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Abstract: The operation and maintenance (O&M) issues of offshore wind turbines (WTs) are more
challenging because of the harsh operational environment and hard accessibility. As sudden compo-
nent failures within WTs bring about durable downtimes and significant revenue losses, condition
monitoring and predictive fault diagnostic approaches must be developed to detect faults before they
occur, thus preventing durable downtimes and costly unplanned maintenance. Based primarily on
supervisory control and data acquisition (SCADA) data, thirty-three weighty features from opera-
tional data are extracted, and eight specific faults are categorised for fault predictions from status
information. By providing a model-agnostic vector representation for time, Time2Vec (T2V), into
Long Short-Term Memory (LSTM), this paper develops a novel deep-learning neural network model,
T2V-LSTM, conducting multi-level fault predictions. The classification steps allow fault diagnosis
from 10 to 210 min prior to faults. The results show that T2V-LSTM can successfully predict over
84.97% of faults and outperform LSTM and other counterparts in both overall and individual fault
predictions due to its topmost recall scores in most multistep-ahead cases performed. Thus, the
proposed T2V-LSTM can correctly diagnose more faults and upgrade the predictive performances
based on vanilla LSTM in terms of accuracy, recall scores, and F-scores.

Keywords: operation and maintenance (O&M); wind turbines (WTs); predictive fault diagnostic;
supervisory control and data acquisition (SCADA); Time2Vec (T2V); Long Short-Term Memory
(LSTM); T2V-LSTM

1. Introduction

The global wind energy installations expanded by about 14% annually from 2001 to
2020 [1]. The total wind power capacity increased from 650.8 GW in 2019 to 742.7 GW
in 2020, with a spectacular growth of 53% (over 90 GW) since 2019 [2,3]. Due to plentiful
wind resources and abundant construction sites in offshore areas, more wind farms are
installed with increased seabed depths and remote distances to shore [4]. Using the same
commercial wind turbine (WT), offshore power production is at least 1.34 times more than
the onshore site with the highest wind energy potential due to stronger and more uniform
wind resources in offshore areas [5]. However, offshore WT installation costs are about
2.64 times those of their onshore counterpart [6]. And harsher weather conditions are
challenging for the operation and maintenance (O&M) tasks of offshore WTs. Moreover,
O&M costs account for a large fraction of total lifecycle costs, with 10–15% and 25–30%
for onshore and offshore wind farms, respectively [6,7]. Unexpectedly, sudden faults
from high-risk WT components contribute significantly to the increase in O&M costs
related to downtimes and discounted revenues [8]. To reduce O&M costs and enhance
system reliability, condition monitoring (CM), fault diagnosis, and prognosis are of prior
importance through the detection of certain faults before they reach catastrophic fault
severity levels. Hence, O&M costs can be decreased along with maintenance interval
optimisation [9].
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Condition Monitoring System (CMS) can facilitate system failure prevention and WT
availability improvement through early-stage fault detections. To diagnose fault-free condi-
tions of WT components, such as the gearbox and drivetrain, CMS has been implemented
via vibration analysis [10], oil analysis [11], electrical signature analysis [12], and acoustic
emission analysis [13]. CMS-based monitoring is capable of both fault diagnosis and prog-
nosis with a high-frequency resolution, but this approach is more expensive compared to
supervisory control and data acquisition (SCADA) [14]. Thus, SCADA systems become
more favourable for WT operators to apply the CM technique due to cheaper costs; how-
ever, these have a low-frequency resolution [15]. SCADA data are normally collected under
a 10 min sampling rate. A number of data-driven studies on SCADA-based monitoring
have been utilised for performance monitoring of WT operational conditions in recent
years without retrofitting additional sensors.

Stetco et al. [16] investigated the machine learning (ML) applications for CM in WTs,
including CM for diagnosis and CM for prognosis. Diagnosis focuses on real-time fault
identifications, whilst prognosis is to predict the faults before their occurrences [17].

Classification is a supervised ML approach, applicable for fault detection, diagnosis,
and prognosis, to train a classifier by predicting its categorised outputs based on input vari-
ables, thus differentiating between healthy and faulty operations. Lu et al. [18] proposed an
online fault diagnosis for WT planetary gearbox faults employing a self-powered wireless
sensor for signal acquisition. Leahy et al. [19] applied support vector machine (SVM)
models to detect, diagnose, and predict faults in a 3 MW direct-drive turbine. However, the
classification results on feeding and air-cooling faults had deficient performances due to
the problematic classification of the SVM hyperplane. Naik and Koley [20] adopted the k-
nearest neighbour (k-NN) classifier-based protection to detect and classify multiple types of
faults in AC/HVDC transmission systems by varying fault resistance and inception angles
with a classification accuracy of 100%. Marti-Puig et al. [21] investigated several automatic
feature selection approaches based on the k-NN classifier for fault prognostics with the use
of 36 sensor variables on gearbox and transmission systems. Artificial Neural Network
(ANN) was trained by Ibrahim et al. [22] for WT mechanical faults with a median accuracy
between 93.5% and 98% in fault detection. For various classification tasks, SVM [18,19,23],
k-NN [20,21], ANN [22,24,25], and RF [25,26] are commonly used with SCADA, simulation,
or experimental data. Most importantly, accurate fault diagnosis is the prerequisite for
developing any prediction model.

ANN has been widely applied to the ML approach for supervised classification
learning [27]. The typical ANN architecture, multi-layer perception (MLP), is a feed-
forward multi-layered neural network consisting of an input layer, several hidden layers,
and an output layer. The ANN prediction results are determined by data size, data pre-
processing, selected neural network structures under their optimum activation functions,
etc. [16]. Due to its robustness towards poor-quality data with noise and system dis-
turbances, a well-trained ANN model can still make wise predictions, which cannot be
achieved by other ML classifiers [6]. With the escalation of quantitative data sizes and
complexity, ANN is a model with ideal predictive results but a slow convergence speed.

Compared to ANN, the Recurrent Neural Network (RNN) is a more promising neural
network model for time- and sequence-based tasks because its recurrent structure captures
the temporal dependency among inputs with sequential characteristics to predict the next
scenario [28]. RNN is a class of deep-learning neural networks designed for variable-length
sequence inputs by remembering important events and allowing the previous values
as inputs to predict future outputs with recurrent connections in hidden layers. RNN
overcomes the over- and under-fitting issues and reduces the convergence time compared
to ANN. However, vanishing gradients, caused by error information flowing backward,
are large barriers to the success of vanilla RNNs because of the resultant oscillating weights
or loss of long-term dependencies [29]. To address vanishing gradients, Long-Short-Term
Memory (LSTM), proposed by Hochreiter and Schmidhuber [29], is a remarkable RNN
model to control the information flow with additional interacting layers. Based on SCADA
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data, Chen et al. [30] verified the outperformance of LSTM over ANN and autoencoder (AE)
for anomaly detection. The integrated LSTM-AE model further improved the detection
accuracy due to the raw input processed by AE and the time feature managed by LSTM.
Based on both single-sensor and multi-sensor signals, LSTM outperformed RNN and
ANN on the classification of 11 faults on the wind wheel, bearing, bearing support, and
rotor [31]. For a case study of fault classification on inner, outer, and ball faults from rolling
bearings [32], LSTM demonstrated higher accuracy than ANN and SVM, and stacked LSTM
further enhanced the prediction accuracy. The advantages of LSTM have been validated
according to multiple time-series fault diagnosis tasks [30–32].

The time-series events can occur either synchronously or asynchronously. However,
most of the RNN or LSTM models fail to make use of time as a feature by considering all
inputs to be synchronous. Kazemi et al. [33] proposed a model-agnostic vector representa-
tion for time, known as Time2Vec (T2V), to be integrated with the LSTM model to refurbish
the architecture with the consumption of time features. The key contributions in this paper
can be generalised as follows:

• A feature selection method, Recursive Feature Elimination (RFE) [34], is conducted
along with an RF classifier for WT fault prediction. The weights of each feature
are computed under the RF classifier, and the RFE application reserves the optimal
number of features in order of their significance levels to maintain a balance between
prediction accuracy and computational costs.

• By integrating Time2Vec into LSTM, this approach, T2V-LSTM, has been validated to
outperform LSTM with a stationary Time2Vec activation function based on several
synchronous datasets [33]. In this paper, the data points related to downtimes are
removed to reserve only fault-free and fault data provided by the SCADA system
for the purpose of fault and no-fault predictions. Thus, a non-stationary Time2Vec
activation function is demanded to deal with the yielded asynchronous data.

• A novel deep-learning neural network model, T2V-LSTM, with an optimal non-
stationary activation function, is modelled to improve the model performance of
LSTM, successfully detecting over 84.97% of faults in advance. The comparative stud-
ies between T2V-LSTM, LSTM, and other ML classifiers are investigated for overall
and individual fault predictions based on performance metrics, including accuracy,
recall scores, precision scores, and F-scores [16].

The paper is organised as follows. Section 2 provides the SCADA operational and
status data, and the modelling process is introduced with data pre-processing, feature
engineering, and fault prognosis. The methodology studies of T2V-LSTM and the processes
of model optimisation are presented in Section 3. Section 4 investigates the comparative
predictive results from T2V-LSTM, LSTM, and other classifiers, and Section 5 presents
a discussion of this investigation. The key results and contributions are summarised in
Section 6.

2. SCADA Data

The available data were collected from a 7 MW demonstration offshore WT, owned by
the Offshore Renewable Energy (ORE) Catapult [35]. This WT is a three-bladed upwind
turbine mounted on a jacket support structure with a total height of 196 m, from blade tip
to sea level, located at Levenmouth, Fife, Scotland, UK. The regarded cut-in, rated, and
cut-off wind speeds were 3.5 m/s, 10.9 m/s, and 25 m/s, respectively [36]. More detailed
information about this WT can be seen in Figure 1. For this turbine, the collected data had
two separate groups: operational SCADA data and status data. The investigated datasets
of both groups cover a 17-month period from May 2018 to September 2019.

2.1. Operational Data and Status Data

The collected SCADA operational data include alarm data, control information, elec-
trical signals, pressure data, temperature data, turbine data, miscellaneous signals, and
other signals.
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The SCADA system operates at a 10 min sampling rate by monitoring instantaneous
parameters, such as wind speed, pitch angle, rotor speed, yaw error, electrical power, cur-
rents, voltages, temperatures, and pressures. Taking Table 1 as an example, the minimum,
maximum, mean, standard deviation, and ending values of wind speed are collected with
the corresponding timestamps. The original dataset includes more than 2000 features and
approximately 70,000 data points with regard to the 17 months to be studied.

Table 1. Ten-minute SCADA operational data.

StartTime WindSpeed
_mps_Min

WindSpeed
_mps_Max

WindSpeed
_mps_Mean

WindSpeed
_mps_Stdev

WindSpeed
_mps_EndVal

21/05/2018 22:00:00 3.577394 10.11077 6.8690084 1.3447459 5.802108
21/05/2018 22:10:00 3.062414 10.03982 6.7177955 1.108204 6.073331
21/05/2018 22:20:00 4.69204 9.636992 7.1981784 1.0209401 8.475427

The information about requested shutdowns, faults, or warning events is provided by
status data. As seen in Table 2, fault and warning events are tracked with respect to their
corresponding event codes, on-times, and off-times. There are miscellaneous operating
states under the abnormal or faulty conditions of the WT. According to Kusiak and Li [37],
the status of fault data is assigned as follows:

I f TSCADA(t) < Tf ault < TSCADA(t + 1), then

Event.Code(t) = Event.Code(t + 1) = Event.Code
(

Tf ault

) (1)

where TSCADA(t + 1) denotes the one-step behind (or 10 min behind) SCADA data since
both timestamps, t, and t + 1, have 10 min intervals.
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Table 2. SCADA status data.

TimeOn TimeOff Event Code Event Description

21/05/2018 19:38:33 21/05/2018 19:38:39 286 (Demoted) Yaw Hydraulic Pressure Diff Too Large
21/05/2018 20:26:02 21/05/2018 20:26:10 543 Gearbox Cooling Line Pressure Too Low
21/05/2018 20:26:12 21/05/2018 20:29:20 543 Gearbox Cooling Line Pressure Too Low

The 10 min period is applied to capture any fault occurrences. For example, in Table 2,
the operational period from “21/05/2018 20:20:00” to “21/05/2018 20:30:00” should be
labelled as “Gearbox Cooling Line Pressure Too Low” with its event code of 543 due to its
fault occurrence within the 10 min time band.

As seen in Figure 2, the frequency of occurrences of each status varies. Any event code
above zero indicates an abnormality. The majority are fault event codes only occurring a
few times, but the faults under the event codes 399, 435, 570, and 1219 have occurred more
than 800 times within this period. Some event codes, such as 12 and 97, denoting SCADA
shutdown request and yaw error, respectively, are not associated with a defined fault status
despite their appearances being 932 and 1290, respectively. Aside from these two examples,
the majority of event codes are merely warnings, irrelevant to faults, so many event codes
are of minor interest in this paper. Additionally, the event codes relating to downtime due
to maintenance actions, noise curtailments, and requested owner stops in Figure 2 are to
be excluded.
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Figure 2. Frequency of alarms.

By excluding the data related to downtimes and faults with very limited frequency,
only a small number of faults can be reserved according to their relatively frequent oc-
currences, as seen in Table 3. “HPU 2 Pump Active For Too Long” relates to a fault that
occurred in the hydraulic pump unit (HPU), while “PcsOff” and “PcsTrip” relate to shut-off
faults and circuit trips within the power conditioning system (PCS), respectively. The
deep-learning model must train the classifiers for the specific fault instances defined in
Table 3. Hence, the reserved SCADA data can be classified into nine categories: (1) fault-
free; (2) HPU 2 pump active fault; (3) Blade 3 slow response; (4) pitch system fatal fault;
(5) gearbox cooling pressure fault; (6) (Demoted) gearbox pressure 2 fault; (7) PcsOff fault;
(8) PcsTrip fault; (9) sub-pitch fatal fault. The quantity of fault-free cases is much larger
than that of any individual fault case, leading to an imbalance in the investigated dataset.
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Table 3. Fault distributions.

Event Code Frequency Description

0 42,598 Fault-free
290 565 HPU 2 pump active for too long
399 998 Blade 3 too slow to respond
435 826 Pitch system fatal error
543 522 Gearbox cooling line pressure too low
570 1436 (Demoted) gearbox filter manifold pressure 2 shutdown
700 701 PcsOff *1

701 417 PcsTrip *2

1219 816 Sub-pitch priv fatal error has occurred more than 3 times

*1 PcsOff represents the shut-off faults of power conditioning system. *2 PcsTrip represents the circuit trips within
power conditioning system.

2.2. Feature Engineering

The major occurrences of the faults are on the HPU, blade, pitch system, gearbox,
PCS, and sub-pitch system (see Table 3), and a huge number of original features are Count-
False/CountTrue states, apparently irrelevant to those faults. This leads to the principal
selection of 60 relevant features, which are only a small subsection of the original 2000 features.
Among the 60 features, the deviations of pitch angles, as well as the deviations of sub-pitch
positions from blades 1 and 2, 2 and 3, and 3 and 1 are considered because of possible blade
angle asymmetry or blade angle implausibility, studied by Kusiak and Verma [38].

Feature engineering aims to reduce dimensionality by eliminating features with lower
significance and improving the computational efficiency of deep-learning neural networks.
RFE [34] has been commonly applied to fit the model by recursively removing irrelevant or
redundant features.

Firstly, an estimator for accurate online fault diagnosis is required to cooperate with
RFE for dimensionality reduction. Apart from detecting the abnormality, fault diagnosis
can determine the specific fault types with an advanced multi-level fault classification. The
accuracy is used to evaluate the performance of classifiers by:

Accuracy =
1
k

k

∑
i=1

TPi + TNi
TPi + FPi + FNi + TNi

(2)

where k is the total number of classes, TPi donates true positive in class i, when both
prediction and actuality are faulty, whilst TNi donates true negative in class i, when both
prediction and actuality are fault-free. FPi signifies false positive in class i, when the actual
fault-free condition is wrongly predicted to be faulty, whilst FNi signifies false negative in
class i, when the actual faulty condition is wrongly predicted to be fault-free.

ML approaches, such as Decision Tree (DT), k-NN, SVM, RF, ANN, and Gradient Boost
(GB), are compared for fault diagnosis. As seen in Figure 3, RF is evidently the finest model
among all in terms of its best accuracy (0.98607386). Hence, the RF classifier is chosen to
conduct RFE using a 10-fold cross-validation for the test set. Based on the RFE process in
Figure 4, the best accuracy (0.9888) is observed by selecting 33 optimal features out of 60
for the fault diagnosis task under RF classification.

As seen in Figure 5, the weighted importance of each feature is depicted under the
RF classification. According to the optimal solution given in Figure 4, the 33 top-ranking
features in Figure 5 are reserved for predictive fault diagnosis models. The features, such
as “AverageMeasuredPtchAngle1_Max”, “GBoxFilterPres2_Mean”, etc., have advanced
significance levels. However, the features with lower significance levels than “ManualPtch-
StateCounter_EndVal” are excluded in predictive fault diagnosis studies for the purpose of
dimensionality reduction.
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2.3. Predictive Fault Diagnosis

Fault diagnosis aims at accurately identifying the fault types within a WT in a real-
time application. However, it is insufficient to prevent damage caused by some severe
failures only through online fault diagnosis. Then, fault prognosis is recommended by
providing the predictive fault diagnosis prior to the fault occurrence, which decreases the
maintenance fees and extends machinery life.

The observed dataset for online fault diagnosis is expressed by {Xt, Yt}, where Xt
and Yt are the given input data and the resultant diagnosed fault class. For example,
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as the SCADA data are collected at 10 min intervals, the 10 min, 20 min, and 30 min
ahead fault predictions can be achieved with the modified datasets, {Xt−1, Yt}, {Xt−2, Yt},
and {Xt−3, Yt}, respectively, based on the original dataset, {Xt, Yt}. Thus, the predictive
performances under n-step in advance will be determined using the modified dataset,
{Xt−n, Yt}.

3. Methods
3.1. LSTM

As vanilla RNNs, with only input gates and output gates, suffer from vanishing or
exploding gradients caused by error back-flow problems, the main challenge for vanilla
RNNs is to handle the long-term dependencies.

To secure the long-term dependencies, LSTM additionally inserted forget gates for the
update and control of cell states, regulating the information flow [29]. LSTM can handle the
imbalanced data and efficiently captures a sequence of time-lagged observations as inputs
for time-series classification to predict specific faults at any given time ahead. The original
LSTM model can be precisely stated as follows:

f j = σ
(

W f xj + U f hj−1 + b f

)
(3)

ij = σ
(
Wixj + Uihj−1 + bi

)
(4)

Oj = σ
(
Woxj + Uohj−1 + bo

)
(5)

Cj = σc
(
Wcxj + Uchj−1 + bc

)
(6)

Cj = f j � Cj−1 + ij � Cj (7)

hj = σh
(
Cj
)
�Oj (8)

Herein, xj is the neuron input at the timestamp j; hj−1 is the cell state at the previous
timestamp; j− 1, f j, ij, and Oj stand for the forget, input, and output gates, respectively, all
determined across the sigmoid nonlinearity, σ, with the given weights W f , Wi, Wo, Wc, U f ,
Ui, Uo, Uc, and the assigned biases, b f , bi, bo, bc. The memory cell, Cj, from Equation (6) is
estimated through an activation function, σc, which is a hyperbolic tangent layer, Tanh, by
default. Then, the current cell state Cj in Equation (7) is updated regarding the previous
cell state, Cj−1, and the estimated cell state, Cj, with the element-wise product operator, �.
Finally, the output vector, hj, in Equation (8), also known as a hidden layer, is obtained from
the element-wise product of the output gate, Oj, and the cell state, Cj, across an activation
function, σh, which is also Tanh by default.

Based on the dependencies in LSTM, the forget gate, f j, controls the fraction of Cj−1, to
store in Cj, filtering hj−1 and xj through the sigmoid gate, σ. The input gate, ij, controls the
fraction of the estimated memory cell, Cj, provided to Cj through the sigmoid nonlinearity,
σ; the output gate, Oj, controls the fraction of Cj flowing into the output vector, hj, through
σh. Therefore, the LSTM architecture can be drawn in Figure 6.

3.2. Time-LSTM-1

Regarding Equation (7), Cj−1 covers the information at the previous timestamp, re-
flecting the long-term interest, and xj is the last consumed item, hardly reflecting on current
recommendations. Then, Time-LSTM, proposed by Zhu et al. [39], equips LSTM with
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time gates to store time intervals in Cj, Cj+1, · · · , controlling the fraction of xj on current
recommendations. Time-LSTM-1 [39] only adds one time gate, Tj, to LSTM by:

Tj = σ
(

Wtxj + σ(U t∆tj
)
+ bt

)
(9)

where ∆tj is defined as the time interval for the jth event by ∆tj = tj+1 − tj, implemented
across a sigmoid function, σ, and Tj is also determined through σ with the assigned weights,
Wt and Ut, and the given bias, bt. ∆tj can also be recognised as the duration between the
current and the last event. Based on the basic LSTM architecture from Equations (3)–(8),
Equations (7) and (5) can be revised to:

Cj = f j � Cj−1 + ij � Tj � Cj (10)

Oj = σ
(
Woxj + Uohj−1 + Vo∆tj + bo

)
(11)

where Vo is the added weight to calculate Oj in Time-LSTM-1. Then, both the input gate,
ij, and the time gate, Tj, control the fraction of the estimated memory cell, Cj, provided to
the current memory cell, Cj, in Equation (10). As Tj, containing the information of interval,
∆tj, is provided to Cj, and then transferred to Cj+1, Cj+2, · · · , the time gate, Tj, benefits the
long-term interests, Cj, Cj+1, · · · , of the LSTM model by storing ∆tj.
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3.3. Time-LSTM-3 and T2V-LSTM Models

For Time-LSTM-1, the single time gate Tj is mainly controlled by ∆tj. Zhu et al. [39]
developed two alternative Time-LSTM models, Time-LSTM-2 and Time-LSTM-3, both
containing double time gates, T1j and T2j. T1j controls the influence of the last consumed
item, xj, on current recommendations, while T2j stores ∆tj for later recommendations.
Based on Tj in Equation (9), T1j and T2j can be expressed by:

T1j = σ
(

Wt1xj + σ(U t1∆tj
)
+ bt1

)
(12)

T2j = σ
(

Wt2xj + σ(U t2∆tj
)
+ bt2

)
(13)

where Wt1, Wt2, Ut1, and Ut2 are given weights and bt1 and bt2 are given biases. Among
three LSTM models with time gates, Time-LSTM-3 is validated with the best predictions by
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coupling input and forget gates, inspired by the LSTM variant from Greff et al. [40] and the
cell state, Cj, in Equation (7) under Time-LSTM-3 can be modified by:

Cj =
(
1− ij

)
� Cj−1 + ij � Cj (14)

Hence, Time-LSTM-3 has a shorter processing time than Time-LSTM-2 due to its
simpler architecture and fewer parameters to calculate. By removing the forget gate,
Equation (14) can be modified by:

∼
Cj =

(
1− ij � T1j

)
� Cj−1 + ij � T1j � Cj (15)

Cj =
(
1− ij

)
� Cj−1 + ij � T2j � Cj (16)

where
∼
Cj is a new cell state to store the result. The output gate, Oj, in Equation (5) and the

output vector, hj, in Equation (8) can be replaced by:

Oj = σ
(
Woxj + Uohj−1 + Vo∆tj + bo

)
(17)

hj = σh

(∼
Cj

)
�Oj (18)

Here, both ij and T1j are filters for Cj, while T2j stores ∆tj, transferred to Cj, Cj+1, Cj+2,

· · · , for modelling the long-term interests for later recommendations.
∼
Cj is implemented

through an activation function, σh, influencing the current recommendations.
A model-agnostic vector representation for time, known as Time2Vec, is used to

rebuild the architectures of Time-LSTM with the consumption of time features under either
stationary or non-stationary activation functions. For this reason, Time2Vec replaces the
time interval, ∆tj, by a model-agnostic vector, T2V(∆tj), as follows:

T2V(∆tj)[i] =
{

ωi·∆tj + ϕi, i f i = 0
F
(
ωi·∆tj + ϕi

)
, i f 1 ≤ i ≤ k

(19)

where T2V(∆tj)[i] is the ith element of T2V(∆tj), F can be any stationary or non-stationary
activation functions, such as Sine and Tanh, and ωi and ϕi are learnable parameters. Then,
in a T2V-LSTM model, all time vectors, ∆tj, should be replaced by Time2Vec elements,
T2V(∆tj), so the time gates, T1j and T2j, in Equations (12) and (13), respectively, and the
output gate, Oj, in Equation (17) are modified as follows:

T1j = σ
(

Wt1xj + σ(U t1·T2V(∆t j

)
) + bt1

)
(20)

T2j = σ
(

Wt2xj + σ(U t2·T2V(∆t j

)
) + bt2

)
(21)

Oj = σ
(

Woxj + Uohj−1 + Vo·T2V(∆t j

)
+ bo

)
(22)

For T2V-LSTM, the output vector, hj, is still controlled according to Equation (18).
Therefore, based on Equations (15)–(22), the architecture of Time-LSTM-3 or T2V-LSTM can
be plotted in Figure 7. Time2Vec, determined by its selected activation function, has three
major advantages: being capable of learning both periodic and non-periodic activation
functions, having invariance to time rescaling, and being simple to combine a representation
for time with multiple neural networks [33].
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3.4. Validations

To evaluate the performances of neural networks and other ML classifiers, it is impor-
tant to select the appropriate evaluation metrics. The accuracy in Equation (2) is commonly
applied, but the overall accuracy of classification results on datasets with a significant
imbalance is inappropriate for determining the predictive performance due to far more
quantitative fault-free samples than faulty samples. The evaluation of overall fault predic-
tions (FPs) is reflected by the macro precision (MAP) in Equation (23), and FNs are captured
by the macro recall (MAR) in Equation (24). Moreover, the performance metrics, micro
precision (MIP) and micro recall (MIR), are applied for fault diagnosis on individual faults,
as seen in Equations (25) and (26), respectively.

MAP =
1
k

k

∑
i=1

TPi
TPi + FPi

(23)

MAR =
1
k

k

∑
i=1

TPi
TPi + FNi

(24)

MIP =
l

∑
i=1

TPi
TPi + FPi

(25)

MIR =
l

∑
i=1

TPi
TPi + FNi

(26)

F− score = 2× Precision× Recall
Precision + Recall

(27)

where k is the total number of classes, and l is the specific fault class. The F-score in
Equation (27) is applied as the harmonic mean of precision and recall scores for both overall
and individual fault diagnosis methods.
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3.5. Model Optimisation

The objective of any neural network is to minimize the cost functions for the most
accurate prediction performance by optimising the weights and biases with appropriate
activation functions [41]. The Time2Vec activation function, F , in Equation (19), as well as
the activations functions of the LSTM layer, σc and σh, in Figure 7, are pivotal to the design
of LSTM or T2V-LSTM classifiers by affecting their predictive performance.

GridSearchCV [42] is a hyper-parameter optimisation method based on a given neural
network model to optimise the individual model for each combination of hyper parameters,
such as the number of epochs, batch sizes, and activation functions. The optimization of
hyper parameters intends to maximise prediction accuracy by minimising the cost functions
and training times of neural networks. The tunes of hyper parameters are achieved by
GridSearchCV, which adopts the k-fold cross-validation (CV) to train and test the neural
network by grid-searching the combination of hyper parameters to generate the highest
average score across k repeated times. The hyper parameters tuned for T2V-LSTM can be
seen in Table 4.

Table 4. Hyper-parameter optimisation through GridSearchCV.

Hyper Parameter Grid Optimisation

Batch size 10, 20, 25, 40, 50, 60, 80, 100 25

Number of Epochs 10, 20, 25, 40, 50, 60, 80, 100 100

Activation function (F ) Elu, Relu, Sigmoid, Sine (only Time2Vec), Softmax, Softplus, Softsign, Tanh Tanh

Activation function (σc) Elu, Relu, Sigmoid, Softmax, Softplus, Softsign, Tanh Tanh

Activation function (σh) Elu, Relu, Sigmoid, Softmax, Softplus, Softsign, Tanh Softmax

The optimum activation functions for both Time2Vec, F , and the hidden layer, σc, are
given by Tanh, seen in Equation (28), while the optimal activation function for the final
classification output layer, σh, is yielded by Softmax in Equation (29).

Tanh(x) =
ex − e−x

ex + e−x (28)

So f tmax(x)i =
exi

N
∑

j=1
exj

(29)

The softmax activation function [43] is a combination of sigmoid functions applied for
multivariate classification tasks by normalising the outputs with probabilities of each class
ranging from 0 to 1, so the target class is expressed by the highest probability.

4. Results
4.1. Overall Performance Metrics

In this subsection, the fault prediction models are extracted from timestamps t− 1
(10 min) to t− 21 (210 min). The detailed predictive performances under six classifiers
are summarised in Figure 8 in terms of accuracy, MAP, MAR, and F-score with respect to
Equations (2), (23), (24), and (27), respectively.

As seen in Table 5, all six classifiers have an upper accuracy of over 94% due to
their correct predictions on fault-free cases from the imbalanced dataset. However, the
resultant MARs and F-scores have poorer ranges of (0.61156, 0.92622) and (0.71038, 0.93537),
respectively, and SVM especially has the poorest MIR range (0.61156, 0.84711). As MAPs
(over 0.84) have better ranges than MARs (over 0.61), the resultant F-scores are promoted
by precision scores, thereby representing more FNs than FPs. Among all, T2V-LSTM has
correctly predicted more fault statuses than other classifiers due to its optimum MAR range.
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Moreover, T2V-LSTM also has the finest ranges of accuracy and F-score despite its poorer
MAP range in comparison to RF.
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Table 5. Validation scores for overall fault prediction.

Scores
Classifier (Overall Fault)

LSTM T2V-LSTM RF ANN SVM KNN ALL

Accuracy MIN 0.97079 0.9742954 0.96222 0.96273 0.94477 0.96284 0.94477
MAX 0.98441 0.9864767 0.97791 0.9777 0.96697 0.97213 0.98648

MAP
MIN 0.87643 0.8912656 0.92785 0.86133 0.84729 0.89391 0.84729
MAX 0.94347 0.9469835 0.97052 0.9422 0.90898 0.92044 0.97052

MAR
MIN 0.82667 0.8497778 0.70844 0.74844 0.61156 0.736 0.61156
MAX 0.91911 0.9262222 0.872 0.88978 0.84711 0.84089 0.92622

F-score
MIN 0.86151 0.8788294 0.80383 0.82085 0.71038 0.81275 0.71038
MAX 0.92694 0.935368 0.90707 0.9067 0.87351 0.8739 0.93537

Execution time (s)
MIN 299.0876 309.44707 281.5733 232.2455 174.6638 148.6676 148.6676
MAX 337.6192 346.63702 322.1635 281.5004 326.7903 186.6617 346.63702

As seen in Figure 8, the time index under 10 min per timestamp in the x-axis denotes
the test cases at timestamp t − n. All classification approaches demonstrate their best
accuracy, MAR, and F-score initially at t − 1, but their predictive results progressively
attenuate over time.
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As seen in Figure 8b, RF has the best MAPs over time, implying its distinction of
diagnosing fault-free conditions precisely with fewer FPs. By comparison, T2V-LSTM has
successfully predicted more faults than other classifiers due to its relatively highest MARs
in all test cases (see Figure 8c). Recall scores are always prior to precision scores in fault
classification models because of the recall and precision scores relating to undetected fail-
ures and false fault alarms, respectively [19]. As a result, T2V-LSTM reflects its superiority
over all other classifiers across overall fault predictions in terms of accuracy, MAR, and
F-score (see Figure 8a,c,d)).

Apart from the best overall prediction scores, the proposed method, T2V-LSTM,
requires the longest execution time, as seen in Table 5. However, the maximum execution
time of T2V-LSTM (346.63702 s) is still below the minimum 10 min ahead prediction
window. Thus, all six classification models can be implemented before any prediction
window in all cases under the 10 min SCADA resolution.

4.2. Performance Metrics upon Individual Faults

Herein, individual faults, depicted in Table 3, are examined across timestamps t− 1
(10 min) to t− 21 (210 min) by performance metrics, MIP, MIR, and F-score, with respect
to Equations (25)–(27), respectively. The time-domain fault prediction scores for six classi-
fication approaches across individual faults are summarised in Figures 9–12. (Demoted)
gearbox pressure 2 faults, Blade 3’s too-slow response, gearbox cooling pressure faults, and
sub-pitch fatal faults witness successful predictions due to the minimum MIR exceeding
86.27% under the proposed T2V-LSTM indicator, studied in Appendix A. Thus, in this
paper, the studies on those four individual faults are of less interest.
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4.2.1. HPU 2 Pump Active

As seen in Table 6, it is most appealing that the maximum MIP under SVM has reached
full score, whilst its minimum MIR is the poorest by approaching zero. Thus, SVM is
inapplicable for fault diagnosis on HPU 2 pump active. Regarding predictions on fault-free
cases, both LSTM models have inferior MIP ranges compared to RF. However, T2V-LSTM
is superior to all other classifiers in its best MIR range (0.7657, 0.9189), which consequently
leads to its best fault prediction with the fewest FNs and the optimum range of F-score
under T2V-LSTM (0.7555, 0.9026).

Table 6. Validation scores for HPU 2 pump active.

Scores
Classifier (HPU 2 Pump Active)

LSTM T2V-LSTM RF ANN SVM KNN ALL

MIP
MIN 0.71277 0.744 0.7561 0.56667 0.59375 0.54839 0.54839
MAX 0.90385 0.9065421 0.91837 0.93902 1 0.78641 1

MIR
MIN 0.6036 0.7657658 0.35135 0.20721 0 0.27928 0
MAX 0.91892 0.9189189 0.82883 0.82883 0.90991 0.72973 0.91892

F-score
MIN 0.65366 0.7555556 0.49682 0.33577 0.01786 0.38554 0.01786
MAX 0.88312 0.9026549 0.85581 0.81778 0.84519 0.75701 0.90265

Figure 9 exhibits the time-domain prediction results in advance of HPU 2 pump active
faults. As seen in Figure 9b,c, SVM has the steepest downtrend in its MIR and F-score,
while T2V-LSTM goes beyond other classifiers in most test cases. Although T2V-LSTM is
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the best predictor for HPU2 pump active faults by correctly predicting 76.57~91.89% of
faults, HPU 2 pump active beholds smaller MIR ranges, compared to the predictive results
on the four specific faults in Table A1.

4.2.2. PcsOff

As seen in Table 7, SVM still has the lowest minimum and maximum values in MIPs,
MIRs, and F-scores, thereby the worst prediction results. Except for SVM, all other classifiers
have reached full MIP scores, and KNN and RF outscore their counterparts in MIP ranges,
with all MIPs surpassing 0.9. Both LSTM models outscore all other classifiers in MIR ranges,
but LSTM has a higher minimum MIR and F-score than T2V-LSTM due to a substandard
MIR (0.7173913) and F-score (0.7764706) under T2V-LSTM at t− 2, seen in Figure 10b.

Table 7. Validation scores for PcsOff.

Scores
Classifier (PcsOff)

LSTM T2V-LSTM RF ANN SVM KNN ALL

MIP
MIN 0.75926 0.7884615 0.90476 0.70833 0.67568 0.90698 0.67568
MAX 1 1 1 1 0.89362 1 1

MIR
MIN 0.76087 0.7173913 0.58696 0.69565 0.54348 0.63043 0.54348
MAX 0.97826 0.9782609 0.93478 0.93478 0.91304 0.84783 0.97826

F-score
MIN 0.82 0.7764706 0.72973 0.7234 0.60241 0.75325 0.60241
MAX 0.97778 0.9677419 0.96629 0.94505 0.90323 0.8764 0.97778

The time-domain predictive results ahead of PcsOff faults are illustrated in Figure 10.
The degraded performances under both LSTM models can be recognisably obtained after
t− 17. As seen in Figure 10a, RF and ANN have more optimal predictions on fault-free
cases by their MIPs exceeding 0.9 in all cases.

As seen in Figure 10b, both LSTM models have the highest MIRs before t− 17, despite
the poor MIR under LSTM (0.76087) at t− 12, and T2V-LSTM outclasses all other models
due to its MIRs surpassing 0.89.

However, the curtailments in MIRs under both LSTM models are visualised after
t− 18. Thus, both LSTM models can roughly predict over 80% of fault cases.

Consequently, both LSTM models have more balanced F-scores over other classifiers
(see Figure 10c). Although LSTM obtains better ranges in MIR and F-score than T2V-LSTM
(see Table 7), T2V-LSTM has predicted fault cases more correctly with respect to its greater
MIRs in most test cases from Figure 10b.

4.2.3. PcsTrip

As seen in Table 8, the MIP range (0.75342, 1) is expressively upper than the MIR range
(0.48148, 0.88889). Hence, the predictions on PcsTrip faults witness relatively lower recall
scores than precision scores, resulting in more FNs than FPs. Thus, F-scores are increased
by relatively better MIPs. However, SVM still has the worst prediction results on fault cases
due to its poorest MIR range. Both LSTM models have satisfying MIPs by surpassing 0.8,
but they are outclassed by RF, which has the most correct predictions on fault-free cases
due to its highest minimum MIP. Both LSTM models have better MIR ranges and, thereby,
more accurate fault predictions. Moreover, T2V-LSTM yields more correct predictions on
fault cases with fewer FNs and generates the resultant optimum range on F-scores.

Regarding the time-domain prediction results in Figure 11, the MIPs under both LSTM
models underperform RF, ANN, and KNN, whilst T2V-LSTM has superiority on MIRs in
most test cases. Therefore, T2V-LSTM is the best fault predictor for PcsTrip faults with its
best MIRs, leading to the fewest FNs and most balanced F-scores in Figure 11c.
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Table 8. Validation scores for PcsTrip.

Scores
Classifier (PcsTrip)

LSTM T2V-LSTM RF ANN SVM KNN ALL

MIP
MIN 0.8 0.8024691 0.92308 0.77922 0.78 0.75342 0.75342
MAX 0.95238 0.969697 0.98361 1 0.97826 0.96552 1

MIR
MIN 0.74074 0.7530864 0.65432 0.62963 0.48148 0.62963 0.48148
MAX 0.83951 0.8888889 0.81481 0.81481 0.75309 0.79012 0.88889

F-score
MIN 0.7871 0.8024691 0.78519 0.75177 0.59542 0.71429 0.59542
MAX 0.88312 0.9056604 0.88591 0.88 0.80263 0.81013 0.90566

4.2.4. Pitch Fatal Faults

In addition to the predictions on PcsTrip faults, the predictive results on pitch fatal
faults are yielded with an even lower recall range (0, 0.69481) than the corresponding
precision range (0, 0.8871), seen in Table 9. By excluding the poorest predictor, SVM, the
MIPs and MIRs under other classifiers go beyond 0.53 and 0.22, respectively. Hence, for
pitch fatal faults, MIPs are much greater than their corresponding MIRs, resulting in more
FNs than FPs, so F-scores are downgraded by relatively poorer MIRs.

Table 9. Validation scores for pitch fatal faults.

Scores
Classifier (Pitch Fatal Faults)

LSTM T2V-LSTM RF ANN SVM KNN ALL

MIP
MIN 0.53548 0.5419355 0.64286 0.53409 0 0.69412 0
MAX 0.79661 0.8076923 0.8871 0.82692 0.7931 0.82222 0.8871

MIR
MIN 0.4026 0.4415584 0.31169 0.22078 0 0.33117 0
MAX 0.66883 0.6948052 0.50649 0.58442 0.45455 0.48052 0.69481

F-score
MIN 0.50196 0.5291829 0.43439 0.33663 0.03704 0.45133 0.03704
MAX 0.70383 0.7430556 0.60938 0.66176 0.54902 0.60656 0.74306

The time-domain predictions prior to pitch fatal faults are seen in Figure 12. T2V-LSTM
is the best fault predictor by having superior MIRs, and LSTM is just second to T2V-LSTM,
whilst the other classifiers yield the MIRs below 0.5 in most cases from Figure 12b. It is
noteworthy that MIRs under both LSTM models attenuate over time, obtaining lower than
0.5 after t− 17. By comparison, MIPs mainly surpass 0.5, except for the test cases under
SVM in Figure 12a.

Accordingly, as seen in Figure 12c, all F-scores are decreased by their lower MIRs,
but both LSTM models outperform other classifiers due to their observably better recall
scores in Figure 12b, and T2V-LSTM is still the best fault predictor with the best MIRs
and F-scores for pitch fatal faults. However, compared with other faults, pitch fatal faults
witness much lower MIRs, and the diagnosed fault cases attenuate over a longer prediction
time. Particularly, since t− 17, the predictions on pitch fatal faults are yielded with minor
reliability because of MIRs going below 50%; thus, half of the faults cannot be correctly
diagnosed due to yielding more FNs than TPs.

5. Discussion

By conducting RFE to remove irrelevant and redundant information from full opera-
tional SCADA data, 33 top-ranked features in Figure 5 are reserved for fault predictions.

LSTM has been preferable for prognostics on imbalanced data owing to its ability
to store the time-lagged information and exploit the time dependency. LSTM has better
recall scores (both MARs and MIRs) and overall predictions than traditional ML classifiers
with respect to the results in Sections 4.1 and 4.2. However, there is also a dependence
across time among data, and the time feature of inputs can be either synchronous or



Algorithms 2023, 16, 546 20 of 26

asynchronous [33], but vanilla LSTM always fails to recognise time itself as a feature
by assuming all inputs to be synchronous. As the data points related to downtimes or
maintenance actions are removed, the modelling dataset is asynchronous. Hence, the
Time2Vec is adopted to remodel the LSTM architectures into T2V-LSTM (see Figure 7) by
way of Time2Vec consuming the time feature under non-stationary activation functions.

The Time2Vec activation function and the other hidden layer of T2V-LSTM in Figure 7
are chosen by Tanh, which maps the inputs into a range (−1, 1). Like Sigmoid, the derivative
of Tanh is expressed by itself, but the mapping range of Tanh is broader than that of
Sigmoid (0, 1). The classification output layer is selected by Softmax because its calculated
probabilities determine the target classes with given inputs, chiefly implemented for multi-
level classifications. The proposed T2V-LSTM model (with a Time2Vec function of Tanh)
has been certified to upgrade the prediction accuracy of LSTM and outperform all other
classifiers on both overall and individual fault predictions.

5.1. Overall Performance Metrics

Based on SCADA data with a 10 min sampling rate, T2V-LSTM provides the best
adaptability in terms of accuracy, MARs, and F-scores across all timestamps, despite its
smaller MAPs compared to RF and ANN (see Figure 8). Hence, the fewest unnecessary
maintenance actions can be led by RF, while T2V-LSTM identifies the highest quantity of
fault cases, followed by LSTM.

Integrated with Time2Vec, T2V-LSTM outscores vanilla LSTM with regard to accuracy,
MAPs, MARs, and F-scores at almost all timestamps in Figure 8. Before t− 3, T2V-LSTM
has its distinguished predictions in terms of accuracy (over 98.5%), MARs (over 91%), and
F-scores (over 92.5%). T2V-LSTM marginally attenuates its accuracy, MARs, and F-scores
over time by correctly predicting over 87.5% of faults before t− 16. However, since t− 17,
T2V-LSTM has an unexpected decline in its MARs, and it can only capture 84.97% of faults
at t− 19, while by comparison, MAPs under T2V-LSTM exceed 89% in all cases. Hence,
overall fault predictions are validated with fewer FPs than FNs.

5.2. Individual Performance Metrics

Individual faults, studied in Section 4.2, witness the most advanced predictions from
T2V-LSTM due to its best MIRs and F-scores across most test cases over time. T2V-LSTM
has mostly better prediction scores compared to vanilla LSTM, and its resultant F-scores
are well adjusted due to its more balanced MIPs and MIRs across Figures 9–12. Regarding
the fault studies in Appendix A, T2V-LSTM catches over 86.27% of fault cases and over
88.28% of fault-free cases.

HPU 2 pump active faults exhibit a satisfactory percentage of caught faults via MIRs,
mostly over 80%, as seen in Figure 9b. PcsOff faults have both excellent MIPs and MIRs
over 89% before t − 16, but the predicted MIRs have significant relegations by scoring
0.826087 at t− 18 and 0.717391 at t− 20, as seen in Figure 10b.

Under T2V-LSTM, all above-mentioned faults have balanced precision and recall
scores, but PcsTrip and pitch fatal faults see curtailed predictions over time and greater
MIPs than MIRs, resulting in both their F-scores downgraded by poorer MIRs. Fewer
PcsTrip faults are correctly predicted over time regarding its maximum MIR (88.88%) and
minimum MIR (75.30%) at timestamps t− 3 and t− 18, respectively, as seen in Figure 11b.
It is noticeable that the MIRs on pitch fatal faults are even poorer, deteriorating initially
from 69.48% to 44.15% over time, as seen in Figure 12b. The forecasts over 40 min ahead on
pitch fatal faults show poor results with the least MIRs (below 60%) among all individual
faults, and over half of the faults cannot be correctly diagnosed after t− 17.

T2V-LSTM under a non-stationary Tanh function shows its peak effectiveness for both
overall and individual fault predictions, according to its overall best accuracy, recall scores
(both MARs and MIRs), and F-scores. However, the significant mitigations in accuracy,
MARs, and F-scores from Figure 8 are mainly reflected by the attenuated MIRs and F-scores
from pitch fatal faults since t− 4 (40 min) in Figure 12b,c.
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5.3. Confusion Matrix

T2V-LSTM is the best-performing classifier for both overall fault predictions and
specific fault predictions. Then, an additive classification step is to visualise the predictions
of 10 min, 30 min, 1 h, 2 h, and 3 h in advance via the confusion matrices under T2V-LSTM in
Figure 13. The fault-free and fault cases in Figure 13 are represented by their corresponding
event codes in Table 3.
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Except for more FNs than FPs from PcsTrip (event code 701) and pitch fatal faults
(event code 435), the balances between recall and precision scores are established with
regard to their unbiased FPs and FNs from confusion matrices in Figure 13.



Algorithms 2023, 16, 546 22 of 26

The most frequent (Demoted) gearbox pressure 2 faults (event code 570) witness
successful fault predictions with few FNs but obtain the 14 FPs at t− 12 from Figure 13d.
More accurate predictions can be witnessed on the Blade 3 slow response (event code 399)
by yielding, at most, 1 FN or FP. Gearbox cooling pressure faults (event code 543) have great
fault-free predictions due to minor FPs, but the relevant misdiagnosed fault cases increasing
with time, 6 and 9 FNs at timestamps t− 12 and t− 18, as seen in Figure 13d,e, respectively.

Sub-pitch fatal faults (event code 1219) have TPs ranging from 161 to 168, with a
maximum of 7 FPs, resulting in MIPs over 95%. Since the fewest TPs are obtained at t− 18
in Figure 13e with 16 misdiagnosed fault cases, the minimum MIR reaches 90.96%.

HPU 2 pump active faults (event code 290) obtain the best prediction at t− 3 with
the maximum 102 TPs, 9 FNs, and a total of 21 FPs, so the resultant MIP and MIR reach
82.92% and 91.89%, respectively. However, the worst prediction at t− 18 is yielded with a
minimum of 85 TPs, 26 FNs, and 29 FPs in total, leading to the poorest MIP (74.56%) and
MIR (76.57%). Hence, the predictions on HPU 2 pump active faults witness less success
over a longer prediction horizon.

In addition to the HPU 2 pump active faults, the prediction scores on the least frequent
PcsOff faults (event code 700) gradually worsen over time. The best prediction on PcsOff is
at t− 3, when only 1 FN and 2 FPs are obtained to confirm its notable MIP (95.74%) and
MIR (97.82%). However, the worst prediction at t− 18 generates 38 TPs with a total of
6 FPs and 8 FNs, thereby yielding the resultant MIP (86.36%) and MIR (82.60%).

Regarding PcsTrip faults (event code 701), MIPs are always satisfactory concerning
the maximum 7 FPs at t− 6, whilst MIRs decline over time. The best prediction on PcsTrip
faults at t − 3 is provided with 72 TPs, 6 FPs, and 9 FNs, leading to the resultant MIP
(92.30%) and MIR (88.88%). By comparison, the worst case at t − 18 yields relatively
poorer results with 61 TPs, 4 FPs, and 20 FNs, leading to an agreeable MIP (93.84%) but an
undervalued MIR (75.30%). Hence, the pre24dictions on PcsTrip have excellent precision
scores, but the resulting F-scores are brought down by gradually declined MIRs.

In addition to PcsTrip faults, the subsequent F-scores of pitch fatal faults (event code
435) are declined by poorer recall scores. Among all faults, the pitch fatal faults witness the
most misdiagnosed fault cases, yielding the maximum FNs throughout the time. Initially,
at t− 1, the MIR (69.48%) is acceptable due to 107 TPs out of 154 total fault cases, whilst the
MIP (79.85%) is much greater owing to a total of 27 FPs. With a longer prediction horizon,
more fault cases are wrongly predicted, accompanied by reduced TPs and increased FNs,
which are shown in Figure 12. It is considerable that the prediction at t− 18 yields an MIR
of merely 49.35%, along with its relevant MIP scoring 72.38%. Hence, pitch fatal faults have
observed extremely lower MIRs in comparison to other faults, and their recall scores are
exceptionally exceeded by the relevant precision scores.

6. Conclusions

By integrating the vanilla LSTM model with a model-agnostic vector representation
for time, Time2Vec, a novel neural network model, T2V-LSTM, is developed to predict mul-
tivariate faults with a 7 MW offshore wind turbine based on SCADA data. This approach
has shown its efficacy on both overall and specific fault predictions by outperforming
LSTM and other ML classifiers in most test cases. It has been proven that all classification
models can be implemented prior to the next prediction window in all cases under the
10 min SCADA resolution. Using a feature selection method, RFE, to assess the importance
of features for dimension reduction, 33 optimal features are extracted to improve the pre-
diction accuracy and computing efficiency of neural networks. Regarding the T2V-LSTM
prediction results, the following conclusions can be noted:

• As there are eight specific faults and massive data imbalances studied in this research,
T2V-LSTM can successfully predict all faults 160 min before their occurrence with an
overall recall score (MAR) of over 87.5%. T2V-LSTM outperforms LSTM and other
classifiers in terms of accuracy, recall scores (both MARs and MIRs), and F-scores in
all test cases, but with a longer lagged time, the MAR abruptly falls to roughly 85%.
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• T2V-LSTM has satisfactory predictions on (Demoted) gearbox pressure 2 faults, Blade
3 slow response, gearbox cooling faults, and sub-pitch fatal faults, due to its minimum
MIP over 88.28% and minimum MIR over 86.27%, shown in Appendix A. Approxi-
mately 80% of the HPU 2 pump active faults are correctly predicted along with the
relevant MIPs scoring roughly 80%. PcsOff faults exhibit excellent prediction results
160 min before the occurrence, with both recall and precision scores over 89%, but the
significantly curtailed MIPs and MIRs take place over a longer prediction horizon. The
F-scores on those faults are balanced due to their unbiased and promising precision
and recall decisions.

• However, the balance between MIPs and MIRs is demolished under PcsTrip and
pitch fatal faults due to their F-scores being brought down by poorer recall scores.
PcsTrip and pitch fatal faults behold upper MIP ranges than MIR ranges and degraded
predictions over time. PcsTrip faults are successfully predicted 30 min in advance due
to their optimal MIR (88.88%), but the minimum MIR (75.30%) is obtained 3 h before
occurrence. By comparison, MIRs on pitch fatal faults have an even more critical
downtrend, reducing from 69.48% to 44.15% over time. Particularly, over half of pitch
fatal faults are misdiagnosed >170 min before occurrence. The curtailments in MIRs
on pitch fatal faults over 40 min ahead predominately contribute to the significant
degradations of overall accuracy, MARs, and F-scores. Hence, the poorest predictions
on pitch fatal faults bear a considerable burden for overall prediction accuracy.

• The confusion matrices visually study the balance between recall and precision scores
by predicting the faults 10, 30, 60, 120, and 180 min in advance. Apart from PcsTrip
and pitch fatal faults having more biases in FNs over FPs, the other faults can acquire
the balanced F-scores due to their FNs roughly equalising FPs. For those faults with
balanced F-scores, the resultant MIPs and MIRs mostly surpass 80%, except for the
MIP (74.56%) and MIR (76.57%) from the 3 h ahead prediction on HPU 2 pump active
faults. PcsTrip faults mainly have excellent MIPs over 90%, but the degradations on
their MIRs are expected over time. Hence, the prediction curtailments provided by
HPU 2 pump active faults and PcsTrip faults over a longer prediction horizon also
contribute to the degradation of overall performance metrics.

• As T2V-LSTM fails to predict over 40% of pitch fatal faults 40 min prior to occurrence,
future studies should critically focus on building a performance curve of pitch angle
to improve the predictions on pitch fatal faults.
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Appendix A

As seen in Table A1, the predictive results on (Demoted) gearbox pressure 2 faults,
Blade 3’s too-slow response, gearbox cooling pressure faults, and sub-pitch fatal faults
are validated across timestamps t − 1 (10 min) to t − 21 (210 min) by the minimums and

https://ore.catapult.org.uk/what-we-do/offshore-renewable-energy-research/platform-for-operational-data-pod/
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maximums of their performance metrics. Both LSTM models manage to predict over 86.27%
of fault cases, outperforming their ML counterparts.

Although LSTM has the finest minimum MIP, MIR, and F-score in Table A1, T2V-LSTM
still outperforms LSTM in fault diagnosis because of greater MIRs in most test cases, as
seen in the time-domain MIR results from Figure A1.

Table A1. Validation scores for (Demoted) gearbox pressure 2 faults, Blade 3’s too-slow response,
gearbox cooling pressure faults, and sub-pitch fatal faults.

Scores
Classifier (Four Other Individual Faults)

LSTM T2V-LSTM RF ANN SVM KNN ALL

MIP
MIN 0.90654 0.8828829 0.90789 0.84444 0.8038 0.85106 0.8038
MAX 1 1 1 1 0.99435 0.99425 1

MIR
MIN 0.88136 0.8627451 0.67647 0.71186 0.70621 0.7451 0.67647
MAX 1 1 1 1 0.96703 0.98901 1

F-score
MIN 0.90698 0.9035533 0.77528 0.82353 0.75758 0.82162 0.75758
MAX 1 1 1 1 0.9805 0.97814 1
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