX. Template Attacks vs. Machine Learning Revisited (and
the Curse of Dimensionality in Side-Channel Analysis). In Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2015;
Volume 9064, pp. 20-33. [CrossRef]

Lu, X,; Zhang, C.; Cao, P,; Gu, D.; Lu, H. Pay Attention to Raw Traces: A Deep Learning Architecture for End-to-End Profiling
Attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021, 2021, 235-274. [CrossRef]

Zhang, J.; Zheng, M.; Nan, J.; Hu, H.; Yu, N. A Novel Evaluation Metric for Deep Learning-Based Side Channel Analysis and Its
Extended Application to Imbalanced Data. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020, 2020, 73-96. [CrossRef]

Zaid, G.; Bossuet, L.; Dassance, F.; Habrard, A.; Venelli, A. Ranking Loss: Maximizing the Success Rate in Deep Learning
Side-Channel Analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021, 2021, 25-55. [CrossRef]

Standaert, F.X.; Malkin, T.G.; Yung, M. A unified framework for the analysis of side-channel key recovery attacks. Lect. Notes
Comput. Sci. 2009, 5479, 443-461. [CrossRef]


http://doi.org/10.1007/11545262_3
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1007/978-3-540-85053-3_27
http://dx.doi.org/10.1007/s13389-014-0089-3
http://dx.doi.org/10.46586/tches.v2020.i1.1-36
http://dx.doi.org/10.46586/tches.v2021.i3.677-707
http://dx.doi.org/10.1007/978-3-319-66787-4_3
http://dx.doi.org/10.46586/tches.v2020.i1.348-375
http://dx.doi.org/10.46586/tches.v2019.i1.209-237
http://dx.doi.org/10.1007/978-3-319-21476-4_2.
http://dx.doi.org/10.46586/tches.v2021.i3.235-274
http://dx.doi.org/10.46586/tches.v2020.i3.73-96
http://dx.doi.org/10.46586/tches.v2021.i1.25-55
http://dx.doi.org/10.1007/978-3-642-01001-9_26

Algorithms 2023, 16, 127 16 of 16

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Benadjila, R.; Prouff, E.; Strullu, R.; Cagli, E.; Dumas, C. Deep learning for side-channel analysis and introduction to ASCAD
database. J. Cryptogr. Eng. 2020, 10, 163-188. [CrossRef]

Picek, S.; Heuser, A.; Perin, G.; Guilley, S. Profiled Side-Channel Analysis in the Efficient Attacker Framework. In Proceedings
of the Smart Card Research and Advanced Applications: 20th International Conference, CARDIS 2021, Liibeck, Germany,
11-12 November 2021; Revised Selected Papers; Springer: Berlin/Heidelberg, Germany, 2021; pp. 44-63. [CrossRef]

Bhasin, S.; Chattopadhyay, A.; Heuser, A.; Jap, D.; Picek, S.; Shrivastwa, R.R. Mind the Portability: A Warriors Guide through
Realistic Profiled Side-channel Analysis. In Proceedings of the 27th NDSS, San Diego, CA, USA, 27 February-3 March 2020.
Wouters, L.; Arribas, V.; Gierlichs, B.; Preneel, B. Revisiting a Methodology for Efficient CNN Architectures in Profiling Attacks.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020, 2020, 147-168. [CrossRef]

Wu, L,; Perin, G.; Picek, S. I Choose You: Automated Hyperparameter Tuning for Deep Learning-based Side-channel Analysis.
IEEE Trans. Emerg. Top. Comput. 2022, 1-12 . [CrossRef]

Perin, G.; Chmielewski, L.; Picek, S. Strength in Numbers: Improving Generalization with Ensembles in Machine Learning-based
Profiled Side-channel Analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020, 2020, 337-364. [CrossRef]

Perin, G.; Wu, L.; Picek, S., Gambling for Success: The Lottery Ticket Hypothesis in Deep Learning-Based Side-Channel Analysis.
In Artificial Intelligence for Cybersecurity; Stamp, M., Aaron Visaggio, C., Mercaldo, E,, Di Troia, F., Eds.; Springer International
Publishing: Cham, Switzerland, 2022; pp. 217-241. [CrossRef]

Perin, G.; Buhan, L; Picek, S. Learning When to Stop: A Mutual Information Approach to Prevent Ouverfitting in Profiled Side-Channel
Analysis; Springer: Berlin/Heidelberg, Germany, 2021; Volume 12910, pp. 53-81. [CrossRef]

Robissout, D.; Zaid, G.; Colombier, B.; Bossuet, L.; Habrard, A. Online Performance Evaluation of Deep Learning Networks for
Profiled Side-Channel Analysis; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2020; Volume 12244,
pp- 200-218. [CrossRef]

Paguada, S.; Batina, L.; Buhan, L.; Armendariz, I. Being Patient and Persistent: Optimizing an Early Stopping Strategy for Deep
Learning in Profiled Attacks. IEEE Trans. Comput. 2023, 1-12 . [CrossRef]

Picek, S.; Perin, G.; Mariot, L.; Wu, L.; Batina, L. SoK: Deep Learning-Based Physical Side-Channel Analysis. ACM Comput. Surv.
2023, 55, 227. [CrossRef]

Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. |. Mach. Learn. Res. 2014, 15, 1929-1958.

Kim, J.; Picek, S.; Heuser, A.; Bhasin, S.; Hanjalic, A. Make Some Noise. Unleashing the Power of Convolutional Neural Networks
for Profiled Side-channel Analysis. Iacr Trans. Cryptogr. Hardw. Embed. Syst. 2019, 2019, 148-179. [CrossRef]

O’Malley, T.; Bursztein, E.; Long, J.; Chollet, E; Jin, H.; Invernizzi, L. KerasTuner. 2019. Available online: https://github.com/
keras-team /keras-tuner (accessed on 26 January 2023).

Bronchain, O.; Durvaux, F; Masure, L.; Standaert, FEX. Efficient Profiled Side-Channel Analysis of Masked Implementations,
Extended. IEEE Trans. Inf. Forensics Secur. 2022, 17, 574-584. [CrossRef]

Bronchain, O.; Hendrickx, ].M.; Massart, C.; Olshevsky, A.; Standaert, F. Leakage Certification Revisited: Bounding Model Errors
in Side-Channel Security Evaluations. In Proceedings of the Advances in Cryptology—CRYPTO 2019—39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, 18-22 August 2019; Proceedings, Part I; Boldyreva, A., Micciancio, D., Eds.;
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2019; Volume 11692, pp. 713-737. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1007/s13389-019-00220-8
http://dx.doi.org/10.1007/978-3-030-97348-3_3
http://dx.doi.org/10.46586/tches.v2020.i3.147-168
http://dx.doi.org/10.1109/TETC.2022.3218372
http://dx.doi.org/10.46586/tches.v2020.i4.337-364
http://dx.doi.org/10.1007/978-3-030-97087-1_9
http://dx.doi.org/10.1007/978-3-030-89915-8_3
http://dx.doi.org/10.1007/978-3-030-68773-1_10
http://dx.doi.org/10.1109/TC.2023.3234205
http://dx.doi.org/10.1145/3569577
http://dx.doi.org/10.46586/tches.v2019.i3.148-179
https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner
http://dx.doi.org/10.1109/TIFS.2022.3144871
http://dx.doi.org/10.1007/978-3-030-26948-7_25

	Introduction
	Background
	Deep Learning-Based SCA
	Metrics
	Datasets
	ASCAD
	CHES CTF 2018

	Leakage Models

	Related Works
	Fast GE for Early Stopping
	Experimental Results
	Hyperparameter Search Ranges
	Random Hyperparameter Search with Different Validation Metrics
	Hyperparameter Tuning with Different Validation Metrics
	State-of-the-Art Models with Different Validation Metrics

	Conclusions and Future Work
	References

