
Citation: Wang, L.-N.; Wei, H.;

Zheng, Y.; Dong, J.; Zhong, G.

Deep Error-Correcting Output

Codes. Algorithms 2023, 16, 555.

https://doi.org/10.3390/a16120555

Academic Editors: Krzysztof

Ejsmont, Aamer Bilal Asghar,

Yong Wang and Rodolfo Haber

Received: 20 October 2023

Revised: 29 November 2023

Accepted: 30 November 2023

Published: 4 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Deep Error-Correcting Output Codes
Li-Na Wang 1, Hongxu Wei 2, Yuchen Zheng 3 , Junyu Dong 2 and Guoqiang Zhong 2,*

1 Qingdao Vocational and Technical College of Hotel Management, Qingdao 266100, China; alinagq@163.com
2 College of Computer Science and Technology, Ocean University of China, Qingdao 266404, China;

weihongxu@stu.ouc.edu.cn (H.W.); dongjunyu@ouc.edu.cn (J.D.)
3 College of Information Science and Technology, Shihezi University, Shihezi 832003, China;

ouczyc@outlook.com
* Correspondence: gqzhong@ouc.edu.cn

Abstract: Ensemble learning, online learning and deep learning are very effective and versatile in a
wide spectrum of problem domains, such as feature extraction, multi-class classification and retrieval.
In this paper, combining the ideas of ensemble learning, online learning and deep learning, we propose
a novel deep learning method called deep error-correcting output codes (DeepECOCs). DeepECOCs
are composed of multiple layers of the ECOC module, which combines several incremental support
vector machines (incremental SVMs) as base classifiers. In this novel deep architecture, each ECOC
module can be considered as two successive layers of the network, while the incremental SVMs can be
viewed as weighted links between two successive layers. In the pre-training procedure, supervisory
information, i.e., class labels, can be used during the network initialization. The incremental SVMs
lead this procedure to be very efficient, especially for large-scale applications. We have conducted
extensive experiments to compare DeepECOCs with traditional ECOC, feature learning and deep
learning algorithms. The results demonstrate that DeepECOCs perform, not only better than existing
ECOC and feature learning algorithms, but also related to deep learning ones in most cases.

Keywords: ECOC; SVMs; ensemble learning; online learning; deep learning

1. Introduction

Over the last few decades, ensemble learning has attracted much attention within the
machine learning and pattern recognition community. In the literature, many ensemble learn-
ing algorithms, such as error-correcting output codes (ECOC) [1], random forests [2] and
boosting [3], have been proposed to handle a variety of multi-class learning problems [4,5].
Among them, ECOC are a successful framework that deals with many kinds of tasks, like
feature extraction [6], text classification [7], traffic sign recognition and face recognition [8].

The traditional ECOC framework generally includes two steps: coding and decoding.
In the coding step, an ECOC matrix is defined or learned from data, and the binary clas-
sifiers are trained based on the ECOC coding. In the decoding step, Hamming distance
or other decoding strategies are generally applied [9]. The commonly used coding strate-
gies include one-versus-all (OneVsAll) [10], one-versus-one (OneVsOne) [11], discriminant
ECOC (DECOC) [12], ECOC optimizing node embedding (ECOCONE) [13], dense and
sparse coding [14,15], and so on. Adaboost [16] and support vector machines (SVMs) [17] are
generally used as the base classifiers. Since the base classifiers, such as Adaboost [16] and
SVMs [17], are usually trained in the way of batch learning, this coding step is not efficient
in relatively large-scale applications. To address this problem, using online classifiers may
save computing resources, and meanwhile, improve the efficiency of the ECOC approaches.

In recent years, deep learning has become a research hotspot in many related areas,
such as machine learning, data mining and computer vision [18]. Many deep learning algo-
rithms have been proposed to handle challenging problems, such as image classification
and retrieval [19,20], object detection [21], speech recognition [22], text recognition [23,24],

Algorithms 2023, 16, 555. https://doi.org/10.3390/a16120555 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16120555
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-3093-6929
https://orcid.org/0000-0002-2952-6642
https://doi.org/10.3390/a16120555
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16120555?type=check_update&version=1


Algorithms 2023, 16, 555 2 of 16

and even autonomous driving [25]. Deep learning methods can be also considered as
representative learning models that extract the features of the original data, layer-by-layer.
Among others, some popular deep learning models include the autoencoder (AE) [26],
denoising autoencoder (DAE) [27], Variational AutoEncoder (VAE) [28,29], deep belief nets
(DBNs) [30], deep convolutional neural networks (CNNs) [19], recurrent neural networks
(RNNs) [22] and Transformer [31,32]. However, the pre-training of some deep learning
models, such as AE, DAE and DBNs, is generally in an unsupervised manner. The supervi-
sory information is simply discarded, if any. Hence, the pre-training process is generally
long and difficult to converge to a stable solution. In this case, considering supervisory infor-
mation may improve its effectiveness and efficiency. In addition, due to the huge amount of
parameters, some deep learning models, such as CNNs, RNNs and Transformer, may need
many training data [33]. How to apply effective deep learning models in the scenarios with
a limited number of data is an interesting and challenging problem. A critical problem may
be overfitting, when using few available data to train a model with a tremendous amount
of parameters.

In order to overcome the shortcomings of both previous ECOC and deep learning
algorithms, we propose a novel deep learning algorithm called deep error-correcting
output codes (DeepECOCs). DeepECOCs extend ECOC that leverage incremental support
vector machines (incremental SVMs) as binary classifiers to deep models. The combined
incremental SVMs speed up the learning of the ECOC module, while the supervised
learning of the ECOC module sufficiently utilizes the available label information of data.
Here, each ECOC module can be considered as two successive layers of a network, while
the combined incremental binary classifiers correspond to the weight matrix between two
successive layers. In addition, the probabilistic outputs of the combined binary classifiers
can be considered as new representations of the original data. We have conducted extensive
experiments to compare DeepECOCs with traditional ECOC, feature learning and deep
learning algorithms. The results on 16 UCI machine learning data sets, the USPS, MNIST,
CMU motion capture and CIFAR-10 data sets demonstrate that DeepECOCs perform not
only better than traditional ECOC and feature learning algorithms, but are also related to
deep learning models, in most cases.

The contributions of this work are highlighted as follows.

• We integrate an online learning method into the ECOC coding, which improves the
efficiency of ECOC, especially for large-scale applications.

• We employ ECOC as building blocks of deep networks, which sufficiently utilizes the
available label information of data and improves the effectiveness and efficiency of
previous deep learning algorithms.

• We propose the DeepECOCs model, which combines the ideas of ensemble learning,
online learning and deep learning.

The rest of this paper is organized as follows. In Section 2, we provide a brief review
of related work. In Section 3, we present the proposed model, DeepECOCs, in detail.
The experimental results are reported in Section 4, while Section 5 concludes this paper
with remarks.

2. Related Work

The notable ensemble learning methods include bagging [34], boosting [3], ECOC [1]
and random forests [2], among others. Bagging is a method for generating an aggregate
predictor using multiple versions of a predictor. The aggregation averages over the versions
when predicting a numerical outcome or conducts a plurality vote when predicting a
class [34]. Boosting is a general method that combines some “weak” learning algorithms to
obtain a “strong” learner [3]. In addition, the ECOC framework handles multi-classification
by integrating many binary classifiers [1]. Last but not least, random forests combine
multiple decision trees and inject randomness to the tree construction.

In recent years, many excellent ensemble learning systems have been proposed for
a variety of applications. For instance, Sabzevari et al. present vote-boosting ensembles



Algorithms 2023, 16, 555 3 of 16

which use the beta distribution as an emphasis function, and prove that vote-boosting is
an effective method to generate ensembles that are both accurate and robust [35]; Claesen
et al. provide a free software package containing efficient routines to perform ensemble
learning with SVM-based models [36]; Hu et al. propose an effective class incremental
learning method, named class incremental random forests (CIRF), to enable existing activity
recognition models to identify new activities [37]. However, previous ensemble learning
approaches have a common shortage: their performances are often limited by memory and
computing recourses and they have no capacity to handle relatively large-scale applications.

To tackle the above problem, many researchers apply the online learning methods to
improve their efficiency. Escalera et al. propose a general extension of the ECOC framework to
the online learning scenario [8]. They solve the problem of how to deal with the new coming
class that appeared in the training set, but they do not combine the online binary classifiers.
Sun et al. propose a class-based ensemble approach which can rapidly adjust to class evolution
by maintaining a base learner for each class and dynamically update the base learners with
new data [38]. In addition, Wang et al. propose an ensemble model that improves online
bagging (OB) and undersampling-based online bagging (UOB), which overcomes the class
imbalance problem in real time through resampling and time-decayed metrics [39]. These
methods add the online leaning scheme to ensemble learning. However, all of these models
are still “shallow” learning algorithms. In this work, we attempt to combine the advantages
of ECOC and online learning, and extend the shallow models to deep architectures.

In the literature, there has been some work to extend ensemble learning models to deep
architectures. Deng and Platt combine linear and log-linear stacking methods with convo-
lutional, recurrent, and fully-connected deep neural networks for speech recognition [40].
Zhou et al. propose a novel approach that incorporates a deep learning architecture with
an on-line AdaBoost framework for object tracking [41]. Maji et al. present a computational
imaging framework using deep and ensemble learning for the reliable detection of blood
vessels in fundus color images [42]. In this paper, we consider extending the ECOC frame-
work with online binary classifiers to deep architectures, which is quite different from the
previous methods.

In the area of deep learning, the success of existing models demonstrate that deep
networks are beneficial to the representation learning tasks, especially for large scale appli-
cations [19,26,43,44]. However, as discussed in the previous section, many deep learning
models are generally initialized with unsupervised methods, such as random assignments
and layerwise pre-training, which result in a long training time of the deep models. In this
work, we propose the DeepECOCs model, which is based on the stacked ECOC modules.
When initializing DeepECOCs, the ECOC modules can be learned with the available su-
pervisory information. Intuitively, this manner of initialization for the whole network is
much closer to the best local minimum on the solution manifold than that of the existing
methods. Furthermore, the idea of online learning used in the pre-training procedure makes
DeepECOCs more suitable to handle relatively large-scale applications.

3. Deep Error-Correcting Output Codes (DeepECOCs)

In this section, we first introduce the traditional ECOC framework, which is the im-
portant building block of DeepECOCs. Then, we introduce the incremental support vector
machine that is used in our ECOC framework. Finally, we describe the learning procedures
of DeepECOCs in detail.

3.1. The ECOC Framework

The general ECOC framework consists of two steps: coding and decoding. In the
coding step, the ECOC coding matrix M ∈ {−1, 0, 1}C×L is first defined or learned from the
training data, where each row of M is the codeword of a class, each column corresponds
to a binary classifier (dichotomizer), L is the length of the codewords, C is the number of
classes, symbol ‘1’ indicates a positive class, ‘−1’ indicates a negative class, and ‘0’ indicates
the class that can be neglected during training the binary classifiers. Subsequently, the



Algorithms 2023, 16, 555 4 of 16

binary classifiers (dichotomizers) are trained according to the partition of the classes in
each column of M. Figure 1 shows some coding matrices encoded with different coding
strategies. The white grids are coded by 1, the dark grids are coded by −1, and the gray
grids are coded by 0. In the decoding step, the test data are predicted based on an adopted
decoding strategy.

1h 2h 3h
4h 5h

1y

2y

3y

4y

6h 1h 2h 3h
4h

1y

2y

3y

4y

(a) (b)

1h 2h 3h

1y

2y

3y

4y

1h 2h 3h
4h

1y

2y

3y

4y

(c) (d)

1h 2h 3h
4h 5h

1y

2y

3y

4y

1h 2h 3h
4h 5h

1y

2y

3y

4y

(e) (f)

Figure 1. 6 coding matrices encoded with different coding strategies. (a) one-versus-one. (b) one-
versus-all. (c) DECOC. (d) ECOCONE. (e) Dense random. (f) Sparse random.

Applying a decoding strategy on the outputs of the binary classifier, the ECOC frame-
work can be used for multi-class learning; meanwhile, applying the sigmoid function on
the values of the discriminant functions of the binary classifiers, ECOC can be used for rep-
resentation learning [6]. This is also the foundation of our DeepECOCs model. Specifically,
to speed up the training of the binary classifiers in the ECOC modules of DeepECOC, we
employ the online SVMs as binary classifiers [45].

3.2. Incremental Support Vector Machines (Incremental SVMs)

The Karush–Kuhn–Tucker (KKT) condition is a necessary and sufficient condition for
determining whether a certain point of the convex function is an extreme point, and it has
important applications in SVM.

3.2.1. KKT Conditions

To take the probabilistic outputs of the base classifiers as new representations of data, we
adopt linear support vector machines (linear SVMs) as the binary classifiers (dichotomizers),
which solve a quadratic programming problem

min
w,b,ξi

J(w) =
1
2
‖w‖2 + λ

N

∑
i=1

ξi

s.t. yi f (xi) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , N (1)

where w and b are the coefficients and bias of the binary classifier, yi ∈ {+1,−1}, ξi’s are
the slack variables, and N is the number of the training data.

In the real world applications, the original sample space may not have a hyperplane
that correctly divides the two types of samples. This is the need to use a kernel function to
map samples from the original space to a higher dimensional feature space.



Algorithms 2023, 16, 555 5 of 16

In order to overcome the limitation of off-line binary classifiers in ECOC framework,
we use online SVM as binary classifiers [45] and apply it in our experiments. We rewrite
the Problem (1) in a Lagrange form,

min
0≤αi≤C

: J(w) =
1
2 ∑

i,j
αiQijαj −∑

i
αi + b ∑

i
yiαi (2)

where Q is a symmetric matrix Qij = yiyjk(xi, xj), and αi is the Lagrange multiplier. The
first-order conditions on J(w) reduce to the KKT conditions:

gi =
∂J(w)

∂αi
= ∑

j
Qijαj + yib− 1

= yi f (xi)− 1


> 0; αi = 0
= 0; 0 < αi < C
≤ 0; αi = C

(3)

∂J(w)

∂b
= ∑

j
yjαj = 0 (4)

The goal of incremental SVM is to preserve the KKT conditions for all previous training data
when we add the unlearned examples into the solution. Based on the partial derivatives gi,
the training examples can be partitioned into three different categories: the set S of support
vectors on the margin (gi = 0), the set E of error support vectors violating the condition
(gi < 0), and the remaining setR of (ignored) vectors.

3.2.2. Incremental Learning Procedure

Let a be a new training sample, X : Xl+1 = Xl ∪ a. The incremental learning procedure
is described as follows:

(1) Initialize αa to 0, then calculate ga;
(2) If ga > 0, terminate (a is not a margin or error vector);
(3) If ga ≤ 0, apply the largest possible increment αa so that one of the following conditions

occurs:
(a) ga = 0: add a to margin set S , terminate;
(b) αa = C: add a to error set E , terminate;
(c) Elements of Xl+1 migrate across S , E andR; update membership of elements, and
if S changes, updateR accordingly.

3.3. DeepECOCs

To combine the advantages of ECOC and deep learning algorithms, we build the
DeepECOC architecture as follows

x
qD−→ x̃ W1

−→
b1

z1 W2
−→
b2
· · · Wn−1
−−−→
bn−1

zn−1 so f tmax−−−−→ y, (5)

where the first step makes the clean input x ∈ [0, 1]d partially destroyed by means of a
stochastic mapping x̃ ∼ qD(x̃ | x). In the corrupting process, we set a parameter called the
denoising rate ν. For each input x, a fixed number νd of components are chosen at random,
and their value is forced to 0, while the others are left untouched. This operation makes the
model more robust and prevents the overfitting problem in most cases [27]. Subsequently,
the “corrupted“ data are taken as inputs for the DeepECOCs model. W1 and b1 are the
weight matrix and bias vector learned from the first ECOC module. The output of the first
hidden layer is denoted as

z1 = s((W1)Tx + b1), (6)



Algorithms 2023, 16, 555 6 of 16

where s(·) is the sigmoid activation function s(x) = 1
1+e−x . From the second layer to the

(n− 1)-th layer, we use the stacked ECOC modules to learn the weight matrices and biases,
which can be considered as weights between two successive layers. Similarly, we use the
output of the k− 1-th layer as the input of the k-th layer,

zk = s((Wk)Tzk−1 + bk). (7)

Here, zk can be viewed as an approximate posterior probability and new representation of
the input datum x.

For example, if we adopt the OneVsAll coding strategy for the stacked ECOC modules,
we first define the coding matrix MC×C, where C is the number of classes. Then, we can
train C incremental SVM classifiers to obtain the weight matrix W = {w1, . . . , wi, . . . , wC}
and the bias b = {b1, . . . , bi, . . . , bC}. Next, we calculate the output of the first layer by using
Equation (6). Subsequently, we repeat this process layer by layer to build the DeepECOCs
model. It is obvious that, if we adopt different coding strategies, we can obtain different
kinds of DeepECOC architectures.

For the last layer of DeepECOCs, we employ the softmax regression for the multi-class
learning. Its cost function is defined as

J(w) = − 1
N
(

N

∑
i=1

K

∑
j=1

I(yi = j) log
exp(wT

j zn−1
i )

∑K
l=1 exp(wT

l zn−1
i )

), (8)

where I(x) is the indicator function, and I(x) = 1 if x is true, else I(x) = 0. yi is the label
corresponding to xi. It is easy to compute the probability that xi is classified to class j,

p(yi = j|xi, w) =
exp(wT

j zn−1
i )

∑K
l=1 exp(wT

l zn−1
i )

. (9)

Taking derivatives, one can show that the gradient of J(w) with respect to w is,

∇J(w) = − 1
N

N

∑
i=1

[xi(I(yi = j)− p(yi = j|xi, w))]. (10)

After the initialization step, we use back propagation [46] to fine-tune the whole archi-
tecture. In the fine-tuning process, we apply the dropout technique for regularization [47].
It is a very efficient way to perform model averaging with neural networks. Through the
above processes, we can finally obtain the DeepECOCs model, which is robust and easy to
be applied to multi-class learning tasks. In summary, we show the training process of our
DeepECOCs framework in Algorithm 1.

Note that DeepECOCs have some important advantages. Firstly, unlike previous deep
learning algorithms, such as AE, DAE and DBNs, DeepECOCs are built with the ECOC
modules and initialized in a supervised learning fashion. Secondly, if we adopt ternary
coding strategies, due to the merit of ECOC, the weights can be learned using only part of
the training data. Thirdly, in contrast to the learning of the weight matrices in previous deep
learning models, the binary classifiers in each ECOC module can be learned in parallel,
which may greatly speed up the learning of DeepECOCs.



Algorithms 2023, 16, 555 7 of 16

Algorithm 1 The training procedure of DeepECOCs; L is the number of layers, I-SVM(x, y)
is the incremental SVM binary classifier, s(x) is the sigmoid function, and softmax(x) is the
softmax function
Require:

The set of training samples X = {x1, . . . , xj, . . . , xn};
The labels corresponding to training samples y = {y1, . . . , yj, . . . , yn}.

Ensure:
Parameters W and b.

1: Initialize the first layer input Z1 = X;
2: for i = 1 to L− 1 do
3: Initialize the weights and bias of i-th ECOC module;
4: Wi = 0, bi = 0;
5: Pre-train process (ECOC coding step):
6: (1) Learn the ECOC matrix with a coding strategy, and obtain M ∈ {−1, 1}C×P

(binary case) or M ∈ {−1, 0, 1}C×P (ternary case);
7: (2) Train the incremental SVM binary classifiers according to M:
8: for k = 1 to P do
9: (αk, bi

k)← I-SVM(Zi, y);
10: wi

k = ∑N
j=1 αjyjZi

j;
11: end for
12: Wi = {wi

1, . . . , wi
k, . . . , wi

P};
13: bi = {bi

1, . . . , bi
k, . . . , bi

P};
14: zi+1 = s((Wi)Tzi + bi);
15: end for
16: zL = softmax(zL−1).
17: Use the back-propagation algorithm for fine-tuning.
18: return W = {Wi} and b = {bi}, i = 1, . . . , L− 1.

3.4. Combining Convolutional Neural Networks (CNNs) with DeepECOCs

CNNs can effectively extract features from images and videos [48,49], while Deep-
ECOCs can be used as a strong and flexible classifier. Here, we construct a new deep
architecture to integrate the advantages of CNNs and DeepECOCs. Figure 2 illustrates such
a deep architecture. In the next section, we demonstrate that this architecture can improve
the accuracy of the original CNNs.

Figure 2. A deep architecture combining CNNs and DeepECOCs. The CNN module produces a vector
presentation of data as shown with the long black bar. DeepECOC takes this data representation
as input and performs the classification task. This deep architecture can be trained in an end-to-
end manner.

The training process of this combined neural architecture consists of three steps. Firstly,
we train the original CNNs as usual. Secondly, we take the output of the fully connected
layer before the classifier as the input of DeepECOCs, and train DeepECOCs. Finally, we
fine-tune the whole network by training it for a few epochs.



Algorithms 2023, 16, 555 8 of 16

4. Experiments

To evaluate the effectiveness of the proposed method, DeepECOCs, we conducted 6
experiments. In the first one, we compared DeepECOCs with some deep learning models and
a single-layer ECOC framework on 16 small and medium data sets from the UCI machine
learning repository (http://archive.ics.uci.edu/ml/ (accessed on 19 October 2023)). In
the second one, we used the USPS handwritten digits data set (https://www.csie.ntu.
edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#usps (accessed on 19 October 2023))
and tested DeepECOCs with a different number of hidden layers. In the third one, we
used the MNIST data set (http://yann.lecun.com/exdb/mnist/ (accessed on 19 October
2023)) to further demonstrate the effectiveness of DeepECOCs on handwritten digits
recognition tasks. In the fourth one, to demonstrate the effectiveness of DeepECOCs on
action recognition applications, we applied it to the CMU motion capture data set (http:
//mocap.cs.cmu.edu/ (accessed on 19 October 2023)). For all the data sets we mentioned
above, to equate the scales of the data features and ease the training of the base classifiers,
the features were normalized within [0, 1] [50]. In the fifth part, the CIFAR-10 data set
(http://www.cs.toronto.edu/~kriz/cifar.html (accessed on 19 October 2023)) was used
to demonstrate the effectiveness of DeepECOCs on image classification tasks compared
with the related deep neural networks. Finally, we tested DeepECOCs on improving the
effectiveness of CNNs. In the following, we present the experimental results in detail.

4.1. Classification on 16 UCI Data Sets

In these experiments, we first compared the effect of using traditional SVMs against
that using online SVMs to build the ECOC framework. The detail of the UCI data sets is
shown in Table 1. We used 4 coding strategies, including one-versus-all, one-versus-one,
DECOC and ECOCONE (initialized by one-versus-one). The linear loss-weighted (LLW)
decoding strategy was applied for all the methods [9]. We chose SVMs with RBF kernel
function as the traditional binary classifier (for short, LibSVM) [17]. The results based on
the 10-fold cross validation are shown in Table 2. We can observe that incremental SVM
performs better than LibSVM when applied to build the ECOC framework in most cases.
Moreover, it is easy to handle the relative large-scale applications.

Table 1. Details of the UCI data sets (I: Instances; A: attributes; C: classes).

Problem ] of I ] of A ] of C Problem ] of I ] of A ] of C

Dermatology 366 34 6 Yeast 1484 8 10
Iris 150 4 3 Satimage 6435 36 7

Ecoli 336 8 8 Letter 20,000 16 26
Wine 178 13 3 Pendigits 10,992 16 10
Glass 214 9 7 Segmentation 2310 19 7

Thyroid 215 5 3 Optdigits 5620 64 10
Vowel 990 10 11 Shuttle 14,500 9 7

Balance 625 4 3 Vehicle 846 18 4

Table 2. Classification accuracy on the 16 UCI data sets obtained by comparing LibSVM and incre-
mental SVM. The best results for each scenario are highlighted in bold face.

Problem
OneVsOne OneVsAll DECOC ECOCONE

LibSVM I-SVM LibSVM I-SVM LibSVM I-SVM LibSVM I-SVM

Dermatology 0.9671 0.9770 0.7928 0.9605 0.9671 0.9638 0.9671 0.9770
Iris 0.9333 0.9333 0.7030 0.7030 0.9333 0.9333 0.9333 0.9333

Ecoli 0.5944 0.6507 0.3940 0.4553 0.5281 0.5828 0.5944 0.6556
Wine 0.9892 0.9892 0.9731 0.9731 0.9892 0.9731 0.9839 0.9892
Glass 0.4838 0.4189 0.3216 0.3270 0.2973 0.3486 0.3027 0.5378

Thyroid 0.5897 0.6239 0.5897 0.6239 0.5897 0.4017 0.5897 0.6239

http://archive.ics.uci.edu/ml/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#usps
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#usps
http://yann.lecun.com/exdb/mnist/
http://mocap.cs.cmu.edu/
http://mocap.cs.cmu.edu/
http://www.cs.toronto.edu/~kriz/cifar.html


Algorithms 2023, 16, 555 9 of 16

Table 2. Cont.

Problem
OneVsOne OneVsAll DECOC ECOCONE

LibSVM I-SVM LibSVM I-SVM LibSVM I-SVM LibSVM I-SVM

Vowel 0.4187 0.4956 0.3953 0.6591 0.2736 0.3278 0.4476 0.4956
Balance 0.8927 0.8927 0.9042 0.9042 0.8927 0.8927 0.8927 0.8927

Yeast 0.4741 0.5744 0.2383 0.2760 0.3751 0.5693 0.4147 0.6000
Satimage 0.8361 0.8692 0.7620 0.8334 0.7411 0.8532 0.8305 0.8604

Letter 0.7443 0.8216 0.2166 0.4536 0.7530 0.8375 0.7440 0.8120
Pendigits 0.9688 0.9859 0.9021 0.9773 0.9065 0.9758 0.9691 0.9850

Segmentation 0.8595 0.8872 0.6187 0.6759 0.7969 0.6706 0.8601 0.8872
OptDigits 0.9492 0.9860 0.8866 0.9649 0.8793 0.9808 0.9492 0.9860

Shuttle 0.9178 0.9475 0.8312 0.9034 0.8352 0.9407 0.9179 0.9532
Vehicle 0.6324 0.7595 0.7378 0.4892 0.6054 0.7243 0.6324 0.7595

Then ,we compared DeepECOCs with AE [26], DAE [27] and the single-layer ECOC
framework [9]. We built our DeepECOCs with different coding design methods. They were
one-versus-all, one-versus-one, discriminant ECOC (DECOC) and ECOC optimizing node
embedding (ECOCONE). Here, because the ECOCONE’s initial codings were different
(initialized by one-versus-all, one-versus-one and DECOC), the coding strategies of Deep-
ECOCs had 6 types. In our experiments, we adopted 3 hidden layers DeepECOCs with 0.1
denoising rate and 0.1 dropout rate,

x
qD−→ x̃ W1

−→
b1

z1 W2
−→
b2

z2 W3
−→
b3

z3 so f tmax−−−−→ y. (11)

For the fine-tuning process, we used the stochastic gradient descent algorithm. The learning
rate and epoches for different data sets were given in Table 3. The autoencoder and denois-
ing autoencoder’s architectures were same as the DeepECOCs with ECOCONE (initializing
by one-versus-one) coding design method. For the single-layer ECOC framework, we chose
the best results from [9] as the compared results. The average classification accuracy and
standard deviation based on a 10-fold cross validation were reported.

Table 3. Details of the learning rate η and epoch on the UCI data sets.

Problem η Epoch Problem η Epoch

Dermatology 0.1 2000 Yeast 0.01 4000
Iris 0.1 400 Satimage 0.01 4000

Ecoli 0.1 2000 Letter 0.01 8000
Wine 0.1 2000 Pendigits 0.01 2000
Glass 0.01 4000 Segmentation 0.01 8000

Thyroid 0.1 800 Optdigits 0.01 2000
Vowel 0.1 4000 Shuttle 0.1 2000

Balance 0.1 4000 Vehicle 0.1 4000

Table 4 shows the average classification accuracy and standard deviation on the
16 UCI data sets. Except for the OptDigits data set, DeepECOCs consistently achieved the
best results compared with autoencoder, denoising autoencoder and single-layer ECOC
framework. On the OptDigits data set, indeed, DeepECOCs achieved a comparative result
with the single-layer ECOC framework. In addition, DeepECOCs with an ECOCONE
coding strategy achieved the best results in most cases. From the mean rank value, we can
observe that DeepECOC with an ECOCONE strategy (initialized by one-versus-one and
DECOC) far surpasses other methods.



Algorithms 2023, 16, 555 10 of 16

Table 4. Classification accuracy and standard deviation obtained by DeepECOCs and the compared
approaches on the 16 UCI data sets. V1∼V6 represents DeepECOCs with different coding strategies,
including OneVsOne,OneVsAll, DECOC and ECOCONE (initialized by OneVsOne, OneVsAll and
DECOC). The best results are highlighted in boldface.

Problem Single AE DAE V1 V2 V3 V4

Dermatology 0.9513 0.9429 ± 0.0671 0.9674 ± 0.0312 0.9731 ± 0.0314 0.8852 ± 0.0561 0.9722 ± 0.0286 0.8834 ± 0.0349
Iris 0.9600 0.9600 ± 0.0562 0.9333 ± 0.0889 0.8818 ± 0.0695 0.8137 ± 0.0768 0.9667 ± 0.0471 0.9667 ± 0.0471

Ecoli 0.8147 0.7725 ± 0.0608 0.8000 ± 0.0362 0.8275 ± 0.0427 0.7868 ± 0.0633 0.9102 ± 0.0701 0.9183 ± 0.0611

Wine 0.9605 0.9765 ± 0.0264 0.9563 ± 0.0422 0.9063 ± 0.0793 0.9625 ± 0.0604 0.9875 ± 0.0264 0.9625 ± 0.0437

Glass 0.6762 0.6669 ± 0.1032 0.6669 ± 0.0715 0.7563 ± 0.0653 0.6875 ± 0.0877 0.8013 ± 0.0476 0.7830 ± 0.0893

Thyroid 0.9210 0.9513 ± 0.0614 0.9599 ± 0.0567 0.8901 ± 0.1177 0.9703 ± 0.0540 0.9647 ± 0.0431 0.9560 ± 0.0633

Vowel 0.7177 0.6985 ± 0.0745 0.7101 ± 0.0756 0.7020 ± 0.0529 0.6563 ± 0.0721 0.7628 ± 0.0716 0.6874 ± 0.0438

Balance 0.8222 0.8036 ± 0.0320 0.8268 ± 0.0548 0.8528 ± 0.0534 0.8108 ± 0.0634 0.8879 ± 0.1331 0.9090 ± 0.0438

Yeast 0.5217 0.5641 ± 0.0346 0.5891 ± 0.0272 0.5861 ± 0.0318 0.5368 ± 0.0582 0.6080 ± 0.0385 0.5968 ± 0.0378

Satimage 0.8537 0.8675 ± 0.0528 0.8897 ± 0.0304 0.8763 ± 0.0576 0.8238 ± 0.0453 0.8977 ± 0.0752 0.9108 ± 0.0483

Letter 0.9192 0.9234 ± 0.0547 0.9381 ± 0.0641 0.9498 ± 0.0587 0.9322 ± 0.0251 0.9553 ± 0.0327 0.9465 ± 0.0414

Pendigits 0.9801 0.9831 ± 0.0123 0.9886 ± 0.0034 0.9828 ± 0.0047 0.9768 ± 0.0034 0.9917 ± 0.0021 0.9817 ± 0.0082

Segmentation 0.9701 0.9584 ± 0.0317 0.9596 ± 0.0211 0.9683 ± 0.0412 0.9567 ± 0.0527 0.9757 ± 0.0296 0.9724 ± 0.0371

Optdigits 0.9982 0.9785 ± 0.0101 0.9856 ± 0.0088 0.9882 ± 0.0104 0.9845 ± 0.0122 0.9934 ± 0.0027 0.9901 ± 0.0033

Shuttle 0.9988 0.9953 ± 0.0012 0.9976 ± 0.0014 0.9991 ± 0.0017 0.9983 ± 0.0018 0.9996 ± 0.0012 0.9993 ± 0.0010

Vehicle 0.7315 0.6987 ± 0.0521 0.7348 ± 0.0454 0.7128 ± 0.0384 0.6624 ± 0.0472 0.7466 ± 0.0481 0.7097 ± 0.0521

Mean rank 5.2500 6.3125 4.9375 4.3125 7.0625 1.4375 3.1875

4.2. Classification on the USPS Data Set

The USPS handwritten digits data set includes 7291 training samples and 2007 test
samples from 10 classes with 256 dimensional features. Our experiments on this data set
were divided into 2 parts. Firstly, we compared DeepECOCs with two traditional feature
learning models (including a principal component analysis (PCA) [51] and marginal Fisher
analysis (MFA) [52]), AE, DAE and single-layer ECOC framework. For MFA, the number of
nearest neighbors for constructing the intrinsic graph was set to 5, while that for constructing
the penalty graph was set to 15. For DeepECOCs, we also used 6 coding design methods, as
in the previous experiments. We used a batch gradient descent for the fine-tuning process;
the batch size was set to 100, the learning rate was set to 1, the number of epoch was set to
40,000 and the denoising rate and dropout rate were set to 0.1. We also used the incremental
SVMs with an RBF kernel as base classifiers. For the single-layer ECOC framework, we
adopted ECOCONE (initializing by one-versus-one) as the coding design method and linear
loss-weighted (LLW) decoding strategy. The experimental results are shown in Figure 3.

0.85

0.9

0.95

1

Methods

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

 

 
PCA
MFA
AE
DAE
OneVsOne
OneVsAll
DECOC
ECOCONE(1)
ECOCONE(2)
ECOCONE(3)

Figure 3. Classification accuracy on the USPS data set. ECOCONE(1)∼ ECOCONE(3) are the different
initial coding strategies used in ECOCONE for DeepECOCs.

From Figure 3, we can observe that DeepECOCs with the ECOCONE (initializing by
one-versus-one) coding strategy achieved the best result among other methods, including



Algorithms 2023, 16, 555 11 of 16

traditional feature learning models, existing deep learning methods and a single-layer
ECOC framework. However, if we used other coding design strategies (except ECOCONE
initialized by one-versus-one), the DeepECOCs did not outperform an autoencoder and
denoising autoencoder.

In the second part, we evaluated DeepECOCs with a different number of hidden
layers, and we used 2 to 6 hidden layers in our experiments. The parameter settings were
the same as in the first part. Figure 4 shows the experimental results. We can observe that
DeepECOCs obtained the best result when adopting 3 hidden layers. When the number of
hidden layers was less than 3, the accuracies obtained by DeepECOCs increased, and the
number of the hidden layers increased. When with the number of the hidden layers was
more than 3, the performance of DeepECOCs decreased.

Figure 4. Classification accuracy with different numbers of hidden layers on the USPS data set.

4.3. Classification on the MNIST Data Set

MNIST includes a training set of 60,000 samples and a test set of 10,000 samples with
784 dimensional features. We designed an architecture for the autoencoder, denoising
autoencoder and DeepECOCs. The architecture is 784-Z1-Z2-Z3-10. Here, Zi denotes the
hidden layer learned from some coding strategies. We designed this architecture because
we wanted to make the autoencoder and denoising autoencoder have the same structures
as DeepECOCs. In order to make DeepECOCs adapt to this structure, we used the dense
and sparse coding design methods that controlled the codeword length. The denoising rate
and dropout rate were set to 0.1, the batch size was set to 100, the learning rate was set to
0.01, and the number of epochs was set to 80,000. Figure 5 shows the comparison results.
We can observe that DeepECOCs achieve comparable results with the autoencoder and
denoising autoencoder, but perform better than the single-layer ECOC framework.

0.85

0.9

0.95

1

Methods

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

 

 
AE
DAE
Sparse
Dense
Single

Figure 5. Classification accuracy on the MNIST data set. The architecture is 784-500-500-2000-10.

Figure 6 shows the experimental results with a new deep architecture. We can observe
that DeepECOCs outperform other compared methods. In addition, DeepECOCs with the
ECOCONE (initialized by DECOC) coding strategy achieved the best result. Note that, in
this scenario, all the deep networks shared the same architecture.



Algorithms 2023, 16, 555 12 of 16

0.85

0.9

0.95

1

Methods

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

 

 
AE
DAE
OneVsOne
OneVsAll
DECOC
ECOCONE(1)
ECOCONE(2)
ECOCONE(3)
Single

Figure 6. Classification accuracy on the MNIST data set. The architecture is 784-Z1-Z2-Z3-10.

4.4. Classification on the CMU Mocap Data Set

The CMU mocap data set includes three categories, namely, jumping, running and
walking. We chose 49 video sequences of four subjects. For each sequence, the features were
generated using Lawrence’s method [53], with a dimensionality of 93. Figure 7 shows one
video sequence from the CMU mocap data set. We used 3 hidden layers for all deep learning
methods. The learning rate was set to 0.1 and the epoch was set to 400. The other parameters
were the same as in the previous experiments. The average classification accuracy based on
the 10-fold cross validation are reported in Table 5.

Figure 7. One video sequence from the CMU mocap data set.

Table 5. The classification accuracy on the CMU mocap data set. The best results for each scenario
are highlighted in bold face.

Problem AE DAE V1 V2 V4 V5

CMU 0.6171 0.6422 0.8030 0.6364 0.7652 0.6030

From Table 5, we can easily observe that DeepECOCs achieved the best results in the
CMU mocap data set, and DeepECOCs with a one-versus-one coding strategy far surpass
other methods.

4.5. Classification on the CIFAR-10 Data set

The CIFAR-10 data set consists of 60,000 32× 32 colour images in 10 classes, with
6000 images per class. There are 50,000 training images and 10,000 test images. Figure 8
shows some samples from the 10 categories. For the purpose of reducing computational
cost, we attempted to create a compact representation of the data using an efficient local
binary patterns algorithm. As a result, the representation of dimensionality 36 and 256
were adopted and the data were normalized to [0, 1], as well. We also used 3 hidden layers
for all deep learning methods. The learning rate was set to 0.1, and the epoch was set
to 4000. Other parameters were the same as the previous experiments. The classification
accuracy are reported in Table 6.



Algorithms 2023, 16, 555 13 of 16

Table 6. The classification accuracy on the CIFAR-10 data set. The best results for each scenario are
highlighted in bold face.

Problem AE DAE V1 V2

CIFAR(36) 0.3501 0.3678 0.4530 0.3895
CIFAR(256) 0.4352 0.4587 0.4936 0.4521

Problem V3 V4 V5 V6

CIFAR(36) 0.4031 0.5089 0.4517 0.4752
CIFAR(256) 0.5236 0.5588 0.4589 0.5224

Figure 8. CIFAR-10 color images from the 10 categories. Each column corresponds to one category.

From Table 6, we can observe that DeepECOCs achieved the best results. Since we
compressed the data using the local binary pattern algorithm, the results are not comparable
with the state-of-the-art results. However, for the compared methods, they are fair. In this
case, DeepECOCs with the ECOCONE (initialized by one-versus-one) coding strategy
achieved better results than the autoencoder and denoising autoencoder. This means that
DeepECOCs are general models to handle real world applications and can often achieve
desirable results. In addition, from all of the above experiments, we can basically conclude
that DeepECOCs with the ECOCONE (initialized by one-versus-one) coding strategy often
perform very well.

4.6. Combining CNNs with DeepECOCs

In this experiment, we combined CNNs and DeepECOCs to improve the performance
of the original CNNs. The CIFAR-10 data set was used. We first trained a ResNet for
200 epochs, as the baseline model (denoted as ResNet-baseline). Then, we trained it from
scratch for 50 epochs, and subsequently, used the flattened output of the last convolutional
layer to train DeepECOCs. Here, the architecture of DeepECOCs was m-505-225-220-10,
where m was the dimension of the flattened features, and the coding strategy of the ECOC
modules was the dense coding. Finally, the whole CNNs+DeepECOCs model (denoted as
ResNet-DeepECOCs) was fine-tuned for 80 epochs. Table 7 shows the obtained results. As
we can observe, DeepECOCs improve the performance of the original CNNs.

Table 7. The classification accuracy obtained on the CIFAR-10 data set. The best result is highlighted
in boldface.

Methods ResNet-Baseline ResNet-DeepECOCs

Accuracy 0.9098 0.9208

5. Conclusions

In this paper, we propose a novel deep learning model, called deep error-correcting
output codes (DeepECOCs). DeepECOCs extend the traditional ECOC framework in a
deep architecture fashion. Extensive experiments on 16 data sets from the UCI machine
learning repository, the USPS and MNIST handwritten digits, the CMU motion capture



Algorithms 2023, 16, 555 14 of 16

data set and the CIFAR-10 data set, demonstrate the superiority of DeepECOCs over the
related ECOC, feature learning and deep learning methods.

In future work, we would like to develop new coding strategies that may improve
the learnability of DeepECOCs on broader applications than we have tested in this pa-
per. Moreover, for the training of the base classifiers, parallel computing is one way to
improve the learning efficiency. Hence, we will implement parallel computing to speed
up the optimization of DeepECOCs. Additionally, we plan to combine DeepECOCs with
Transformer models [31], using the attention mechanism of Transformer models to extract
useful features for DeepECOCs, in contrast to the combination of DeepECOCs and CNNs
introduced in Section 3.4. In this case, we may achieve the state-of-the-art learning results
on different tasks, such as object recognition and detection.

Author Contributions: Conceptualization, L.-N.W. and G.Z.; methodology, L.-N.W., Y.Z. and G.Z.;
software, H.W.; validation, L.-N.W. and J.D.; formal analysis, G.Z.; investigation, L.-N.W.; resources,
J.D.; data curation, H.W.; writing—original draft preparation, L.-N.W., Y.Z. and G.Z.; writing—review
and editing, H.W., Y.Z., J.D. and G.Z.; visualization, Y.Z.; supervision, G.Z.; project administration, J.D.;
funding acquisition, G.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the National Key Research and Development
Program of China under Grant No. 2018AAA0100400, HY Project under Grant No. LZY2022033004,
the Natural Science Foundation of Shandong Province under Grants No. ZR2020MF131 and No.
ZR2021ZD19, the Science and Technology Program of Qingdao under Grant No. 21-1-4-ny-19-nsh,
and Project of Associative Training of Ocean University of China under Grant No. 202265007.

Data Availability Statement: Data are contained within the article.

Acknowledgments: We want to thank Jianzhang Qu for his help in preparing this manuscript. We
also want to thank “Qingdao AI Computing Center” and “Eco-Innovation Center” for providing
inclusive computing power and technical support of MindSpore during the completion of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dietterich, T.G.; Bakiri, G. Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 1995, 2,

263–286. [CrossRef]
2. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
3. Schapire, R.E. A Brief Introduction to Boosting. IJCAI 2010, 14, 377–380.
4. Kumar, A.; Kaur, A.; Singh, P.; Driss, M.; Boulila, W. Efficient Multiclass Classification Using Feature Selection in High-Dimensional

Datasets. Electronics 2023, 12, 2290. [CrossRef]
5. Saeed, M.M.; Saeed, R.A.; Abdelhaq, M.; Alsaqour, R.; Hasan, M.K.; Mokhtar, R.A. Anomaly Detection in 6G Networks Using

Machine Learning Methods. Electronics 2023, 12, 3300. [CrossRef]
6. Zhong, G.; Liu, C.L. Error-correcting output codes based ensemble feature extraction. Pattern Recognit. 2013, 46, 1091–1100.

[CrossRef]
7. Ghani, R. Using error-correcting codes for text classification. In Proceedings of the ICML ’00: Seventeenth International Conference

on Machine Learning, Stanford, CA, USA, 29 June–2 July 2000; pp. 303–310.
8. Escalera, S.; Masip, D.; Puertas, E.; Radeva, P.; Pujol, O. Online error correcting output codes. Pattern Recognit. Lett. 2011, 32, 458–467.

[CrossRef]
9. Escalera, S.; Pujol, O.; Radeva, P. On the decoding process in ternary error-correcting output codes. IEEE Trans. Pattern Anal.

Mach. Intell. 2010, 32, 120–134. [CrossRef]
10. Nilsson, N.J. Learning Machines; McGraw-Hill: New York, NY, USA, 1965.
11. Hastie, T.; Tibshirani, R. Classification by pairwise coupling. Ann. Stat. 1998, 26, 451–471. [CrossRef]
12. Pujol, O.; Radeva, P.; Vitria, J. Discriminant ECOC: A heuristic method for application dependent design of error correcting

output codes. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1007–1012. [CrossRef]
13. Escalera, S.; Pujol, O.; Radeva, P. ECOC-ONE: A novel coding and decoding strategy. In Proceedings of the ICPR, Hong Kong,

China, 20–24 August 2006; Volume 3, pp. 578–581.
14. Escalera, S.; Pujol, O.; Radeva, P. Separability of ternary codes for sparse designs of error-correcting output codes. Pattern Recognit.

Lett. 2009, 30, 285–297.
15. Allwein, E.L.; Schapire, R.E.; Singer, Y. Reducing multiclass to binary: A unifying approach for margin classifiers. J. Mach. Learn.

Res. 2001, 1, 113–141.

http://doi.org/10.1613/jair.105
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.3390/electronics12102290
http://dx.doi.org/10.3390/electronics12153300
http://dx.doi.org/10.1016/j.patcog.2012.10.015
http://dx.doi.org/10.1016/j.patrec.2010.11.005
http://dx.doi.org/10.1109/TPAMI.2008.266
http://dx.doi.org/10.1214/aos/1028144844
http://dx.doi.org/10.1109/TPAMI.2006.116


Algorithms 2023, 16, 555 15 of 16

16. Freund, Y.; Schapire, R.E. Experiments with a new boosting algorithm. In Proceedings of the ICML, Machine Learning, Bari, Italy,
3–6 July 1996; Volume 96, pp. 148–156.

17. Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. Acm Trans. Intell. Syst. Technol. 2011, 2, 27. [CrossRef]
18. Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A Survey on Vision Transformer.

IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 87–110. [CrossRef] [PubMed]
19. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. In Proceedings of the

Advances in Neural Information Processing Systems 25 (NIPS 2012), Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1106–1114.
20. Zhang, R.; Lin, L.; Zhang, R.; Zuo, W.; Zhang, L. Bit-scalable deep hashing with regularized similarity learning for image retrieval

and person re-identification. IEEE Trans. Image Process. 2015, 24, 4766–4779. [CrossRef] [PubMed]
21. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the CVPR, Boston, MA, USA, 7–12 June 2015; pp. 1–9.
22. Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.r.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; et al. Deep

neural networks for acoustic modeling in speech recognition: The shared views of four research groups. Signal Process. Mag.
IEEE 2012, 29, 82–97. [CrossRef]

23. Severyn, A.; Moschitti, A. Learning to rank short text pairs with convolutional deep neural networks. In Proceedings of the
SIGIR ’15: 38th International ACM SIGIR Conference on Research and Development in Information, Santiago, Chile, 9–13 August
2015; pp. 373–382.

24. Zheng, Y.; Cai, Y.; Zhong, G.; Chherawala, Y.; Shi, Y.; Dong, J. Stretching deep architectures for text recognition. In Proceedings of the
2015 13th International Conference on Document Analysis and Recognition (ICDAR), Tunis, Tunisia, 23–26 August 2015; pp. 236–240.

25. Chitta, K.; Prakash, A.; Jaeger, B.; Yu, Z.; Renz, K.; Geiger, A. TransFuser: Imitation with Transformer-Based Sensor Fusion for
Autonomous Driving. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 12878–12895. [CrossRef]

26. Hinton, G.; Salakhutdinov, R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [CrossRef]
27. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.-A. Extracting and composing robust features with denoising autoencoders. In

Proceedings of the ICML ’08: 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 1096–1103.
28. Mak, H.W.L.; Han, R.; Yin, H.H.F. Application of Variational AutoEncoder (VAE) Model and Image Processing Approaches in

Game Design. Sensors 2023, 23, 3457. [CrossRef]
29. Sharif, S.A.; Hammad, A.; Eshraghi, P. Generation of whole building renovation scenarios using variational autoencoders. Energy

Build. 2021, 230, 110520. [CrossRef]
30. Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [CrossRef]

[PubMed]
31. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.U.; Polosukhin, I. Attention is All you Need. In

Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, Long Beach, CA, USA, 4–9 December 2017; Volume 30.

32. Dirgova Luptakova, I.; Kubovcik, M.; Pospichal, J. Wearable Sensor-Based Human Activity Recognition with Transformer Model.
Sensors 2022, 22, 1911. [CrossRef] [PubMed]

33. Zhao, X.; Zhang, S.; Shi, R.; Yan, W.; Pan, X. Multi-Temporal Hyperspectral Classification of Grassland Using Transformer Network.
Sensors 2023, 23, 6642. [CrossRef] [PubMed]

34. Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
35. Sabzevari, M.; Martínez-Muñoz, G.; Suárez, A. Vote-boosting ensembles. Pattern Recognit. 2018, 83, 119–133. [CrossRef]
36. Claesen, M.; Smet, F.D.; Suykens, J.A.; Moor, B.D. EnsembleSVM: A library for ensemble learning using support vector machines.

J. Mach. Learn. Res. 2014, 15, 141–145.
37. Hu, C.; Chen, Y.; Hu, L.; Peng, X. A novel random forests based class incremental learning method for activity recognition. Pattern

Recognit. 2018, 78, 277–290. [CrossRef]
38. Sun, Y.; Tang, K.; Minku, L.; Wang, S.; Yao, X. Online Ensemble Learning of Data Streams with Gradually Evolved Classes. IEEE

Trans. Knowl. Data Eng. 2016, 28, 1532–1545. [CrossRef]
39. Wang, S.; Minku, L.L.; Yao, X. Resampling-Based Ensemble Methods for Online Class Imbalance Learning. IEEE Trans. Knowl.

Data Eng. 2015, 27, 1356–1368. [CrossRef]
40. Deng, L.; Platt, J.C. Ensemble deep learning for speech recognition. In Proceedings of the INTERSPEECH, Singapore, 14–18

September 2014; pp. 1915–1919.
41. Zhou, X.; Xie, L.; Zhang, P.; Zhang, Y. An ensemble of deep neural networks for object tracking. In Proceedings of the 2014 IEEE

International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 843–847.
42. Maji, D.; Santara, A.; Mitra, P.; Sheet, D. Ensemble of Deep Convolutional Neural Networks for Learning to Detect Retinal Vessels

in Fundus Images. arXiv 2016, arXiv:1603.04833.
43. Trigeorgis, G.; Bousmalis, K.; Zafeiriou, S.; Schuller, B. A deep semi-nmf model for learning hidden representations. In Proceedings

of the ICML’14: 31st International Conference on International Conference on Machine Learning, Beijing, China, 21–26 June 2014;
pp. 1692–1700.

44. Sak, H.; Senior, A.; Beaufays, F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling.
In Proceedings of the INTERSPEECH, Singapore, 14–18 September 2014; pp. 338–342.

45. Poggio, T.; Cauwenberghs, G. Incremental and decremental support vector machine learning. NIPS 2001, 13, 409.

http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1109/TPAMI.2022.3152247
http://www.ncbi.nlm.nih.gov/pubmed/35180075
http://dx.doi.org/10.1109/TIP.2015.2467315
http://www.ncbi.nlm.nih.gov/pubmed/26276992
http://dx.doi.org/10.1109/MSP.2012.2205597
http://dx.doi.org/10.1109/TPAMI.2022.3200245
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.3390/s23073457
http://dx.doi.org/10.1016/j.enbuild.2020.110520
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://www.ncbi.nlm.nih.gov/pubmed/16764513
http://dx.doi.org/10.3390/s22051911
http://www.ncbi.nlm.nih.gov/pubmed/35271058
http://dx.doi.org/10.3390/s23146642
http://www.ncbi.nlm.nih.gov/pubmed/37514934
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1016/j.patcog.2018.05.022
http://dx.doi.org/10.1016/j.patcog.2018.01.025
http://dx.doi.org/10.1109/TKDE.2016.2526675
http://dx.doi.org/10.1109/TKDE.2014.2345380


Algorithms 2023, 16, 555 16 of 16

46. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Cogn. Model. 1988, 5, 3.
47. Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks by preventing

co-adaptation of feature detectors. arXiv 2012, arXiv:1207.0580.
48. Carballo, J.A.; Bonilla, J.; Fernández-Reche, J.; Nouri, B.; Avila-Marin, A.; Fabel, Y.; Alarcón-Padilla, D.C. Cloud Detection and

Tracking Based on Object Detection with Convolutional Neural Networks. Algorithms 2023, 16, 487. [CrossRef]
49. Mao, Y.J.; Tam, A.Y.C.; Shea, Q.T.K.; Zheng, Y.P.; Cheung, J.C.W. eNightTrack: Restraint-Free Depth-Camera-Based Surveillance

and Alarm System for Fall Prevention Using Deep Learning Tracking. Algorithms 2023, 16, 477. [CrossRef]
50. il Kim, S.; Noh, Y.; Kang, Y.J.; Park, S.; Lee, J.W.; Chin, S.W. Hybrid data-scaling method for fault classification of compressors.

Measurement 2022, 201, 111619.
51. Jolliffe, I. Principal Component Analysis; Wiley Online Library: Hoboken, NJ, USA, 2002.
52. Yan, S.; Xu, D.; Zhang, B.; Zhang, H.J.; Yang, Q.; Lin, S. Graph embedding and extensions: A general framework for dimensionality

reduction. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 40–51. [CrossRef]
53. Lawrence, N.D.; Quionero-Candela, J. Local distance preservation in the GP-LVM through back constraints. In Proceedings of

the ICML ’06: 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 513–520.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/a16100487
http://dx.doi.org/10.3390/a16100477
http://dx.doi.org/10.1109/TPAMI.2007.250598

	Introduction
	Related Work
	Deep Error-Correcting Output Codes (DeepECOCs)
	The ECOC Framework
	Incremental Support Vector Machines (Incremental SVMs)
	KKT Conditions
	Incremental Learning Procedure

	DeepECOCs
	Combining Convolutional Neural Networks (CNNs) with DeepECOCs

	Experiments
	Classification on 16 UCI Data Sets
	Classification on the USPS Data Set
	Classification on the MNIST Data Set
	Classification on the CMU Mocap Data Set
	Classification on the CIFAR-10 Data set
	Combining CNNs with DeepECOCs

	Conclusions
	References

