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Abstract: Different types of surface defects will occur during the production of strip steel. To ensure
production quality, it is essential to classify these defects. Our research indicates that two main
problems exist in the existing strip steel surface defect classification methods: (1) they cannot solve
the problem of unbalanced data using few-shot in reality, (2) they cannot meet the requirement
of online real-time classification. To solve the aforementioned problems, a relational knowledge
distillation self-adaptive residual shrinkage network (RKD-SARSN) is presented in this work. First,
the data enhancement strategy of Cycle GAN defective sample migration is designed. Second, the
self-adaptive residual shrinkage network (SARSN) is intended as the backbone network for feature
extraction. An adaptive loss function based on accuracy and geometric mean (Gmean) is proposed to
solve the problem of unbalanced samples. Finally, a relational knowledge distillation model (RKD) is
proposed, and the functions of GUI operation interface encapsulation are designed by combining
image processing technology. SARSN is used as a teacher model, its generalization performance is
transferred to the lightweight network ResNet34, and it is conveniently deployed as a student model.
The results show that the proposed method can improve the deployment efficiency of the model and
ensure the real-time performance of the classification algorithms. It is superior to other mainstream
algorithms for fine-grained images with unbalanced data classification.

Keywords: classification of strip steel defects; adaptive residual shrinkage network; relational
knowledge distillation; Cycle GAN data enhancement; unbalanced data; image processing

1. Introduction

Strip steel is an essential category of steel. Due to the limitation of production technol-
ogy, many defects such as inclusions, patches, and scratches will appear on the zsurface
of strip steel. It is worth noting that different types of defects have different effects on the
service life of strip steel and may even cause safety accidents. To ensure the production
quality of strip steel, different types of defects must be identified in the production process
of strip steel [1]. However, at present, the development of strip surface defect detection
technology is slow, and many production lines still adopt manual classification or tradi-
tional image classification methods, which cannot cope with problems such as loud noise,
low contrast, unbalanced samples, and difficult segmentation of defects [2].

Currently, three kinds of image classification algorithms based on computer technology
exist. One is the classification method based on image processing technology. Chagas
et al. [3] proposed an image texture analysis method integrating the probability distribution
based on image processing and information theory technology. The features extracted by
this method are input into the classifier with remarkable effect, but this approach is not
effective for processing large-scale data. Second, a traditional machine learning algorithm
is used for feature extraction and classification. Chu et al. [4] adopted an anti-noise support
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vector hypersphere classifier to solve the classification problem of steel surface defects,
and the classification accuracy reached 96.88%. Xu et al. [5] had several SVM models
built by AdaBoost and sonar images with low resolution and noise were classified for
the first time. However, the feature distribution of some surface defects is irregular and
difficult to extract. Traditional machine learning methods easily fall into a local optimum
based on predetermined rules, and it is difficult to improve the classification accuracy.
Another approach is to extract the surface features of objects by convolutional neural
networks. Ju et al. [6] proposed a method called synergic adversarial label learning (SALL)
which used the knowledge distillation cooperative training model to realize the task of
target classification. Guo et al. [7] combined channel and spatial attention mechanisms
for designing lightweight attention mechanism modules that can be easily embedded
into any convolutional neural network (CNN) to improve the fine-tuning efficiency of the
network. However, there are still two problems to be solved. First, the above methods
require many data resources and cannot overcome the problem of few defective samples.
Second, while ensuring the classification accuracy, the methods cannot meet the real-time
requirement of model deployment and detection in the industrial production field. In
this regard, Chiu et al. [8] integrated the Mask-RCNN framework and copy-paste data
enhancement method to accomplish mixed type defect classification under the condition
of insufficient defect samples, and the accuracy of the single model reached 97.7%. Tu
et al. [9] improved the real-time performance of the detection network through the TensorRT
framework, and its classification accuracy reached 93.5%. Although data enhancement
technology is widely used in few-shot learning [10], traditional data enhancement methods
such as random rotation, flipping, image translation, and random crossing can enhance the
dataset to a certain extent, but the diversity of the dataset is difficult to change. For this
purpose, Lv et al. [11] migrated data from existing defect samples by generating adversarial
networks, but this method is not effective in enhancing the local information of images, and
it is highly dependent on the datasets. Obviously, none of the methods proposed in [8–11]
can resist the imbalance of data samples. In this regard, Lerner et al. [12] combined the naive
Bayes classifier and multilayer perceptron neural network to solve the multiclassification
problem of unbalanced samples in high-dimensional mode, and the effect was remarkable.
On this basis, Yuan et al. [13] proposed a learning method called uncorrelated cost sensitive
multiset learning (UCML) to solve the problem of highly unbalanced data classification.
This method enhances the robustness of the model by constructing multi-set learning
discriminant features and introducing generating adversarial networks to fit the original
data distribution.

However, relying only on deep learning will lead to overreliance on labeled samples,
an approach which cannot be universally applied to all data. Therefore, in recent years the
application of multisource information fusion technology in the field of image classification
has become more popular. Liang et al. [14] proposed the attention multisource fusion
method. In the field of meta-learning, the problem of few-shot learning is solved by means
of class alignment, domain attention distribution, and multisource data fusion. Li et al. [15]
used the multiscale information feature fusion method to re-extract the texture information
of the bottom layer of the image to focus more attention upon the slender and easily
overlooked defects of the strip steel surface, and the detection accuracy of this method
reached 98.26%. Wang et al. [16] fused the historical data of strip defects to track model
faults, which can assist expert decision-making.

After comparison, the method proposed in [4,5] cannot fully extract the fine-grained
information of the image, thus ignoring the local details. Although the feature extraction
ability of the model is improved through transfer learning and the attention mechanism, it
relies too much on the distribution fitting of the original data [6,7]. The works of [8–11] over-
come the problem of insufficient defective samples through data enhancement technology,
but it cannot cope with the unbalanced data distribution. The method of [13] can combat
uneven samples, but it ignores the feature extraction ability of backbone networks and the
efficiency and deployment of the models. Therefore, inspired by references [14–16], this pa-
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per integrates fine-grained information extraction, data sample enhancement, unbalanced
sample confrontation, and model generalization performance transfer.

To solve the problems of fewer samples and unbalanced data in industrial strip
production and meet the requirements of real-time classification on site, a self-adaptive
residual shrinkage network classification method based on relational knowledge distillation
was proposed. The main contributions are summarized as follows:

• In the aspect of data enhancement, aiming at the shortage of defect samples in a single
production line, a data enhancement method of image mosaic fusion is proposed to
improve the matching degree between the model and the data. Aiming at the problem
of insufficient defect samples across production lines, an image generation method
based on Cycle GAN is proposed to realize the cross domain conversion of defect
samples. Compared with the limitations of [8–11], this method solves the problem of
insufficient strip steel defect samples from two angles;

• In terms of feature extraction, based on the integration of the attention mechanism [7],
a new backbone network: the self-adaptive residual shrinkage network (SARSN) is
proposed to solve the difficulty of image fine-grained feature extraction through a soft
threshold and the channel attention mechanism;

• For unbalanced samples, a new adaptive loss function is designed to manage the
sample categories separately to achieve a balance between classes to improve the
accuracy of the classification model. Compared with the existing methods [12,13], this
method is better at handling interclass differences and reduces the sensitivity of the
model to data;

• In terms of model deployment efficiency, compared with the literature [6], this method
focuses on optimizing the network structure through knowledge distillation and trans-
ferring the generalization performance of a large-scale network model to a small-scale
lightweight network While ensuring the real-time performance of the classification
network, the classification accuracy is 4.3% higher than that in the literature [9];

• Finally, this paper quantifies the evaluation index of strip steel defects by image pro-
cessing technology and designs a GUI interface that is convenient for users to operate.

• The organization of the other sections of this paper is as follows: the second part is the
theoretical description of the relevant methods. Section 2.1 presents the deployment
of the whole algorithm and the algorithm design process. Section 2.2 describes the
principle of Cycle GAN data enhancement. Section 2.3 introduces the design process
of each part of the feature extraction backbone network. Section 2.4 puts forward the
theoretical basis of structured relational knowledge distillation. The third part is the
description of the experimental process. Section 3.1 introduces the image preprocessing
process; Section 3.2 verifies the performances of the teacher model and student model,
respectively. Comparative experiments are carried out in Sections 3.2.3 and 3.2.4.
Finally, combined with an image processing algorithm, the defect evaluation index is
proposed, and the GUI operation interface is designed. The fourth part presents the
conclusion and prospects.

2. The Proposed Theory
2.1. Model Deployment Process and Algorithm Structure Design

In the production process of strip steel, the applied classification algorithms should
not only ensure its accuracy, but also meet the real-time requirements of the industrial field,
which imposes high requirements for the model deployment process and the design of the
classification algorithms. Figure 1a shows the deployment flowchart of the classification
model for strip steel defects. In the preprocessing stage, first, the strip steel defect images
are obtained. Through the processor, they are input into the classification network, and
the defects are classified by related processing algorithms. The detection speed of the
classification algorithms matches the running speed of the strip conveyor. Finally, the
classification results are input into the human–computer interaction system for users to
operate. As shown in Figure 1b, the strip defect classification algorithm is designed for
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this paper, and the strip steel defect image is first preprocessed. To ensure sufficient data,
image mosaicing and fusion and data enhancement based on Cycle GAN are carried out.
Second, a deep network model is designed: a self-adaptive residual shrinkage network
(SARSN) and the self-adaptive directional derivative threshold (SADDT) module constitute
the core of the network. Then, a dropout layer, a dense layer and a fully connected layer
are added. Next, the results are input into the softmax classifier. The network is used as the
teacher model in relational knowledge distillation, and the student model is deployed in
the front end with the lightweight network ResNet34 to learn the generalization ability of
the teacher model. Finally, the student model is trained and tested.
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Figure 1. (a) Model deployment process. (b) The framework of the proposed method. Figure 1. (a) Model deployment process. (b) The framework of the proposed method.

2.2. Image Cross-Domain Conversion: Data Enhancement Based on Cycle GAN

Due to the significant differences of images in different production lines, it is difficult
to directly apply the sample defects collected by the existing production lines to other
production lines, resulting in the poor universality of defect samples and difficulties in
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deploying them in other production lines. To solve the above problems, this paper proposes
a sample migration method based on Cycle GAN for generating adversarial networks.
The existing defective samples are migrated, applied to the new production line, and
combined with non-defective samples. Many surface defect sample data suitable for the
new production line are obtained.

The basis of defect sample data migration comes from the similarity of the underlying
features of different images, including lines, colors, textures, and other features. The CNN
can thoroughly learn these image underlying features in source domain A and migrate
them to target domain B. A schematic diagram of defect sample migration algorithms is
shown in Figure 2.
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Figure 2 connects the defect samples obtained from production line 1 with the defect-
free samples from production line 2 to obtain new defect samples.

The generative antagonistic network was proposed by Ian Goodfellow in 2014 [17]
through confrontation training between a generative model (generator) and a discriminator
model (discriminator) to generate images that are false and genuine. The generator G and
the discriminator D are continuously optimized to obtain the optimal solution. In this
process, the authenticity of false samples generated by the generated model increases, and
the discrimination ability of the discriminant model becomes stronger. Unlike the classical
GAN algorithms, Cycle GAN has an obvious effect in solving the problem of unlabeled
and unpaired image cross-domain conversion, and its model includes double mapping G:
X→Y and F: Y→X. The loss function of Cycle GAN is the adversarial loss function [18],
which is defined based on generator function G and discriminator DY.

LGAN(G, DY, X, Y) = Ey∼Pdata(y)[logDY(y)] + Ex∼Pdata(x)[log(1− DY(g(x))]. (1)

where DY is used to distinguish whether the data come from the generated sample G(x) or
the true sample y, E is the expectation, G is used to minimize the adversarial loss function
LGAN( ), and the function of D is opposite to that of G. The goal of the adversarial loss
function is to learn the interdomain mapping of X→Y, where {xi}N

i=1, xi ∈ X, {yi}N
i=1, yi ∈ Y.

The data distribution is x ∼ pdata(x), and y ∼ pdata(y), and X→Y. The role of the adversarial
loss function is to match the distribution of the generated image with the target domain,
but the confrontation loss cannot completely map the input to the output yi

′, so we define
the cycle consistency loss [19] to further reduce the space of the mapping function, and the
cycle consistency loss function is:

Lcyc(G, F) = Ex∼pdata(x) [||F(x)− x||1] + Ey∼pdata(x) [||G(y)− y||1]. (2)

The total loss function is:

L(G, F, DX , DY) = LGAN(G, DY, X, Y) + LGAN(F, DX , Y, X)

+λ1Lcyc(G, F) + λ2Lid(G, F).
(3)
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In Equation (3), λ1 and λ2 are used to control the importance of confrontation loss and
circulation consistent loss, the purpose is:

G∗, F∗ = argmin
G,F

max
DX DY

L(G, F, DX , DY)G∗ (4)

The structural schematic diagram of Cycle GAN is shown in Figure 3.
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There are four network structure routes to be trained in the figure, which are A→A,
A→B→A, B→B, and B→A→B. Among them, A→B→A and B→A→B can transfer in two
directions, and the whole Cycle GAN network completes the bidirectional transfer of the
sample style through cyclic mapping and establishing cycle consistency loss.

2.3. Classification Network Structure Design
2.3.1. Deep Residual Shrinkage Network

The proposed residual learning framework [20] solves the problem of model degrada-
tion with the deepening of neural network layers. Shot-cut connections are added between
convolution layers to form a basic residual unit (RBU) [21], which is shown in Figure 4a,b,
and the overall structure diagram of ResNet is shown in Figure 4c. The structure consists
of an input layer, a convolution layer, batch normalization (BN), some RBUs, ReLU, global
average pooling (GAP), and a fully connected (FC) layer, which will serve as the basis for
further research in this paper. Residual learning improves accuracy and avoids gradient
disappearance by increasing the network depth without adding additional parameters and
computational complexity. Similar to the critical position of RBUs in ResNet, the residual
shrinkage building unit (RSBU) is the core part of the deep residual shrinkage network [22].
As shown in Figure 4d, the RSBU structure consists of two convolution layers, two ReLUs,
two BNs, a soft threshold module, and an identity shortcut, in which global average pooling
(GAP) obtains a set of one-dimensional vectors and inputs them into the fully connected
layer (FC) and then maps the input of the FC layer to the range of (0, 1) through the sigmoid
activation function, which maintains good output characteristics.

K represents the number of convolution kernels in the convolution layer, C represents
the number of channels in the feature map, W represents the width of the feature map,
and ‘C ×W × 1’ is the product of the number of channels and the width and height of the
feature map.



Algorithms 2023, 16, 516 7 of 26

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 27 
 

Weight 

layer

Weight 

layer

relu

+

x

R(x)

relu

R(x)+X

Weight 

layer

relu

Identity 

mapping

(a)  

Weight 

layer

Weight 

layer

relu

+

x

R(x)

relu

R(x)+X

Identity 

mapping

(b)  

Input layer

Conv(K=C)

RBU(K=C)

RBU(K=C)

. . .
a series of RBUs

BN , GAP , RELU 

FC

Output

(c)  

C×W×1

~

C×W×1

GAP

BN,ReLU,Conv(K=C)

BN,ReLU,Conv(K=C)

Average

α

1×1×1

C×1×1

C×1×1
FC

BN,ReLU,FC

1×1×1

1×1×1

Sigmoid

C×W×1

C×W×1

(d)  

Figure 4. Schematic diagram of the residual learning unit. (a) Building block, (b) bottleneck, (c) ar-

chitecture of a Res Net, and (d) architecture of RSBU. 

K represents the number of convolution kernels in the convolution layer, C represents 

the number of channels in the feature map, W represents the width of the feature map, 

and ‘C × W × 1’ is the product of the number of channels and the width and height of the 

feature map. 

2.3.2. The Proposed Self-Adaptive Residual Shrinkage Network (SARSN) 

Based on RSBU, this paper proposes combining the attention mechanism module and 

self-adaptive directional derivative threshold module (SADDT) to obtain an adaptive re-

sidual shrinkage network (SARSN). 

Figure 5 shows that this paper adds an attention mechanism branch after two BNs, 

two ReLUs, and two convolution layers, which can automatically infer a suitable param-

eter, namely the self-adaptive directional derivative (SADDT), and the function of the soft 

threshold function is replaced by the SADDT. Parallel branches can make the neural net-

work direct more attention to details effectively, and finally import into the backbone out-

put of the neural network is ultimately imported through the feed-forward channel. A 

schematic diagram of the SARSN backbone network is shown in Figure 6. 

Input

BN

RelU

Conv

BN

RelU

Conv

SADDT

Output
SADDT 

module

Attention mechanism

module

optimum 

point

Self-adaptive directional 

derivative 

Identity shortcut

Squeeze-and-

Excitation

y=

δx  τ, x>τ

0,     τ  x  τ

δx+τ, x< τ

Rs =
W×H 

1
  

u=1

H

  
W

v=1

fs(u,v)

 

Figure 5. The architecture of SARSN. 

Figure 4. Schematic diagram of the residual learning unit. (a) Building block, (b) bottleneck, (c) archi-
tecture of a Res Net, and (d) architecture of RSBU.

2.3.2. The Proposed Self-Adaptive Residual Shrinkage Network (SARSN)

Based on RSBU, this paper proposes combining the attention mechanism module
and self-adaptive directional derivative threshold module (SADDT) to obtain an adaptive
residual shrinkage network (SARSN).

Figure 5 shows that this paper adds an attention mechanism branch after two BNs,
two ReLUs, and two convolution layers, which can automatically infer a suitable parameter,
namely the self-adaptive directional derivative (SADDT), and the function of the soft
threshold function is replaced by the SADDT. Parallel branches can make the neural
network direct more attention to details effectively, and finally import into the backbone
output of the neural network is ultimately imported through the feed-forward channel. A
schematic diagram of the SARSN backbone network is shown in Figure 6.
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Figure 5. The architecture of SARSN. Figure 5. The architecture of SARSN.

The input channel is 1 × 3 × 64 × 64. After entering the SARAN backbone network,
the feature map of 1 × 64 × 64 × 64 is first obtained through the Conv, ReLU, and BN
layers, and then the feature map of 1 × 512 × 16 × 16 is sequentially obtained through
Sequential composed of four different numbers of BasicBlock, and the final the output is
determined to be 1 × 512 × 1 × 16 through GAP.
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(1) Attention mechanism and squeeze-and-excitation networks:

At present, attention mechanisms in the field of computer vision mainly include
squeeze-and-excitation networks [23], spatial transformer networks (STN) [24] and the
convolutional block attention module (CBAM) [25]. The method proposed in this paper uses
SE-Net to learn a set of correlation weights to adjust the size of each feature channel, which
is equivalent to giving each feature channel different degrees of attention. The network
can selectively pay attention to some local information and ignore useless information.
The model adopts a small subnetwork structure without introducing extra parameters and
computational complexity. The statistic R is a value obtained by shrinking f in the W × H
dimension space. The calculation formula of the parameter R is shown in Formula (5)

Rs =
1

W × H

H

∑
u=1

W

∑
v=1

fs(u, v). (5)

where f and R represent the input and output of the extrusion operation, respectively, u, v,
and s represent the width, height and channel number of the feature map, and W and H
represent the width and height of the input feature map, respectively. To quickly extract
helpful feature information during the extrusion operation, the network not only needs to
obtain the combination of nonlinear relationships among channels, but also needs to ensure
that multiple channels can be activated. Generally, the bottleneck structure is selected to
complete this operation. First, the dimension is reduced from c to c/r, and the output signal
is matched with the input. The calculation process is shown in Formula (6)

α = σ(W2ReLU(W1t)). (6)

where W1 ∈ Rc× c
r , W2 ∈ R c

r×c represent the weight and deviation values, respectively,
σ(. . .) and ReLU(. . .) are activation functions and α is the output of excitation, which
reflects the importance of each channel. The output of the SE loop obtained by activating α
is shown in formula (7):

∼
xn = enxn. (7)

where
∼
xn = [

∼
x1,
∼
x2, . . . ,

∼
xn] is the output of the nth feature map and ek means the weight,

which represents the priority of the nth pass. In the SE loop, the excitation maps the
parameter t to a set of channel weights, which can be regarded as a channel self-attention
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function in essence. The SE-Net structure includes three parts: the squeeze operation,
excitation operation, and reweight operation.

(2) Self-adaptive directional derivative threshold

A soft threshold [22] can eliminate noise interference in vibration signals in industrial
fault diagnosis [26], and the soft threshold function can decompose input signals and filter
signals within threshold τ. This method ignores parts with absolute values less than τ and
shrinks parts with absolute values greater than τ. The soft threshold function is shown in
Formula (8):

y =


x− τ, x > τ
0, −τ ≤ x ≤ τ
x + τ, x < −τ

(8)

where x, y and τ represent the input, output, and threshold, respectively. In addition, the
gradient values of the soft threshold function output after derivation of the input are 0
and 1. This method can effectively avoid the phenomenon of gradient disappearance and
gradient explosion. The partial derivative calculation is shown in Formula (9)

∂y
∂x

=


1, x > τ
0, −τ ≤ x ≤ τ
1, x < −τ

(9)

In the field of image classification, different types of noise, such as Gaussian white
noise and salt and pepper noise, will also be introduced in the process of industrial scene
image acquisition and transmission. When the soft threshold function processes pixel
information, it also retains the features outside the threshold interval, in which noise
interferes with the image quality. This leads to the reduction of classification accuracy in
some fine-grained feature image classification tasks [27]. Therefore, this paper proposes a
self-adaptive directional derivative threshold (SADDT) to optimize the deficiency of the
soft threshold in fine-grained image classification. SADDT deduces the derivative value
of image feature information in the appropriate direction through the channel attention
mechanism. Like the optimal gradient in the gradient descent algorithms, SARSN can learn
helpful information in the threshold interval instead of keeping all the information in the
threshold interval. The SADDT function is shown in Formula (10)

y =


δx− τ, x > τ
0, −τ ≤ x ≤ τ
δx + τ, x < −τ

(10)

where δ is the directional derivative value, because the noise situation in different image
samples is quite different and an appropriate threshold should be chosen for each sample
according to the situation. Therefore, this paper takes the output product of the squeeze
operation and excitation operation as a new threshold, and adjusts an appropriate threshold
as shown in Formula (11)

Ps = Mean
u,v

(|sigmoid(
∼
xu,v,s)|) · Rs. (11)

where
∼
x ∈ RW×H×C and R ∈ RC represent the outputs of the rescale operation and squeeze

operation, respectively. P ∈ RC indicates the threshold corresponding to each channel in
the feature map.

(3) Self-adaptive loss function

At present, most loss functions basically do not consider the differences between
classes when dealing with multiclassification tasks, which makes the resampling process
of imbalanced sample datasets difficult [28] and data with a small sample size will be
overfitted. To improve the accuracy of unbalanced samples, all samples can be clustered
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into most categories. In this paper, an adaptive update classification loss method based on
accuracy and geometric mean (GMean) [29] is proposed. This method achieves the effect of
interclass balance by treating each category separately, and GMean is the geometric average
of recall and specificity. Its calculation is shown in Formula (12):

GMean =
√

TPR× FPR. (12)

where TPR is the true positive rate and FPR is the false positive rate. The expression of
the weight factor φ for each category of adaptive update loss distribution is shown in
Formula (13):

Φ = K× exp(−GMean
2

)× exp(−1− accuracy
2

). (13)

where φ is the weight factor of each category, and k is the most significant proportion of
a few sample datasets, that is the sample imbalance ratio. Accuracy is the classification
accuracy; then, (1 − accuracy) is the error rate, its calculation is shown in Formula (14):

accuracy =
TP + TN

TP + TN + FP + FN
. (14)

where TP denotes the true positive, which is the number of positive classes with correct
classification, and FN denotes the false negative which is the number of negative classes
with incorrect classification. FP and FN can be deduced in the same way.

To avoid the phenomenon of gradient explosion caused by the weight of a few samples
being too large in the dataset, this paper uses the tanh activation function to map the value
of φ between −1 and 1, and its expression is shown in Formula (15):

Th =
exp(1−Φ)− exp(Φ− 1)
exp(1−Φ) + exp(1 + Φ)

. (15)

According to Formula (15), the weight of a few samples is between −1 and 1, while
the weight of most samples is close to 0. This operation not only avoids the gradient
explosion phenomenon, but also does not reduce the sensitivity of the loss function when
dealing with an unbalanced data distribution [30]. The accuracy between categories can
be measured by the Euclidean distance between the real sample value and the predicted
value [31]. The square of the Euclidean distance is usually used in research, as shown in
Formula (16):

ρ2 =
n

∑
i=1

(yi − y′i + β)
2. (16)

where ρ is the square of the Euclidean distance, yi represents the true value, yi
′ represents

the predicted value, and n represents the sample size of each mini-batch, and β is the
parameter to adjust the sensitivity of the loss function. The expression of the loss function
is shown in Formula (17):

Loss(θ) = −ρ2

n

n

∑
i=1

Thlog(yi
′). (17)

where θ is a parameter that can emphasize a few samples in the training process, increase
the classification accuracy of a few samples, and cooperate with the optimizer to realize the
global optimization of the neural network.

2.4. Knowledge Distillation

The rapid development in the fields of computer vision and deep learning benefits
from today’s advanced computing power, which can support the deepening of the number
of neural network layers. Usually, the models with better effects have high computing
cost requirements. However, in many cases, the convenience of model deployment is
highlighted while keeping the model unchanged. The chemical concept of “distillation”
can effectively separate the components with different boiling points in complex mixtures.
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Based on the concept of model compression, Hinton et al. [32] proposed the concept of
knowledge distillation (KD) by training a more complex teacher model (called distillation),
allowing the student model to adequately fit the teacher softmax output distribution of the
model, thus migrating knowledge from complex models to smaller models that are more
easily deployed.

At the same time, to meet the requirements of fine-grained feature extraction accuracy
and real-time model deployment in the classification of strip steel defects, this paper
proposes the method of relational knowledge distillation (RKD) [33], which changes the
point-to-point output mode of the above traditional knowledge distillation methods and
completes knowledge transfer through the conversion relationship between data instance
structures. The traditional distillation expression is shown in Formula (18):

FT,S(qi) = (
exp( FT(zi)

τ )

∑ jexp(
FT(zj)

τ )
,

exp( FS(zi)
τ )

∑ jexp(
FS(zj)

τ )
). (18)

where qi is the distribution generated by the model output, zi is used to generate the class
probabilities, and τ is the temperature, which is similar to the Boltzmann distribution in
statistical mechanics. The geometric mean of the class probability distribution generated by
zij in the teacher model will be used as the “soft target” to train the student model. When
the “soft target” has higher entropy, the gradient variance between data distributions will
be reduced. The goal of model training is to minimize the cross-entropy between data
distributions. Relational knowledge distillation (RKD) completes the knowledge transfer
through the correspondence structure between the data, and the process of knowledge
transfer is shown in Figure 7.
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It can be seen from Figure 7 that unlike conventional knowledge distillation, the loss
function of RKD does not directly act on the output of the teacher model but cascades the
relationship information of N-ary arrays through the potential energy function τ−s (the
gray and green parts in the figure represent two groups of cascaded model functions). τ−s
is the bridge connecting the teacher network and the student network, and after the input
Xn passes through the loss function, by mapping information, the dimensional differences
caused by knowledge transformation can be eliminated. Therefore, the information transfer
process described in the figure is parallel rather than serial. The introduction of LossRKD
will be carried out below.
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To avoid single data output, the student cluster Sa and the teacher cluster Ta form
a structural relationship, which is more conducive for the student model to learn the
representation information of the image and embed it into the corresponding spatial
structure. The expression of the KD loss function is shown in Formula (19), and its basic
form comes from Formula (20):

LossKD = ∑
xi∈λ

l(FT(xi), FS(xi)). (19)

LossRKD =

∑
(x1,x2,...,xn)

∧
I λN

l(ε(FT(x1), . . . , FT(xn)), ε(FS(x1), . . . , FS(xn))). (20)

where LossKD and LossRKD are distillation losses to penalize the difference between the
teacher model and the student model. FT(xi) and FS(xi) represent two model functions, and
λN is an n-tuple array collection of multiple sets of data, i.e., λN =

{
(xi, xj, . . .)

∣∣(i 6= j 6= . . .)
}

.
FS(xi) is the potential energy function, which is used to calculate the potential energy rela-
tionship between n-tuple arrays, and LossRKD is the core part of the function. The teacher
model transfers data to the student model through the potential energy to complete the
knowledge transfer.

3. Experimental Results
3.1. Experimental Data Processing

We have been influenced by some advanced work of strip defect detection and classifi-
cation in industry 4.0 and manufacturing [34], references [35–37] and other deep learning
technologies in industrial product defect detection and classification research work. Based
on the actual environmental conditions of the industry, the relevant classification algorithm
was designed, and in the process of designing the experiments, we fully considered how to
meet the real-time performance of the shooting [38] and detection in the process of strip
transmission, and how to deploy the operability of the algorithm application.

The experiment was carried out in this paper based on the NEU-DEU datasets. The
image format of the dataset was adjusted to 64 × 64 RGB images, including 1600 images of
various defects, namely: inclusion (In), crack (Cr), patches (Pa), pitted surface (Ps), rolled-in
scale (Rs) and scratches (Sc). For all kinds of random samples, 1400 pieces were selected
as training sets and 600 pieces were selected as testing sets. The label adopts the binary
unique heat coding format. In this paper, the experiment was carried out under the Ubuntu
system environment. The GPU model was an NVIDIA GTX 1080TI, and the PyTorch deep
learning framework was used.

3.1.1. Image Preprocessing

Low contrast and noise often appear in the transmission process of surface defect
images of strip steel, so it is necessary to filter and enhance the original images. In this
paper, the bilateral filter method [39] removes the low-frequency scanning noise in the
image without destroying the edge information of the image, and a gray histogram is used
to determine the gray transformation mapping curve [40]. The gray value of the image
is adjusted and its contrast is stretched to enhance the image, and the OTSU is used to
perform adaptive threshold segmentation. To facilitate observation, the defect areas with
prominent features are marked with red wireframes, and the defect features are enhanced
after preprocessing. The image preprocessing results are shown in Table 1.
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Table 1. Image preprocessing.
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3.1.2. Image Mosaicing and Fusion

Faced with the shortage of defect samples in a single production line, this paper
randomly selects four 64 × 64 defect samples of the same type for splicing, and the image
resolution after splicing is 128 × 128. To solve the problem that the gaps in the image edges
interfere with the stitching effect, the median fuzzy method is used to process the gaps in
the image stitching edges. Some original images of the samples are shown in Figure 8a.
The result of image mosaicing is shown in Figure 8b, and the result after median blurring is
shown in Figure 8c. Then, the resolution of the processed image is readjusted to 64 × 64 to
form a new defect sample.
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According to the analysis of Figure 8b, we can see that the stitching generated the
same type of defect samples. After median fuzzy processing, the stitching gap in Figure 8c
has been completely eliminated, and the image can be used as a new sample after resizing.

After image fusion processing in Figure 9, fine-grained texture information of two
defect sample images can be collected, and it can be seen that the number of defects in the
generated images has increased, but the types remain unchanged.
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3.1.3. Cycle GAN Data Enhancement Experiment

To evaluate the image enhancement effect of Cycle GAN data and verify the feasibility
of cross-production line sample migration, a total of 1200 original images of various
categories were acquired, and new defective samples were generated by image cross-
domain conversion. The migration results of some defective samples are shown in Table 2

Table 2. Cycle GAN defect sample migration results.

Comparison of Cycle GAN Defect
Sample before and after Migration

Sc original
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To evaluate the image enhancement effect of Cycle GAN data and verify the feasibil-
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In the example of Table 2, after the migration of Cycle GAN defect samples, samples
that can be confused with real ones are generated. Sc, In, and Rs in the table are similar to
the original images in terms of the size, position, shape, and texture details of the generated
defects, which can be used to expand the sample data.

SARSN50 was used in the network, and the number of training and testing rounds
was 50 epochs. The test accuracy results of each defect category before and after migration
are shown in Figure 10 and shown on the right is the total test accuracy curve of defect
samples before and after migration.
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Figure 10. Cycle GAN data migration results.

The bar chart on the left side of Figure 10 illustrates the accuracy metrics on the
test dataset after improving the defect sample migration strategy through Cycle GAN
in comparison to the original data. It is evident that the blue bars, representing the
test accuracy in six categories of steel strip defects, are very close to the yellow bars.
This suggests that, with a slight sacrifice in accuracy, our approach can achieve higher
classification prediction scores in completely unknown new domains. After training for
20 epochs, the test accuracy of the migrated image dataset begins to approach that of the
original datasets. Under the condition that all parameters are the same, when 50 epochs
are used, the test accuracy of the migrated image dataset reaches 88.7%, which is close to
the test accuracy of the original dataset of 90.8%, which shows that the newly generated
dataset has higher confidence after being enhanced by Cycle GAN and can initially meet
the requirements of defect sample generation on new production lines in industrial fields.
If the classification accuracy of migrated samples is further improved, a deeper SARSN101
network can be used.

3.2. Model Verification Experiment
3.2.1. Teacher Model

In this paper, SARSN34, 50, and 101 are used as teacher models in relational knowledge
distillation. Except for the last fully connected layer of SARSN, all other layers are used as
the feature extraction layer, and the fully connected layer is used as the classification layer.
For the convenience of demonstration, the output characteristic map of the fourth layer of
the teacher model training process is extracted, as shown in Figure 11a–f.
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Figure 11. SARSN visualization of training process. (a) Crack. (b) Inclusion. (c) Patches. (d) Pitted
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Figure 11 shows that after the shallow feature information is extracted, the neural
network can effectively divide the foreground area and the background area where the
defect is located. For example, the green area in feature maps Figure 11a–c is identified
as the defect area. Moreover, similar to small defects such as those of Figure 11a Cr
and Figure 11d Ps, the feature extraction network can accurately capture all fine-grained
information. It is shown that the teacher model can extract six categories of high-level
features such as texture, shape, and edge.

The teacher model training process is set to 200 epochs, and the learning rate is 0.1
in the first 60 epochs, 0.02 in epochs 61–120, 0.004 in epochs 121~160, and 0.0008 in the
final 40 epochs. During the initial stage of training, a warm upwarmup is used. The
batch size is 8, the cross-entropy loss is used as the loss function, SGD algorithms are used
to update the weight parameters, and the softmax function is used as the classification
function. Figure 12a,b show the accuracy and loss curves of the teacher model training
process, and the accuracy of teacher model training and testing is shown in Table 3. In
the experimental process of training the teacher model, the expected number of training
rounds is set to 200 epochs, and the training time is about 26 h. After about 120 epochs, the
training iteration process of the model tends to be stable. The loss value of the training loss
function also tends to be stable in the process of decline. At this time, the training iteration
time is about 17 h.
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Figure 12. Teacher model training loss and accuracy curve. (a) Teacher model training accuracy
curve. (b) Teacher model training loss curve.

Table 3. Teacher Model Training and Testing Accuracy.

Teacher Mode Training Accuracy Testing Accuracy

SARSN34 97.80% 96.85%
SARSN50 98.27% 97.14%
SARSN101 98.33% 97.83%

3.2.2. Student Model

To meet the real-time requirements of industrial field classification tasks, this pa-
per chooses the lightweight network ResNet34 for the deployment of the student model
of relational knowledge distillation. The training accuracy rates achieved when using
SARSN34, 50, and 101 as teacher models to train the student model ResNet34 and only
training ResNet34 are shown in Table 4, which shows that the student model has learned
the relevant model generalization ability from the teacher model. With the deepening of
the teacher model network, the training accuracy of the student model is also improved.

Table 4. Student model training accuracy.

Teacher Mode Student Model Training Accuracy

SARSN34 ResNet34 90.56%
SARSN50 ResNet34 92.31%
SARSN101 ResNet34 95.23%

______ ResNet34 89.18%

According to the analysis of Table 4, the migration effect of the model with SARSN34
as the teacher is 90.56%, which is higher than 89.18% for the ResNet34 network in the same
period, and the model efficiency is greatly improved. This shows that the student model
has learned the relevant model generalization ability from the teacher model. With the
deepening of the teacher model network, the training accuracy of the student model is also
improved.

To verify the classification accuracy of the student model, aiming at six kinds of defects
of strip steel, a total of 600 images were selected for testing, and the number of test rounds
was 200 epochs. Taking the average accuracy of the current epochs as the test accuracy
results, the average test accuracy values of SARSN34, SARSN50, and SARSN101 as the
teacher model and ResNet34 as the student model were calculated to be 87.16%, 90.87%,
and 94.40%, respectively. However, the average test accuracy rate of training the ResNet34
network alone is only 88.62%. The classification test accuracy results for six kinds of strip
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steel defects are shown in Figure 13a,b. Figure 13a shows the test results of training the
ResNet34 network independently without using relational knowledge distillation, and
Figure 13b shows the test results of using SARSN50 as a teacher model and ResNet34 as a
student model.
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Figure 13. Student model respective testing accuracy curve. (a) Original ResNet34 accuracy of each
part, (b) Teacher-SARSN50 Student-ResNet34 accuracy of each part.

According to the analysis of Figure 13, the classification accuracy of six kinds of
defects after knowledge distillation is generally improved, while the accuracy of six kinds
of defects after RKD is improved by −1.46%, 2.25%, and 5.78% based on SARSN34, 50,
and 101, respectively. This shows that the deeper the teacher model is, the more learnable
parameters can be provided.

To further evaluate the testing effect of the student model obtained by distillation of
relational knowledge, experiments were conducted on the 600 testing sets of strip steel
defects. Each class contains 100 images, and the confusion matrix is shown in Figure 14,
in which the abscissa represents the predicted value of each class of strip steel defect data,
and the ordinate represents the true value. The classification accuracy P, the recall rate R,
F1 ∈ [0, 1], and formulas of P, R and F1 are shown in Formula (21):

P =
NTP

NTP + NFP
, R =

NTP
NTP + NFN

, F1 =
2× P× R

P + R
(21)

where NTP is the number of positive samples with correct prediction; NFP is the number
of positive samples with prediction errors; NTN is the number of negative samples with
correct prediction; and NFN is the number of negative samples with prediction errors.
Combined with the data of the true values and predicted values of various defects in the
confusion matrix, the classification accuracy, recall rate, and F1 value of various strip steel
defects are calculated by Formula (21). The calculation results of the classification indicators
are shown in Table 5.

Table 5. Evaluation of Classification Performance.

Defect Category P R F1

In 0.860 0.920 0.890
Pa 0.873 0.890 0.881
Ps 0.906 0.960 0.932
Sc 0.978 0.910 0.943
Rs 0.919 0.910 0.915
Cr 0.935 0.870 0.901
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Table 5 shows that the pitted surfaces and scratches exhibit excellent performance in 

terms of the F1 value, both of which have values above 93%. The F1 values of inclusions, 

patches and cracks have average performance, and the misjudgment rate is high, but the 

F1 values of the six types of defects are all approximately 90%, with good classification 

results. To further improve the classification accuracy of the six kinds of defect samples, 

the teacher model SARSN50 can be replaced by SARSN101 while maintaining the student 

model. 

Table 5. Evaluation of Classification Performance. 

Defect Category P R F1 

In 0.860 0.920 0.890 

Pa 0.873 0.890 0.881 

Ps 0.906 0.960 0.932 

Sc 0.978 0.910 0.943 

Rs 0.919 0.910 0.915 

Cr 0.935 0.870 0.901 

3.2.3. Model Comparative Experiment 

SE-ResNet calibrates the feature response in the channel direction by stacking the 

squeezing and actuating blocks together. While combining the self-adaptive directional 

derivative threshold with the channel attention mechanism, SARSN can learn more useful 

fine-grained feature information in a specific threshold range. As shown in Figure 15, we 

selected ResNet34, 50, and 101, SE-ResNet34, 50, and 101 and SARSN34, 50, and 101, re-

spectively. The training and testing conditions remain the same. 

From the comparison results in the figure, it can be found that under with the same 

network depth, the testing accuracy of the SE-ResNet network embedded with the SE 

block is better than that of the basic classification network ResNet, while the classification 

accuracy of SARSN proposed in this paper is the best of any model structure with any 

depth, among which the SARSN101 network reaches 97.83%. This shows that SARSN has 

the best effect in processing few-shot unbalanced data of strip steel. 

Figure 14. The confusion matrix.

Table 5 shows that the pitted surfaces and scratches exhibit excellent performance in
terms of the F1 value, both of which have values above 93%. The F1 values of inclusions,
patches and cracks have average performance, and the misjudgment rate is high, but the F1
values of the six types of defects are all approximately 90%, with good classification results.
To further improve the classification accuracy of the six kinds of defect samples, the teacher
model SARSN50 can be replaced by SARSN101 while maintaining the student model.

3.2.3. Model Comparative Experiment

SE-ResNet calibrates the feature response in the channel direction by stacking the
squeezing and actuating blocks together. While combining the self-adaptive directional
derivative threshold with the channel attention mechanism, SARSN can learn more useful
fine-grained feature information in a specific threshold range. As shown in Figure 15,
we selected ResNet34, 50, and 101, SE-ResNet34, 50, and 101 and SARSN34, 50, and 101,
respectively. The training and testing conditions remain the same.
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Figure 15. Comparison of classification performance of ResNet, SE-ResNet, and SARSN (a) 34 series,
(b) 50 series, (c) 101 series.
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From the comparison results in the figure, it can be found that under with the same
network depth, the testing accuracy of the SE-ResNet network embedded with the SE
block is better than that of the basic classification network ResNet, while the classification
accuracy of SARSN proposed in this paper is the best of any model structure with any
depth, among which the SARSN101 network reaches 97.83%. This shows that SARSN has
the best effect in processing few-shot unbalanced data of strip steel.

To verify the classification performance of different network models for strip steel
defects, this paper uses GoogLeNet, DenseNet, InceptionV3, SqueezeNet, MobileNet,
ResNet101, ResNext101, SE-ResNet101, and Teacher-SARSN101 Student-ResNet34 net-
works for comparative experiments. The test accuracy curve of each model is shown in
Figure 16. Moreover, the classification accuracy, parameters and single image classification
algorithm time consumption of each network model are shown in Table 6.

Algorithms 2023, 16, x FOR PEER REVIEW 20 of 27 
 

   

(a) (b) (c) 

Figure 15. Comparison of classification performance of ResNet, SE-ResNet, and SARSN (a) 34 series, 

(b) 50 series, (c) 101 series. 

To verify the classification performance of different network models for strip steel 

defects, this paper uses GoogLeNet, DenseNet, InceptionV3, SqueezeNet, MobileNet, Res-

Net101, ResNext101, SE-ResNet101, and Teacher-SARSN101 Student-ResNet34 networks 

for comparative experiments. The test accuracy curve of each model is shown in Figure 

16. Moreover, the classification accuracy, parameters and single image classification algo-

rithm time consumption of each network model are shown in Table 6. 

 

Figure 16. Accuracy curve of the classification test for each model. 

Table 6. Comparison of the classification results of various models. 

Model Test Accuracy Parameter Number Time-Consumption/(ms) 

GoogLeNet 0.9407 6,306,214 58 

DenseNet 0.9413 6,952,198 96 

InceptionV3 0.8011 22,125,542 248 

SqueezeNet 0.9633 732,934 104 

MobileNetV2 0.8567 3,219,078 7.8 

ResNet101 0.8017 42,504,774 112 

ResNext101 0.9167 14,788,772 67 

SE-ResNet101 0.8451 47,527,764 187 

SARSN101 0.9783 46,127,174 85 

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

 ResNet34

 SE-ResNet34

 SARSN34

Epoch

A
cc

u
ra

cy

0.837

0.0

0.2

0.4

0.6

 L
o

ss

0.883

0.9685

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

 SE-ResNet50

 ResNet50

 SARSN50

Epoch

A
cc

u
ra

cy 0.9714

0.900

0.850

0.0

0.2

0.4

0.6

 L
o

ss

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

 ResNet101

 SE-ResNet101

 SARSN101

Epoch

A
cc

u
ra

cy

0.0

0.2

0.4

0.6

 L
o

ss0.9783

0.9083

0.8017

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Epoch

 DenseNet

 GoogLe Net

 InceptionV3

 SARSN101

 Mobilenet

 SE-ResNet101

 SqueezeNet

 ResNext101

 ResNet101

Figure 16. Accuracy curve of the classification test for each model.

Table 6. Comparison of the classification results of various models.

Model Test Accuracy Parameter Number Time-Consumption/(ms)

GoogLeNet 0.9407 6,306,214 58
DenseNet 0.9413 6,952,198 96

InceptionV3 0.8011 22,125,542 248
SqueezeNet 0.9633 732,934 104

MobileNetV2 0.8567 3,219,078 7.8
ResNet101 0.8017 42,504,774 112

ResNext101 0.9167 14,788,772 67
SE-ResNet101 0.8451 47,527,764 187

SARSN101 0.9783 46,127,174 85
Teacher-SARSN101
Student-ResNet34 0.9440 11,171,910 51

It can be found that the test curve of the SARSN101 network rises gently, and its
robustness is obviously better than that of other networks in the face of unbalanced datasets
with few samples. Moreover, InceptionV3 is most obviously affected by the characteristics
of the datasets, and its robustness is poor before 50 epochs. The testing accuracy of the
SARSN101 network reaches 98.3%, which is much higher than that of the other models.
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However, the test accuracy of the Teacher-SARSN 101 Student-ResNet 34 network using
the relational knowledge distillation method is 94.4%, which is better than other network
models in terms of the comprehensive performance of three indices.

To evaluate the method proposed in this paper more objectively, in addition to verify-
ing that our proposed model has more advantages in accuracy and efficiency compared
with other classification models, the following is also a comparison of different classifica-
tion methods. After analysis, the texture information of six kinds of defects on the surface
of strip steel is quite different, which is convenient for feature extraction. Four different
feature extraction methods and classifier combinations were selected for comparison ex-
periments with the methods proposed in this paper. In order to control the variance of the
variables, all experiments selected identical datasets. The precision comparison results of
each classification method are shown in Figure 17. The Gabor filter works on the principle
of mutual modulation between the Gaussian kernel and sine wave, specializing in dealing
with multi-scale and multi-directional texture features. We imported the features extracted
by the Gabor filter into SVM and KNN classifiers, respectively to classify six kinds of
defects. The traditional LBP (local binary pattern) algorithm has the advantages of rotation
invariance and gray invariance and is better at describing local texture information. On
the other hand, HOG (histogram of oriented gradient) has no rotation and scale invariance.
The amount of calculations can be greatly reduced.

Algorithms 2023, 16, x FOR PEER REVIEW 21 of 27 
 

Teacher-SARSN101 

Student-ResNet34 
0.9440 11,171,910 51 

It can be found that the test curve of the SARSN101 network rises gently, and its 

robustness is obviously better than that of other networks in the face of unbalanced da-

tasets with few samples. Moreover, InceptionV3 is most obviously affected by the charac-

teristics of the datasets, and its robustness is poor before 50 epochs. The testing accuracy 

of the SARSN101 network reaches 98.3%, which is much higher than that of the other 

models. However, the test accuracy of the Teacher-SARSN 101 Student-ResNet 34 network 

using the relational knowledge distillation method is 94.4%, which is better than other 

network models in terms of the comprehensive performance of three indices. 

To evaluate the method proposed in this paper more objectively, in addition to veri-

fying that our proposed model has more advantages in accuracy and efficiency compared 

with other classification models, the following is also a comparison of different classifica-

tion methods. After analysis, the texture information of six kinds of defects on the surface 

of strip steel is quite different, which is convenient for feature extraction. Four different 

feature extraction methods and classifier combinations were selected for comparison ex-

periments with the methods proposed in this paper. In order to control the variance of the 

variables, all experiments selected identical datasets. The precision comparison results of 

each classification method are shown in Figure 17. The Gabor filter works on the principle 

of mutual modulation between the Gaussian kernel and sine wave, specializing in dealing 

with multi-scale and multi-directional texture features. We imported the features ex-

tracted by the Gabor filter into SVM and KNN classifiers, respectively to classify six kinds 

of defects. The traditional LBP (local binary pattern) algorithm has the advantages of ro-

tation invariance and gray invariance and is better at describing local texture information. 

On the other hand, HOG (histogram of oriented gradient) has no rotation and scale invar-

iance. The amount of calculations can be greatly reduced. 

 

Figure 17. Comparison of the results of each classification algorithm. 

  

Figure 17. Comparison of the results of each classification algorithm.

From the classification results, it can be seen that the four kinds of algorithms have
their own advantages in dealing with the classification effect of a single defect, among
which, Gabor filter+SVM and Gabor filter+KNN methods achieve 100% classification
accuracy for Sc, Ps and Cr, because the fine-grained texture features of Cr and Ps defects
with different scales are obvious. However, in the overall classification accuracy of the six
types of defects, the classification effect of SARSN101 and RKD-SARSN101 proposed in
this paper is better.
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3.2.4. Defect Calculation and Analysis

Deep neural networks have obvious advantages in feature extraction and fine-grained
information acquisition, but large models take up significant computing space, and the
defect features automatically extracted by neural networks are abstract, which is often not
conducive to further analysis. The image moment has the characteristics of translation,
rotation, and scale invariance. It is convenient to identify image features subjectively
and simply. Among them, the 0-order moment represents the sum of the pixels, and the
calculation formula is shown in Formula (22):

M00 = ∑
I

∑
J

V(i, j). (22)

The 1-order moment represents the product of the X-axis and Y-axis coordinates and
their corresponding pixels in the rectangular coordinate system, and the calculation formula
is shown in Formula (23):

M10 = ∑
I

∑
J

i ·V(i, j);M01 = ∑
I

∑
J

j ·V(i, j). (23)

The centroid of the region to be studied is determined based on Formula (23) and
shown in Formula (24):

xc =
M10

M00
; yc =

M01

M00
. (24)

In this paper, using image processing technology and combining the characteristics of
the 0-order moment (determination of the area of the target area) and the 1-order moment
(determining the centroid of the target area), defect analysis is carried out on six kinds
of samples with correct prediction output by the classification network, and the image
processing results are shown in Figure 18.
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First, the original image (a) is preprocessed (b), the boundary tracing algorithm (c) is
executed on the image after threshold segmentation and the perimeter of the defect area is
calculated. Then, (b) the connected region is segmented. (d) It is convenient to extract the
ROI of the defect feature. (e) The defect area is calculated. All the connected defect areas
are marked with the same color, and the defects in each connected region are successfully
segmented. Finally, the specific positions of all kinds of defects are determined by the
centroid localization algorithm (f). The calculation results of the area and perimeter of
various defects are shown in Table 7. We also specifically designed the proportion of defects
and the area perimeter ratio (K) of defective parts to analyze the defects of each part.

Table 7. Various defect evaluation indices.

Category Area (Point) Perimeter
(Point) Area Ratio (%) Perimeter-Area

Ratio (K)

Cr 1.646 × 103 475.911 40.18% 0.289
In 0.759 × 103 71.414 18.53% 0.094
Pa 2.332 × 103 113.314 56.93% 0.048
Ps 1.019 × 103 368.426 24.88% 0.362
Rs 1.159 × 103 213.012 28.30% 0.183
Sc 0.789 × 103 82.243 19.48% 0.103

In addition, in order to accurately locate the salient region of the defect being focused
on by the neural network, we visualize the feature extraction results of the SARSN network
by heat map, as shown in the results. Figure 19a is the original input image, and Figure 19b
is the visualization result of the salient region, in which the dark color represents the
area of focus of the neural network. From the results in the graph, it can be seen that the
classification network can capture the distribution of some defects, indicating that our
method can accurately identify the defect location through feature extraction.
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According to the analysis in Table 7, the K values of Cr and Ps defects distributed
in dense patches are all above 0.2, which indicates that these defects are characterized by
small particles with a wide and dense distribution. The K values of In, Rs and Sc defects
are distributed at approximately 0.1, which shows that this kind of defect has integrity and
connectivity. However, the K value of Pa-type defects is less than 0.05, which indicates
that Pa defects have the characteristics of a wide distribution area and high connectivity.
Therefore, these characteristics can be used as the evaluation index of the defect grade of
strip steel, which is of great significance in quantifying the defects of strip steel.

3.2.5. Design of the Grade Evaluation System for Surface Defects of Strip Steel

To effectively integrate the functions of each module of this algorithm and facilitate
users in completing the task of defect classification without knowledge of the underlying
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algorithm, we developed a set of strip steel surface defect rating systems for front-end
deployment, with the interface information shown in Figure 20. The functions of this
system include query data enhancement results, classification results, target detection
results, and image processing results. Moreover, intermediate processes such as feature map
visualization results and confusion matrices can be derived. The deployment of equipment,
monitoring platforms, and local area networks needs to be determined according to the
actual situation of the industrial site. In addition, the neural network training and testing
processes of this system are all carried out offline, and the results are uploaded through the
local area network.
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4. Conclusions

In this paper, a new relational knowledge distillation model framework network
RKD-SARSN was proposed for the real-time classification of the sample data of the surface
defects of strip steel. Through comparative experiments, the comprehensive performance
of the proposed algorithms was found to be better than that of other classification algo-
rithms, which can ensure classification accuracy and meet the real-time requirements of the
classification of strip steel defects in the industrial field. The conclusions of the experiment
are as follows:

• Using the Cycle GAN data enhancement method can realize cross-domain migration
of defective samples of strip steel and solve the problem of few defective samples in a
new production line;

• The introduction of the attention mechanism and self-adaptive directional derivative
threshold in the SARSN model is the key to improving the classification accuracy of
fine-grained defect images;

• In the training process of the model, the self-adaptive loss function balances the
differences between classes through a separate class processing mechanism, which is
helpful in solving the imbalance problem of strip steel defect samples;

• Structured relational knowledge distillation can transfer the generalization perfor-
mance of large complex networks to small lightweight networks, reduce the complexity
of model calculation and improve the efficiency of model deployment.

However, the method proposed in this paper may have limitations, which need to be
ameliorated in future steps:
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• The proposed self-adaptive loss function solves the problem of imbalanced samples
between classes, but the sensitivity to highly imbalanced samples is average, and
research in this area may need to be strengthened in the future;

• The method of structured relational knowledge distillation is outstanding in improving
the detection efficiency of fine-grained image classification tasks, and it is beneficial
to deploy it in industrial fields to solve practical problems. However, this method is
rarely used in the fault diagnosis of mechanical vibration noise; thus, improving the
fault diagnosis efficiency of vibration noise may be a future research direction.

Author Contributions: All authors contributed to the study conception and design. Z.S.: preliminary
investigation, methodology, writing—original draft. X.H. and C.J.: verification, writing—review and
editing, supervision. Y.Z. and L.Y.: project management and collecting documents, modifying formats,
reference materials. All authors have read and agreed to the published version of the manuscript.

Funding: The state key laboratory open project of China National Heavy Machinery Research
Institute. The Natural Science Basis Research Plan in Shaanxi Province of China (Program No.2022JQ-
568). Scientific Research Program Funded by Shaanxi Provincial Education Department (Program
No.21JK0661). Young Talent Fund of Association for Science and Technology in Shaanxi, China
(Program No.20220133). Xi’an Science and Technology Plan Project (Program No.22GXFW0041).
Shaanxi Province Innovative Talent Promotion Plant (2022KJXX-41). The Open Project of State Key
Laboratory of Metal Extrusion and Forging Equipment Technology (No.S2208100.W03).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bhattacharya, G.; Mandal, B.; Puhan, N.B. Interleaved Deep Artifacts-Aware Attention Mechanism for Concrete Structural Defect

Classification. IEEE Trans. Image Process. 2021, 30, 6957–6969. [CrossRef] [PubMed]
2. Dong, X.; Taylor, C.J.; Cootes, T.F. Defect Detection and Classification by Training a Generic Convolutional Neural Network

Encoder. IEEE Trans. Signal Process. 2020, 68, 6055–6069. [CrossRef]
3. Chagas, E.T.C.; Frery, A.C.; Rosso, O.A.; Ramos, H.S. Analysis and Classification of SAR Textures Using Information Theory.

IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 663–675. [CrossRef]
4. Chu, M.X.; Feng, Y.; Yang, Y.H.; Deng, X. Multi-class classification method for steel surface defects with feature noise. J. Iron Steel

Res. Int. 2021, 28, 303–315. [CrossRef]
5. Xu, H.; Yuan, H. An SVM-Based AdaBoost Cascade Classifier for Sonar Image. IEEE Access 2020, 8, 115857–115864. [CrossRef]
6. Ju, L.; Wang, X.; Zhao, X.; Lu, H.; Mahapatra, D.; Bonnington, P.; Ge, Z. Synergic Adversarial Label Learning for Grading Retinal

Diseases via Knowledge Distillation and Multi-task Learning. IEEE J. Biomed. Health Inform. 2021, 25, 3709–3720. [CrossRef]
7. Guo, N.; Gu, K.; Qiao, J.; Bi, J. Improved deep CNNs based on Nonlinear Hybrid Attention Module for image classification.

Neural Netw. 2021, 140, 158–166. [CrossRef]
8. Chiu, M.-C.; Chen, T.-M. Applying Data Augmentation and Mask R-CNN-Based Instance Segmentation Method for Mixed-Type

Wafer Maps Defect Patterns Classification. IEEE Trans. Semicond. Manuf. 2021, 34, 455–463. [CrossRef]
9. Tu, Z.; Wu, S.; Kang, G.; Lin, J. Real-Time Defect Detection of Track Components: Considering Class Imbalance and Subtle

Difference Between Classes. IEEE Trans. Instrum. Meas. 2021, 70, 1–12. [CrossRef]
10. Jiang, S.; Zhu, Y.; Liu, C.; Song, X.; Li, X.; Min, W. Data set Bias in Few-shot Image Recognition. IEEE Trans. Pattern Anal. Mach.

Intell. 2021, 45, 229–246. [CrossRef]
11. Lv, N.; Ma, H.; Chen, C.; Pei, Q.; Zhou, Y.; Xiao, F.; Li, J. Remote Sensing Data Augmentation Through Adversarial Training. In

Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 11–16
July 2021; pp. 2511–2514.

12. Lerner, B.; Yeshaya, J.; Koushnir, L. On the Classification of a Small Imbalanced Cytogenetic Image Database. IEEE ACM Trans.
Comput. Biol. Bioinform. 2007, 4, 204–215. [CrossRef]

13. Jing, X.-Y.; Zhang, X.; Zhu, X.; Wu, F.; You, X.; Gao, Y.; Shan, S.; Yang, J.Y. Multiset Feature Learning for Highly Imbalanced Data
Classification. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 139–156. [CrossRef] [PubMed]

14. Liang, X.; Zhang, Y.; Zhang, J. Attention Multisource Fusion-Based Deep Few-Shot Learning for Hyperspectral Image Classifica-
tion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8773–8788. [CrossRef]

15. Li, K.; Wang, X.; Ji, L. Application of Multi-Scale Feature Fusion and Deep Learning in Detection of Steel Strip Surface Defect.
In Proceedings of the 2019 International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM), Dublin,
Ireland, 16–18 October 2019; pp. 656–661.

https://doi.org/10.1109/TIP.2021.3100556
https://www.ncbi.nlm.nih.gov/pubmed/34343092
https://doi.org/10.1109/TSP.2020.3031188
https://doi.org/10.1109/JSTARS.2020.3031918
https://doi.org/10.1007/s42243-020-00501-1
https://doi.org/10.1109/ACCESS.2020.3004473
https://doi.org/10.1109/JBHI.2021.3052916
https://doi.org/10.1016/j.neunet.2021.01.005
https://doi.org/10.1109/TSM.2021.3118922
https://doi.org/10.1109/TIM.2021.3117357
https://doi.org/10.1109/TPAMI.2022.3153611
https://doi.org/10.1109/TCBB.2007.070207
https://doi.org/10.1109/TPAMI.2019.2929166
https://www.ncbi.nlm.nih.gov/pubmed/31331881
https://doi.org/10.1109/JSTARS.2021.3109012


Algorithms 2023, 16, 516 26 of 26

16. Wang, Z.; Wang, J.; Chen, S. Fault Location of Strip Steel Surface Quality Defects on Hot-Rolling Production Line Based on
Information Fusion of Historical Cases and Process Data. IEEE Access 2020, 8, 171240–171251. [CrossRef]

17. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Networks. Adv. Neural Inf. Process. Syst. 2014, 3, 2672–2680. [CrossRef]

18. Xia, K.; Yin, H.; Qian, P.; Jiang, Y.; Wang, S. Liver Semantic Segmentation Algorithm Based on Improved Deep Adversarial
Networks in combination of Weighted Loss Function on Abdominal CT Images. IEEE Access 2019, 7, 96349–96358. [CrossRef]

19. Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative Adversarial Networks: An
Overview. IEEE Signal Process. Mag. 2018, 35, 53–65. [CrossRef]

20. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

21. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1492–1500.

22. Zhao, M.; Zhong, S.; Fu, X.; Tang, B.; Pecht, M. Deep Residual Shrinkage Networks for Fault Diagnosis. IEEE Trans. Ind. Inform.
2020, 16, 4681–4690. [CrossRef]

23. Jie, H.; Li, S.; Gang, S.; Albanie, S. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 42, 2011–2023.
24. Verma, A.; Sharma, M.; Hebbalaguppe, R.; Hassan, E.; Vig, L. Automatic Container Code Recognition via Spatial Transformer

Networks and Connected Component Region Proposals. In Proceedings of the IEEE International Conference on Machine
Learning and Applications, Anaheim, CA, USA, 18–20 December 2016; pp. 728–733.

25. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference
on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 3–19.

26. Sun, C.; Ma, M.; Zhao, Z.; Chen, X. Sparse deep stacking network for fault diagnosis of motor. IEEE Trans. Ind. Inf. 2018, 14,
3261–3270. [CrossRef]

27. Chen, Y.; Bai, Y.; Zhang, W.; Mei, T. Destruction and Construction Learning for Fine-Grained Image Recognition. In Proceedings
of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 5157–5166.

28. Leng, R.; Zhou, W. Optimization Research and Application of Unbalanced Data Set Multi-classification Algorithm. In Proceedings
of the International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 27–28 August 2016;
pp. 39–42.

29. Raj, V.; Magg, S.; Wermter, S. Towards effective classification of imbalanced data with convolutional neural networks. In
Proceedings of the IAPR Workshop on Artificial Neural Networks in Pattern Recognition, Ulm, Germany, 28–30 September 2016;
pp. 150–162.

30. Elhanashi, A.; Gasmi, K.; Begni, A.; Dini, P.; Zheng, Q.; Saponara, S. Machine Learning Techniques for Anomaly-Based Detection
System on CSE-CIC-IDS2018 Dataset. In Applications in Electronics Pervading Industry, Environment and Society. ApplePies 2022;
Berta, R., De Gloria, A., Eds.; Lecture Notes in Electrical Engineering; Springer: Cham, Switzerland, 2023; Volume 1036. [CrossRef]

31. Anwary, A.R.; Yu, H.; Vassallo, M. Gait Evaluation Using Procrustes and Euclidean Distance Matrix Analysis. IEEE J. Biomed.
Health Inform. 2019, 23, 2021–2029. [CrossRef] [PubMed]

32. Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. Comput. Sci. 2015, 14, 38–39.
33. Park, W.; Kim, D.; Lu, Y.; Cho, M. Relational Knowledge Distillation. In Proceedings of the 2019 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 3967–3976.
34. Angelopoulos, A.; Michailidis, E.T.; Nomikos, N.; Trakadas, P.; Hatziefremidis, A.; Voliotis, S.; Zahariadis, T. Tackling faults in the

industry 4.0 era—A survey of machine-learning solutions and key aspects. Sensors 2019, 20, 109. [CrossRef] [PubMed]
35. Hao, R.; Lu, B.; Cheng, Y.; Li, X.; Huang, B. A steel surface defect inspection approach towards smart industrial monitoring.

J. Intell. Manuf. 2021, 32, 1833–1843. [CrossRef]
36. Tang, B.; Chen, L.; Sun, W.; Lin, Z.K. Review of surface defect detection of steel products based on machine vision. IET Image

Process. 2023, 17, 303–322. [CrossRef]
37. Czimmermann, T.; Ciuti, G.; Milazzo, M.; Chiurazzi, M.; Roccella, S.; Oddo, C.M.; Dario, P. Visual-based defect detection and

classification approaches for industrial applications—A survey. Sensors 2020, 20, 1459. [CrossRef]
38. Sampath, V.; Maurtua, I.; Martín, J.J.A.; Rivera, A.; Molina, J.; Gutierrez, A. Attention guided multi-task learning for surface

defect identification. IEEE Trans. Ind. Inform. 2023, 19, 9713–9721. [CrossRef]
39. Nnolim, U.A. Multi-Scale Fractional Tonal Correction Bilateral Filter-Based Hazy Image Enhancement. Int. J. Image Graph. 2020,

20, 2050010. [CrossRef]
40. Tian, F.; Gao, Y.; Fang, Z.; Gu, J. Automatic coronary artery segmentation algorithm based on deep learning and digital image

processing. Appl. Intell. 2021, 51, 8881–8895. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2020.3024582
https://doi.org/10.1145/3422622
https://doi.org/10.1109/ACCESS.2019.2929270
https://doi.org/10.1109/MSP.2017.2765202
https://doi.org/10.1109/TII.2019.2943898
https://doi.org/10.1109/TII.2018.2819674
https://doi.org/10.1007/978-3-031-30333-3_17
https://doi.org/10.1109/JBHI.2018.2875812
https://www.ncbi.nlm.nih.gov/pubmed/30418928
https://doi.org/10.3390/s20010109
https://www.ncbi.nlm.nih.gov/pubmed/31878065
https://doi.org/10.1007/s10845-020-01670-2
https://doi.org/10.1049/ipr2.12647
https://doi.org/10.3390/s20051459
https://doi.org/10.1109/TII.2023.3234030
https://doi.org/10.1142/S0219467820500102
https://doi.org/10.1007/s10489-021-02197-6

	Introduction 
	The Proposed Theory 
	Model Deployment Process and Algorithm Structure Design 
	Image Cross-Domain Conversion: Data Enhancement Based on Cycle GAN 
	Classification Network Structure Design 
	Deep Residual Shrinkage Network 
	The Proposed Self-Adaptive Residual Shrinkage Network (SARSN) 

	Knowledge Distillation 

	Experimental Results 
	Experimental Data Processing 
	Image Preprocessing 
	Image Mosaicing and Fusion 
	Cycle GAN Data Enhancement Experiment 

	Model Verification Experiment 
	Teacher Model 
	Student Model 
	Model Comparative Experiment 
	Defect Calculation and Analysis 
	Design of the Grade Evaluation System for Surface Defects of Strip Steel 


	Conclusions 
	References

