
Citation: Bagnoli, F.; Baia, M.

Synchronization, Control and Data

Assimilation of the Lorenz System.

Algorithms 2023, 16, 213. https://

doi.org/10.3390/a16040213

Academic Editors: Luca Mariot and

Luca Manzoni

Received: 16 March 2023

Revised: 10 April 2023

Accepted: 17 April 2023

Published: 19 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Synchronization, Control and Data Assimilation of the
Lorenz System
Franco Bagnoli 1,2,*,† and Michele Baia 1,2,†

1 Department of Physics and Astronomy and CSDC, University of Florence, Via G. Sansone 1 ,
50019 Sesto Fiorentino, Italy; michele.baia@unifi.it

2 INFN, Sect. Florence, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy
* Correspondence: franco.bagnoli@unifi.it
† These authors contributed equally to this work.

Abstract: We explore several aspects of replica synchronization with the goal of retrieving the values
of parameters applied to the Lorenz system. The idea is to establish a computer replica (slave) of
a natural system (master, simulated in this paper), and exploit the fact that the slave synchronizes
with the master only if they evolve with the same parameters. As a byproduct, in the synchronized
phase, the state variables of the slave and those of the master are the same, thus allowing us to
perform measurements that would be impossible in the real system. We review some aspects of
master–slave synchronization using a subset of variables with intermittent coupling. We show
how synchronization can be achieved when some of the state variables are available for direct
measurement using a simulated annealing approach, and also when they are accessible only through
a scalar function, using a pruned-enriching ensemble approach, similar to genetic algorithms without
cross-over. We also explore the case of exploiting the “gene exchange” option among members of
the ensemble.

Keywords: master–slave synchronization; data assimilation; parameter estimation; Lorenz system

1. Introduction

There are many cases in which one is interested in forecasting the behavior of a chaotic
system; an emblematic example is meteorology. The main obstacle is, of course, that in
chaotic systems, by definition, a small uncertainty can amplify exponentially over time [1].
Moreover, even if one assumes that a computational model of a natural, chaotic system is a
good model, the exact values of parameters are needed to ensure a faithful representation
of dynamics.

Schematically, one can assume that the natural, or target, system is well represented
by some dynamical system, possibly with noise. One can measure some quantities of this
system, but in general, one is not free to choose which variable (or combination of variables)
to measure, nor to perform measurements at any rate.

On the other hand, if one has a good knowledge of the system under investigation,
i.e., it can be modeled with good accuracy, then a simulated “replica” of the system can
be implemented on a computer. If, moreover, it is possible to know the parameters and
the initial state of the original system, in order to keep the replica synchronized to it (when
running at the same speed), then the replica can be used to perform measurements that are
otherwise impossible, and to obtain accurate forecasting (when run at higher speeds).

In general, the problem of extracting the parameters of a system from a time series of
measurements on it is called data assimilation [2].

The problem in data assimilation is that of determining the state and the parameters of
the system by minimizing an error function between data measured on the target and the
respective data from the simulated system. A similar task is performed by back-propagation
techniques in machine learning [3,4].
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The goal of this paper is to approach this problem from the point of view of dynamical
systems [5]. In this context, the theme of synchronization has been explored [6], but it needs
to be extended in order to cover the application field of data assimilation.

The synchronization technique is particularly recommendable when the amount of
noise (in the measure and intrinsic to the system) is small, i.e., when the target system can
be assumed to be well represented by deterministic dynamics, even if these dynamics are
not continuous (as in Cellular Automata [7]).

We shall investigate here the application of synchronization methods to the classic
Lorenz system [8]. However, the method can be applied to other chaotic systems and
possibly to their implementation in electronic hardware.

The Lorenz system is chosen because, for classical values of parameter, there is only
one chaotic attractor. Other systems, such as Chua’s [9,10], may present the coexistence of
attractors (hidden attractors) [11,12], which may affect synchronization [13].

Our investigation is carried out considering some synchronization schemes; see
Section 2.

We start from the classic Pecora–Carrol master–slave synchronization scheme, recalled
in Section 2.1, in which the values of some of the state variables of the master are imposed
to the corresponding variables of the slave system. This choice of coupling variables is
denoted “coupling direction” in the tangent space of the system.

The synchronization threshold is connected to the value of the conditional Lyapunov
exponent [14,15], i.e., the exponential growing rate along the difference space between
master and slave, as reported in Section 2.2.

This scheme is then extended to partial synchronization, i.e., to the case in which only
a portion of the values of the state variables of the master system signal is fed to the slave,
as shown in Section 2.3. We can thus establish the minimum fraction of signal (coupling
strength) able to synchronize the two replicas, which depends on the coupling direction.

However, one cannot pretend to be able to perform measurements in continuous time,
as achieved in the original synchronization scheme, in which the experimental reference
system was a chaotic electronic circuit.

Therefore, we deal with the problem of intermittency, i.e., performing measurements,
and consequently applying the synchronization scheme, only at certain time intervals. We
show that the synchronization scheme also works for intermittent measurements, provided
that the coupling strength is increased, as shown in Section 2.4.

In the case of systems with different parameters, synchronization cannot be complete,
and we discuss generalized synchronization; see Section 2.5.

We report some results in Section 3, showing that the distance among systems can be
interpreted as a measure of the error and exploited to obtain the “true” values of parameters,
using a simulated annealing scheme.

Finally, it may happen that the variables of the systems are not individually accessible
to measurements, a situation which prohibits the application of the original method. In this
case, one can still exploit schemes inspired by statistical mechanics, such as the pruned and
enriching one, simulating an ensemble of systems with different state variables and param-
eters, selecting the instances with lower rates of error, and cloning them with perturbations.
This kind of genetic algorithm is able to approximate the actual values of parameters, as
reported in Section 4.

Conclusions are drawn in Section 5.

2. Master–Slave Synchronization
2.1. Pecora–Carrol Synchronization

In 1990, Louis Pecora and Thomas Carrol introduced the idea of master–slave
synchronization [14]. They studied simulated systems, such as the Lorenz [8] and Rössler [16]
ones, and also experimental electronic circuits [17].

They considered two replicas of the same system with the same parameters. One of
the replicas (the master) was left to evolve unperturbed. Some of the state variables of the
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master replaced the corresponding variables of the slave system, which was therefore no
longer autonomous. This topic was further explored in a 2015 paper [15].

In order to explain the main idea of this master–slave (or replica) synchronization, let
us consider first a one-dimensional, time-discrete dynamical system, such as, for instance,
the logistic map [18]. It is defined by an equation of the kind

xn+1 = f (xn), (1)

where n labels the time interval. The usual Lyapunov exponent λ is defined as

λ = lim
N→∞

N

∑
n=1

log( f ′(xn)), (2)

where f ′(x) = d f /dx. Let us now introduce a replica X such that

xn+1 = f (xn);

Xn+1 = (1− p) f (Xn) + p f (xn),
(3)

where p is the coupling parameter (coupling strength).
For p = 0, the two maps are uncoupled, and because they are assumed to be chaotic,

they generally take different values. For p = 1, map X immediately synchronizes with map
x. There is a critical value pc of the coupling parameter for which the synchronized state is
stable, and it is related to the Lyapunov exponent λ,

pc = 1− exp(−λ), (4)

as can be seen by taking the linearized difference among the maps.
This scenario holds also for higher-dimensional (K) maps, which can be written as

rn+1 = F(rn), (5)

where rn denotes the state of the system at iteration n and has K components. The system
now has K Lyapunov exponents, of which at least one, λMAX, is assumed to be positive.

The synchronization procedure in this case is

rn+1 = F(rn);

Rn+1 = (I− pC)F(Rn) + pCF(rn),
(6)

where the coupling is now implemented by means of a diagonal matrix C, with diagonal
entries equal to zero or one, defining the coupling directions. In the following, we shall
indicate the diagonal of C as C = [cx, cy, cz].

In the case in which C = I, i.e., all entries are mixed with the same proportion, the sta-
bility of the synchronized phase is again related to the maximum Lyapunov exponent λMAX,

pc = 1− exp(−λMAX), (7)

because the evolution of an infinitesimal difference among the replicas, δ, is given by

δn+1 = (1− p)J(x)δn, (8)

where J is the Jacobian of F

Jij =

(
∂Fi
∂xj

)
x=xn

. (9)
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This scheme can be extended to continuous-time systems by replacing the entries from
one system in the coupled differential equation, so that

ṙ = F(r);

Ṙ = (I− pC)F(R) + pCF(r).
(10)

where the Lyapunov exponents of the original system are now given by the eigenvalues of
the (symmetrized) time-average of Jacobian Λ

Λ = lim
t→∞

1
2t

(∫ t

0
J(r(t)) +

(∫ t

0
J(r(t))

)T
)

. (11)

In practice, however, the differential Equation (10) is implemented as a map by dis-
cretizing the time, and therefore, Lyapunov exponents are computed as in the previous
case. Using a simple Euler scheme, we have t = n∆t and r(t) = r(n∆t) = rn, and

rn+1 = rn + F(rn)∆t. (12)

In the tangent space
δrn+1 = (1 + J(rn)∆t)δrn, (13)

and the maximum Lyapunov exponent λMAX is

λMAX = lim
n→∞

1
n∆t ∑

n
log(1 + J(rn)∆t) ' lim

n→∞

1
n ∑

n
J(rn). (14)

The average growth of the distance δr is

δr(t) = δ0 exp(λMAXn∆t) = exp(λMAXt), (15)

for time intervals such that the linearized approximation is valid.
Notice that, in the continuous-time version, the Jacobian and the Lyapunov exponents

are defined in units of the inverse of time.
In this paper, we always use the Euler integration scheme. We checked that other,

more sophisticated integration schemes do not qualitatively affect our results.

2.2. Conditional Coupling

In the original Pecora–Carrol implementation [15], the signal from the master is fully
extracted, i.e., p = 1, so that, for the R system, either a component is untouched or it is
derived from the replica (r).

To be explicit, for the Lorenz system we have

ẋ = σ(y− x),

ẏ = −xz + ρx− y,

ż = xy− βz.

(16)

For instance, for a full coupling along the x direction (C = [1, 0, 0]), the replica will
follow the equation

X = x,

Ẏ = −xZ + ρx−Y,

Ż = xY− βZ.

(17)
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It is possible to define the sub-Lyapunov [14] or, better, the conditional Lyapunov
exponents [15], by iterating the equation for the difference δr in the tangent space. For
instance, for the Lorenz system coupled along the x direction (C = [1, 0, 0]), we have

d
dt

(
δy
δz

)
=

(−1 −x
x −β

)
·
(

δy
δz

)
, (18)

giving two conditional exponents. The system synchronizes if both of them are negative.
In Figure 1, we report the value of the maximum conditional Lyapunov exponent as

a function of the coupling strength p for the Cx = [1, 0, 0], Cy = [0, 1, 0], and Cz = [0, 0, 1]
coupling directions.
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Figure 1. Conditional Lyapunov maximal exponent for different coupling directions: Cx = [1, 0, 0],
Cy = [0, 1, 0], Cz = [0, 0, 1]. The black dotted lined marks the zero value while the blue continuous
line marks the value of the Lyapunov exponent. In the last one, in orange, we also show the distance
d (normalized at its maximum value obtained in the simulation) between the master and slave state
variables for different coupling strengths (see also Figure 2).

As noted also in Ref. [15], the Lorenz system synchronizes if coupled along the x and
y directions, but not along the z one, even for p = 1.

Our observable was the average distance d,

d(t) = ||r(t)− R(t)|| =
√
(x(t)− X(t))2 + (y(t)−Y(t))2 + (z(t)− Z(t))2,

d =
1
T

∫ T

0
d(t)dt,

(19)

computed after a proper transient.
In Figure 2, we show d as a function of the coupling strength p for different coupling

directions. For all the simulations, we set σ = 10, β = 8/3, ρ = 28, and we use the
Euler integration scheme to integrate the equation with a temporal step dt = 10−3. After
a transient time of free evolution, we couple the master and the slave system at every
time step. At T = 100 (simulation end time), we compute the distance d between the
two systems.
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20

|d|

0.000 0.005 0.010
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0

20

0.000 0.001 0.002 0.003
p
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Figure 2. Asymptotic distance d as a function of the coupling strength p for different coupling
directions. From left to right: C = [1, 1, 1], Cx = [1, 0, 0], Cy = [0, 1, 0].
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2.3. Partial Conditional Coupling

We can naturally generalize the definition of maximum conditional Lyapunov expo-
nents even when we do not have a full coupling, i.e., p < 1, by looking for the synchroniza-
tion threshold pc, for which d(p) goes to zero.

From the plots shown in Figure 2, one can see that, for the x and y coupling, there is
a well-defined synchronization threshold, similar to that obtained for the uniform coupling.
For the z coupling, the maximum Lyapunov exponent is always positive (albeit small), and
no synchronization is possible.

This behavior is shown in Figure 1, where we plot the maximum conditional Lyapunov
exponent for different coupling strengths p and different coupling directions C. For the z
coupling, we also plot the distance d(p) for some p (as in Figure 2).

One can also see that, in the unsynchronized phase, the distance d(p) exhibits
a nonmonotonous behavior, except in the vicinity of the synchronization transitions, as
shown in Figure 2. This aspect is analyzed in Section 3.

2.4. Intermittent Synchronization

In real applications, it is generally impossible to obtain a signal from one system and
inject it into the replica in a time-continuous way. Pecora and Carrol were able to achieve it
using electronic circuits [14], but if one needs to pass through a measurement system, it is
expected that this device has a finite bandwidth, i.e., a finite measurement time.

So, the question becomes: is it possible to synchronize two replicas by measuring one
quantity only at time intervals τ?

Numerically, if the equations are integrated using a constant time step ∆t, this means
that the replacement or mixing of components is applied every k time steps, so that τ = k∆t.

For homogeneous coupling (C = [1, 1, 1]), the linear analysis simply tells us that
(Equation (7))

pc = 1− exp(−λMAX∆t · k) = 1− exp(−λMAXτ), (20)

i.e., intermittent synchronization is equivalent to standard synchronization for a system
with a larger Lyapunov exponent.

Then, for a small τ, we have
pc = λMAXτ. (21)

This relationship also holds numerically for other coupling directions, as shown in
Figure 3. In the figure, we also plot the linear fit obtained using the first 20 points.

0.00 0.05 0.10
τ

0.00

0.02

0.04

0.06

0.08

pc

C=[1,1,1]

0.00 0.02 0.04
τ

0.0

0.1

0.2

0.3

0.4

C=[1,0,0]

0.00 0.05 0.10
τ

0.00

0.05

0.10

0.15

0.20

0.25

C=[0,1,0]

Sim

LinFit

Figure 3. The dependence of the synchronization threshold on the intermittent parameter k such that
τ = k∆t for different coupling directions and its linear fit obtained using the first 20 time steps. The
other parameters of the simulation are: dt = 10−3 and kmax = 50 for C = [1, 0, 0], kmax = 100 for
the others.

The estimated values obtained from the linear fit (λfit), compared with the values (λlin)
computed using Equation (21), with pc estimated numerically (Figure 2), are summarized
in Table 1.
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Table 1. Maximum conditional Lyapunov exponent estimated using the asymptotic distance |d|
between master and coupled slave systems (λsim) and derived from linear fit (λfit).

C = [1, 1, 1] Cx = [1, 0, 0] Cy = [0, 1, 0]

λlin 0.995 8.840 2.670
λfit 0.961 8.619 2.555

2.5. Generalized Synchronization

What happens if the two coupled replicas evolve using different values of parameters
σ, ρ, β [6,19]? Even when the coupling parameters (directions and intensity) are above the
threshold, the distance d remains finite. Let us indicate with σ′, ρ′, β′ the parameters of the
slave system.

We can define a parameter distance D,

D =
√
(σ− σ′)2 + (ρ− ρ′)2 + (β− β′)2, (22)

which is zero for the previous coupling schemes. We can also generalize the coupling
among replicas, similar to the approach that was followed for state variables in Equation (6),
introducing a parameter coupling direction χ = [χσ, χρ, χβ] and a strength π so that the
parameters of the slave replica are

σ′ = σ + χσπ(σ1 − σ),
ρ′ = ρ + χρπ(ρ1 − ρ),
β′ = β + χβπ(β1 − β),

where σ1, ρ1, β1 are the values of parameters corresponding to π = 1, reachable according
to the “direction” χ.

We can notice that the distance among state variables d decreases smoothly with p− pc
and D only for a small interval of D near zero. Clearly, d > 0 for p < pc, even for D = 0,
which is what we have seen in Section 2.3.

Some simulation results are presented in Figure 4, in which the asymptotic state–
variable distance d is reported as a function of the distance between parameters D = πD0
and state–variable coupling p. The parameter coupling π always goes from 0 to 1, so
the initial parameter distance D0 corresponds to the larger value of D. The line D = 0
corresponds to the distance reported in Figure 5.
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Figure 4. Heat map of the state–variable distance d for different values of parameter coupling
D = πD0 (0 ≤ π ≤ 1) and state–variable coupling p for some state–variable coupling directions
C and parameter coupling direction χ. (a) C = [1, 1, 1], χ = [1, 1, 1]; (b) Cx = [1, 0, 0], χ = [1, 1, 1];
(c) Cz = [0, 0, 1], χ = [1, 1, 1];. The line π = 0 corresponds to Figure 2.
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Figure 5. The state–variable distance d (dashed line) and parameter distance (color) as a function of
temperature θ for p = 0.6� pc and different coupling directions C. (a) C = [1, 1, 1]; (b) C = [1, 0, 0];
(c) C = [0, 1, 0]. We set θ = 1, ε = 10−4, T = 100.

Clearly, in the absence of synchronization for D = 0 (C = [0, 0, 1], Figure 5c), there is
no synchronization for D > 0. In the other cases, there is a region near the synchronized
phase in which d goes smoothly to zero. Notice that, in Figure 5c, the larger distance d
occurs for p = 1 and large D. This is probably due to the fact that, when coupled along
the z directions, the two replicas may stay on different “leaves” of the attractor, which is
almost perpendicular to z.

Notice also that the d landscape is not smooth far from the synchronized phase. We
consider this aspect in the following section.

3. Parameter Estimation

We are now able to exploit the fact that the distance d goes to zero if p > pc and
D = 0, thus allowing the parameters of the master system r to be determined by varying
the parameters of the simulated replica R.

However, because the convergence of d to zero is not monotonous with D, we rely on
a simulated annealing technique [20] that allows us to overcome the presence of local min-
ima. We introduce a fictitious temperature θ, and assume that the distance d is analogous
to an energy to be minimized.

We assume that the the synchronization time τ and the coupling direction C cannot
be modified at will by experimenters, being fixed by the characteristics of the measuring
instruments and of the actuators. We ascertain that the condition p > pc holds, i.e., such
that if the parameter distance is null, D = 0, synchronization occurs.

The idea is the following: we simulate the coupled system for a time interval T,
measuring the state variable distance d, after which one of the parameters σ, ρ, β is varied
by a small amount. We repeat the simulation starting from the same conditions, except for
the varied parameter, and compute d again. If d decreases, the variation is accepted. It is
also accepted if d increases with a probability

pacc = exp
(
−∆d

θ

)
, (23)

otherwise it is discarded.
The temperature θ is slowly lowered (multiplying θ by a factor 1− ε) every T time

interval. As shown in Figure 5, in this way it is possible to exploit the synchronization
procedure to obtain the values of the parameters in the master replica. In fact, for sufficiently
low θ, the distance |d| between master and slave state variables (dashed line in figure)
drops to zero. For similar (but not always the same) values of temperature, the distances
|∆| between master and slave parameters also drop to zero (continuous color lines). Clearly,
this procedure works only for deterministic dynamical systems with little or no noise on
measurements, and with very low dimensionality.
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4. Pruned-Enriching Approach

The previous scheme cannot be always followed, because we assumed the ability
to measure some of the variables of the master system and inject this value (at least
intermittently) into the slave one.

However, this might be impossible, either because the state variables x, y, z are not
accessible individually, or because those that are accessible do not allow synchronization
(for instance, if only the z variable is accessible, as illustrated in Section 2.3).

We can benefit from the Takens theorem [21], which states that the essential features
(among which is the maximum Lyapunov exponent) of a strange attractor {r(t)}t→∞
can be reconstructed by intermittent observations wn = f (r(n∆T)) using the time series
wn, wn−1, wn−2, . . . as surrogate data, provided that their number is larger than the dimen-
sionality of the attractor [22]. Other conditions are that the observation interval ∆T must be
large enough to have observations wn sufficiently spaced, but not so large that the wn are
scattered along the attractor, making the reconstruction of the trajectory impossible. It is
therefore generally convenient to take an interval ∆t substantially larger than the minimum
∆t = τ, but of the same order of magnitude.

An interesting point is that one can choose for f an arbitrary function of the orig-
inal variables, provided that their correspondence is smooth. We therefore employed
a method inspired by the pruned-enriching technique [23,24], or genetic algorithm without
cross-over [25].

We assume that we can only measure a function f (x, y, z) = f (r) of the master system,
at time intervals τ. The master system evolves with parameters q = (σ, ρ, β).

We simulate an ensemble {Ri}i=1,...,h composed by h replicas, each one starting from
state variables Ri(0) (i = 1, . . . , h) and evolving with the same equation as the master one,
with parameters {Qi}i=1,...,h, where Qi = (σi, ρi, βi). At the beginning, Ri(0) and Qi are
random quantities.

We let the ensemble evolve for a time interval T, and then we measure the distance
di = | f (r(T))− f (Ri(T))|. We sort the replicas according to di and we replace half of them
with larger distances, following an evolutionary law based on a cloning and perturbation
scheme, as shown in Figure 6. For a more detailed description of the procedure, we can
refer to Algorithms 1 and 2.

master

Initial pool of replicas

Pruned 
and enriching

Pruned 
and enriching

𝑇

𝑇

Figure 6. The schematic of the pruned-enriching method. Lines denotes schematically the trajectories
of replicas in the space of state variables and parameters. The dashed lines marks the trajectory of
master system. Disks marks the elimination of replicas which are farther from the master one. Black
dotted lines marks the pruning and enriching times, and the duplication of replicas are marked by
the dashed colored lines with arrows. The variation of the duplication of the nearer replicas is either
on one of the state variables or one of parameters.
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We assume that we have at our disposal a time series measured on some experimental
system. For this simulation, we generate the time series by taking a set of measures
{ f (r(tn))} = { f (rn)}, for t0 = 0, t1 = τ, . . . , tn = nτ, . . . , tN = T = Nτ, where N = T/τ
is the length of the simulated time series.

We then map the time series in an embedding space of size de defined by the vector
wn =

(
f (rn), f (rn−1), . . . , f (rn−de+1)

)
, n ≥ de. We randomly initialize the state values of

the h replicas, R(i)
0 and the initial values of their parameters Q(i), i = 1, . . . , h, in a range

that is consistent with the physical values.

Algorithm 1 Pruned-enriching algorithm

Require: {wn}, δ, Q(i), dt, τ, M, T0
m← 0
for m < M do

t← 0
R(i)

0 ← random in [a, b]
W ← Ensemble evolution up to t = T0 and store measure every τ
for t < T do

if t ∝ τ then
W ← Update with f (R)
d← Euclidean distance d(wn, Wn)
Q← Parameter updating step . Algorithm 2
Q̃← Mean of first R/2 ensemble elements

end if
R← Evolution step with time step dt and Q as parameters
t← t + dt

end for
end for
return Q̃

Algorithm 2 Parameter updating step

Require: R, δ, d, W , w(t)
index← argsort(d) . return index of d sorted in ascending order
for i in range(R/2, R) do

Qi ← Qj with j random integer in (0, R/2)
if random(0, 1) < 0.5 then

k← random integer in (1, 2, 3)
Qik ← Qjk + random(−δ, δ)
while Qik < 0 do

Qik ← Qjk + random(0, δ)
end while

else
Rik ← Rjk + random(−δ, δ)

end if
end for
return Q

To create the initial embedding vectors W (i)
n
(

f (R(i)
n ), f (R(i)

n−1), . . . , f (R(i)
n−de+1)

)
,

n = de, we evolve the replica ensemble for a time interval T0 = deτ so that for each
replica we can build the first de elements of their time series.

We can then start the optimization procedure. For a number of repetitions M, we
evolve the ensemble using a time step dt, up to time t = T. At each interval nτ, we update
the embedding vector W (i)

n , substituting the oldest measurements with the new ones and
computing the Euclidean distances d(i) between the W (i)

n and the reference wn computed
on the master system.
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Notice that, for M > 1, we rescan the time series from the beginning, reinitializing
the random conditions of the replicas as in the first repetition but without changing their
parameters, and we recompute the initial vector W (i)

n , n = de, evolving the ensemble
members up to time t = T0.

The distance d(i) is used as the cost function of our optimization problem. In the
parameter updating step (Algorithm 2), we sort the elements of the set in ascending order
according to d(i) and replace the second half of the set with a copy of the first half, with either
a random perturbation of amplitude δ in one of the parameters or a random perturbation
of the state variables; see Algorithm 2.

We add some checks in order to be sure that the values of parameters are not inconsis-
tent (in our case, all the Q(i) need to be positive). After that, we compute Q̃, the estimated
parameters, as the average of the first half of the ensemble elements with an associated
ensemble error.

Because this procedure depends on the extraction of random numbers, it can then be
repeated to estimate the consequent statistical error on parameters.

We analyze the convergence problem for different values of δ. We assume that only
the x component of the real system is accessed, i.e., our measurement function is simply
f (r) = x. We evolve the system up to T = 100 with the time step dt = 0.01, and we
measure every τ = 0.2. We embed the system in a embedding space of dimensions de = 5.

The ensemble is composed of h = 10,000 replicas, and we repeat the procedure for
M = 5 times. The final results are shown in Figure 7. In Figure 7a, we initialize the
ensemble parameters randomly in the interval (0.5, 30), and we measure the distance D
in the parameters space (Equation (22)) for different δ. Notice that, starting from a large
initial distance, larger values of δ are more effective for the convergence. The opposite
phenomenon is reported in Figure 7b. Here, we assume that the true parameter values are
approximately known with an error ε, and we test the dependence of the amplitude δ in a
fine-tuning regime. In this case, starting from a relatively small distance, smaller values of
δ are more effective.
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Figure 7. Parameter distance D after M repetitions for different amplitudes δ with (a) Q(i) randomly
initialized in the interval (0.5, 30) and (b) Q(i) initialized near the “true” values Q by adding a random
noise of amplitude ε = 0.5. (c) Variance of the distance D for different amplitudes δ for the last
interval. The vertical lines indicate when the ensemble was restored to t = 0. The Q(i) are initialized
as in (a).

In Figure 7c, we instead show the behavior of the variance of the parameter distance D
during optimization for different amplitudes δ. With a small amplitude δ for the parameter
updating step, the elements of the ensemble rapidly converge to the local minimum before
having explored the parameter space sufficiently, so small amplitude values of δ can be
useful only for a fine-tuning approach. Using large values of δ instead is helpful for better
exploration of the parameter landscape, and allows us to converge to the true values,
but with noisy results. These considerations suggest the use of an adaptive value of the
parameter δ.

Inspired by these results, we modify the updating rule, introducing a variable am-
plitude δ =

(
δ(1), δ(2), . . . , δ(h)

)
, where, for every ensemble member i, δ(i) = δ(i)(d(i)).
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Then, for each replica, we define an amplitude that modulates the variation step in
a self-consistent manner. To test this choice, we simply put

δ(i) = d(i). (24)

In Figure 8, we plot the behavior of 50 randomly chosen ensemble members in
the pruned-enriching optimization problem with the amplitude factor δ, defined as in
Equation (24). We assume the situation to be the same as those of the last simulations, so
we measure the real system only in the Cx direction every τ = 0.2. The ensemble dimension
is equal to h = 10,000, and we choose the embedding dimension de = 5. In this simulation,
we run the algorithm for M = 8 repetitions. The numerical results are reported in Table 2.

Figure 8. The distance between variables (black points, right axis) and parameters (color points,
left axis) as a function of iterations (repetitions times number of samples of a trajectory) with the
pruned-enriching method for 50 randomly selected replicas of the h = 10,000 used to estimate the
parameters. We used dt = 10−2, τ = 0.2 and T = 100, so the number of samples (time series) of a
trajectory is 500, and we show M = 8 iterations. We consider the situation where only measurements
in the coupling direction C = [1, 0, 0] are available at every k = 20 temporal steps dt, and we used an
embedding space of dimension de = 5.

We averaged these measurements over Ω = 50 repetitions in order to estimate the
influence of the stochastic elements of Algorithm 2. The results are reported in Table 3. It
can be noticed that the values of the standard deviation over repetitions are essentially
the same of those over ensemble, in Table 2, divided by

√
Ω, implying that the ensemble

is self-averaging (i.e., averages over larger ensembles give the same results as averages
over repetitions).

Table 2. Estimated parameters obtained using the pruned-enriching algorithm with δ variable. In the
last column, we also show the standard deviation on the ensemble members. Simulation data as in
Figure 8.

Real ens. Mean σ ens

σ 10.000000 9.997584 0.062233
β 2.666667 2.664959 0.031623
ρ 28.000000 28.017719 0.067698
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Table 3. Estimated parameters obtained using the pruned-enriching algorithm with δ variable,
averaged over Ω = 50 realizations.

Real Mean σ

σ 10.000000 9.999346 0.013472
β 2.666667 2.666094 0.005040
ρ 28.000000 28.003983 0.042175

The pruned-enriching procedure is similar to a genetic algorithm without cross-over.
In general, a cross-over operation aims to combine locally-optimized solutions, and depends
crucially on the coding of the solution in the “genome”. When the cost function is essentially
a sum of the functions of variables coded in the solution in nearby zones, the cross-over
can indeed allow a jump to an almost-optimal instance.

In this case, we encode the parameters simply using their current values (a single
genome is a vector of 3 real numbers), so there is no indication for this option to be
present. It is, however, possible to pick parameters from “parents” instead of randomly
altering them, i.e., performing “gene exchanging”. Because the pool of tentative solutions
is obtained by cloning those corresponding to the lowest distances from the master, we
expect little improvement using parameter exchange.

To add gene exchanging to our procedure, we modify the algorithms such that, for
every element of the second half of the ensemble, we choose randomly whether to update
the parameters as in Algorithm 2 or perform the gene exchanging step, generating the new
replica from two parents randomly chosen from the first half of the ensemble. Children
randomly inherit two of the parameters from one parent and one from the other.

With no prior information about the true parameter values, we randomly initialize
the initial states and the parameters. Therefore, using the gene exchanging operation
can introduce a bias in the early stages of the optimization problem, as can be seen in
Figure 9, where we compare the estimated parameters for different repetitions using an
amplitude δ = 0.8 with (Figure 9a) and without (Figure 9b) gene exchanging. As in
the other simulations, we randomly initialize the initial states and parameter values of
the ensemble, we evolve the system, after the transient time TTrans, up to T = 100 with
dt = 0.01, and we assume that it is possible to measure the x direction with τ = 0.2.

The gene exchanging operation allows jumps to be made in the parameters space,
but, in the early stage of the optimization process, these jumps can cause the ensemble to
converge on the wrong values. On the other hand, gene exchanging can reduce the variance
of the ensemble estimation, so it can help in the final steps, or for fine tuning. Future work
is needed to explore this option in more detail.
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Figure 9. Estimation (x) and standard deviation (blue area) of the parameters computed using the
first half of the ensemble (a) with and (b) without cross-over. The true values are also shown (dotted
orange lines).
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5. Conclusions and Future Prospects

We have shown that it is possible to exploit several aspects of master–slave synchro-
nization to retrieve the parameters of the master system (assumed to be a real, physical
one) through a simulated replica. In this way, it is also possible to perform measurements
that are impossible in the real system, using the simulated replica.

We have extended the original Pecora–Carrol synchronization scheme [15] to partial
and intermittent coupling.

We have shown that synchronization can be achieved when some of the state variables
are available for direct measurement, and that the parameters of the original systems can
be reconstructed by synchronization using a simulated annealing approach.

Furthermore, we have shown that the synchronization method can be exploited to
retrieve unknown parameters even when variables are accessible only through a scalar
function, using a pruned-enriching ensemble approach, similar to genetic algorithms
without cross-over, which is then introduced as gene exchanging without remarkable
improvements.

This work is only a first glimpse into a wide field. The proposed methods can be
applied to other dynamical systems (such as those considered in Ref. [15]), and their limits
are still to be precisely defined.

We plan to apply our method to experimental realizations of chaotic circuits or other
electronic hardware implementations.

Other important questions concern the dimensionality of systems, because real systems
are only exceptionally described by low-dimensional dynamical systems, and the influence
of noise, which always affects real-life measurements.
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