
Citation: Lin, Y.-W.; Liu, Y.-H.; Lin,

Y.-B.; Hong, J.-C. FenceTalk:

Exploring False Negatives in Moving

Object Detection. Algorithms 2023, 16,

481. https://doi.org/10.3390/

a16100481

Academic Editors: Chih-Lung Lin,

Bor-Jiunn Hwang,

Shaou-Gang Miaou and

Yuan-Kai Wang

Received: 28 August 2023

Revised: 7 October 2023

Accepted: 8 October 2023

Published: 17 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

FenceTalk: Exploring False Negatives in Moving
Object Detection
Yun-Wei Lin 1,*, Yuh-Hwan Liu 2, Yi-Bing Lin 3,4,5,6,* and Jian-Chang Hong 1

1 The College of Artificial Intelligence, National Yang Ming Chiao Tung University, Tainan 711, Taiwan;
jim93073@gmail.com

2 Faculty of Technology Management, China Medical University, Taichung 404, Taiwan; qlyh@mail.cmu.edu.tw
3 College of Computer Science, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
4 College of Biomedical Engineering, China Medical University, Taichung 404, Taiwan
5 Miin Wu School of Computing, National Cheng Kung University, Tainan 701, Taiwan
6 Research Center for Information Technology Innovation, Academia Sinica, Taipei 115, Taiwan
* Correspondence: jyneda@nycu.edu.tw (Y.-W.L.); liny@nctu.edu.tw (Y.-B.L.); Tel.: +886-6-3032121 (Y.-W.L.)

Abstract: Deep learning models are often trained with a large amount of labeled data to improve
the accuracy for moving object detection in new fields. However, the model may not be robust
enough due to insufficient training data in the new field, resulting in some moving objects not being
successfully detected. Training with data that is not successfully detected by the pre-trained deep
learning model can effectively improve the accuracy for the new field, but it is costly to retrieve
the image data containing the moving objects from millions of images per day to train the model.
Therefore, we propose FenceTalk, a moving object detection system, which compares the difference
between the current frame and the background image based on the structural similarity index
measure (SSIM). FenceTalk automatically selects suspicious images with moving objects that are not
successfully detected by the Yolo model, so that the training data can be selected at a lower labor
cost. FenceTalk can effectively define and update the background image in the field, reducing the
misjudgment caused by changes in light and shadow, and selecting images containing moving objects
with an optimal threshold. Our study has demonstrated its performance and generality using real
data from different fields. For example, compared with the pre-trained Yolo model using the MS
COCO dataset, the overall recall of FenceTalk increased from 72.36% to 98.39% for the model trained
with the data picked out by SSIM. The recall of FenceTalk, combined with Yolo and SSIM, can reach
more than 99%.

Keywords: deep learning; image object detection; internet of things; structural similarity index
measure (SSIM)

1. Introduction

In the past, traditional techniques often employed simple cameras for security surveil-
lance in specific areas. Applications included home security, farm monitoring, factory
security, and more, aiming to prevent personal property or crops from being damaged.
However, security personnel had to monitor the images at all times, incurring high costs.
With the rise of internet of things (IoT) technology, security monitoring can be carried out
using physical sensors such as infrared sensors, vibration sensors, or microwave motion
sensors [1]. Nevertheless, these methods have varying accuracy due to different physical
technologies or installation methods, and sensors can struggle to differentiate whether an
object is a target, leading to false alarms.

Object detection is a task within the realm of computer vision, encompassing the
identification and precise localization of objects of interest within an image. Its primary
objective is not merely recognizing the objects present but also delineating their exact posi-
tions through the creation of bounding boxes. In the modern landscape of object detection,

Algorithms 2023, 16, 481. https://doi.org/10.3390/a16100481 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16100481
https://doi.org/10.3390/a16100481
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-6841-4718
https://doi.org/10.3390/a16100481
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16100481?type=check_update&version=2

Algorithms 2023, 16, 481 2 of 18

deep learning models such as convolutional neural networks (CNNs) [2,3] and pioneering
architectures like Yolo (you only look once) [4] have come to the forefront. These technolo-
gies have significantly advanced the accuracy and efficiency of object detection tasks. Yolo,
in particular, has played a pivotal role by enabling both efficient and accurate real-time
object detection, cementing its status as a foundational tool across diverse computer vision
applications.

What sets Yolo apart is its groundbreaking concept of single-shot detection, signifying
its ability to detect and classify objects in an image during a single pass through a neural
network. This innovative approach culminates in the prediction of bounding boxes, ex-
emplified by the pink square box in Figure 1, which encompasses the identified objects.
Similar objectives can be identified using the structural similarity index measure (SSIM) [5]
and vision transformer (ViT) [6], both of which are efficient object detection algorithms.

Algorithms 2023, 16, x FOR PEER REVIEW 2 of 18

objective is not merely recognizing the objects present but also delineating their exact po-
sitions through the creation of bounding boxes. In the modern landscape of object detec-
tion, deep learning models such as convolutional neural networks (CNNs) [2,3] and pio-
neering architectures like Yolo (you only look once) [4] have come to the forefront. These
technologies have significantly advanced the accuracy and efficiency of object detection
tasks. Yolo, in particular, has played a pivotal role by enabling both efficient and accurate
real-time object detection, cementing its status as a foundational tool across diverse com-
puter vision applications.

What sets Yolo apart is its groundbreaking concept of single-shot detection, signify-
ing its ability to detect and classify objects in an image during a single pass through a
neural network. This innovative approach culminates in the prediction of bounding
boxes, exemplified by the pink square box in Figure 1, which encompasses the identified
objects. Similar objectives can be identified using the structural similarity index measure
(SSIM) [5] and vision transformer (ViT) [6], both of which are efficient object detection
algorithms.

Hence, object detection using Yolo finds wide-ranging practical applications, includ-
ing security surveillance, where it excels at identifying and tracking individuals or mov-
ing objects within security camera footage. This paper presents FenceTalk, a user-friendly
moving object detection system. FenceTalk adopts a no-code approach, allowing non-AI
expert users to effortlessly track the objects they define. In Section 5, we will carry out a
performance comparison between FenceTalk and the previously proposed approaches.

Figure 1 illustrates the window-based FenceTalk graphical user interface (GUI),
where a red polygon can be easily created by dragging an area of interest. This area is
designated as a fenced region within a fixed location. Through deep learning models, im-
age recognition is performed to detect the presence of moving objects (depicted by the
pink square in Figure 1) within the fenced area.

Figure 1. FenceTalk user GUI. (Red polygon: fenced region; Pink square: the moving object)

Combining with IoTtalk, an IoT application development platform [7], FenceTalk
sends real-time alert messages to pre-bound devices through IoTtalk when a moving ob-
ject is detected within the fenced area. This allows users to swiftly take appropriate
measures to ensure the security of the area. A reliable image recognition model is crucial
for FenceTalk. However, even after capturing images with targets in the desired new area
for labeling and using this annotated data for training the deep learning model, the model
often fails to recognize certain moving objects. Identifying these images where recognition
was unsuccessful and using them as training data for the model can further enhance its
accuracy.

Extracting image frames containing moving objects from a vast amount of image data
as training data for the model incurs significant labor and time costs. For instance, at the
common camera recording rate of 30 frames per second (FPS), a camera can generate

Figure 1. FenceTalk user GUI. (Red polygon: fenced region; Pink square: the moving object).

Hence, object detection using Yolo finds wide-ranging practical applications, including
security surveillance, where it excels at identifying and tracking individuals or moving
objects within security camera footage. This paper presents FenceTalk, a user-friendly
moving object detection system. FenceTalk adopts a no-code approach, allowing non-AI
expert users to effortlessly track the objects they define. In Section 5, we will carry out a
performance comparison between FenceTalk and the previously proposed approaches.

Figure 1 illustrates the window-based FenceTalk graphical user interface (GUI), where
a red polygon can be easily created by dragging an area of interest. This area is designated as
a fenced region within a fixed location. Through deep learning models, image recognition
is performed to detect the presence of moving objects (depicted by the pink square in
Figure 1) within the fenced area.

Combining with IoTtalk, an IoT application development platform [7], FenceTalk
sends real-time alert messages to pre-bound devices through IoTtalk when a moving
object is detected within the fenced area. This allows users to swiftly take appropriate
measures to ensure the security of the area. A reliable image recognition model is crucial
for FenceTalk. However, even after capturing images with targets in the desired new
area for labeling and using this annotated data for training the deep learning model, the
model often fails to recognize certain moving objects. Identifying these images where
recognition was unsuccessful and using them as training data for the model can further
enhance its accuracy.

Extracting image frames containing moving objects from a vast amount of image data
as training data for the model incurs significant labor and time costs. For instance, at
the common camera recording rate of 30 frames per second (FPS), a camera can generate
2,592,000 image frames in a single day. Given that the moving objects to be recognized in
a fixed area exhibit movement characteristics, FenceTalk designs an algorithm to define
a background image, and compares the current image frame with the background image

Algorithms 2023, 16, 481 3 of 18

using SSIM to analyze differences in the images. Subsequently, based on the brightness
of the current image, FenceTalk employs an optimal threshold to separate background
noise from the moving objects of interest. This process determines whether the current
image frame contains a suspicious image with moving objects. By filtering these selected
suspicious images, FenceTalk enables users to choose the model’s training data with
reduced human resource costs. To minimize hardware costs, we deployed FenceTalk on an
embedded device, the Nvidia Jetson Nano, equipped with a graphics processing unit. The
Jetson Nano GPU features 128 CUDA cores and 4 GB LPDDR4 memory, making it suitable
for running CNN models that require extensive matrix operations.

This paper is organized as follows: Section 2 reviews the previous work; Section 3
describes the FenceTalk architecture; Section 4 describes how SSIM is used in FenceTalk;
Section 5 evaluates the object detection performance of FenceTalk and the time and space
complexities of Nvidia Jetson Nano.

2. Related Works

Deep learning models for moving object detection based on CNNs [8–11] can utilize
camera images from specific areas as training data to learn the features of moving objects.
This enables accurate identification of moving objects within the frame. In a previous
work [4], the authors chose the Yolo model for recognizing humans and vehicles, applying
it to a real-time recognition system in an advanced driver assistance system (ADAS).
Compared to two-stage recognition models like Faster-RCNN, the one-stage Yolo model
strikes a balance between accuracy and speed. Yolo and Yolo-tiny were employed for
pedestrian detection, achieving a recall rate of more than 80%. Yolo-tiny, in particular,
is well-suited to scenarios requiring real-time detection—aligning with the application
context of FenceTalk in our study.

We evaluated different versions of YOLO [12,13]. Despite YOLOv6 [14] having 33%
fewer parameters than YOLOv7-tiny and YOLOv4-tiny at the same scale, its inference
speed improved by less than 10%. However, this reduction in parameters led to an accuracy
drop of nearly 10% compared to YOLOv7-tiny. YOLOv7-tiny’s optimization primarily
emphasizes training efficiency and inference speed. On our hardware, YOLOv7-tiny
demonstrated object detection approximately 10% faster than that of YOLOv4-tiny. Nev-
ertheless, YOLOv7-tiny only achieved an accuracy of 90.86% on our dataset, falling short
of YOLOv4-tiny’s performance. As a result, we ultimately opted for YOLOv4-tiny as
our choice.

Now we review the past methods for evaluating image similarity and the applications
related to SSIM. Mean square error (MSE) is a common and straightforward approach to
measure the similarity between two images. It calculates the mean squared error value
of image pixels as an indicator of image similarity. A higher MSE value indicates greater
disparity between the two images. The calculation method of MSE considers only the
corresponding pixel values of the two images, making its results less reliable. In a study [15],
using Einstein’s image as an example, JPEG image compression and blurring were applied,
resulting in significant differences between the two images. However, their MSE results
were similar to the original image. MSE can also exhibit substantial variations in values
due to minor pixel rearrangements. The authors of the study slightly shifted and scaled the
Einstein image, maintaining a similar appearance to the original. Nevertheless, the MSE
values for these modified images were significantly high, reaching 871 and 873, respectively,
compared to the original image.

Peak signal-to-noise ratio (PSNR) [16] is defined based on MSE and is also widely
used for measuring image similarity [17]. PSNR resolves this issue by incorporating
peak intensity considerations. In particular, the logarithmic transformation enables us to
express scores more concisely. Consequently, the advantages of PSNR over MSE can be
summarized as follows: (1) facilitating the comparison of results obtained from images
encoded with varying bit depths and (2) providing a more concise representation. However,
it is important to note that, by definition, PSNR remains essentially a normalized variant

Algorithms 2023, 16, 481 4 of 18

of MSE. PSNR finds widespread utility in tasks related to image and video compression,
restoration, and enhancement, effectively quantifying the extent of information loss during
compression or processing. A higher PSNR value indicates greater similarity between the
two images. Nevertheless, when it comes to background detection, it does not exhibit the
same effectiveness as mixture of Gaussians (MOG) [18] and absolute difference (AD) [19].

MOG [18] is purpose-built for modeling the background within images by employing
a mixture of Gaussian distributions. MOG demonstrates adaptability to changing lighting
conditions and exhibits robust performance across various scenarios, making it suitable
for real-time applications. AD [19] represents another background subtraction technique.
While specific implementation details may vary, the core concept is to calculate the absolute
pixel-wise difference between corresponding pixels in two input images. The result is a
new image, known as the absolute difference image. Specifically, MOG garners favor for its
robustness in accommodating evolving environments, whereas the efficacy of AD hinges
on pixel-wise absolute difference.

In [20], it is argued that natural images possess highly structured characteristics with
closely related neighboring pixels. As a result, the structural similarity index measure
(SSIM) was introduced. SSIM is designed based on the human visual system (HVS) and
evaluates image similarity by considering brightness, contrast, and structural factors.
Unlike traditional methods like MSE or PSNR, which use a sum of errors, SSIM does not
drastically change its results due to minor changes in image brightness or noise, better
aligning with the human perception of image quality. The calculation method of SSIM will
be further introduced in Section 4.

In [21], the authors advocate using SSIM to measure the distance between tracked
objects and candidate bounding boxes in object tracking. Unlike the traditional method of
object tracking based on object color classification, this paper demonstrates that even in
challenging conditions such as temporary occlusion or changes in image brightness, using
SSIM still yields stable and reliable object tracking results.

In [22], the authors compare detection methods for moving objects using a single Gaus-
sian model, an adaptive Gaussian mixture model 2 (MOG2), and SSIM-based approaches.
The traditional single Gaussian model tends to capture a significant amount of image noise,
while MOG2 struggles to detect targets with similar colors to the background. However,
the SSIM-based detection method can accurately detect moving objects. The study only
utilized the first frame of the video as the SSIM background image and did not consider
subsequent changes in the background. In contrast, FenceTalk incorporates an algorithm to
update the SSIM background image and validates its stability using a large dataset.

In [23], a method for detecting geometric defects in digital printing images is proposed
based on SSIM. The study inspects defects such as stains, scratches, and ink in simulated
and real images. Compared to the AD-based inspection method, the SSIM-based approach
effectively detects subtle defects and reduces misjudgments caused by environmental
lighting factors.

ViT [6] is the state-of-the-art model for image classification, which is a revolutionary
deep learning architecture that has gained significant attention and popularity in the field
of computer vision. ViT has powerful image recognition capabilities, and when used for
image classification, it can achieve excellent results. Based on practical experience, ViT’s
performance significantly surpasses that of earlier algorithms MSE, PSNR, MOG2, and
AD. While running ViT does consume a significant amount of computational resources, its
performance can serve as an upper-bound reference point for accuracy comparison.

In a home security automatic recording system described in [24], SSIM is used to
compare the current and the next image frames to decide whether to trigger the recording
process. This system achieves a high-accuracy and stable event detection, saving storage
space and simplifying subsequent image analysis time. While the study used an average
similarity index and standard deviation of 100 consecutive pairs of frames as the threshold
for motion detection, FenceTalk differentiates images based on brightness to find the
optimal threshold. It then separates background noise and moving objects using this

Algorithms 2023, 16, 481 5 of 18

threshold, automatically selecting images that Yolo failed to recognize. This reduces the
time cost of manual labeling. The study reported a motion detection accuracy ranging from
0.985 to 0.995 in most experiments, while FenceTalk achieves a slightly better performance
of 0.9994. In [25], SSIM-NET is introduced for defect detection in printed circuit boards
(PCBs). SSIM-NET employs a two-stage approach where SSIM identifies regions of interest
in the image, followed by classification using MobileNet-V3. Compared to Faster-RCNN,
SSIM-NET offers more than 12 times faster recognition speed, 0.62% higher accuracy, and
faster training time. However, unlike FenceTalk, PCB defect detection does not need to
consider the impact of abrupt lighting changes on SSIM, and the paper does not mention
how SSIM background images are updated.

3. FenceTalk Architecture

FenceTalk utilizes a network camera to transmit real-time images for image recogni-
tion. Figure 2 illustrates the FenceTalk architecture, comprising six key components. At its
core is the FenceTalk server, which includes the FenceTalk engine (Figure 2 (1)), derived
from IoTtalk [6], and a developer GUI (Figure 2 (2)). Following the IoTtalk philosophy,
the FenceTalk server operates as an IoT server and employs an image database known as
FenceTalk DataBase (FTDB) to store images extracted from the video streams (Figure 2 (3)).
Additionally, the remaining four components within FenceTalk serve as IoT devices, en-
compassing the camera software module (Figure 2 (4)), the Yolo module (Figure 2 (5)), the
SSIM module (Figure 2 (6)), and the user GUI module (Figure 2 (7)).

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 18

Figure 2. The FenceTalk architecture.

In FenceTalk, IoT devices can be effortlessly connected and configured using the de-
veloper GUI (Figure 2 (2)) accessible through a web browser. Figure 3 depicts this GUI,
wherein the involved IoT devices can be chosen from the model pulldown list (Figure 3
(1)). When we opt for the Yolo IoT device (i.e., the Yolo module), two icons are displayed
within the GUI window. The icon on the left side of the window indicates the DA inter-
faces Yolo-I and Msg-I (Figure 3 (2)). The icon on the right side represents the DA interface
Yolo-O. Similarly, we can choose the SSIM and the display devices. To establish connec-
tions between the IoT devices, all that is required is dragging the “join links.” For instance,
Join 1 connects Yolo-I to SSIM-O. This link creates an automatic communication pathway
between the Yolo module and the SSIM module. Consequently, the configuration shown
in Figure 3 yields the FenceTalk architecture displayed in Figure 2.

Figure 2. The FenceTalk architecture.

Each of these software modules consists of two parts: device application (DA) and
sensor and actuator application (SA). The DA is responsible for communication with the
FenceTalk server using HTTP communication ((5)↔(1), (6)↔(1), (7)↔(1) in Figure 2), which
can be achieved through wired means (e.g., Ethernet) or wireless options (e.g., 5G or Wi-Fi)
for communication. The SA part implements functionalities related to IoT devices, such as
Yolo SA for object detection based on the Yolo model and SSIM SA for detecting moving
objects based on SSIM.

Algorithms 2023, 16, 481 6 of 18

The network camera (Figure 2 (4)) uses the real-time streaming protocol (RTSP) to
stream the image frames. If the user draws a red polygon to define a fenced area within
the desired field, FenceTalk will exclusively perform object detection within this specified
area. The Yolo SA (Figure 2 (5)) continuously receives the latest streaming image frames
and conducts object detection within the designated region using the Yolov4-tiny model.
The results of the detection process, including object names, positions, and image paths,
are stored in FTDB (Figure 2 (3)).

The ongoing Yolo recognition result is transmitted to the FenceTalk Engine (Figure 2 (1))
through the DA interface Yolo-I. The engine receives this data and has the capability
to preprocess it using custom functions before transmitting it to connected IoT devices.
Specifically, the engine forwards the Yolo recognition results to SSIM (Figure 2 (6)) through
the DA interface SSIM-O for further evaluation. The outcomes of this evaluation, which
include information about the presence of moving objects and corresponding image paths,
are then stored in FTDB. Simultaneously, the SSIM assessment result is sent to the FenceTalk
server via the DA interface SSIM-I, which is sent back to the Yolo module for further
processing (See Section 4). The results of object recognition are subsequently displayed on
user-defined devices (Figure 2 (7)).

In FenceTalk, IoT devices can be effortlessly connected and configured using the
developer GUI (Figure 2 (2)) accessible through a web browser. Figure 3 depicts this GUI,
wherein the involved IoT devices can be chosen from the model pulldown list (Figure 3 (1)).
When we opt for the Yolo IoT device (i.e., the Yolo module), two icons are displayed within
the GUI window. The icon on the left side of the window indicates the DA interfaces Yolo-I
and Msg-I (Figure 3 (2)). The icon on the right side represents the DA interface Yolo-O
(Figure 3 (3)). Similarly, we can choose the SSIM and the display devices. To establish
connections between the IoT devices, all that is required is dragging the “join links.” For
instance, Join 1 connects Yolo-I to SSIM-O. This link creates an automatic communication
pathway between the Yolo module and the SSIM module. Consequently, the configuration
shown in Figure 3 yields the FenceTalk architecture displayed in Figure 2.

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 18

Figure 2. The FenceTalk architecture.

In FenceTalk, IoT devices can be effortlessly connected and configured using the de-
veloper GUI (Figure 2 (2)) accessible through a web browser. Figure 3 depicts this GUI,
wherein the involved IoT devices can be chosen from the model pulldown list (Figure 3
(1)). When we opt for the Yolo IoT device (i.e., the Yolo module), two icons are displayed
within the GUI window. The icon on the left side of the window indicates the DA inter-
faces Yolo-I and Msg-I (Figure 3 (2)). The icon on the right side represents the DA interface
Yolo-O. Similarly, we can choose the SSIM and the display devices. To establish connec-
tions between the IoT devices, all that is required is dragging the “join links.” For instance,
Join 1 connects Yolo-I to SSIM-O. This link creates an automatic communication pathway
between the Yolo module and the SSIM module. Consequently, the configuration shown
in Figure 3 yields the FenceTalk architecture displayed in Figure 2.

Figure 3. The FenceTalk developer GUI.

4. The SSIM Module

When the Yolo module processes an image and detects the moving objects, it places the
image in the moving object database (Figure 4 (1)). If no moving objects are detected, the
image is placed in the non-moving object database (Figure 4 (2)). Both databases are parts
of FTDB (Figure 2 (3)). The detection accuracy of the Yolo module can be improved through
re-training using false positive images from the moving object database and false negative
images from the non-moving object database. The identification of false positive/negative

Algorithms 2023, 16, 481 7 of 18

images is typically performed manually. Unfortunately, our experience indicates that the
size of the non-moving object database is usually substantial, making the identification
of false positive images a highly tedious task. To resolve this issue, we developed the
SSIM module.

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 18

Figure 3. The FenceTalk developer GUI.

4. The SSIM Module
When the Yolo module processes an image and detects the moving objects, it places

the image in the moving object database (Figure 4 (1)). If no moving objects are detected,
the image is placed in the non-moving object database (Figure 4 (2)). Both databases are
parts of FTDB (Figure 2 (3)). The detection accuracy of the Yolo module can be improved
through re-training using false positive images from the moving object database and false
negative images from the non-moving object database. The identification of false posi-
tive/negative images is typically performed manually. Unfortunately, our experience in-
dicates that the size of the non-moving object database is usually substantial, making the
identification of false positive images a highly tedious task. To resolve this issue, we de-
veloped the SSIM module.

Figure 4. The operation of the Yolo module.

The structural similarity index (SSIM) is a metric used to measure the similarity be-
tween two images. It assesses the images based on their brightness, contrast, and struc-
tural similarity. It is commonly employed to determine the degree of similarity or distor-
tion between two images. Given a background image 𝑥 and a test photo 𝑦, both of size 𝑚 × 𝑛, SSIM is defined as: SSIMሺ𝑥, 𝑦ሻ = ሾΨሺ𝑥, 𝑦ሻሿఈሾ𝑐ሺ𝑥, 𝑦ሻሿఉሾ𝑠ሺ𝑥, 𝑦ሻሿఊ (1)

where Ψሺ𝑥, 𝑦ሻ = 2𝜇௫𝜇௬ + 𝐶ଵ𝜇௫ଶ + 𝜇௬ଶ + 𝐶ଵ (2)

𝑐ሺ𝑥, 𝑦ሻ = 2𝜎௫𝜎௬ + 𝐶ଶ𝜎௫ଶ + 𝜎௬ଶ + 𝐶ଶ (3)

𝑠ሺ𝑥, 𝑦ሻ = 𝜎௫௬ + 𝐶ଷ𝜎௫𝜎௫ + 𝐶ଷ (4)

Figure 4. The operation of the Yolo module.

The structural similarity index (SSIM) is a metric used to measure the similarity
between two images. It assesses the images based on their brightness, contrast, and
structural similarity. It is commonly employed to determine the degree of similarity or
distortion between two images. Given a background image x and a test photo y, both of
size m× n, SSIM is defined as:

SSIM(x, y) = [Ψ(x, y)]α[c(x, y)]β[s(x, y)]γ (1)

where

Ψ(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(2)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(3)

s(x, y) =
σxy + C3

σxσx + C3
(4)

In Ψ(x, y), grayscale values of the images are used to compare the similarity in average
luminance between the two images. In the function c(x, y), contrast similarity between the
images is assessed by calculating the standard deviation of image pixels. The function s(x, y)
measures the similarity in structural content between the two photographs. In Equation (2),
µx and µy represent the average values of the pixel intensities of the two images, while σx
and σy in Equations (3) and (4) denote the covariance of the two images. Constants C1, C2,
and C3 are used to stabilize the function, where C1 = K1L2, C2 = K2L2, and C3 = C2

2 . The
values of K1 and K2 are set as 0.01 and 0.03, respectively, and L is the number of possible

Algorithms 2023, 16, 481 8 of 18

intensity levels in the image. For an 8-bit grayscale image, L would be 255. In [20], the
values of α, β, and γ are set to 1, leading to a simplified SSIM formula of Equation (1):

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µx2 + µy2 + C1

)(
σx2 + σy2 + C2

) (5)

The structural similarity index (SSIM) yields larger values for more similar images
and possesses three key properties. The symmetry property is

SSIM(x, y) = SSIM(y, x)

The bound property is
SSIM(x, y) ≤ 1

The uniqueness property states that when two images are identical, i.e., µx = µy and
σx = σy, we have

SSIM(x, y) = 1

FenceTalk utilizes a predefined background image (Figure 5 (1)) and an image frame
(Figure 5 (2)) to determine the presence of moving objects. Since SSIM requires two single-
channel image frames as input, we convert the input images from RGB with three channels
to single-channel grayscale images. Then, we use an N × N sliding window with a moving
stride of 1. For each window, the SSIM is calculated. The output range of SSIM is [0, 1],
while the pixel values of an 8-bit image are in the range of [0, 255]. To represent the SSIM
values obtained from each sliding window in the full range of grayscale values, we linearly
scale the SSIM values to the range of [0, 255]. This produces a complete single-channel
grayscale (binarized) SSIM image (Figure 5 (3)).

Algorithms 2023, 16, x FOR PEER REVIEW 8 of 18

In Ψ(x, y), grayscale values of the images are used to compare the similarity in aver-
age luminance between the two images. In the function c(x, y), contrast similarity between
the images is assessed by calculating the standard deviation of image pixels. The function
s(x, y) measures the similarity in structural content between the two photographs. In
Equation (2), 𝜇௫ and 𝜇௬ represent the average values of the pixel intensities of the two
images, while 𝜎௫ and 𝜎௬ in Equations (3) and (4) denote the covariance of the two im-
ages. Constants 𝐶ଵ, 𝐶ଶ, and 𝐶ଷ are used to stabilize the function, where 𝐶ଵ = 𝐾ଵ𝐿ଶ, 𝐶ଶ =𝐾ଶ𝐿ଶ, and 𝐶ଷ = మଶ . The values of 𝐾ଵ and 𝐾ଶ are set as 0.01 and 0.03, respectively, and 𝐿
is the number of possible intensity levels in the image. For an 8-bit grayscale image, L
would be 255. In [20], the values of 𝛼, 𝛽, and 𝛾 are set to 1, leading to a simplified SSIM
formula of Equation (1): SSIMሺ𝑥, 𝑦ሻ = ൫2𝜇௫𝜇௬ + 𝐶ଵ൯൫2𝜎௫௬ + 𝐶ଶ൯൫𝜇௫ଶ + 𝜇௬ଶ + 𝐶ଵ൯൫𝜎௫ଶ + 𝜎௬ଶ + 𝐶ଶ൯ (5)

The structural similarity index (SSIM) yields larger values for more similar images
and possesses three key properties. The symmetry property is SSIMሺ𝑥, 𝑦ሻ = SSIMሺ𝑦, 𝑥ሻ

The bound property is

SSIM(x, y) ≤ 1

The uniqueness property states that when two images are identical, i.e., 𝜇௫ = 𝜇௬ and 𝜎௫ = 𝜎௬, we have

SSIM(x, y) = 1

FenceTalk utilizes a predefined background image (Figure 5 (1)) and an image frame
(Figure 5 (2)) to determine the presence of moving objects. Since SSIM requires two single-
channel image frames as input, we convert the input images from RGB with three chan-
nels to single-channel grayscale images. Then, we use an 𝑁 × 𝑁 sliding window with a
moving stride of 1. For each window, the SSIM is calculated. The output range of SSIM is
[0, 1], while the pixel values of an 8-bit image are in the range of [0, 255]. To represent the
SSIM values obtained from each sliding window in the full range of grayscale values, we
linearly scale the SSIM values to the range of [0, 255]. This produces a complete single-
channel grayscale (binarized) SSIM image (Figure 5 (3)).

Figure 5. The operation of the SSIM module.

In the SSIM image, different degrees of differences are represented by varying shades
of color. When the difference between the two images within a sliding window is larger,

Figure 5. The operation of the SSIM module.

In the SSIM image, different degrees of differences are represented by varying shades
of color. When the difference between the two images within a sliding window is larger, the
SSIM value is lower, and the corresponding area on the SSIM output image is represented
by darker shades. Conversely, when the difference between the two images within a sliding
window is smaller, the SSIM value is higher, and the corresponding area on the SSIM
output image is represented by lighter shades.

To determine the presence of moving objects in the SSIM image, a threshold value
needs to be set to separate the background noise from the moving objects. Using Figure 5 (3)
as an example, a threshold value of 125 is applied to this SSIM image to obtain the image
in Figure 5 (4). This process involves image binarization and edge detection, filtering out
small noise components, and determining whether the area within the fence boundary
contains moving objects. The corresponding detection positions are then highlighted on
the RGB image (Figure 5 (5)). The selection of an appropriate threshold to effectively distin-

Algorithms 2023, 16, 481 9 of 18

guish background noise from moving objects will be further discussed and experimentally
demonstrated in the next section.

The flowchart of the Yolo and the SSIM modules is illustrated in Figure 6. FenceTalk
determines the presence of moving objects by comparing the current frame with a back-
ground image. Before processing the image frame detection, FenceTalk selects frames
with varying brightness from the video as candidate background images, denoted as BG[l]
(0 ≤ l ≤ L = 255). If the moving objects to be recognized are within the 80 classes of the MS
COCO dataset [26], these candidate backgrounds are initially processed by a pre-trained
Yolo model trained on the MS COCO dataset to identify images that do not contain the
moving object (e.g., people). However, due to limitations in the pre-trained Yolo model’s
recognition capabilities or when the moving object is not in the MS COCO dataset, users
need to examine and remove background images that FenceTalk incorrectly identified as
not containing any moving objects. In FenceTalk, moving objects are defined as objects that
change their position relative to the background image over time, i.e., they are not fixed in
the background.

Algorithms 2023, 16, x FOR PEER REVIEW 10 of 18

across a sequence of consecutive images. The utilization of SSIM(f, Bg) (Figure 6 (10)) en-
sures that each moving object is saved in the missing object database only once. After
processing all desired image frames, users can retrieve all identified moving objects (Fig-
ure 6 (3)) and missing objects (Figure 6 (9)) from the database. These false negative images
can be automatically annotated and used to retrain the Yolo model (Figure 6 (12)) to im-
prove its accuracy. The retrained Yolo model can then be used to repeat the recognition
process (Figure 6 (1)) for improved recognition accuracy.

Figure 7 illustrates the process of automatic background update. The SSIM image
(Figure 7 (3)) is generated by comparing the background image (Figure 7 (1)) with the
current image frame 𝑓௧ at time 𝑡 (Figure 7 (2)). Noticeable changes in shadows can lead
to misjudgment of moving objects by FenceTalk (Figure 7 (4)). Upon detecting moving
objects, FenceTalk updates the background image (Figure 7 (5)). The SSIM image (Figure
7 (7)) is generated by comparing the updated background image with the subsequent im-
age frame 𝑓௧ାଵ at time 𝑡 + 1 (Figure 7 (6)). The result is a correct judgment that the image
frame 𝑓௧ାଵ does not contain any moving objects (Figure 7 (8)).

Figure 6. Operation of the Yolo and the SSIM modules.

Figure 7. Background update.

5. FenceTalk Experiments
This section describes the datasets we collected and explains how we utilized these

data to experimentally demonstrate the universality of the optimal threshold for SSIM.

New
frame f

YOLO
process

No

1

R=detected
?

Detected by
YOLO?

Save f in the Non-moving Object DB

Moving object
detected

Yes

2

6

;
R SSIM(f, BG[l])

Bg f Bg=NIL
?

YOLO re-
training

R SSIM(f, Bg)R=detected
?

Yes

78

1011

Yes

No

12

5

4

Save f in the
Moving Object DB

3

Save f in
the

Missing
Object

DB

9

Figure 6. Operation of the Yolo and the SSIM modules.

FenceTalk reads a predefined background image BG[l] at the brightness level l, and
from the video, it reads the next frame f to be processed. Frame f first undergoes the Yolo
module for object recognition (Figure 6 (1)), where the Yolo model can be a pre-trained
model on the MS COCO dataset or a user-trained model. If the Yolo module detects any
objects (Figure 6 (2)), the images containing the moving objects are stored in the moving
object database (Figure 6 (3)), and those without the moving object are stored in the non-
moving object database (Figure 6 (4)). The process then moves on to the next frame. If the
Yolo module does not detect any objects, FenceTalk enters the SSIM module to detect the
false negatives images in the non-moving object database. The non-moving object database
serves as a buffer due to the differing processing speeds of the Yolo module, which utilizes
GPU, and the SSIM module, which operate on CPU. Consequently, the non-moving object
database guarantees that all images from the Yolo module can be processed by the SSIM
module without any loss of images.

FenceTalk calculates the brightness of frame f as l and selects the background image
BG[l] with the same or closest brightness to f. The SSIM module then detects missing
moving objects by comparing f and BG[l] (Figure 6 (5)). If the detection result (Figure 6 (6))
does not contain moving objects, the process continues to the next frame.

To reduce false positives caused by changes in background lighting or the addition
of new objects to the background, if FenceTalk determines that f contains moving objects

Algorithms 2023, 16, 481 10 of 18

(Figure 6 (6)), it performs a second check using a secondary background image, Bg. Initially,
FenceTalk checks if background image Bg exists (Figure 6 (7)). If Bg does not exist (Initially,
Bg = NIL), f is set as Bg (Figure 6 (8)) and stored (Figure 6 (9)) for subsequent model
training. If Bg exists, SSIM is again applied to detect moving objects by comparing f and
Bg (Figure 6 (10)). If the detection result (Figure 6 (11)) does not contain moving objects,
the process continues to the next frame. If moving objects are detected, Bg is replace by f
(Figure 6 (8)), and f is stored in the missing object database (Figure 6 (9)). The purpose of
Bg is to prevent the repetitive detection and storage of the same moving object across a
sequence of consecutive images. The utilization of SSIM(f, Bg) (Figure 6 (10)) ensures that
each moving object is saved in the missing object database only once. After processing
all desired image frames, users can retrieve all identified moving objects (Figure 6 (3))
and missing objects (Figure 6 (9)) from the database. These false negative images can be
automatically annotated and used to retrain the Yolo model (Figure 6 (12)) to improve its
accuracy. The retrained Yolo model can then be used to repeat the recognition process
(Figure 6 (1)) for improved recognition accuracy.

Figure 7 illustrates the process of automatic background update. The SSIM image
(Figure 7 (3)) is generated by comparing the background image (Figure 7 (1)) with the
current image frame ft at time t (Figure 7 (2)). Noticeable changes in shadows can lead to
misjudgment of moving objects by FenceTalk (Figure 7 (4)). Upon detecting moving objects,
FenceTalk updates the background image (Figure 7 (5)). The SSIM image (Figure 7 (7))
is generated by comparing the updated background image with the subsequent image
frame ft+1 at time t + 1 (Figure 7 (6)). The result is a correct judgment that the image frame
ft+1 does not contain any moving objects (Figure 7 (8)).

Algorithms 2023, 16, x FOR PEER REVIEW 10 of 18

across a sequence of consecutive images. The utilization of SSIM(f, Bg) (Figure 6 (10)) en-
sures that each moving object is saved in the missing object database only once. After
processing all desired image frames, users can retrieve all identified moving objects (Fig-
ure 6 (3)) and missing objects (Figure 6 (9)) from the database. These false negative images
can be automatically annotated and used to retrain the Yolo model (Figure 6 (12)) to im-
prove its accuracy. The retrained Yolo model can then be used to repeat the recognition
process (Figure 6 (1)) for improved recognition accuracy.

Figure 7 illustrates the process of automatic background update. The SSIM image
(Figure 7 (3)) is generated by comparing the background image (Figure 7 (1)) with the
current image frame 𝑓௧ at time 𝑡 (Figure 7 (2)). Noticeable changes in shadows can lead
to misjudgment of moving objects by FenceTalk (Figure 7 (4)). Upon detecting moving
objects, FenceTalk updates the background image (Figure 7 (5)). The SSIM image (Figure
7 (7)) is generated by comparing the updated background image with the subsequent im-
age frame 𝑓௧ାଵ at time 𝑡 + 1 (Figure 7 (6)). The result is a correct judgment that the image
frame 𝑓௧ାଵ does not contain any moving objects (Figure 7 (8)).

Figure 6. Operation of the Yolo and the SSIM modules.

Figure 7. Background update.

5. FenceTalk Experiments
This section describes the datasets we collected and explains how we utilized these

data to experimentally demonstrate the universality of the optimal threshold for SSIM.

New
frame f

YOLO
process

No

1

R=detected
?

Detected by
YOLO?

Save f in the Non-moving Object DB

Moving object
detected

Yes

2

6

;
R SSIM(f, BG[l])

Bg f Bg=NIL
?

YOLO re-
training

R SSIM(f, Bg)R=detected
?

Yes

78

1011

Yes

No

12

5

4

Save f in the
Moving Object DB

3

Save f in
the

Missing
Object

DB

9

Figure 7. Background update.

5. FenceTalk Experiments

This section describes the datasets we collected and explains how we utilized these
data to experimentally demonstrate the universality of the optimal threshold for SSIM. We
will also discuss the accuracy of SSIM and Yolo in different subsets of the dataset. Finally,
we will showcase the processing speed and resource usage of FenceTalk on the embedded
device Jetson Nano.

We collected continuous camera footage from two outdoor locations, National Yang
Ming Chiao Tung University and China Medical University, for a duration of six days each,
using a recording frame rate of 30 FPS. Compared to indoor stable lighting conditions, the
use of outdoor camera footage from these two locations provided a more robust evaluation
of FenceTalk’s performance in complex lighting environments. Dataset 1 was obtained
from the entrance of the Electronic Information Building at No. 1001 University Road,
National Yang Ming Chiao Tung University, Hsinchu City (as shown in Figure 8a). The
data collection period was from 17 June 2022 to 23 June 2022, covering the entire day’s
camera footage. Dataset 2 was gathered from the Innovation and Research Building at
No. 100, Section 1, Jingmao Road, Beitun District, China Medical University, Taichung

Algorithms 2023, 16, 481 11 of 18

City (as shown in Figure 8b). The data collection period spanned from 10 December 2021
to 15 December 2022, capturing the full day’s camera footage. In Dataset 1, images were
collected at a rate of 10 FPS, resulting in a total of 4,832,579 images. Among these, there were
226,518 images containing moving objects (people). Dataset 2 comprised images collected
at a rate of 15 FPS, with a total of 6,910,580 images. Within this dataset, 144,761 images
were of moving objects. All images had a resolution of 1920 × 1080 pixels. These datasets
were chosen to encompass a diverse range of lighting conditions and scenarios, enabling
us to validate FenceTalk’s performance robustness and reliability in real-world outdoor
environments. It is noteworthy that due to this high collection frequency, the contents of
any two consecutive images exhibited striking similarity. When it came to utilizing these
images in training our model, a straightforward approach proved to be counterproductive,
as it substantially consumed computational resources without yielding significant benefits
to the model’s performance. Therefore, we resampled the images at a rate of 5 FPS, which
captured one image every 0.2 s. This adjustment allowed us to maintain a sufficiently fast
capture rate to effectively track moving objects (people), and train a highly effective model
while conserving computational power. Table 1 shows the total number of images utilized
in Datasets 1 and 2 after the resampling process.

Algorithms 2023, 16, x FOR PEER REVIEW 11 of 18

We will also discuss the accuracy of SSIM and Yolo in different subsets of the dataset.
Finally, we will showcase the processing speed and resource usage of FenceTalk on the
embedded device Jetson Nano.

We collected continuous camera footage from two outdoor locations, National Yang
Ming Chiao Tung University and China Medical University, for a duration of six days
each, using a recording frame rate of 30 FPS. Compared to indoor stable lighting condi-
tions, the use of outdoor camera footage from these two locations provided a more robust
evaluation of FenceTalk’s performance in complex lighting environments. Dataset 1 was
obtained from the entrance of the Electronic Information Building at No. 1001 University
Road, National Yang Ming Chiao Tung University, Hsinchu City (as shown in Figure 8a).
The data collection period was from 17 June 2022 to 23 June 2022, covering the entire day’s
camera footage. Dataset 2 was gathered from the Innovation and Research Building at No.
100, Section 1, Jingmao Road, Beitun District, China Medical University, Taichung City
(as shown in Figure 8b). The data collection period spanned from 10 December 2021 to 15
December 2022, capturing the full day’s camera footage. In Dataset 1, images were col-
lected at a rate of 10 FPS, resulting in a total of 4,832,579 images. Among these, there were
226,518 images containing moving objects (people). Dataset 2 comprised images collected
at a rate of 15 FPS, with a total of 6,910,580 images. Within this dataset, 144,761 images
were of moving objects. All images had a resolution of 1920 × 1080 pixels. These datasets
were chosen to encompass a diverse range of lighting conditions and scenarios, enabling
us to validate FenceTalk’s performance robustness and reliability in real-world outdoor
environments. It is noteworthy that due to this high collection frequency, the contents of
any two consecutive images exhibited striking similarity. When it came to utilizing these
images in training our model, a straightforward approach proved to be counterproduc-
tive, as it substantially consumed computational resources without yielding significant
benefits to the model’s performance. Therefore, we resampled the images at a rate of 5
FPS, which captured one image every 0.2 s. This adjustment allowed us to maintain a
sufficiently fast capture rate to effectively track moving objects (people), and train a highly
effective model while conserving computational power. Table 1 shows the total number
of images utilized in Datasets 1 and 2 after the resampling process.

(a) Dataset 1 (b) Dataset 2

Figure 8. The locations for data collection.

Table 1. The images for training, validation, and testing.

Dataset 1 No. of Images No. of Images with People
Training 862,258 23,098

Validation 808,153 35,358
Testing 786,443 40,700

Dataset 2
Training 496,936 22,805

Validation 479,452 20,025

Figure 8. The locations for data collection.

Table 1. The images for training, validation, and testing.

Dataset 1 No. of Images No. of Images with People

Training 862,258 23,098
Validation 808,153 35,358

Testing 786,443 40,700

Dataset 2

Training 496,936 22,805
Validation 479,452 20,025

Testing 402,265 19,003

We utilized standard output measures for AI predictions, distinguishing them for the
Yolo module, the SSIM module, and FenceTalk (Yolo + SSIM). All images processed by the
Yolo module were classified into the following categories: TP (true positives), TN (true
negatives), FN (false negatives), and FP (false positives). Therefore, we have

Yolo : Precision =
TP

TP + FP
and Recall =

TP
TP + FN

(6)

In the SSIM module, the images in the non-moving object database were classified
into TP∗ true positives, TN∗ true negatives, FN∗ false negatives, and FP∗ false positives.
Therefore, we have

Algorithms 2023, 16, 481 12 of 18

SSIM : Precision =
TP∗

TP∗ + FP∗
andRecall =

TP∗

TP∗ + FP∗
(7)

and finally, the output measures for FenceTalk (Yolo + SSIM) are

FenceTalk : Precision =
TP + TP∗

TP + FP + TP∗ + FP∗
(8)

and

FenceTalk : Recall =
TP + TP∗

TP + FN
(9)

Specifically, the total count of all moving objects within a dataset is derived by TP + FN.
The count of correctly predicted cases by Yolo is represented by TP. TP* represents the
count of accurately predicted cases by SSIM among the FN cases. Consequently, the total
count of correctly predicted cases by FenceTalk (Yolo + SSIM) is TP + TP*. Therefore, the
recall is calculated as TP + TP*/TP + FN. The F1 score is expressed as

F1score = 2
(

Precision× Recall
Precision + Recall

)
(10)

In Equation (10), the F1 score takes into account both precision and recall.
In FenceTalk, to find and verify the universality of the optimal SSIM threshold in each

dataset, we divided each dataset into three subsets: the training dataset, the validation
dataset, and the testing dataset. In the FenceTalk experiments, we calculated the precision
and recall for both Yolo and SSIM (Equations (6) and (7)).

To find the optimal SSIM threshold, we calculated the average grayscale value of
each image and used it as an image brightness category. We used an interval of 25 for
the SSIM threshold and recorded the TP, TN, FN, and FP counts for different thresholds
under various brightness levels. This helped us calculate the precision and recall of SSIM
at different thresholds (elaborated in Figures 9 and 10). Since we aimed to collect images
that Yolo failed to recognize using SSIM for model training, we selected the threshold
with the highest recall value as the optimal SSIM threshold for each brightness level in the
experiment. If there were multiple highest recall values for a particular brightness level,
we chose the threshold with the best precision among them. If duplicates remained, we
selected the median as the optimal threshold.

Algorithms 2023, 16, x FOR PEER REVIEW 14 of 18

level 82. In the validation phase, the lowest precision was 90.21% at brightness level 86. In
the testing phase, the lowest precision was 91.46% at brightness level 86.

Table 3. The output measures for Dataset 2 (red font signifies the best performance).

Dataset 2
Yolo SSIM Yolo + SSIM

Preci-
sion

Re-
call

F1
Score

Preci-
sion Recall

F1
Score

Preci-
sion

Re-
call

F1
Score

Training dataset
(optimal SSIM thresh-
olds from training da-

taset)

98.81%
72.63

%
83.72

% 95.87%
94.12

% 94.99% 98.81%
98.39

% 98.2%

Validation dataset
(optimal SSIM thresh-
olds from training da-

taset)
97.89% 92.83

%
95.65

%

87.97% 89.62
%

88.79% 97.89% 99.26
%

98.57%

Validation dataset
(Optimal SSIM thresh-
olds from validation

dataset)

88.66% 92.00
%

90.29% 97.89% 99.43
%

98.67%

Test dataset
(optimal SSIM

thresholds from
training dataset)

98.55%
94.41

%
96.59

%

92.54% 91.06
% 91.80% 98.54% 99.50

% 99.02%

Test dataset
(optimal SSIM

thresholds from
validation dataset)

93.03%
90.40

% 91.70% 98.57%
99.67

% 99.11%

Figure 9. FenceTalk precision performance under various luminance (brightness) levels.

Figure 10 depicts the recall accuracy of Yolo and SSIM under different sub-datasets
and brightness levels. For Dataset 1, in the training dataset, the lowest recall was 95.24%
at brightness level 89. In the validation phase, the lowest recall was 97.37% at brightness
level 94. In the testing dataset, the lowest recall was 99.22% at brightness level 84. For

Figure 9. FenceTalk precision performance under various luminance (brightness) levels.

Algorithms 2023, 16, 481 13 of 18

Figure 10. FenceTalk recall performance under various luminance (brightness) levels.

We employed the modified Yolo model trained on the training dataset to test the
validation dataset and find the optimal SSIM threshold for different brightness levels in
this dataset. Using the optimal SSIM threshold from the validation dataset, we identified
images containing moving objects and images detected by the Yolo model. After manual
labeling, these images were combined with all images containing humans from the training
dataset, serving as training data for the Yolo model, which was then applied to the testing
dataset for inferencing.

Table 2 presents the precision and recall of Yolo and SSIM using the optimal thresholds
in Dataset 1. In the training phase, the recall for Yolo was relatively low at 77.16%. However,
through the FenceTalk mechanism, the FenceTalk precision (Yolo + SSIM) was 97.71%
and the recall (Yolo + SSIM) was 98.68%. The validation phase showed that FenceTalk’s
precision exceeded 97% and FenceTalk’s recall (Yolo + SSIM) was above 99%. We re-trained
the Yolo model after the validation phase. Therefore, the validation phase was a second
training phase. Then, in the testing phase, FenceTalk’s precision was 97.65% and its recall
was 99.75%.

Table 2. The output measures for Dataset 1 (red font signifies the best performance).

Dataset 1
Yolo SSIM Yolo + SSIM

Precision Recall F1
Score Precision Recall F1

Score Precision Recall F1
Score

Training dataset
(optimal SSIM

thresholds from
training dataset)

97.71% 77.16% 86.21% 97.99% 94.09% 96.00% 97.71% 98.68% 98.19%

Validation dataset
(optimal SSIM

thresholds from
training dataset)

97.72% 92.42% 93.63%

96.74% 90.71% 93.63% 97.66% 99.30% 98.47%

Validation dataset
(optimal SSIM

thresholds from
validation dataset)

97.59% 95.19% 96.37% 97.72% 99.64% 98.67%

Test dataset
(optimal SSIM

thresholds from
training dataset)

97.67% 93.53% 95.59%

96.15% 92.93% 94.51% 97.64% 99.54% 98.58%

Test dataset
(optimal SSIM

thresholds from
validation dataset)

96.29% 93.81% 95.03% 97.65% 99.75% 98.69%

Algorithms 2023, 16, 481 14 of 18

Yolo’s core technology enables efficient and accurate real-time object detection, making
it a fundamental tool in various computer vision applications. Yolo revolutionized object
detection by introducing the concept of single-shot detection, meaning it can detect and
classify objects in an image in a single forward pass of a neural network. Yolo places a
strong emphasis on maintaining good precision, which in turn results in a lower recall.
Yolo provides a confidence threshold to adjust the level of recall. A lower confidence
threshold can achieve higher recall but may lead to lower precision. In Tables 2 and 3, we
show fine-tuning of the confidence threshold of Yolo to achieve a similar precision level as
that of FenceTalk. Subsequently, we compared the differences in recall between Yolo and
FenceTalk (Yolo + SSIM).

Table 3. The output measures for Dataset 2 (red font signifies the best performance).

Dataset 2
Yolo SSIM Yolo + SSIM

Precision Recall F1
Score Precision Recall F1

Score Precision Recall F1
Score

Training dataset
(optimal SSIM

thresholds from
training dataset)

98.81% 72.63% 83.72% 95.87% 94.12% 94.99% 98.81% 98.39% 98.2%

Validation dataset
(optimal SSIM

thresholds from
training dataset)

97.89% 92.83% 95.65%

87.97% 89.62% 88.79% 97.89% 99.26% 98.57%

Validation dataset
(Optimal SSIM
thresholds from

validation dataset)

88.66% 92.00% 90.29% 97.89% 99.43% 98.67%

Test dataset
(optimal SSIM

thresholds from
training dataset)

98.55% 94.41% 96.59%

92.54% 91.06% 91.80% 98.54% 99.50% 99.02%

Test dataset
(optimal SSIM

thresholds from
validation dataset)

93.03% 90.40% 91.70% 98.57% 99.67% 99.11%

Table 3 presents the precision and recall of Yolo and SSIM using the optimal thresholds
for Dataset 2. In the testing phase, FenceTalk’s precision was 98.57% and its recall was
99.67%. Both cases (Tables 2 and 3) indicated that integrating SSIM into FenceTalk led
to a further improvement in the overall F1 score compared to using only the Yolo model
for recognition.

Figure 9 presents the precision accuracy of Yolo and SSIM under different sub-datasets
and brightness levels. For Dataset 1, in the training phase, the lowest precision was
88.24% at brightness level 93. In the validation phase, the lowest precision was 87.34% at
brightness level 84. In the testing phase, the lowest precision was 93.56% at brightness level
83. For Dataset 2, in the training phase, the lowest precision was 89.89% at brightness level
82. In the validation phase, the lowest precision was 90.21% at brightness level 86. In the
testing phase, the lowest precision was 91.46% at brightness level 86.

Figure 10 depicts the recall accuracy of Yolo and SSIM under different sub-datasets
and brightness levels. For Dataset 1, in the training dataset, the lowest recall was 95.24% at
brightness level 89. In the validation phase, the lowest recall was 97.37% at brightness level
94. In the testing dataset, the lowest recall was 99.22% at brightness level 84. For Dataset 2,
in the training phase, the lowest recall was 95.31% at brightness level 101. In the validation
phase, the lowest recall was 98.77% at brightness level 89. In the testing phase, the lowest
recall was 98.45% at brightness level 98. Figures 9 and 10 display the lowest precision and
recall values across various sub-datasets and brightness levels. These lowest precision and
recall metrics represent the baseline performance of FenceTalk. In the majority of cases,
FenceTalk’s performance exceeded these lower bound values.

We also conducted a comparison of how ViT and SSIM performed in detection of
moving objects. We applied ViT and SSIM in greenhouse equipment operation status

Algorithms 2023, 16, 481 15 of 18

detection. For instance, when a user turned on the exhaust fan (Figure 11), we checked
whether the fan started correctly to determine the equipment’s normal operation.

Algorithms 2023, 16, x FOR PEER REVIEW 15 of 18

Dataset 2, in the training phase, the lowest recall was 95.31% at brightness level 101. In the
validation phase, the lowest recall was 98.77% at brightness level 89. In the testing phase,
the lowest recall was 98.45% at brightness level 98. Figures 9 and 10 display the lowest
precision and recall values across various sub-datasets and brightness levels. These lowest
precision and recall metrics represent the baseline performance of FenceTalk. In the ma-
jority of cases, FenceTalk’s performance exceeded these lower bound values.

Figure 10. FenceTalk recall performance under various luminance (brightness) levels.

We also conducted a comparison of how ViT and SSIM performed in detection of
moving objects. We applied ViT and SSIM in greenhouse equipment operation status de-
tection. For instance, when a user turned on the exhaust fan (Figure 11), we checked
whether the fan started correctly to determine the equipment’s normal operation.

(a) Fan is OFF. (b) Fan is ON.

Figure 11. Greenhouse exhaust fan.

Table 4 displays the performance of ViT in recognizing equipment operation status.
ViT achieved a recall of 1 and an F1 score of 0.999. Table 5 presents the results of SSIM,
which were slightly lower than those of ViT. Specifically, SSIM achieved a recall of 0.98
and an F1 score of 0.989. These results indicate that SSIM can provide satisfactory perfor-
mance when applied to moving object detection. However, when compared to ViT, SSIM
requires significantly fewer computational resources.

Figure 11. Greenhouse exhaust fan.

Table 4 displays the performance of ViT in recognizing equipment operation status.
ViT achieved a recall of 1 and an F1 score of 0.999. Table 5 presents the results of SSIM,
which were slightly lower than those of ViT. Specifically, SSIM achieved a recall of 0.98 and
an F1 score of 0.989. These results indicate that SSIM can provide satisfactory performance
when applied to moving object detection. However, when compared to ViT, SSIM requires
significantly fewer computational resources.

Table 4. Performance of ViT.

ViT Accuracy Precision Recall F1-Score

Training (94,848 images) 0.999962 0.999860 1.0 0.999930
Validation (11,856 images) 0.999938 0.999716 1.0 0.999858

Testing (11,858 images) 0.999936 0.999642 1.0 0.999820

Table 5. Performance of SSIM.

SSIM Accuracy Precision Recall F1-Score

Testing (23,712 images) 0.993158 0.989927 0.989314 0.989620

Figure 12 illustrates the processing speed and GPU utilization of the embedded
device Jetson Nano when executing FenceTalk. Each instance of FenceTalk was capable of
performing image recognition for an RTSP streaming camera. Yolo (FPS) and Yolo (GPU)
represent the execution speed and memory usage of Jetson Nano during object recognition.
Yolo + r/w (FPS) and Yolo + r/w (GPU represent the execution speed and memory usage
when Jetson Nano performs object recognition and reads/writes images. Yolo + r/w + SSIM
(FPS) and Yolo + r/w + SSIM (GPU) represent the execution speed and memory usage
when Jetson Nano performs object recognition, reads/writes images, and employs SSIM
for motion detection.

Our study indicates that Jetson Nano can simultaneously run up to three instances of
FenceTalk (i.e., the sources of video streaming came from three cameras). When the number
of FenceTalk instances was 1, Jetson Nano achieved a processing speed of 14.5 FPS during
object recognition, utilizing 0.79 GB of memory. However, with 3 FenceTalk instances, the
processing speed dropped to 10.7 FPS during object recognition, and the memory usage
increased to 2.56 GB. As the number of FenceTalk instances increased, Jetson Nano’s
processing speed decreased linearly rather than exponentially, while GPU utilization
exhibited a linear increase.

Algorithms 2023, 16, 481 16 of 18

Algorithms 2023, 16, x FOR PEER REVIEW 16 of 18

Table 4. Performance of ViT.

ViT Accuracy Precision Recall F1-score

Training (94,848 images) 0.999962 0.999860 1.0 0.999930

Validation (11,856 images) 0.999938 0.999716 1.0 0.999858

Testing (11,858 images) 0.999936 0.999642 1.0 0.999820

Table 5. Performance of SSIM.

SSIM Accuracy Precision Recall F1-score

Testing (23,712 images) 0.993158 0.989927 0.989314 0.989620

Figure 12 illustrates the processing speed and GPU utilization of the embedded de-
vice Jetson Nano when executing FenceTalk. Each instance of FenceTalk was capable of
performing image recognition for an RTSP streaming camera. Yolo (FPS) and Yolo (GPU)
represent the execution speed and memory usage of Jetson Nano during object recogni-
tion. Yolo + r/w (FPS) and Yolo + r/w (GPU represent the execution speed and memory
usage when Jetson Nano performs object recognition and reads/writes images. Yolo + r/w
+ SSIM (FPS) and Yolo + r/w + SSIM (GPU) represent the execution speed and memory
usage when Jetson Nano performs object recognition, reads/writes images, and employs
SSIM for motion detection.

Our study indicates that Jetson Nano can simultaneously run up to three instances of
FenceTalk (i.e., the sources of video streaming came from three cameras). When the num-
ber of FenceTalk instances was 1, Jetson Nano achieved a processing speed of 14.5 FPS
during object recognition, utilizing 0.79 GB of memory. However, with 3 FenceTalk in-
stances, the processing speed dropped to 10.7 FPS during object recognition, and the
memory usage increased to 2.56 GB. As the number of FenceTalk instances increased, Jet-
son Nano’s processing speed decreased linearly rather than exponentially, while GPU uti-
lization exhibited a linear increase.

Figure 12. FenceTalk’s processing speed and GPU usage on Jetson Nano.

6. Conclusions
A reliable image recognition model is crucial for security surveillance. Using image

data containing moving objects from the specific area as training data can significantly
enhance the model’s accuracy in recognizing the area. To simplify the process of selecting

Figure 12. FenceTalk’s processing speed and GPU usage on Jetson Nano.

6. Conclusions

A reliable image recognition model is crucial for security surveillance. Using image
data containing moving objects from the specific area as training data can significantly
enhance the model’s accuracy in recognizing the area. To simplify the process of selecting
target data from a large amount of image data, FenceTalk categorizes data based on
brightness and utilizes SSIM and optimal thresholds to compare differences between
current images and background images. It automatically selected suspicious images with
moving objects that the Yolo model failed to recognize. This approach enables the model to
learn the features of moving objects in the area using more training data. In the experimental
results of FenceTalk, the recall values (Yolo + SSIM) surpassed 99%, demonstrating the
universality of SSIM optimal thresholds. This also confirmed that FenceTalk effectively
captures moving objects with motion characteristics.

FenceTalk can be deployed on the embedded device Jetson Nano, ensuring smooth
system operation while reducing hardware costs. In the future, we will continue researching
methods to minimize misjudgments of moving objects due to shadow and lighting changes.
FenceTalk has a detection box to visualize recognized individuals; in the future, we will
add the visualization feature (YOLOv7-gradCAM) [27] to FenceTalk. Additionally, GUI
packages related to FenceTalk will be developed, making the system more user friendly
and reducing deployment complexity.

Until August 2023, we have technically transferred FenceTalk to the Department of
Education of Keelung City Government, Accton Technology Inc., Quanta Computer Inc.,
China Medical University, Asia University, and National Cheng Kung University.

Author Contributions: Conceptualization, Y.-W.L. and Y.-B.L.; methodology, Y.-W.L. and Y.-B.L.; soft-
ware, J.-C.H.; validation, Y.-H.L.; data curation, J.-C.H.; writing—original draft preparation, Y.-B.L.;
writing—review and editing, Y.-W.L.; supervision, Y.-W.L.; project administration, Y.-B.L.; funding
acquisition, Y.-B.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Science and Technology Council (NSTC) 112-2221-
E-033-023, 110-2622-8-A49-022, NSTC112-2221-E-A49-049, NCKU Miin Wu School of Computing,
Research Center for Information Technology Innovation.

Conflicts of Interest: The authors declare no conflict of interest.

Algorithms 2023, 16, 481 17 of 18

References
1. Ahmad, M.B.; Abdullahi, A.; Muhammad, A.S.; Saleh, Y.B. The Various Types of sensors used in the Security Alarm system. Int. J.

New Comput. Archit. Their Appl. 2020, 10, 50–59.
2. Chauhan, R.; Ghanshala, K.K.; Joshi, R.C. Convolutional Neural Network (CNN) for Image Detection and Recognition.

In Proceedings of the 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC),
Jalandhar, India, 15–17 December 2018; pp. 278–282.

3. Putra, M.H.; Yussof, Z.M.; Lim, K.C.; Salim, S.I. Convolutional neural network for person and car detection using yolo framework.
J. Telecommun. Electron. Comput. Eng. (JTEC) 2018, 10, 67–71.

4. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
5. Raju, K.N.; Reddy, K.S.P. Comparative study of Structural Similarity Index (SSIM) by using different edge detection approaches

on live video frames for different color models. In Proceedings of the 2017 International Conference on Intelligent Computing,
Instrumentation and Control Technologies (ICICICT), Kannur, India, 6–7 July 2017; pp. 932–937.

6. Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A Survey on Vision Transformer.
IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 87–110. [CrossRef] [PubMed]

7. Lin, Y.-B.; Chen, W.-E.; Chang, T.C.-Y. Moving from Cloud to Fog/Edge: The Smart Agriculture Experience. IEEE Commun. Mag.
(Early Access) 2023, 1–7. [CrossRef]

8. Priyadharshini, G.; Dolly, D.R.J. Comparative Investigations on Tomato Leaf Disease Detection and Classification Using CNN,
R-CNN, Fast R-CNN and Faster R-CNN. In Proceedings of the International Conference on Advanced Computing and Commu-
nication Systems (ICACCS), Coimbatore, India, 17–18 March 2023; pp. 1540–1545.

9. Juyal, P.; Kundaliya, A. Multilabel Image Classification using the CNN and DC-CNN Model on Pascal VOC 2012 Dataset.
In Proceedings of the International Conference on Sustainable Computing and Smart Systems (ICSCSS), Coimbatore, India,
14–16 June 2023; pp. 452–459.

10. Hmidani, O.; Alaoui, E.M.I. A Comprehensive Survey of the R-CNN Family for Object Detection. In Proceedings of the
International Conference on Advanced Communication Technologies and Networking (CommNet), Marrakech, Morocco,
12–14 December 2022; pp. 1–6.

11. Lin, Y.-B.; Liu, C.-Y.; Chen, W.-L.; Chang, C.-H.; Ng, F.-L.; Yang, K.; Hsung, J. IoT-based Strawberry Disease Detection with
Wall-mounted Monitoring Cameras. IEEE Internet Things J. 2023, 1. [CrossRef]

12. Wang, C.-Y.; Bochkovskiy, A.; Liao, H.Y.M. Scaled-yolov4: Scaling cross stage partial network. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 25 2021.

13. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in
context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer:
Cham, Switzerland, 2014; pp. 740–755.

14. Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A Single-Stage Object Detection
Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976.

15. Zuo, X.; Li, J.; Huang, J.; Yang, F.; Qiu, T.; Jiang, Y. Pedestrian detection based on one-stage YOLO algorithm. J. Phys. Conf. Ser.
2021, 1871, 012131. [CrossRef]

16. Korhonen, J.; You, J. Peak signal-to-noise ratio revisited: Is simple beautiful? In Proceedings of the 2012 Fourth International
Workshop on Quality of Multimedia Experience, Melbourne, VIC, Australia, 5–7 July 2012; pp. 37–38.

17. Wang, Z.; Bovik, A.C. Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag.
2009, 26, 98–117. [CrossRef]

18. Wibowo, H.T.; Wibowo, E.P.; Harahap, R.K. Implementation of Background Subtraction for Counting Vehicle Using Mixture of
Gaussians with ROI Optimization. In Proceedings of the 2021 Sixth International Conference on Informatics and Computing
(ICIC), Jakarta, Indonesia, 3–4 November 2021; pp. 1–6.

19. Rukundo, O.; Wu, K.; Cao, H. Image interpolation based on the pixel value corresponding to the smallest absolute difference.
In Proceedings of the Fourth International Workshop on Advanced Computational Intelligence, Wuhan, China, 19–21 October
2011; pp. 432–435.

20. Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern
Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369.

21. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity.
IEEE Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

22. Loza, A.; Wang, F.; Yang, J.; Mihaylova, L. Video object tracking with differential Structural SIMilarity index. In Proceedings of the
2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May
2011; pp. 1405–1408.

23. Chen, G.; Shen, Y.; Yao, F.; Liu, P.; Liu, Y. Region-based moving object detection using SSIM. In Proceedings of the 2015 4th
International Conference on Computer Science and Network Technology (ICCSNT), Harbin, China, 19–20 December 2015;
Volume 1.

24. Zhou, M.; Wang, G.; Wang, J.; Hui, C.; Yang, W. Defect detection of printing images on cans based on SSIM and chromatism.
In Proceedings of the 2017 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China,
13–16 December 2017.

https://doi.org/10.1109/TPAMI.2022.3152247
https://www.ncbi.nlm.nih.gov/pubmed/35180075
https://doi.org/10.1109/MCOM.001.2200633
https://doi.org/10.1109/JIOT.2023.3288603
https://doi.org/10.1088/1742-6596/1871/1/012131
https://doi.org/10.1109/MSP.2008.930649
https://doi.org/10.1109/TIP.2003.819861
https://www.ncbi.nlm.nih.gov/pubmed/15376593

Algorithms 2023, 16, 481 18 of 18

25. Khalaf, H.A.; Tolba, A.; Rashid, M. Event triggered intelligent video recording system using MS-SSIM for smart home security.
AIN Shams Eng. J. 2018, 9, 1527–1533. [CrossRef]

26. Xia, B.; Cao, J.; Wang, C. SSIM-NET: Real-time PCB defect detection based on SSIM and MobileNet-V3. In Proceedings of
the 2019 2nd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), Shanghai, China,
22–24 November 2019.

27. Xiao-Dragon, yolov7-GradCAM. 2022. Available online: https://gitee.com/xiao-dragon/yolov7-GradCAM (accessed on
7 October 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.asej.2016.10.001
https://gitee.com/xiao-dragon/yolov7-GradCAM

	Introduction
	Related Works
	FenceTalk Architecture
	The SSIM Module
	FenceTalk Experiments
	Conclusions
	References

