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Abstract: In decentralized systems, the quest for heightened security and integrity within block-

chain networks becomes an issue. This survey investigates anomaly detection techniques in block-

chain ecosystems through the lens of unsupervised learning, delving into the intricacies and going 

through the complex tapestry of abnormal behaviors by examining avant-garde algorithms to dis-

cern deviations from normal patterns. By seamlessly blending technological acumen with a discern-

ing gaze, this survey offers a perspective on the symbiotic relationship between unsupervised learn-

ing and anomaly detection by reviewing this problem with a categorization of algorithms that are 

applied to a variety of problems in this field. We propose that the use of unsupervised algorithms 

in blockchain anomaly detection should be viewed not only as an implementation procedure but 

also as an integration procedure, where the merits of these algorithms can effectively be combined 

in ways determined by the problem at hand. In that sense, the main contribution of this paper is a 

thorough study of the interplay between various unsupervised learning algorithms and how this 

can be used in facing malicious activities and behaviors within public and private blockchain net-

works. The result is the definition of three categories, the characteristics of which are recognized in 

terms of the way the respective integration takes place. When implementing unsupervised learning, 

the structure of the data plays a pivotal role. Therefore, this paper also provides an in-depth presen-

tation of the data structures commonly used in unsupervised learning-based blockchain anomaly 

detection. The above analysis is encircled by a presentation of the typical anomalies that have oc-

curred so far along with a description of the general machine learning frameworks developed to 

deal with them. Finally, the paper spotlights challenges and directions that can serve as a compre-

hensive compendium for future research efforts. 
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1. Introduction 

A blockchain network constitutes a decentralized software application dedicated to 

the perpetual maintenance of an expanding ledger of blocks of transaction information 

that enables the development of public or private distributed networks without the pres-

ence of a central controlling organization, supporting secure transaction strategies based 

on cryptographic mechanisms [1–4]. Each block includes, among others, data related to 

several transactions that were gathered within a certain period, a timestamp, and a unique 

hash value [1,4,5]. A cryptographic hash value prudently identifies each block, which also 

dutifully references the hash of the block that precedes it. This interplay culminates in the 

establishment of an unbroken chain, with each block forging a connection. The partici-

pants in the network are viewed as nodes and the network itself establishes communica-

tion channels between these nodes to perform the above-mentioned transactions. 
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In the inaugural phase of blockchain, the concept of decentralization took root, albeit 

primarily confined to financial transactions. However, to usher in further advancements, 

the second era of blockchain has been based on smart contracts and finds the researchers 

diligently working on integrating the innovative feature of programmability into the net-

work, all thanks to the development of smart contracts [6,7]. The decentralized features of 

a blockchain network manifest its transparent nature, resulting in secure and effective 

data storage and data analysis applications, which span a wide range of research areas 

such as finance [5,8,9], health [10–12], IoT [13,14], industry [15], enterprise [16,17], etc. 

The transaction verification process is called the consensus mainly due to the require-

ment that the users’ majority must agree upon its validity [8,18,19]. In terms of consensus, 

three general types of blockchain systems have arisen, namely, public, consortium, and 

private networks [1,4,11,18,20–22]. A public blockchain allows everyone to join the net-

work as a user either to perform transactions or to participate in the consensus process, 

whereas in a consortium network, the consensus mechanism is decided by a preselected 

set of users. Finally, a private blockchain system is usually governed by the organiza-

tion/institution that developed it, and it decides the users that join the network as well as 

controls the consensus process. Typical consensus mechanisms are the proof of work 

(PoW), which is related to Bitcoin, and the proof of stake (PoS), which is related to 

Ethereum. PoW allows the miners to create new transactions by providing strategies to 

solve highly complex mathematical problems [22,23]. PoS is based on validating a trans-

action in terms of randomly choosing a maximum coin owner [24].  

Cryptocurrencies are based on using blockchain technologies, each one from a differ-

ent point of view but with the same goal, i.e., to make transactions safer for users. In that 

sense, blockchain harbors a multitude of attributes encompassing fault tolerance, re-

sistance to tampering, and the cloak of anonymity [25,26]. However, although blockchain 

has been acknowledged as the spearhead in developing secure decentralized applications, 

it has shown certain failures regarding security flaws and transparency in cryptocurren-

cies and smart contracts [1,27,28]. So far, several blockchain security issues have been 

identified, which are related to various types of attacks. Attacks over a blockchain system 

are triggered by financial profits, and/or they target it to negatively affect its popularity 

[26].  

Attack attempts are generally projected onto the recorded blockchain datasets as 

anomalies in the form of uncommon or unpredicted items or behavioral patterns. Various 

types of anomalies concern wallet attacks, Ponzi schemes, PoW vulnerabilities, crypto-

jacking, phishing scams, spam transactions, malicious accounts, etc. [26,27,29,30]. Anom-

aly detection focuses on the implementation of specialized algorithmic-based methodolo-

gies able to determine and quantify the above-mentioned anomalies that may have the 

form of suspicious transactions or user behaviors [31,32]. For example, identifying a sus-

picious/illegal transaction and preventing it from approval would eliminate the potential 

damage that could be expanded within the network [33]. In that sense, an illegal transac-

tion is viewed as anomalous behavior, which appears to be very dissimilar to the rest of 

the transaction data.  

Roughly speaking, the very core of an anomaly detection algorithm is to build a 

model that accurately describes and quantifies the normal user behaviors [34,35]. As such, 

the usage of an anomaly detection method provides the potential to implement timely 

actions against the anomaly and the respective malicious effects that might be imposed 

into the network.  

Although anomaly detection technologies have been effectively used in handling se-

curity and privacy issues over several fields [30,31], the implementation of such types of 

methods in blockchain systems has appeared to be a tough problem due to several reasons 

[25,34]. The first reason is related to the complexity of a blockchain system, which implies 

the presence of many diverse threats and abnormal behaviors. The second is related to the 

constant increase in the number of anomaly detection methods rendering the appropriate 

selection of an effective method for the problem at hand a difficult task. The third reason 
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concerns the need to optimize data formats for each blockchain network by considering 

its peculiarities and characteristics. Because a blockchain platform is decentralized, inap-

propriate handling of data formats could lead to the platform’s collapse. From the view-

point of anomaly detection methods, this imposes difficulties related to their adaptation 

in capturing the differences in data formats. Finally, anomaly detection tools are not effi-

cient in applying detection rules to complex structures such as encrypted data used for 

protecting anonymity and sensitive user parameters or performing transactions with 

transaction rate requirements [36]. 

In that direction, unsupervised learning has gained increasing popularity in handling 

the problem of anomaly detection in blockchain. Such kinds of techniques provide a pow-

erful means of segmenting the available data into distinct groups, enabling the identifica-

tion of abnormal instances in the form of outliers. The incorporation of unsupervised 

learning algorithms in the anomaly detection process has shown effective results in en-

hancing the overall security of blockchain. So far, several unsupervised learning methods 

have been applied. Typical tools concern standard cluster analysis such as the k-means 

and its variants [37], and more sophisticated clustering methods such as the BIRCH [38], 

the Grey [39] and the Chameleon [40] algorithms, the one-class support vector machines 

(SVM) [41,42], the isolation-forest [43], and more. 

This paper provides a systematic review of methods that utilize unsupervised learn-

ing in resolving the problem of anomaly detection in blockchain networks. The main con-

tributions of the paper are enumerated as follows: 

(a) Summarization of typical blockchain anomalies.  

(b) Analysis of the data structures employed in the implementation of the unsupervised 

learning methodologies.  

(c) Categorization of a large number of research methods for blockchain anomaly detec-

tion into three categories based on the implementation strategies of the correspond-

ing algorithms.  

(d) Presentation of the basic functional properties of the above-mentioned categories in 

terms of certain key characteristics.  

(e) Highlight several challenges and future directions.  

To conduct our analysis, we searched the following databases: Web of Science, Sco-

pus, Google Scholar, IEEE Xplore Digital Library, ACM Digital Library, Springer, and Sci-

ence Direct. In our investigation, we used the following keywords: “Blockchain”, “Anom-

aly Detection”, “Unsupervised Learning”, “Cluster Analysis”, “Bitcoin”, and “Ethereum” 

as well as their combinations. The period used in our search was from 2014 to 2023. We 

have observed a significant increase in papers that deal with anomaly detection in block-

chain from 2018 onward.  

The rest of the paper is synthesized as follows. Section 2 presents the related work. 

Section 3 discusses some basic features of blockchain technologies. Section 4 summarizes 

the typical blockchain anomalies. Section 5 presents a categorization of the typical unsu-

pervised learning algorithms employed in developing anomaly detection methods along 

with some notation on the use of supervised algorithms. Section 6 discusses the typical 

data representations used. Section 7 categorizes and analyzes unsupervised learning-

based methodologies. Section 8 includes a detailed description of the identified challenges 

and future directions. Finally, the paper concludes in Section 9.  

2. Related Work 

So far, several survey papers have been published to encircle the applications of 

blockchain technologies in various research areas such as cloud computing [4,44], data-

base systems [45], digital twins [46,47], educational technologies [48], e-voting develop-

ment [49], interoperability [50], smart contracts [51–53], internet of things (IoT) [54–60], 

and more. In addition, a large number of surveys address issues related to system security, 

cybersecurity, and privacy of blockchain frameworks [26,61–69].  
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Although the above-referred works address to some extent issues related to anomaly 

detection and deanonymization, in this section, we turn our attention to the following 

studies that appear to be more related to the current endeavor.  

Musa et al. [30] investigated the application-based domains of anomaly detection, 

providing a categorization of the relative methods and types in terms of learning modes 

and techniques. The application domains involved intrusion and fraud detection systems, 

industrial damaging, image processing, and medical studies. After identifying three gen-

eral types of threats, the techniques were categorized in terms of supervised, semi-super-

vised, and unsupervised mechanisms that spanned over a wide range of algorithmic strat-

egies such as neural and Bayesian networks, support vector machines, rule-based systems, 

nearest neighbor schemes, clustering-based approaches, and statistical tools. Chandola et 

al. [31] discussed a fundamental framework for each investigated anomaly detection cat-

egory, encompassing information-theoretic and spectral techniques while incorporating 

existing grouping methods. As such, they refined a succinct categorization of the selected 

methodologies by meticulously outlining their pros and cons based on unique assump-

tions and criteria for defining the anomalies in each category, while reporting computa-

tional complexity analysis for each one of the studied methodologies. Pourhabibi et al. 

[32] analyzed the usage of graph-based anomaly detection methods in fraud detection by 

creating a hierarchical classification framework to group the methods into certain catego-

ries depending on several criteria such as types of networks and anomalies employed. 

Moreover, they offered a list of major difficulties faced by graph-based structures in fraud 

detection, underling the difficulties that exist in that domain. Hisham et al. [27] postulated 

that ensembles of classifiers can effectively cope with certain vulnerabilities of blockchain 

frameworks such as security, abuse and cyber-attacks, criminal activity, money launder-

ing, and so on. To carry out a systematic and solid presentation, they also focused on the 

strengths and weaknesses of the above-mentioned models, spotlighting their importance 

during various stages of the data analysis such as the data preparation and preprocessing 

stages.  

Even though blockchain has been acknowledged as the spearhead in the develop-

ment of decentralized applications, it has shown certain failures regarding security issues 

in cryptocurrencies and smart contracts. An effective way to eliminate the impact of the 

above issues is the employment of data-mining models with specific metrics, criteria, and 

requirements that appear to have critical importance as far as the model’s robustness is 

concerned. In this direction, some survey papers further delve into exclusively investigat-

ing the use of data mining and machine learning theory in detecting anomalies in block-

chain networks. For example, from a detailed point of view, Li et al. [25] identified two 

major groups of approaches. The first group encompassed methods that have a general 

purpose without focusing on specific anomalies, and the second one included methods 

developed for specific types of anomalies. Based on well-defined criteria, each one of the 

above groups was further divided into several subgroups, where the description of their 

structure was also presented while analyzing the pros and cons of each subgroup. In [70], 

cryptocurrency security failures were studied in terms of an inductive methodology, 

where the very core of the analysis was to identify the properties of the data mining algo-

rithms that ensure their feasible implementation given the above-mentioned failures. In 

[28], the implementation of data mining strategies for detecting anomalies in blockchain 

environments was considered from the perspective of certain characteristics involved in 

environments such as decentralization and transparency. Applications investigated in-

cluded cryptocurrencies, supply chain management, finance, and healthcare. A different 

point of view was provided in [26], where the existing literature of data mining models 

used for blockchain anomaly detection was studied based on their implementation in dif-

ferent layers appearing in blockchain structures such as the data layer, network layer, in-

centive layer, and contract layer. To come up with a general methodology in model gen-

eration, the authors employed certain requirements to assess the corresponding 
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performance and robustness. To this end, the authors undertook a discussion related to 

the open problems, challenges, and future research endeavors.  

3. Blockchain Overview 

This section presents the preliminary concepts related to blockchain technologies. As 

expected, the amount of relative information that exists in the literature is vast. For that 

reason, the analysis is kept brief, highlighting the very core of blockchain properties.  

3.1. Basic Characteristics of Blockchain 

Several characteristics and properties are attributed to a fully operational blockchain 

network. Figure 1 depicts a subset of those characteristics that are well documented in the 

existing literature and are briefly analyzed within the subsequent paragraphs. 

 

Figure 1. Basic characteristics possessed by a blockchain network. 

Blockchain operates within a decentralized paradigm, enabling a network of individ-

uals or organizations to securely record transactions [19,69]. An innovative facet intro-

duced by blockchain is its capacity to facilitate secure agreements between multiple enti-

ties over public networks, without the need for third-party intermediaries [71]. This pro-

cess, known as “mining”, assures the validity and consistency of appended agreements 

[59,72].  

The immutability feature ensures that no tampering with the data can take place [73]. 

Given that each transaction is verified and recorded in distributed blocks, breaching the 

system becomes practically insurmountable. This intrinsic security feature guarantees the 

integrity of the blockchain [74], allowing for the creation of exact copies of transactions by 

the users, resulting in a situation where the data cannot be changed without the consent 

of the users [75,76].  

The feature of flexibility refers to the fact that blockchain technologies are based on 

open-source code, meaning that any user or institution can develop applications or even 

new blockchain networks to fit their needs [77]. This is supported by the existing availa-

bility of several flexible blockchain platforms.  

The concept of anonymity is related to the users’ engagement with the blockchain 

using a generated address, shrouding their identity [78]. Moreover, users can create mul-

tiple addresses to evade identity exposure [79]. Unlike centralized systems, no central en-

tity retains users’ private information, preserving a degree of privacy in blockchain-rec-

orded transactions [75, 80]. 

Transparency facilitates the users to perform clear reviews of historical transactions, 

while no one wields the authority to alter or expunge them, preserving an immutable rec-

ord of the group’s activities. Thus, the transparency feature, coupled with the blockchain’s 

distributed nature, ensures heightened traceability and thwarts unauthorized interven-

tions [75,76].  
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The security and privacy features are related to the use of public key encryption to 

protect data security. Blockchain enables a user to create private and public keys. The pri-

vate key is used to sign data, whereas the public key to confirm the originality and au-

thenticity of the signed data. Keeping the private key safe from leaking is of the utmost 

importance. Users are anonymous, and each one of them can be assigned multiple ad-

dresses. Then, user privacy is protected by using only one address for identification pur-

poses, while the anonymous address cannot be mapped to a user [74–77].  

A task strongly related to the security feature is digital signing. A digital signature 

process encompasses the signing and verification, while it serves as a cryptographic proof 

system, affirming the blockchain’s validity and cultivating trust among users [25]. 

Grounded in asymmetric cryptography algorithms, each user applies the private key for 

signing transactions accessible via public keys, permeating the network [58, 80]. In es-

sence, digital signing enhances the trust within decentralized blockchain networks. 

3.2. Transactions and Smart Contracts  

The exchange of assets defines the transaction. A transaction is managed under the 

entity service’s rules, which are designed and implemented in terms of specialized script 

languages and forms. For example, in Bitcoin, such a language is the Bitcoin’s Forth. As 

such, an operational set of rules allows for performing advanced transactions (e.g., escrow 

and multi-party signatures) [72].  

Transactions in Bitcoin may feature multiple inputs and outputs, enabling complex 

structures and the allocation of bitcoins to various recipients in a single transaction, while 

supporting transaction fees and voluntary payments by the sender to incentivize miners 

to prioritize their transactions for block inclusion. Bitcoin transactions present a secure, 

transparent, and decentralized approach to peer-to-peer transactions, free from interme-

diary intervention [81]. Addresses in Bitcoin emerge through asymmetric cryptography, 

specifically using elliptic curve cryptography (ECC) [58]. However, address reuse jeop-

ardizes privacy by exposing all associated transactions on the blockchain. Analysis of an 

address’s transaction history enables the tracking of fund flow, which may potentially link 

disparate events and activities to the same address owner. 

In the Ethereum network, smart contracts represent a facet of blockchain technology 

that reflects a synergistic blend between distributed record-keeping and executable com-

puter code. Beyond mere documentation of past events, integration of smart contracts en-

genders the creation of precise code governing processes and responses to specific events 

[51,82]. Compared to Bitcoin network, smart contracts are also governed by similar rules. 

In particular, a smart contract is defined by an aggregation of script-encoded rules, which 

are inserted in the network to guide and control the resulting transactions, through the 

autonomous execution of the contract [74,82]. As a result, smart contracts act as autono-

mous agents with the property of being permanently tamper proof after their verification 

[6,72]. The very core of a smart contract is related not only to a coding-restricted process 

but also to the encoding of all relative terms and conditions that regulate an agreement 

into the transaction workflow. In addition, smart contracts leverage blockchain technol-

ogy’s inherent features (e.g., recording, validation, and security). Integration with digital 

identity support enables credible contract execution over public networks. This not only 

fortifies contract security and immutability but also opens avenues for automation in 

agreement processes between companies and their partners or customers. 

3.3. Consensus Mechanisms 

Consensus algorithms serve as the foundation in ensuring the decentralized and se-

cure nature of distributed ledgers. They foster agreement among nodes in a blockchain 

network, validating transactions, preventing double-spending, and upholding overall 

ledger integrity [24]. 

One prominent consensus algorithm, the Proof of Work (PoW), has gained promi-

nence through its association with Bitcoin. PoW relies on participating nodes’ 
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computational power to solve complex mathematical puzzles, with the first successful 

solver earning the right to validate and add a new block to the blockchain. While effective, 

PoW faces criticism for substantial energy consumption, prompting the exploration of 

eco-friendly alternatives [71]. 

Proof of Stake (PoS) has emerged as one such alternative, addressing environmental 

concerns linked to PoW. In a PoS system, validators create new blocks based on the cryp-

tocurrency amount they hold and are willing to “stake” as collateral [83]. This energy-

efficient approach contrasts sharply with PoW, showcasing the diverse range of consensus 

mechanisms within the blockchain space. 

The Delegated Proof of Stake (DPoS) combines elements of both PoW and PoS. DPoS 

involves a group of delegates, chosen through community voting, to validate transactions 

and produce new blocks. This approach aims to enhance efficiency by reducing the num-

ber of participants involved in the consensus process, rendering it a more scalable solution 

[24,71]. 

The Proof-of-Authority (PoA) engages a small number of selected users to perform 

transaction validations and update the network’s distributed registry [84,85]. The selected 

validators create and embed into the network the new transactions’ blocks, which are ac-

cepted without any further verification. On many occasions, the above-mentioned ac-

ceptance can be achieved by the unanimous vote of the block generators, or by considering 

the users’ majority. Rendering a user as a validator depends on several criteria such as 

high moral standards, no criminal record, wide acceptance by the network users, valida-

tor’s willingness to stake her/his reputation, etc. One of the major advantages provided 

by PoA is the fact that it does not require a lot of computing power. 

Finally, we report two environments related to continuous authentication and verifi-

cation, namely, the zero-trust and zero-knowledge proof architectures. 

The functional principle of zero-trust architecture (ZTA) is to maintain tight access 

control over every user, action, or request entering the network without any trust, even 

when the user is part of the network. ZTA aligns with the decentralized and distributed 

nature of blockchain networks, emphasizing the importance of continuous authentication 

and verification in ensuring the integrity of transactions and data. Additionally, it could 

be efficiently used to enhance protection against various types of attacks and anomalies 

[86]. 

On the other hand, zero-knowledge proof is a cryptographic method where one party 

(the prover) can prove to another party (the verifier) that they know a specific piece of 

information without revealing the actual information itself. This concept is crucial for 

maintaining privacy and security in decentralized systems, where participants may want 

to verify transactions without exposing sensitive details [87]. 

When a particular event is detected as an anomaly, the whole network must reach a 

consensus to validate that result to enable appropriate actions against it. Therefore, the 

complexity involved in the consensus algorithm directly impacts the anomaly detection 

process. This impact is significantly enhanced when some of the network’s nodes act as 

malicious ones [26]. The above issue becomes crucial and must be considered when de-

signing anomaly detection models [88]. In addition, a quantity that is proportional to the 

complexity of consensus algorithm is the required energy consumption. As such, the im-

plementation of unsupervised learning is directly affected by the consensus mechanism. 

In general, the lesser the complexity involved, the easier the above implementation be-

comes. Decentralization remains a fundamental principle in the above consensus algo-

rithms ensuring that no single entity or authority holds control. Decision-making power 

distributed among participating nodes guarantees network resilience, transparency, and 

resistance to tampering or unauthorized control. 

  



Algorithms 2024, 17, 201 8 of 41 
 

4. Anomalies and Anomaly Detection in Blockchain  

This section elaborates on the concept of an anomaly in a blockchain network and the 

general framework of anomaly detection. In addition, to provide a convenient connection 

with the sections that follow, we review some of the most employed unsupervised learn-

ing algorithms in blockchain anomaly detection. 

4.1. Anomalies in Blockchain Networks  

Despite its advantages, blockchain technologies are not completely secure, remaining 

susceptible to specific attacks and issues [83,89]. Attacks on the blockchain network are 

launched to impact the capital or popularity of the network, leading to a decrease in its 

market value.  

A typical case is the double-spending attack that engages malevolent actors to ex-

pend the same cryptocurrency or digital asset on multiple occasions, thereby eroding the 

trustworthiness and dependability of transactions. The challenge of double-spending 

arises from delays in disseminating pending payments across the network, thereby ena-

bling a Bitcoin client to engage in multiple transactions involving the same Bitcoin. An-

other perilous predicament emerges in the form of the 51% attack, where an individual or 

collective entity seizes control over more than half of the mining power within the net-

work, with the ultimate purpose of manipulating transactions. On the other hand, the 

prevalence of Sybil attacks should not be overlooked, where assailants fabricate multiple 

counterfeit identities or nodes to acquire dominion over a significant portion of the net-

work, thereby impeding consensus and influencing the validation of transactions [90]. 

Similarly, Eclipse attacks [91] constitute another grave hazard, where malefactors encircle 

a victim’s node with malevolent nodes, granting them the ability to manipulate or censor 

the victim’s transactions at will. Selfish mining poses a formidable threat to the equity of 

the blockchain network because a miner or coalition of miners intentionally withholds 

valid blocks from the network, gaining an unjust advantage over honest miners.  

Vulnerabilities inherent in smart contracts within Ethereum can be exploited through 

tactics such as reentrancy or arithmetic overflows/underflows, leading to unintended re-

percussions and financial detriment [90–92]. Also, the blockchain ecosystem remains sus-

ceptible to distributed denial-of-service (DDoS) onslaughts [93], strategically designed to 

inundate the network with an overwhelming surge of requests or transactions, culminat-

ing in network congestion and the potential for disruptive consequences. Ransomware 

attacks have likewise emerged as a consequential menace within the blockchain sphere, 

wherein malicious actors encrypt users’ data and demand a ransom, effectively holding 

their information hostage. Moreover, the exploitation of users’ trust through Ponzi 

schemes that leverage blockchain technology poses a grave threat, luring unsuspecting 

participants with deceptive promises of exorbitant returns, ultimately resulting in finan-

cial losses [90,91]. 

Table 1 illustrates some typical cases of blockchain anomalies along with their brief 

descriptions and their occurrences.  

Table 1. Brief description of standard blockchain anomalies and their occurrences. 

Anomaly Description Occurrence 

Sybil Attacks 

Creation of multiple fake identities or nodes to 

gain control over a significant portion of the 

network, often disrupting consensus and in-

fluencing transaction validation. 

They have been observed in public or consortium 

blockchains, e.g., in consortium blockchain used by a 

group of financial institutions [94]. 

Phishing Attacks 

Malicious attempts to deceive individuals into 

revealing sensitive information, such as pass-

words or financial details, by impersonating 

They are prevalent across the cryptocurrency space, 

e.g., according to a report by CipherTrace, phishing 

attacks accounted for millions of dollars in losses in 

2023 alone [95]. 
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trustworthy entities through emails, websites, 

or messages. 

Ponzi Schemes 

Fraudulent investment operations where early 

investors are paid with funds from later inves-

tors, creating an illusion of profitability until 

the scheme collapsed, and causing financial 

losses for participants. 

They plagued the cryptocurrency industry (e.g., the 

BitConnect), causing billions of dollars in damage be-

fore collapsing in 2018 (their frequency has de-

creased, but they still are a threat to decentralized fi-

nance). 

Double-Spending 

Attacks 

Attempts to spend the same digital asset more 

than once, exploiting the delay in transaction 

validation to deceive the network. 

Although less common in established cryptocurren-

cies like Bitcoin, they can occur in smaller networks 

or lesser-known altcoins. 

 Ransomwares 

Encryption of victim’s data, rendering it inac-

cessible until a ransom is paid (it poses a sig-

nificant threat to individuals and organiza-

tions, causing data loss or financial harm). 

Their occurrence has increased, with cryptocurren-

cies often serving as the preferred method of pay-

ment due to their pseudonymous nature (it is ex-

pected to cost the global economy billions of dollars 

annually by 2025 [96]). 

DDoS Attacks 

Attacks that overwhelm a network or website 

by flooding it with a massive volume of re-

quests or traffic, causing service disruptions or 

rendering it inaccessible to legitimate users. 

They are a constant threat to cryptocurrency ex-

changes and blockchain networks as they can disrupt 

services, causing financial losses, e.g., in 2023, several 

exchanges experienced DDoS attacks, leading to tem-

porary outages. 

Eclipse Attacks 

Isolation of a victim’s node by surrounding it 

with malicious nodes, controlling the victim’s 

network connections, and potentially manipu-

lating or censoring their transactions. 

They have occurred in various blockchain networks, 

including Ethereum. While not as common as other 

attacks, they constitute a concern for network secu-

rity [90]. 

51% Attacks 

A single entity or group controls over 50% of a 

blockchain network’s mining power, enabling 

it to manipulate transactions, potentially dou-

ble-spend and disrupt the network’s integrity. 

They have been witnessed in several smaller crypto-

currencies. The most notable example is the 51% at-

tack on Ethereum Classic in 2019, resulting in mil-

lions of dollars in double-spending [97]. 

Selfish Mining 

Attacks 

Secret mining on top of withholding blocks, 

gaining an unfair advantage over honest min-

ers in the race to add blocks to the blockchain. 

They are rarely observed in practice due to their 

complexity (however, they remain a topic of aca-

demic research and discussion in the cryptocurrency 

community [98]). 

Brute Force At-

tacks  

Systematic combinations of all possible pass-

words or encryption keys until the correct one 

is discovered, typically through an exhaustive 

trial-and-error approach. 

While successful, they are relatively rare due to the 

strength of modern encryption algorithms, but they 

can still occur, especially if users employ weak pass-

words. 

Finney Attacks 

Special type of double-spending attacks, 

where an attacker pre-mines a valid transac-

tion but keeps it private while mining a new 

block to confirm the pre-mined transaction, ex-

cluding it from the network 

Rarely observed due to their intricate nature, but 

when occurred, they underscore the importance of 

robust network security measures [99]. 

Fork After With-

holding Attacks 

Successful mining of a new block without 

broadcasting it to the network (instead, the 

miner continues mining on top of the withheld 

block privately, aiming to gain an advantage 

over other miners by producing a longer 

chain). 

They have occurred in smaller blockchain networks, 

where miners attempt to gain a competitive ad-

vantage by secretly mining blocks (while not as com-

mon as other attacks, they highlight the vulnerabili-

ties inherent in proof-of-work consensus mecha-

nisms). 

Deanonymiza-

tion Attacks 

Involve linking IP addresses with cryptocur-

rency wallets compromising user privacy and 

security  

Although they have not been reported often, they 

have become increasingly sophisticated [100]. 
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Over time, several attacks have been reported on the Bitcoin and Ethereum networks. 

For example, a worthwhile attack occurred in 2017 on the Bitcoin network, where a large 

number of spam transactions flooded the network, causing delays and stalling transaction 

verifications [1,93]. This, in turn, increased the mining process fee for Bitcoin, resulting in 

delayed payments of approximately USD 700 million [101]. Figure 2 visualizes the attack, 

where each bar corresponds to a specific attack’s feature. The negative impact of spam 

transactions is evident, as illustrated by the leftmost bar. The subsequent bars depict the 

market value volatility, mining process fee increase, and delayed payments, all contrib-

uting to an overall negative effect on the blockchain system. The values atop each bar in-

dicate the severity of these impacts, with negative values reflecting adverse consequences. 

The legend clarifies the color coding, associating green with positive impacts and red with 

negative ones. The concise labels to the left of each bar provide a clear description of the 

corresponding impact. 

 

Figure 2. Impact of the 2017 attack on the Bitcoin blockchain, where delayed payments and market 

value are the negative impacts to the network as the spam transactions and mining process fees 

increase. 

In 2014, an attack executed in the Ethereum blockchain called Man-in-the-Middle hi-

jacked BGP routes within a Canadian autonomous system, resulting in the theft of USD 

83,000 [102]. This incident highlighted the vulnerability of blockchain networks to attacks 

that aim at stealing digital assets. This attack exploited communication delays to manip-

ulate transactions and blocks within the blockchain network, potentially leading to dou-

ble-spending-based financial losses for legitimate users. The projection of blockchain 

anomalies on the user level is related to the concept of malicious users, i.e., users engaged 

in nefarious activities that trigger the above-mentioned anomaly events. Thus, it becomes 

crucial to identify any semblance of suspicious behavior among users, given the alarming 

rise in theft incidents.  

4.2. Anomaly Detection in Blockchain Networks 

The role of anomaly detection in blockchain security is multifaceted. Researchers are 

developing models for various blockchain layers, predicting anomalous commands in 

smart contracts, or detecting malicious block deployments. Continuous monitoring of net-

work behavior, facilitated through both active and passive monitoring, is indispensable 

for timely anomaly detection [81]. Active monitoring involves the focused observation of 

specific network segments, while passive monitoring encompasses the comprehensive 

analysis of the entire network’s performance. Both approaches share the common goal of 

identifying anomalous properties, determining whether they pose a threat, and 
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responding accordingly. The complexity of anomaly detection aligns with the complexity 

of the solution, necessitating a combination of clustering, classification, and analytical 

tools tailored to the type of anomaly and desired outcomes [81,103]. It is important to note 

that the anomaly detection or prevention problem’s complexity corresponds to the solu-

tion’s complexity. The solution is not a singular algorithm but rather a model based on a 

combination of various algorithms. Analytical tools are also integrated to visualize the 

output, providing researchers with a clearer perspective. Similarly, when attempting to 

identify abrupt or systematic changes in data, models based on classification and cluster-

ing prove to be the optimal choice [26]. In contrast, if the goal is to analyze slow and long-

term modifications and changes in the network, specific statistical and analytical tools be-

come more suitable for conducting the analysis [74]. 

The methods employed in anomaly detection are diverse, with statistical analysis 

delving into transaction and block distributions, machine learning algorithms discerning 

from normal behavior patterns, and network analysis scrutinizing transaction flow for 

abnormal activity. In particular, machine learning works towards establishing baseline 

patterns from historical data and identifying any deviations that fall outside the expected 

range [104]. For example, regarding the use of cluster analysis, such kinds of deviations 

correspond to outliers, which refer to observations that are dissimilar to the rest of the 

data points within a given sample. 

Table 2 depicts the basic characteristics of several anomaly detection frameworks, 

while the subsequent paragraphs delineate their basic operational properties. 

Table 2. Anomaly detection frameworks and their characteristics. 

Techniques Strengths Weaknesses 

Statistical 

Analysis 

Simple and interpretable approach; uti-

lizes statistical measures to establish nor-

mal behavior patterns 

Limited in detecting anomalies that deviate significantly from 

statistical measures 

Machine 

Learning 

Ability to learn from historical data and 

adapt to evolving anomalies; detection of 

complex and subtle anomalies 

Complexity and computational overhead in training and de-

ploying models; may generate false positives or false negatives 

if the anomaly patterns change over time 

Network 

Analysis 

Can capture systemic anomalies and 

identify network-level attacks 

Limited visibility into encrypted transactions and activities; 

complexity in analyzing large-scale networks.  

Heuristic-

based 

Utilizes expert knowledge and prede-

fined indicators of suspicious activities 

Limited to detecting known patterns and predefined indicators; 

may struggle to adapt to new and evolving types of anomalies 

Deep Learn-

ing 

Ability to apprehend non-linear data as-

sociation; effective detection of anoma-

lies that manifest convoluted patterns  

Need for significant corpus of meticulously annotated training 

data, particularly when it comes to detecting anomalies, which 

are frequently infrequent occurrences; time-intensive training  

• Statistical analysis: By harnessing the power of statistical measures, it strives to es-

tablish normal behavior patterns within a given dataset [35,105]. Through the metic-

ulous analysis of data distributions, correlations, and probabilistic models, statistical 

inference methods provide insights into the expected behavior and help identify de-

viations that may indicate anomalous activities [104–106]. 

• Data mining: In the ever-evolving landscape of anomaly detection, data mining tech-

niques emerge as powerful allies. Armed with the ability to learn from historical data, 

these methods adapt to changing environments and evolving anomalies [25]. 

Through the exploration of vast datasets, they attempt to reveal hidden patterns, cor-

relations, and trends, enabling analysts to uncover deviations from expected behav-

ior [28,104].  

• Network analysis: When it comes to anomaly detection in interconnected systems, 

network analysis takes center stage. By delving into the intricate web of relationships 

and interactions, network analysis can capture systemic anomalies that span across 

multiple nodes or connections [105]. These methods leverage graph theory and 
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network metrics to identify network-level attacks, such as coordinated efforts to dis-

rupt communication or exploit vulnerabilities [107].  

• Heuristic-based approaches: Drawing upon the wisdom of domain experts, heuris-

tic-based approaches provide a valuable tool in the arsenal of anomaly detection [31]. 

These methods utilize expert knowledge and predefined indicators of suspicious ac-

tivities to flag potential anomalies [23,26]. By leveraging human expertise and intui-

tion, heuristic-based approaches can rapidly identify behaviors that deviate from es-

tablished norms or violate predefined rules [79].  

• Deep Learning: Deep learning models stand out for their remarkable ability to grasp 

intricate and non-linear associations within data [3]. These models excel at capturing 

complex patterns and fluctuations that may manifest convoluted relationships. By 

leveraging their non-linearity, deep learning models adeptly identify anomalies that 

may exhibit unusual patterns, previously unseen correlations, or subtle deviations 

from expected behavior [108–110]. 

5. Data Mining Techniques Employed in Blockchain Anomaly Detection  

This section categorizes the unsupervised learning tools employed in the literature 

to develop systematic anomaly detection methodologies. The objective is to clarify their 

key characteristics, strengths, weaknesses, and applicability. In addition, the perspectives 

on using supervised and self-supervised learning for some of the anomalies reported in 

Table 1 are also discussed. Finally, the evaluation strategies typically used are reported 

and analyzed. 

5.1. Categories of Unsupervised Learning Algorithms  

The categorization of unsupervised learning algorithms for anomaly detection 

within blockchain networks underscores the diverse methodologies available to research-

ers and practitioners. By comprehensively understanding their attributes, strengths, and 

limitations, stakeholders can harness their capabilities to enhance the security, reliability, 

and scalability of blockchain systems. 

The categorization consists of seven categories commonly employed by the anomaly 

detection methods presented in Section 7. Table 3 depicts the algorithms along with their 

categorization and computational complexity, while the categories along with their basic 

characteristics are described in the subsequent paragraphs. 

• Partitional Methods: They mainly refer to partitional clustering algorithms such as 

the standard k-Means and its variants, and agglomerative hierarchical clustering [37]. 

Some more recent algorithms that fall into this category are the Birch [38] and affinity 

propagation [111].  

• Graph-based methods: They are based on representing the blockchain transaction 

data in graph structures, where nodes represent entities (e.g., addresses, accounts), 

and edges represent transactions between these entities. Each node may have associ-

ated attributes such as transaction volume, frequency, etc. Then, they calculate simi-

larities between nodes based on their behaviors and identify groups of similar nodes. 

Typical approaches falling in this category are the deepwalk [112], spectral clustering 

[113], and Louvain method [114].  

• Density-based approaches: They attempt to quantify the density measure of data 

points in the feature space. Regarding blockchain anomaly detection, this is trans-

lated into determining the density of addresses, transactions, transaction volumes, 

frequency, and relations between users and addresses. Points with low densities are 

likely to be labeled as malicious and anomalous. Representative algorithms com-

monly used are the local outlier factor (LOF) [115], the DBSCAN [116], and HDB-

SCAN [117] algorithms.  

• Probabilistic unsupervised learning algorithms: They are based on evaluating the un-

derlying probability distributions of the data. They involve inherent modeling of 
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latent variables, and they have been proven to be very effective in discovering hidden 

patterns in the data. Algorithms that are based on probabilistic modeling are the ex-

pectation maximization algorithm [37], the variational autoenconder [118], and the 

generative adversarial networks (GANs) [119].  

Table 3. Common unsupervised learning algorithms employed in blockchain anomaly detection 

along with the respective computational complexity and categorization (where n, k, m, and d stand 

for the number of data instances, clusters, nodes, and dimensions, respectively). 

Algorithm 
Computational 

Complexity 
Category Algorithm 

Computational 

Complexity 
Category 

k-Means [37] ( )O nk  Partitional 
Agglomerative hierarchical 

clustering [37] 
2( )O kn  Partitional 

Isolation forest 

[120] 
( log )O n n  Tree-based Local outlier factor [115] 2( )O n  Density-based 

DBSCAN [116] ( log )O n n  Density-based HDBSCAN [117] 2( )O n  Density-based 

Spectral 

clustering [113] 
3( )O n  Graph-based Louvain algorithm [114] ( log )O n n  Graph-based 

t-SNE [121] 2( )O n  
Dimensionality 

reduction 
Birch [38] ( log )O n n  Partitional 

Deepwalk [112] ( log )O m m  Graph-based 
Expectation maximization 

[37] 
( )O nd  Probabilistic 

Affinity propaga-

tion [111] 
2( )O n  Partitional 

Variational autoencoder 

[118] 
( )O nmd  Probabilistic 

GANs [119] ( )O nmd  Probabilistic One-class SVM [41] 2( )O n d  
One-class classifi-

cation 

 

• One-Class Classification: It performs anomaly detection by creating boundaries 

around normal data points in a high-dimensional space, which contains them in a 

defined region. Any data points that fall outside this boundary are identified as 

anomalies. The main representative of this category is the one-class support vectors 

machine (SVM) [41].  

• Tree-Based methods: They represent the blockchain data in decision tree structures 

and perform a labeling process according to which nodes that are isolated from the 

majority of nodes are defined as malicious. The most used algorithm credited to this 

category is the isolation forest [120].  

• Dimensionality reduction methods: They focus on transforming the available high-

dimensional data points into low-dimensional points, preserving the relative dis-

tances between them. Low-dimensional representation provides several advantages 

such as convenient visualization and easy outlier detection. In general, they are ap-

plied as assistive tools to the above categories. Such kinds of algorithms are the well-

known principal component analysis (PCA) (which is linear transformation) and the 

t-SNE (which is non-linear transformation) [121]. 

5.2. Perspectives on Supervised and Self-Supervised Approaches for Anomaly Detection  

In the context of blockchain, supervised approaches can be applied to detect specific 

anomaly patterns such as phishing attacks, double-spending, and Ponzi schemes. These 

methods typically involve training machine learning models on labeled datasets contain-

ing examples of normal behavior as well as known instances of anomalies [122].  

For example, in phishing attack detection, a supervised approach might involve 

training a classification model using features extracted from email headers, website URLs, 

or message content. The model aims to distinguish between legitimate communications 

and phishing attempts based on labeled training data. Similarly, in double-spending 
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detection, supervised learning algorithms can be trained to recognize patterns indicative 

of fraudulent transactions. By providing labeled examples of confirmed double-spending 

incidents, these models can learn to identify similar patterns in real-time transaction data 

[122].  

On the other hand, self-supervised learning techniques leverage the inherent struc-

ture of the data to learn representations without explicit labeling. They are particularly 

well suited for anomaly detection tasks where labeled data may be scarce or expensive to 

obtain. For instance, they can be used to reconstruct transaction sequences and identify 

deviations from expected patterns. For anomaly patterns like Sybil attack or 51% attack, 

self-supervised approaches enable the thorough analysis of the network’s topology and 

transactions’ history to identify unusual node behavioral patterns or mining activities 

[123]. 

Previous research has explored various supervised and self-supervised approaches 

for anomaly detection in blockchain networks. Musa et al. [30] categorized them based on 

learning modes and techniques, including supervised, semi-supervised, and unsuper-

vised mechanisms. Chandola et al. [31] provided several categories and discussed their 

pros and cons. Pourhabibi et al. [32] analyzed the usage of unsupervised learning methods 

in fraud detection, while Hisham et al. [27] emphasized on the effectiveness of ensemble 

classifier models for addressing vulnerabilities in blockchain frameworks. 

To this end, both supervised and self-supervised approaches offer valuable insights 

for detecting blockchain anomalies with each approach having its advantages and suita-

bility. In addition, it will be shown later in this paper that they can be effectively combined 

with unsupervised learning, since the latter can provide labeling assignments to unlabeled 

data, enabling the usage of the former.  

5.3. Evaluation Approaches  

The evaluation of the results obtained by unsupervised learning or by combining un-

supervised and supervised learning is a very crucial step towards developing effective 

and robust blockchain anomaly detection methods. Within the subsequent paragraphs, 

we report the most used measures identified by the current investigation: 

• Within cluster mean value of the sum of squares: It is defined as the average of the 

square distances between points belonging to a cluster and the respective cluster cen-

ter. It reveals the compactness degree of the resulting clusters. Thus, it is a measure 

of the distortion of a cluster. Small values correspond to highly compact clusters. 

• Silhouette score: It measures the similarity of a data point belonging to a specific clus-

ter in relation to the rest of the clusters. It employs the criteria of compactness and 

separation. The compactness is based on estimating the average distance of the point 

to all other points belonging to the same cluster. On the other hand, the separation is 

defined as the smallest distance between the point and all points belonging to the rest 

of the clusters.  

• Confusion matrix-based measures: They are the well-known measures coming from 

the resulting confusion matrices such as true positive rates (TPRs), false positive rates 

(FPRs), true negative rates (TNRs), precision, recall, and Fowlkes–Mallows index. 

They can be used when unsupervised learning is combined with supervised or self-

supervised learning or there exists a portion of labeled data in the available dataset.  

• Rand Index: The Rand index is a measure of similarity between two data clustering 

partitions of the same dataset. It considers the TPRs and TNRs and compares the 

agreement between the clustering results and the true class labels, making it suitable 

for evaluating clustering in the presence of ground truth labels. This measure can 

also be applied when unsupervised learning is combined with supervised or self-

supervised learning or there exists a portion of labeled data in the available dataset.  
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• Outlier Detection Rate: It is defined as the number of detected anomalies divided by 

the number of total anomalies that exist in a dataset. In general, high values of this 

measure imply better performance of the algorithm.  

• Optimal clustering: Usually, the clustering algorithms admit a predefined value for 

the number of clusters. Optimal clustering refers to the process of determining the 

optimal number of clusters in terms of compactness and separation criteria. This can 

be performed by iteratively applying the clustering algorithm, where in each itera-

tion, the number of clusters increases by one. For each iteration (i.e., for each number 

of clusters), a function that includes the compactness and separation criteria is eval-

uated. When the iteration stops, the optimal number of clusters corresponds to the 

minimum value of the above-mentioned function.  

6. Data Structures Used in Blockchain Anomaly Detection  

Depending on the problem at hand, the implementation of unsupervised learning 

methods in blockchain anomaly detection is strongly related to the way the data are for-

matted and structured and the features that are used. These topics are discussed in the 

subsequent analysis.  

Herein, three basic types of data structures are analyzed, namely, tabular-based, se-

quence-based, and graph-based structures. Each of them appears to have certain charac-

teristics while providing various convenient ways to apply unsupervised learning in de-

tecting blockchain anomalies. 

6.1. Tabular-Based Data Structures  

A common representation of the blockchain data is the tabular format. The tabular 

format is very convenient, in particular when cluster analysis is applied, because the in-

terrelation between features and between instances can be easily explored. In the case of 

Bitcoin, due to the pseudo-anonymity status of the network, the raw data extracted from 

the ledger are not in the position to unravel the relationship between entities (i.e., users) 

on the network and addresses belonging to those entities [110,124]. Thus, data transfor-

mation to tabular format can be an easy way to capture the corresponding relationships, 

which on many occasions appear to be hidden. In addition, the data can be analyzed and 

processed at various aggregation stages, and thus, different frameworks can be used to 

represent and store them before they are to be used in anomaly detection tasks [125]. For 

example, Kinkeldey et al. [124] used the Mongo Database [126] where the data were stored 

in a column-based structure providing fast access and retrieval as well as effective data 

aggregation strategies. Finally, a tabular data format leads to an easy feature extraction 

process [127].  

6.2. Sequence-Based Data Structures  

In a blockchain network, each user node broadcasts the whole block, and therefore, 

the complexity involved prevents the effective implementation of the process. On the 

other hand, once a malicious transaction is erroneously admitted by a user it cannot be 

undone. Thus, an in-time detection of the anomalous transaction would prevent the de-

pletion of valuable resources for the user [128]. In this regard, the identification of anom-

alous transactions would be effectively supported by representing the blockchain data as 

time series (i.e., data sequences) and using specialized techniques (e.g., rolling window 

aggregation method [129]) to extract useful features that describe the properties of the 

time series data and define the space where the unsupervised learning is to be applied 

[130].  

For example, times series representation of the Bitcoin data has been involved in ad-

dress clustering to identify accounts belonging to the same user. A feasible way to do this 

relies on encoding sequences of transaction data in patterns each of which is described by 

features related to the information that flows in the transactions (tx_in) and the 
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transactions’ output information (tx_out) [131]. For example, considering cybersecurity 

applications related to blockchain, the tracing and audit of transaction events appear to 

be most evident, where blockchain transactions can be treated as a sequence of events, the 

end of which might correspond to a malicious incident [132].  

The utilization of time series representation of blockchain data has been very conven-

ient in defining behavior patterns to identify malicious activities. This is translated in stud-

ying the data under the framework of behavior patterns, originating from the very nature 

of the blockchain structure, because each block contains a ledger (i.e., record) of all trans-

actions that took place since the previous block. Therefore, there exist multiple backup 

ledgers in a blockchain network. Pattern sequences are generated based on features se-

lected in terms of various ways. For example, the changes in the transaction amount over 

time [133] or the selection of the time taken to perform a transaction together with the 

transaction amount from one user node to another one [134]. Notably, in both cases, the 

transaction amount is the most predominant feature.  

The time series representation of the Ethereum can be accomplished by representing 

the smart contract codes as a sequence of opcodes, which are hashed and used as input to 

the unsupervised learning [135], such as affinity propagation [111] and k-Medoids [136].  

6.3. Graph-Based Data Structures  

Graph-based analysis and modeling has manifested itself as an effective tool in deal-

ing with financial fraud [137]. The impetus behind this fact is the inherent capability of 

graph-based data structures in representing the interactions between the entities encoded 

in the graph yielding effective classification of these entities based on predefined features 

[138,139].  

So far, the graph-based representation of blockchain data has been proven to be very 

effective in dealing with the limitations involved in the implementation of more tradi-

tional considerations because it supports a decentralized, scalable, and flexible way of in-

dexing blockchain data [140]. In addition, a graph is compatible with the blockchain net-

work structure, a fact that renders it a scalable procedure for representing the data. In a 

nutshell, the main benefits of using graphs in blockchain technologies are enumerated as 

follows [78, 139, 140]: (a) it is a scalable structure and can effectively encompass large 

amounts of future data, (b) it provides flexibility in terms of certain query languages, ren-

dering querying for data retrieval a straightforward process, (c) the indexing process can 

be easily applied for a large amount of data, and (d) it is based on decentralized protocols 

favoring high-security levels.  

Figure 3 depicts two typical graph structures, namely, user graph and transaction 

graph, proposed by Reid and Harrigan in [78]. The user graph represents accounts as 

nodes with loops indicating transactions between accounts, allowing for the embedding 

of fund sources and destinations. On the other hand, in the transaction graph, the node 

represents a transaction while the edges represent the flow of funds between transactions, 

where the output of a transaction is taken as the input by the next one, and the weight of 

the edge corresponds to the transferred amount. 
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Figure 3. (a) User graph that depicts nodes representing accounts (i.e., A, B, C) with edges indicating 

transactions between accounts forming a graph with loops to capture fund flow directions and (b) 

transaction graph that shows nodes as individual transactions (i.e., t1, t2, t3, t4, t5, t6) with edges 

representing the flow of funds between transactions, lacking closed loops due to the sequential na-

ture of transactions in blockchain data. 

The flexibility and scalability of graph-based models make them well suited for han-

dling the complex and interconnected nature of blockchain networks. By incorporating 

measures of graph regularity based on information theory, researchers can quantify the 

predictability of blockchain structures and enhance anomaly detection performance. 

These measures can help in identifying deviations from normal network behavior and 

distinguishing legitimate transactions from potentially malicious ones. 

To elaborate blockchain graph-based data for anomaly detection tasks, specialized 

unsupervised learning techniques are used such as the deepwalk algorithm [112], spectral 

clustering [113], Louvain graph-based method [114], isolation forest [120], etc. The main 

target of these methods is to maintain the graph’s properties (e.g., the graph’s structure, 

the features related to nodes, the features related to edges, etc.) by incorporating graph 

embedding mechanisms [139]. Graph-based anomaly detection offers several advantages, 

including intuitive pattern recognition and flexibility in analysis. However, challenges 

such as scalability and privacy concerns persist. Despite these challenges, the amalgama-

tion of various graph structures presents a visually interpretable framework for securing 

blockchain networks. Achieving a balance between insightful analysis and adaptability is 

imperative for effectively safeguarding blockchain ecosystems [110]. 

7. Unsupervised Learning-Based Blockchain Anomaly Detection 

This section emphasizes technological achievements from the perspective of the al-

gorithms used and their implementation schemes. From this point of view, three main 

categories have been identified based on the use of algorithms and their efficiency. In this 

direction, many research papers are reported, each of which follows one of these catego-

ries. In the analysis, prominent learning algorithms are dissected such as k-Means [37], 

hierarchical clustering [37], DBSCAN [116], gaussian mixture model (GMM), agglomera-

tive clustering [37], self-organizing maps (SOM), etc.  

The first category delineates methodologies that solitarily implement unsupervised 

learning, in the sense of the standalone application of one learning algorithm. Each meth-

odology is scrutinized regarding its strengths, limitations, and practical applicability 

across diverse scenarios. The aim is to provide a comprehensive understanding of the in-

trinsic characteristics of these algorithms and their roles in blockchain anomaly detection. 

Moving beyond the first category, the second category focuses on methods that at-

tempt to succeed in detecting anomalies by combining two or more learning algorithms 

using various types of combinations such as cascade or parallel. Cascaded combinations 

take center stage, while the parallel ones highlight their efficacy in capturing complex 

(a) (b)
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structures and patterns within the data. This exploration deepens our understanding of 

unsupervised methods and their applicability in scenarios requiring an appropriate rep-

resentation of the information.  

Finally, the third category delves into the dynamic interplay between supervised and 

unsupervised learning techniques. The investigation explores methodologies that lever-

age both paradigms to address complex problems within the same domain. By fusing the 

strengths of supervised and unsupervised approaches, these ensemble strategies aim to 

enhance overall model performance.  

7.1. Category 1: Solitary Implementation of Unsupervised Learning  

Each method belonging to this category employs a single unsupervised learning al-

gorithm to deal with certain problems related to anomaly detection. Their diversification 

relies on the type of studied anomalies, the way they process the data and the data struc-

tures used, the evaluation metrics employed to verify the results, and the programming 

framework. Tables 4 and 5 report the methods and the corresponding characteristics.  

A public blockchain ledger is used in many different ways for legal purchases, gam-

bling, illegal activities, and so on. Thus, it is important to attain a clear classification of 

those activities and assign them to specific users, shedding light on the exact usage of the 

network, which will further provide helpful insights in determining illegal activities [141].  

In a typical public blockchain network, there exists a very large number of pseudo-

anonymous addresses. Thus, to effectively identify malicious user activities, it is im-

portant to associate addresses with users. Although such a process can be very helpful, it 

constitutes a challenging problem due to the huge amount of data existing in public block-

chain networks [124]. Any establishment of such kinds of associations would forge solid 

means to come up with effective anomaly detection tools. Unsupervised learning in the 

form of data clustering has been exemplified as a very trustworthy strategy to determine 

and aggregate the addresses linked to a user [124].  

As such, the quest to elaborate on the relationship between addresses and users has 

led to various research directions with many forms and shapes, employing information 

coming mainly from the transaction record. For example, the extraction of an appropriate 

set of features that describe properties of transaction addresses can be involved in strate-

gies that attempt to timely detect harmful activities. This kind of strategy is strongly re-

lated to the real-time identification of potentially harmful transactions and provides cer-

tain advantages such as taking in-time actions by the user to prevent them [130]. However, 

the main problem involved has to do with the complexity of the procedure expressed in 

power and bandwidth resources needed for such an attempt. Deepa and Akila [128] pro-

posed an approach to tackle that problem by using the transaction history of a private 

blockchain network. They employed the erasure coding technique [142] to handle the 

missing data and represented the resulting dataset as time series, which enabled the usage 

of the rolling window aggregation method [129] to obtain a set of features described by 

information related to the user addresses. Having extracted the features, the k-Means al-

gorithm was put in place to identify several anomalous activities such as fraudulent trans-

actions, double-spending attacks, DDoS attacks, data falsifying, and node capture.  

The detection of multiple addresses controlled by the same user to keep the change 

accounts has also been investigated to understand the differences between malicious and 

benign activities. In general, change addresses are employed to thwart replay attacks, and 

they define the very core of the temporal nature of public blockchains (especially for 

Bitcoin), providing private protection by increasing the anonymity of the user. Therefore, 

their usage appears to be effective in giving certain insights regarding illegal attacks. In 

this regard, temporal features related to the transactions’ properties can be included. Such 

an approach was developed by Chaudhari et al. [143], who considered all facets involved 

in public blockchain transactions by using equally important non-temporal and temporal 

features, which were extracted by representing the blockchain data in the format of user 
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and transaction graphs as presented in [78]. To identify the accounts belonging to the same 

user, they developed multi-input heuristics that revealed corresponding change ad-

dresses. Then, they applied the k-Means to obtain clusters of addresses and detected ma-

licious accounts in terms of the cosine similarity with other benign addresses belonging 

to the same cluster. 

In the case of the Bitcoin network, a key point is to acquire incidence relations be-

tween addresses. Typically, incidence relations enable the creation of a graph-based rep-

resentation of them, which further can assist the implementation of cluster analysis over 

the graph data. In this direction, Zheng et al. [144] proposed to use a Gephi graph to rep-

resent the address data and applied the Louvain community clustering method to obtain 

incidence relation between users to anonymize the corresponding transactions with the 

advantage of improving the traceability of the Bitcoin movement and achieving a better 

future utilization. The Gephi graph is generally used in two forms: (a) users and transac-

tions are represented as vertices and edges, respectively, and (b) transactions and users 

are represented as vertices and edges, respectively.  

The use of graph-based data has been frequently studied in supporting the identifi-

cation of distinct theft attacks, mainly for the Bitcoin transaction data, predominantly in 

instances where reported thefts have transpired [138,144]. The related investigations con-

centrate on transforming the Bitcoin data into graph-based structures using several fea-

tures related to the graph vertices (i.e., user nodes) and edges (i.e., transactions). In [138], 

the k-Means was applied to detect abnormalities reported on the graph such as the all in 

vain theft, stone man loss, and mass Bitcoin theft. The overall evaluation was conducted 

considering the relationship between the k-Means cost function and the number of clus-

ters, thus resulting in a type of optimal clustering approach. In [145], the authors discussed 

the detection of double-spending attacks by transforming the Bitcoin network into a di-

rected acyclic graph, where vertices corresponded to blocks that were created by the min-

ers. The advantage provided by this transformation was that the blocks created by an at-

tacker are not well connected in the graph, and they can be easily detected using special-

ized clustering approaches, such as spectral clustering, to categorize the graph’s vertices 

into malicious and not malicious.  

Transaction graphs have also been used in identifying information leaks. It has been 

shown [146] that synchronization and timing of messages of transactions in the Bitcoin 

network may leak information about their origin, thus enabling their exploitation by con-

nected adversarial nodes. As a result, the timing of transaction messages can expose de-

tails about their origin, making them susceptible to manipulation by well-connected ad-

versarial nodes. To investigate this issue (i.e., the information leaking in transaction mes-

sages by adversarial nodes), Biryukov and Tikhomirov [146] analyzed the network traffic, 

using the k-Means algorithm to cluster transactions based on the node that first intro-

duced them into the network. The resulting methodology encompassed a procedure to 

assign weights to nodes’ IP addresses, considering propagation timestamps. The Bitcoin 

data were collected by the bcclient [147], and the clustering implementation scheme was 

evaluated by the Rand index [148].  

In the Ethereum network, the use of cluster analysis over smart contracts has been 

viewed as a tool to allow for easier contract analysis and detection of security issues, such 

as malicious contracts. Due to the inherent tabular format of the Ethereum data, the fea-

ture space upon which the clustering is to be applied is defined straightforwardly. In [135], 

Norvill et al. used the Ethereum data [149] and focused on a specific eco-efficient smart 

contract approach, where the affinity propagation method [111] encircled the k-Medoids 

[137] to quantify the similarities between pairs of contracts using the several distance func-

tions. To encapsulate the essence of the resulting partition succinctly, the clusters were 

assigned labels based on a tokenization procedure, while the evaluation process was con-

ducted using the frequency distribution values, which are in the position to assess the 

homogeneity within each cluster.  
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A particular category of anomaly detection methods relies on viewing users and 

types of users as entities and then partitioning those entities into groups with similar char-

acteristics for the identification of the corresponding behavior patterns based on the trans-

actions performed by those entities [124]. Hence, it appears that the users’ behavior pat-

terns become decisive tools in determining malicious behaviors. A promising procedure 

to detect and analyze behavior patterns relies on using time series (i.e., sequences) repre-

sentation of the data related to user nodes. Works focused on that issue were separately 

developed by Huang et al. [133] and Kumari and Catherine [134]. The former defined the 

behavior patterns as changes in the transaction amount over time for a specific user node, 

while the latter as the time needed to execute each transaction as well as the amount trans-

ferred by that transaction. Both works used the Dynamic Time Warping (DTW) measure 

to quantify dissimilarities between sequences and variants of the k-Means algorithm to 

group the sequence patterns into a predefined number of clusters, where the anomalous 

patterns were considered, i.e., those that did not conform to any cluster representative 

(i.e., cluster center). Similar strategies consist of developing effective mechanisms to quan-

tify behavior patterns in a blockchain ledger, such as the detailed auditing of log-in chain 

event incidents. This mechanism provides the ability to view and treat the transactions 

belonging to a certain block as sequences of events, each of which is assigned to a certain 

time interval. As a result, it can be very helpful in tracing a chain (i.e., sequence) of events 

preceding a particular event incident with the ultimate purpose of finding out whether 

that incident is malicious or not. In [132], such kind of chain events were defined as pat-

terns, and the T-patterns method [150] was adopted to trace the event chains, which are 

then clustered in terms of an agglomerative hierarchical clustering procedure [151] to 

identify suspicious chains of events as outliers. In [106], a blockchain network specially 

designed for device management in IoT applications was developed. The primary as-

sumption was that an effectively trained anomaly detection model is in the position to 

distinguish behaviors that deviate from normal ones, thus possessing the capability of 

recognizing new threats entering the network without any further learning procedures. 

The framework consisted of two stages. The first encompassed an anomaly detection pro-

cedure by adopting the extended Markov model. The second implements and evaluates 

the anomaly detection model in a well-designed blockchain-based distributed IoT envi-

ronment.  

Cluster analysis has also been used in supporting consensus protocols [152-160] For 

example, Khenfouci et al. [125], to avoid data tampering and fraudulent activities, devel-

oped a customized clustering-based consensus protocol to carry out a decentralized con-

sensus mechanism, according to which the k-Means was applied locally by multiple com-

petitive miners. The methodology comprised four layers (i.e., data layer, network layer, 

blockchain layer, and machine learning layer) and had two main actors: management and 

miner. Upon the convergence of the k-Means, each miner embedded the resulting block 

into the network. 

Table 4. The characteristics of the methods belonging to Category 1, which are given in terms of 

types of anomalies they used for, learning algorithms, and evaluation techniques. 

Method Types of Anomalies  
Unsupervised Learning 

Methods 

Evaluation 

Method 

Kumari and Cathe-

rine [134] 
Double-spending attack k-Means Within cluster distortion 

Norvill et al. [135] 
Malicious smart contracts, DAO at-

tack 
k-Medoids Frequency distribution score 

Huang et al. [133] Malicious node behavior 

Behavior Pattern Clustering 

(custom modification of k-

Means) 

Precision 
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Kinkeldey et al. 

[124] 
Malicious address behavior  k-Means 

Cluster visualization with the 

BitConduite interface 

Khenfouci et al. 

[125] 
Fraud detection k-Means 

Precision, silhouette score, accu-

racy, F1-score 

Zambre and Shah 

[138] 

All in vain theft, stone man loss, 

mass bitcoin thefts, malicious user 

identification 

k-Means 
Within cluster standard devia-

tion 

Epishkina et al. [132] Malicious behavior patterns 
Agglomerative hierarchical 

clustering 
Ratio statistical distance  

Mirsky et al. [106] 
Intrusion-based adversarial attacks 

in IoT environment 
Extended Markov model 

Probability scores, false positive 

rates 

Deepa and Akila 

[128] 

Advanced attacks centered on the 

heresies of safety strategies, DDoS 

attacks 

k-Means % detection accuracy 

Swaroopa and 

Sharma [145] 
Double-spending attack Spectral clustering Several spectral properties 

Shi et al. [152] Malicious network activities k-Means++ Fowlkes–Mallows Index [135] 

Zheng et al. [144] Malicious Bitcoin transactions Louvain algorithm Louvain runtime efficiency 

Monamo et al. [127] Fraud detection Trimmed k-Means Within cluster sum of squares 

Shayegan et al. [160] 

Theft attacks (stone mass loss, 

Stefan Thomas loss, all in vain 

theft, mass MyBitcoin theft, Linode 

Hacks, Bitfloor theft, and Cdecker 

theft) 

Trimmed k-Means Cluster dispersion rate  

Biryukov and Tikho-

mirov [146] 

Information leaking in transaction 

messages by adversarial nodes 
k-Means Rand score 

Chaudhari et al. 

[143] 
Malicious addresses k-Means F-measure, precision 

Table 5. The characteristics of the methods belonging to Category 1, which are given in terms of 

types of network type, data source and structure, and programming framework. 

Method Network Type Data Source Data Structure 
Programming  

Framework 

Kumari and 

Catherine [134] 
Private Artificially generated Transaction sequences Python 

Norvill et al. [135] 
Public 

(Ethereum) 
etherscan.io  

Smart contract codes as se-

quences of opcodes 
Not reported 

Huang et al. [133] 
Private (stock 

trading dataset) 

Real blockchain application 

data on stock trading 

Sequences of transaction 

data 
Not reported 

Kinkeldey et al. 

[124] 
Public (Bitcoin) Bitcoin core client  Tabular 

Python,  

JavaScript/D3 

Khenfouci et al. 

[125] 
Private UCI repository  Tabular 

Go language, Go-LibP2P, 

Ubuntu System 

Zambre and Shah 

[138] 
Public (Bitcoin) Publicly available data Graph-based Not reported 

Epishkina et al. 

[132] 
Public (Bitcoin) Bitcoin Core client  

Sequences of transaction 

data 
Not reported 

Mirsky et al. [106] 
Private (IoT envi-

ronment)  

Specially designed IoT da-

tabase 
Tabular C++ 
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Deepa and Akila 

[128] 
Private 

Transaction data (private 

blockchain network) 

Time sequences of transac-

tion data 

Python on Anaconda 

Framework 

Swaroopa and 

Sharma [145] 
Private Custom data Graph-based Python  

Shi et al. [152] Private Custom data Binary protocol messages Python 

Zheng et al. [144] Public (Bitcoin) 
Bitcoin historical transac-

tions 
Graph-based Python 

Monamo et al. 

[127] 
Public (Bitcoin) University of Illinois Tabular R programming language 

Shayegan et al. 

[160] 
Public (Bitcoin) ELTE Bitcoin Project  Tabular Matlab 

Biryukov and 

Tikhomirov [146] 
Public (Bitcoin) Bitcoin Testnet List Structure Python–Scikit Learn 

Chaudhari et al. 

[143] 
Public (Bitcoin) Bitcoin Core client  Graph-based Python–Scikit Learn 

A crucial factor in identifying illegal user activities is the discrimination between dif-

ferent types of unknown network protocols regarding the respective security issues, as far 

as the effectiveness of clustering difficulties caused by different protocol message lengths 

is concerned. Shi et al. [152] employed the k-Means++ method [153] to address this issue, 

where the method extracted the maximum frequent sequences from the binary protocol 

messages using a minimum support threshold, while they used an algorithmic method-

ology based on the Bide algorithm to mine the maximum frequent sequences [154]. The 

evaluation of the whole approach was based on the Fowlkes–Mallows Index [155].  

It has been stated that k-Means does not perform well in blockchain anomaly detec-

tion problems [156, 157]. One reason behind this is that the algorithm appears to be very 

sensitive to initialization, and therefore, the resulting clusters are unbalanced in the sense 

that the utilizations of the corresponding clusters appear to be very different from each 

other, without obtaining a certain level of equalization [158]. However, traditionally, it has 

been treated as a basic tool in blockchain anomaly detection, especially some of its vari-

ants.  

Monamo et al. [127] embedded the trimmed k-Means [159] into a framework, which 

performed object clustering within a multivariate setup. The final number of clusters was 

determined through optimal clustering, where the sum of square distances within clusters 

played the role of the performance index. The trimmed k-Means was also used in [160] to 

develop a collective anomaly detection approach, diverging from the conventional meth-

ods in that instead of implementing anomaly detection considering individual addresses 

and wallets, the study focused on scrutinizing anomalies at the user level, where the avail-

able dataset was taken from Kondor et al. [161]. An interesting result of the study indi-

cated that anomalies were more conspicuous among users with multiple wallets. 

7.2. Category 2: Combining Unsupervised Learning Algorithms 

The combinations of several unsupervised algorithms in blockchain anomaly detec-

tion have been carried out in different ways depending on the problem at hand. The meth-

ods studied in this section fall into two combination types, namely, cascade and parallel, 

the basic structures of which are illustrated in Figure 4. Tables 6 and 7 present the charac-

teristics of methods belonging to this category.  
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Figure 4. Combination types between unsupervised learning algorithms for blockchain anomaly 

detection: (a) cascade type and (b) parallel type. 

The cascade type describes methodologies that apply in sequence at least two unsu-

pervised learning algorithms. In most cases, only two algorithms are used, where the re-

sults of the first are further processed by the subsequent one. At a practical level, the first 

focuses on identifying blockchain anomalies, while the second attempts to cluster those 

anomalies into groups, each of which corresponds to a general type of anomaly, thus ob-

taining the types of anomalies involved in the problem at hand.  

The parallel type usually refers to the implementation of several unsupervised learn-

ing techniques for the same problem to determine the one with the best performance. 

These two combination types are analytically described within the next subsections 

in terms of the problems they attempt to address. 

7.2.1. Cascade Combination Type 

In general, it is widely assumed that any suspicious user-based and/or transaction-

based behavior is likely to act as a proxy for anomaly behavior. It is also well accepted 

that any solution to that problem can be extended to other network settings that may not 

concern financial transactions. To address that issue, Pham and Lee [156] represented the 

Bitcoin data in the form of two graph structures to encode the users (i.e., users’ graph 

structure) and the transactions (i.e., transactions’ graph structure), according to the meth-

odology of Reid and Harrigan [78]. Considering both graphs they extracted a set of 12 

features that described the user and transaction properties of the respective nodes, and 

applied three unsupervised learning mechanisms, namely, the k-means, Mahalanobis dis-

tance, and the one-class SVM. However, they found that the k-Means clustering algorithm 

was not effective enough for anomaly detection. Therefore, in their subsequent study 

[157], they improved the performance of the k-Means algorithm using the local outlier 

factor (LOF) method [115]. In particular, they used the k-Means in sequence with the LOF 

algorithm, where the LOF indices were determined by the k-Means. The number of clus-

ters used by the k-Means algorithm was evaluated by optimal clustering in terms of the 

cross-entropy measure.  

The study of the cryptocurrency data for identifying market manipulation can pro-

vide all stakeholders (i.e., traders, investors, etc.) with insightful points that concern the 

assets they are interested to sell or buy. Such trade-based market analysis was carried out 

in [162]. To effectively detect contextual-based anomalies in the form of outliers, the au-

thors used tree-based data representation and developed an unsupervised learning algo-

rithm that combined in sequence the KDE-Track algorithm [163] and the isolated forest 
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method [120]. The former assumed that values in sparse regions are likely to be identified 

as outliers, while the latter was based on the observation that the mean path length from 

the tree root to an anomaly leaf is shorter than the paths to normal tree nodes.  

The in-sequence implementation of k-Means and RolX [164] was investigated in 

[165]. The RolX constitutes an unsupervised learning mechanism that attempts to classify 

the nodes of a graph in several classes (called roles), each of which contains nodes with 

similar structural features. The authors represented the data as user graphs in a similar 

way to the approach in [78]. The key issue was to use the k-Means to categorize nodes 

with multiple transactions (called hubs), and to use the RolX algorithm to assign to each 

hub a role able to identify anomalous user behaviors related to money laundering/mixing 

services.  

Turner et al. [139] discussed the problem of identifying ransomware attacks in the 

Bitcoin network. They employed a graph-based representation of the Bitcoin data ex-

tracted from the wallet explorer API [166] with random seed addresses. To accomplish 

this task, they used in sequence three unsupervised learning algorithms, namely, the Lou-

vain algorithm to preprocess the graph data, the Deepwalk embeddings method [112] to 

carry out the feature extraction process, and the k-Means algorithm to evaluate the risky 

nodes in terms of the cosine similarity measure. Graph embeddings have also been used 

in coping with the pseudonymity established between users and transactions in the 

Bitcoin network. For example, to reveal relationships hidden in the data, Shah et al. [167] 

determined patterns that are linked to those relationships by setting up a cluster analysis 

based on embedding feature generation. Embeddings were created by the utilization of 

the variational graph autoencoder [118] and explainable k-Means [168]. The obtained clus-

ters’ visualization was underpinned by the Kohonen self-organizing map, which ulti-

mately provided informative insights into the way the design parameters defined the clus-

ters’ structure.  

An interesting problem is the simultaneous detection of multiple malicious activities. 

An effective way to accomplish this task is to use in sequence two unsupervised learning 

methods, where the first obtains a partition of the blockchain data, and the second elabo-

rates on the outliers obtained previously and generates a partition of them into several 

clusters each of which corresponds to one malicious activity. Such a methodology was 

reported by Sayadi et al. in [105], where the bitcoin data [169] were processed in sequence 

by the one-class support vector machine algorithm that identified the outliers and then 

the use of k-Means obtained four clusters corresponding to the DDoS attack, double-

spending attack, 51% vulnerability, and selfish mining attack.  

 

Table 6. The characteristics of the methods belonging to Category 2, which are given in terms of 

combination type, type of anomalies they used for, learning algorithms, and evaluation techniques. 

Method 
Combination 

Type 
Types of Anomalies  

Unsupervised Learning 

Methods 

Evaluation 

Method 

Pham and Lee 

[156] 
Parallel 

Anomalous behavior as a proxy 

for suspicious users and transac-

tions 

One-class SVM, Mahalano-

bis distance, k-Means 

Dual evaluation 

(custom metric) 

Pham and Lee 

[157] 
Cascade Fraud detection 

One-class SVM, local out-

lier factor, k-Means 

Dual evaluation 

(custom metric) 

Sayadi et al. 

[105] 
Cascade 

DDoS attack, double-spending 

attack, 51% vulnerability, selfish 

mining attack 

One-class SVM, 

k-Means 
Silhouette score 

Saravanan  

et al. [170] 
Parallel 

Hacked transactions, fraudulent 

activities, money laundering 

Isolated forest, k-Means, 

autoencoder, clustering 

based local outlier factor  

Accuracy, precision, 

recall, F1-score 
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Sun et al. [171] Cascade Malicious user accounts 
t-SNE algorithm,  

Birch algorithm 

Customized method-

ology 

Zhang et al. 

[172] 
Parallel Abnormal transactions 

k-Means,  

generative adversarial net-

work  

Precision, recall,  

F1-measure 

Kampers  

et al. [162] 
Cascade 

Cryptocurrency market manipu-

lation 

KDE-Track algorithm, 

isolated forest 

Domain expert re-

views, F1-score 

Hirshman et al. 

[165] 
Cascade 

Money laundering Mixing Ser-

vices 

k-Means, Role eXtraction 

(RolX) algorithm 
Factorization error 

Turner et al. 

[139] 
Cascade Ransomware attacks Deepwalk, PCA, k-Means 

Cosine similarity 

measure of risk 

Shah et al. [167] Cascade 
Outlier pattern detection (wallet 

authority detection) 

Explainable k-Means, Vari-

ational autoencoder, Self-

organizing maps 

True positive rate, 

Cluster distortion 

measure 

Agarwal  

et al. [173] 
Parallel 

Phishing, gambling, Ponzi 

scheme 

k-Means, HDBSCAN, spec-

tral clustering, agglomera-

tive clustering, one-class 

SVM 

Silhouette score 

Table 7. The characteristics of the methods belonging to Category 2, which are given in terms of 

types of network type, data source and structure, and programming framework. 

Method Network Type Data Source Data Representation Programming Framework 

Pham and Lee 

[156] 
Public (Bitcoin) 

University of Illinois Ur-

bana 
Graph-based Python, NetworkX library 

Pham and Lee 

[157] 
Public (Bitcoin) 

Stanford Network Analysis 

Project 
Graph-based Python, NetworkX library 

Sayadi et al. 

[105] 
Public (Bitcoin) 

Bitcoin blockchain using 

Blockchain.info API 
Tabular 

Python on Spyder/Anaconda, 

Orange3 API 

Saravanan  

et al. [170] 
Public (Bitcoin) IEEE Data Port, Kaggle Tabular Not reported 

Sun et al. [171] Public (Ethereum) 
Etherscan blockchain ex-

plorer APIs 
Eigenvector-based Not reported 

Zhang et al. 

[172] 
Public (Bitcoin) Reid and Harrigan [77] Graph-based Python–Tensorflow 

Kampers  

et al. [162] 
Public 

Amazon Web Services 

cloud 
Tree-based Python 

Hirshman et al. 

[165] 
Public (Bitcoin) 

Bitcoin transaction network 

dataset 
Graph-based Not reported 

Turner et al. 

[139] 
Public (Bitcoin) Walletexplorer API Graph-based Python 

Shah et al. [167] Public (Bitcoin) Bitcoin full historical data Graph-based Python, Apache Spark 

Agarwal  

et al. [173] 
Public (Ethereum) 

Etherscan blockchain ex-

plorer APIs 
Tabular Python 

Considering the Ethereum network, there are two types of accounts, namely, exter-

nally owned accounts (EOAs), which represent the users in the form of a hash value, and 

smart contract accounts. A typical approach is to study certain types of transaction rela-

tionships between EOAs and smart contract accounts, which along with the above two 

types of accounts form a heterogeneous Ethereum network. The analysis of Ethereum data 

at the present stage is mostly based on the statistical characteristics of Ethereum nodes 

and lacks analysis of the transaction behavior between them. However, the presence of 
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several features renders such kinds of approaches very complex to implement. Due to the 

inherent tabular format of Ethereum data, dimensionality reduction approaches can be 

conveniently applied to carry out a transformation of the original data into points in a low 

dimension, which can also enable their visualization. Effective dimensionality approaches 

used in blockchain anomaly detection are the PCA and the t-SNE [121,139]. Relative meth-

odologies obtain clusters of users and smart contracts by incorporating transaction infor-

mation coming from Ethereum blocks to perform identity detection of malicious users 

[170,171]. This can be accomplished by first using a node embedding method to obtain the 

eigenvectors for the EOA and smart contract nodes. Then, reduction dimensionality ap-

proaches [121] can be used to assist various clustering algorithms (e.g., the Birch algo-

rithm) to calculate the user and smart contract clusters and detect malicious user accounts.  

7.2.2. Parallel Combination Type  

The usage of generative adversarial networks [119] has been seen as an alternative 

tool to surpass the need for labeling approaches, usually employed in supervised learning 

implementation, and perform an effective anomalous detection strategy. The benefit of 

using GANs comes from the fact that it does not require any time-consuming labeling 

procedure for the dataset. In this direction, Zhang et al. [172] applied a GAN-based mech-

anism to the Bitcoin transaction data. The data were represented as a user-based graph 

[78]. After standardizing the dataset, they trained a GAN network and for comparative 

reasons a k-Means model, where the former appeared to outperform the latter. 

On many occasions, comparative analysis between several unsupervised learning al-

gorithms may give valuable results concerning the relative behavior of the above methods 

for the problem at hand. Such an analysis is reported in [170], where the performances of 

four well-known unsupervised methods (i.e., isolated forest, k-Means, autoencoder, and 

cluster-based local outlier factor (CBLOF)) were evaluated using bitcoin data collected 

from diverse sources such as IEEE Data Port and Kaggle.  

As mentioned above, in the Ethereum network, two transaction types are carried out 

in terms of smart contracts, namely, internal and external. Smart contracts that are not 

labeled as malicious cannot be considered as such (even in the case it is malicious), but 

rather only to hypothesize (i.e., suspect) that it is malicious. From a clear point of view, an 

account is considered malicious if there is proof that it is involved in (i.e., carries out, fa-

cilitates, and/or supports) illegal activities such as Ponzi schemes, Lendf Hack, Akropolis 

Hack, Phishing, Gambling, etc. Some of these activities are motivated by social behavior, 

while others take place due to the exploitation of bugs and vulnerabilities. Therefore, since 

there are many different types of activities originating from different motivations, any 

associations between vulnerabilities and particular malicious activities appear to be a dif-

ficult task. Unsupervised learning can be effectively used to identify smart contracts show-

ing malicious behavior (even when the contract is not labeled as malicious), while at the 

same time, it has vulnerabilities. In this regard, it has been shown that there is a strong 

correlation effect between vulnerabilities in smart contracts (SCs) and illegal activities on 

the cryptocurrency platform. In [173], the authors studied the vulnerabilities of SCs using 

the concept of severity score [174]. As it was expected that the severity score would assist 

in identifying the correlation between vulnerabilities and malicious behaviors, they added 

it to the set of features originally extracted from the dataset taken from Etherscan [149]. 

To carry out the anomaly detection they applied, over the obtained feature space, several 

unsupervised learning algorithms such as the k-means, HDBSCAN, spectral clustering, 

agglomerative clustering, and one-class SVM, while the silhouette score was used to quan-

tify and compare the resulting performances.  

7.3. Category 3: Combining Unsupervised and Supervised Learning Algorithms 

In this section, the synergy between unsupervised and supervised learning is stud-

ied. In the existing literature, several papers elaborate on such kinds of learning schemes 

to enhance the performance of either the former or the latter (or both of them). The 
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impetus to choose the synergy between these two learning paradigms lies in the way they 

are implemented. While unsupervised learning can detect anomalies, supervised learning 

can predict and classify anomalies. These two functions can be thought of as having equal 

contributions to the final result. As such, herein, two pipelines are studied, namely, com-

bination type 1, where unsupervised learning is used to assist the prediction capabilities 

of supervised algorithms, and combination type 2, where the results obtained by the im-

plementation of supervised methods are further processed by unsupervised ones. It is 

worth noting that the vast majority of algorithmic schemes existing in the literature belong 

to the first type (i.e., combination type 1). Figure 5 depicts the general pipelines of the two 

combination types. Tables 8 and 9 present the characteristics of methods belonging to this 

category.  

 

Figure 5. Combination types between supervised and unsupervised learning for blockchain anom-

aly detection: (a) type 1 and (b) type 2. 

7.3.1. Combination Type 1 

As blockchain networks evolve, their dynamic properties provide a foothold to better 

distinguish between malicious and benign activities. In that sense, as the illegal activities 

(e.g., money laundering, Ponzi schemes, phishing, scamming, etc.) increase, the employ-

ment of predictive classification of the blockchain entities (e.g., accounts, transactions, etc.) 

is of major importance in establishing security [175]. Supervised learning can effectively 

address that issue since it is very effective in providing accurate predictions.  

The usage of supervised learning is based on the existence of labeled data. However, 

in blockchain technologies, there is a lack of labels mainly due to two reasons. First, data 

labeling relies on clearly denoting and assigning ground truth values, and it can be ac-

complished by adopting data annotation techniques. A major problem related to data an-

notation is that it requires a huge workload, and therefore, it is difficult to obtain a suffi-

cient and accurate dataset suitable for supervised algorithms. In addition, labels resulting 

from law enforcement investigations are not immediate and, as indicated above, annota-

tion is costly [29]. Second, the evolving complexity of blockchain ecosystems has also led 

to an increase in the complexity of illegal activities making the process of identifying all 

(or even most) of the entities and parameters a difficult problem. As such, the use of un-

supervised learning becomes more appealing having better application prospects because 

it does not need to mark the available dataset [172].  

It turns out that without designing an effective strategy to handle the above issues, 

the usage of supervised algorithms in blockchain anomaly detection might be limited. An 

effective solution is to integrate unsupervised learning to preprocess the data and gener-

ate the appropriate data labels (i.e., ground truth assignments).  

In that direction, Baek et al. [176] made a valuable contribution to the labeling process 

of wallets by providing a two-step model that applied in sequence the Expectation Maxi-

mization and the k-means algorithms to preprocess the data. The data were taken from 

Binance [177] and ethescan.io [149] with a Python API. The authors extracted several 
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features related to the wallets’ properties and applied the Expectation Maximization to 

detect the outliers in the feature space. Then, the implementation of k-means was set up 

to further cluster the outliers and provide the appropriate labels to each one of the result-

ing clusters (i.e., malicious or benign wallets). The labeled data were represented in terms 

of a decision tree structure, and the random forest algorithm was used to obtain effective 

predictions as far as the malicious wallets are concerned.  

A different point of view concerns the collection of the addresses involved in the de-

tection of malicious activities, such as scams, in public networks [178]. Any algorithmic 

(i.e., automatic) elaboration on the transactions linked to a scam or any other type of 

threat, that has the purpose of quantifying the effect imposed by that threat, can be imple-

mented after the above-mentioned collection of the addresses. Moreover, the difficulties 

involved in the above process increase since many addresses related to illegal activities 

may not be publicly available. In this case, those addresses might privately establish con-

tact with the registered users. A solution to this problem, for the test case of Ponzi scheme 

threats in the Bitcoin network, was given in [179]. The authors adopted a graph-based 

representation of the data and additional datasets related to advertisements of investment 

programs taken from Reddit [180] and bitcointalk.org [181] that on many occasions hide 

Ponzi schemes. Then, they employed an unsupervised mechanism, based on “multi-in-

put” heuristics [100], with the ultimate purpose of obtaining and analyzing clusters of 

transactions to detect Ponzi schemes and create a new dataset that contains ground-truth 

data that indicate the malicious and the benign users. In the final step, the above dataset 

was fed into several supervised algorithms, such as Bayes network and random forest, to 

provide predictions for the illegal activities. 

The use of partially labeled datasets was also studied by several authors. Commonly, 

the labeled data constitute a small portion of the whole available dataset. As an example, 

in the Elliptic dataset [182], 2% of the instances are labeled as illicit, and 21% of the in-

stances are labeled as illicit. A straightforward way to support the implementation of su-

pervised learning is to manually increase the existing labeled data. Under the usual sce-

nario, there are two labels corresponding to malicious and non-malicious. Unsupervised 

learning can be applied to partition the whole dataset into two distinct clusters and use 

the above information to provide labels to a part or all the data. As such, the unlabeled 

data are aligned with their respective clusters and augmented with the already labeled 

data. In the subsequent step, the whole dataset undergoes a classification process in terms 

of some prominent classifiers [183].  

Considering the Ethereum network, adversarial attacks have risen. An adversarial 

attack attempts to create artificial data that follow the distribution of the original data, 

thus appearing to be almost identical. This imposes risky situations for decentralized ap-

plications (dapps) like Ethereum, as illegal activities can be easily hidden in the generated 

artificial data. In [184], this issue was addressed by implementing in sequence a generative 

adversarial network (GAN) and a recurrent neural network (RNN). The GAN was used 

to generate synthetic data that mimics the behavior of normal transactions in Ethereum, 

while the RNN was used to classify transactions as normal or adversarial. The above im-

plementation generated a dataset upon which an LSTM network was trained to predict 

adversarial such as the cyber kill chain attack.  

The digital signing of the transaction appears to be vulnerable to certain malicious 

issues because the signing is usually executed manually by the user. The effects imposed 

by this fact exponentially increase when the user executes frequent transactions over long 

periods since in this case a superficial signing process is required. Thus, malicious coun-

terparties can take advantage of such behavior seeking to convince the user to sign a trans-

action with adverse impacts on the user’s digital resources, e.g., a transaction with tam-

pered data. An approach for automatic digital signing is described in [130], where histor-

ical transaction data on Ethereum were represented as time series and elaborated by the 

rolling window aggregation method [129] to extract certain features (e.g., transactions’ 

timestamps and values), which enabled the usage of the isolated forest algorithm to 



Algorithms 2024, 17, 201 29 of 41 
 

perform anomaly detection in terms of detecting the outliers of the resulting partition. 

Then, the random forest was employed to conduct the classification and the prediction of 

the anomaly labels as outputted by the isolation forest. The overall algorithmic structure 

yields a personalized malicious transaction detection model. 

7.3.2. Combination Type 2 

Data partitions obtained by unsupervised learning applied to unlabeled data may 

fail to correctly perform anomaly detection because data corresponding to illicit behaviors 

might be hidden within clusters of licit transactions. To provide a labeling procedure, re-

solving the above problem for the elliptic dataset, Lorenz et al. [185] used several classifi-

ers trained on the existing labeled data and projected the results over the whole dataset. 

Then, they employed the approach developed in [186] to split and process the data in 

terms of several unsupervised learning methods (e.g., LOF, one-class SVM, isolation for-

est). To this end, they put in place an active learning approach [187] to match the perfor-

mance of a fully supervised baseline by performing money laundering detection assum-

ing minimal access to labels. 

The synergy between unsupervised and supervised learning has been recognized as 

a very supportive tool in Ethereum data analysis. Here, the accounts are of two main 

types, namely, externally owned accounts or smart contracts. It is well stated that 

Ethereum smart contracts might include hidden malicious schemes, which may not be 

known to the users because those schemes come in the form of “high-yielding: advertise-

ments” [179,188]. A major property of the Ethereum network is spotlighted by the fact that 

for the accounts the aggregated degree distribution pursues the power law [189]. This 

property implies that the incorporation of dynamic (i.e., temporal) features (e.g., inter-

event time, attractiveness, busty behaviors of in- and out-degree, etc.) might impose 

strong capabilities in detecting/predicting malicious behaviors. Temporal features can be 

extracted from graph-based [175, 190] or tabular-based [191] representation of the 

Ethereum data.  

Table 8. The characteristics of the methods belonging to Category 3, which are given in terms of 

combination type, type of anomalies they used for, learning algorithms, and evaluation techniques. 

Method 
Combination 

Type 
Types of Anomalies  Unsupervised Learning Methods 

Evaluation 

Method 

Sachan et al. [29] Type 2 
Domain names crypto jack-

ing detection 
k-Means 

Silhouette  

score 

Agarwal et al. 

[175] 
Type 1 

Phishing, spamming, 

scams, and Ponzi schemes 

K-means, DBSCAN, HDBSCAN, 

and one-class SVM 

Silhouette  

score 

Baek et al. [176] Type 1 Malicious wallets 
Expectation maximization, k-

Means 

Precision, recall, F-

measure 

Bartoletti et al. 

[179] 
Type 1 Ponzi schemes Multi-input heuristics 

Precision,  

F-measure 

Boughaci et al. 

[183] 
Type 1 Malicious transactions k-Means Precision, recall 

Rabieinejad et al. 

[184] 
Type 1 

Malicious activities/cyber 

kill chain 
GAN Trx index 

Podgorelec et al. 

[130] 
Type 1 Malicious transactions Isolated forest 

Ranks for time 

frames of feature 

extraction process 

Lorenz et al. [185] Type 2 Money laundering  
Local outlier factor, isolation forest, 

one-class support vector machine 
F1-score 

Sachan et al. 

[190] 
Type 2 

Domain Names crypto 

jacking detection 
k-Means 

Silhouette  

score 
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Agarwal et al. 

[191] 
Type 2 

Malicious detection 

through adversarial activi-

ties 

k-Means, 

GANs 

Precision, recall, 

F1-score 

Agarwal et al. 

[192] 
Type 2 

Malicious detection 

through adversarial activi-

ties 

k-Means, 

GANs 

Precision, recall, 

F1-score 

Table 9. The characteristics of the methods belonging to Category 3, which are given in terms of 

types of network type, data source and structure, and programming framework. 

Method Network Type Data Source Data Representation 
Programming  

Framework 

Sachan et al. [29] 
Public permis-

sionless 

Cisco Umbrella top 1 million Da-

taset, 

Indian Government URLs 

Graph-based browser 

metadata 
Python, Numpy 

Agarwal et al. 

[175] 
Public (Ethereum)  

Ethereum transaction data 

(79 million accounts and Cryptos-

cam.db dataset) 

Graph-based Python 

Baek et al. [176] Public (Ethereum) 
Binance and Ethereum wallets from 

etherscan.io  
Tree-based Python API 

Bartoletti et al. 

[179] 
Public (Bitcoin) 

Reddit,  

bitcointalk.org 
Graph-Based Weka software 

Boughaci et al. 

[183] 
Public (Bitcoin) Elliptic dataset (Kaggle)  Graph-based 

Java (Netbeans en-

vironment) 

Rabieinejad et al. 

[184] 
Public (Ethereum) Ethereum transaction data Tabular Python 

Podgorelec et al. 

[130] 
Public (Ethereum) Etherscan.io Time Series 

Python, 

Scikit-learn  

Lorenz et al. [185] Public (Bitcoin) Eliptic dataset Graph-based Python, Scikit-learn 

Sachan et al. 

[190] 

Public-permis-

sionless 

Cisco Umbrella top 1 million Da-

taset, 

Indian Government URLs 

Graph-based browser 

metadata 

Python 

Numpy 

Agarwal et al. 

[191] 
Public (Ethereum) Ethereum.org Tabular 

Python, Keras, 

NumPy 

Agarwal et al. 

[192] 
Public (Ethereum) Ethereum.org Tabular 

Python, Keras, 

NumPy 

In [175], the temporal features were transformed into vectors to provide a time series 

facet based on the assumption that this choice can assist the detection of malicious ac-

counts considering past attacks analysis. To elaborate on the data, the authors used a two-

step hybrid scheme. The first step applied several supervised algorithms in terms of an 

AutoML framework that incorporated hyperparameter optimization. In the second step, 

the results of the supervised learning were further processed by implementing the k-

Means to detect accounts that are similar to the above-mentioned malicious accounts. The 

number of clusters was obtained via optimal clustering using the silhouette score as an 

evaluation index and treating the number of clusters as hyperparameter in the AutoML 

framework. In [190], temporal and non-temporal features were defined in terms of 

Ethereum domain name (DN) metadata and used to detect DNs crypto-jacking activities. 

The approach followed the above-mentioned AutoML-based synergy between supervised 

learning and k-Means. In [191,192], several attacks on the Ethereum (e.g., ransomware 

payments, phishing, scamming, upbit hack, spam token, Ponzi schemes, EtherDelta Hack, 

etc.) were considered, while addressing issues related to the effective application of k-
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Means and GANs, where their results were preprocessed by various supervised ML struc-

tures such as the ExtraTree classifier and a neural network in the form of Multiple-Layer 

Perceptron (MLP). An interesting point of those approaches is to use the partitions coming 

from the k-Means to study the bias effect imposed by the supervised ML algorithms in 

different abnormal accounts associated with certain malicious attacks/activities that may 

be represented in large amounts regarding the corresponding clusters’ sizes. 

8. Challenges and Future Directions 

The subject of blockchain anomaly detection lies at the intersection of information 

mining strategies and the transformative capacity of blockchain technology. As we ex-

plore present methodologies and pave the way for future advancements, numerous chal-

lenges and avenues for exploration emerge. 

8.1. Scalability and Complexity  

One of the most significant challenges in detecting anomalies in blockchain networks 

is scalability. As the volume and complexity of blockchain data increase, traditional de-

tection methods may struggle to keep pace. Moreover, the heterogeneous nature of block-

chain structure consists of various layers and protocols, thus adding complexity. Address-

ing scalability and complexity issues necessitates a shift towards dynamic trends that can 

adapt to evolving network systems and accommodate diverse data sources [30]. 

To mitigate scalability and complexity challenges, future research should embrace 

the synergy of graph learning and neural network methodologies. Graph learning pro-

vides a robust framework for modeling blockchain networks by leveraging their struc-

tures. Incorporating neural network techniques such as graph neural networks or LSTM 

can uncover complex patterns, offering insights into anomalous behaviors while circum-

venting scalability constraints. 

To enhance the ability to detect unusual events, a symbiotic relationship between 

data mining techniques and the inherent network’s resilience must be established. Lever-

aging unsupervised learning methods, and exploring novel avenues in deep learning ap-

proaches, we can uncover latent anomalies within the blockchain ecosystem, enhancing 

its overall integrity and reliability for future endeavors. 

8.2. Generative AI and Adversarial Attacks in Blockchain Anomaly Detection 

Anomaly detection techniques in blockchain systems confront a spectrum of threats. 

Malicious actors may manipulate transactions or introduce spurious data to deceive de-

tection algorithms, jeopardizing system integrity. Additionally, the presence of fraudulent 

or misleading data within the blockchain can lead to inaccurate anomaly detection, im-

peding the identification of genuine anomalies. To tackle these threats, innovative mitiga-

tion strategies in the ongoing research efforts could concentrate in two directions, namely 

generative AI (GenAI) and adversarial learning (AL). 

8.2.1. Potential Approaches Related to GenAI 

GenAI powered anomaly detection (GADE) approaches hold significant promise in 

enhancing anomaly detection within blockchain networks. GADE methods can comple-

ment the existing processes outlined in recent research.  

GADE could deal with the challenge of associating addresses with users in public 

blockchain networks. Unsupervised learning, particularly data clustering, has proven to 

be a reliable strategy in aggregating addresses linked to a user. By employing GADE-

based procedures, cluster analysis could achieve higher accuracy and scalability, render-

ing the identification of malicious user activities more effective. Moreover, the dynamic 

interplay between supervised and unsupervised techniques, as explored in recent re-

search, could be further optimized using GenAI approaches. By harnessing the strengths 

of both paradigms, ensemble strategies powered by GADE could enhance the overall 
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model’s performance in detecting complex anomalies within blockchain networks. For 

example, integrating GADE and unsupervised algorithms could improve their accuracy 

in detecting anomalies, especially in scenarios where the data are complex. Thus, cyber 

defenders can improve their intelligence by identifying emerging threats and extracting 

relevant data. In a nutshell, the GenAI tools can be used in analyzing network traffic data, 

system output, and large volumes of log files. This could assist defenders to automate and 

speed up their incident response process. GenAI can also be used in generating secure 

code and writing secure code. However, attackers can also misuse GenAI to create mali-

cious code, phishing attacks, and social engineering attacks [193].  

While the existing approaches provide valuable insights to anomaly detection, incor-

poration of GenAI approaches could substantially enhance the accuracy, scalability, and 

efficiency of anomaly detection algorithms. 

8.2.2. Potential Approaches Related to Adversarial Attacks  

Potential approaches encompass developing robust anomaly detection algorithms 

resilient to adversarial attacks, implementing mechanisms to ensure the integrity of block-

chain data, exploring advanced privacy-preserving techniques, and promoting user 

awareness and education regarding privacy best practices in blockchain systems. Ad-

dressing the above challenges necessitates a multifaceted approach encompassing tech-

nical innovations, robust defense mechanisms, and user empowerment. 

Unsupervised learning frameworks offer remarkable adaptability as the boundary 

between normal and anomalous behavior evolves dynamically. In this regard, deep learn-

ing assumes a pivotal role in this paradigm, capable of identifying anomalous activity by 

tapping into the latent features embedded in blockchain transactions. 

The future of anomaly detection in blockchain networks is likely to embrace a fusion 

of typical unsupervised learning and deep learning methodologies, where techniques like 

autoencoders and GANs can unveil hidden anomalies in blockchain data assisting the 

overall endeavor. Additionally, delving into temporal aspects such as time series analysis 

and recurrent neural networks can enhance the accuracy of anomaly detection mecha-

nisms.  

In addition, future research should generate robust datasets encompassing various 

facets of blockchain transactions, serving as benchmarks for evaluating the efficacy of 

anomaly detection algorithms and fostering interdisciplinary collaboration. 

8.3. Distributed Ledger under the Framework of AI  

In the current status, the emerging trends in distributed ledger technology (DLT) in-

tersect with the advancements in artificial intelligence. While the focus remains on unsu-

pervised learning methodologies for anomaly detection, potential synergies with DLT and 

AI present novel avenues for exploration. The development of reliable, interpretable, and 

explainable AI models capable of governing DLT protocols and smart contracts remains 

pivotal for ensuring fairness and transparency within blockchain networks. In this direc-

tion, scalability and performance overhead issues can be effectively addressed in terms of 

implementing DLT-based federated AI models [170] able to enhance data privacy and se-

curity demands.  

DLT’s capability to provide transparent and secure ledgers aligns with the need for 

explainable AI, offering opportunities to enhance the security and reliability of AI sys-

tems. Moreover, tokenization of data on DLT-based marketplaces could incentivize data 

sharing supporting federated learning processes and leading to more diverse datasets for 

AI models, with considerations for privacy and data security. These developments under-

score the necessity for further research to integrate unsupervised learning approaches 

with DLT-driven AI applications, ensuring robustness, transparency, and privacy in 

anomaly detection mechanisms. 

Furthermore, the convergence of AI with DLT-based consensus algorithms and de-

centralized coordination requires meticulous exploration to optimize efficiency and 
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mitigate risks. As such, researchers must investigate the complexities of these intersec-

tions, balancing innovation with the imperative of maintaining privacy, security, and in-

tegrity within blockchain ecosystems. 

8.4. On the Effect of the Blockchain Continuous Evolution 

While unsupervised learning methodologies offer remarkable adaptability in detect-

ing anomalies, a significant challenge arises from ensuring the ongoing fit and adaptabil-

ity of the resulting models to the evolving blockchain architectures and components. As 

blockchain technology continues to evolve with advancements in consensus mechanisms, 

network protocols, and the introduction of new features, existing anomaly detection mod-

els may become outdated or less effective over time. This problem is exacerbated by the 

decentralized and distributed nature of blockchain networks, which can lead to heteroge-

neous data distributions and dynamic transaction patterns [194]. 

To address the challenge of model fit and adaptability, researchers must focus on 

developing techniques that enable continuous learning and adaptation in real time. This 

requires the integration of mechanisms for model retraining and updating based on the 

latest blockchain data and network dynamics. Additionally, the incorporation of tech-

niques such as transfer learning and domain adaptation can facilitate the transfer of 

knowledge between different blockchain environments, improving the generalization and 

robustness of anomaly detection models [195]. 

Moreover, the utilization of blockchain-based governance mechanisms, such as de-

centralized autonomous organizations (DAOs), can enable collective decision-making 

processes for model updates and parameter tuning, ensuring community-driven govern-

ance. By addressing the challenge of model fit and adaptability, researchers can enhance 

the long-term effectiveness and reliability of anomaly detection mechanisms in blockchain 

networks, supporting the integrity and security of decentralized ecosystems. 

8.5. Implications of Zero-Trust and Zero-Knowledge Proof Environments 

The implications of zero-trust architecture (ZTA) and zero-knowledge proof (ZKP) 

environment on types of attacks are significant. Since these environments require contin-

uous authentication and verification, traditional attack vectors such as unauthorized ac-

cess, privilege escalation, and data breaches become more challenging to execute success-

fully. Attackers must overcome multiple layers of verification, making it more difficult to 

infiltrate systems or tamper with data [196]. 

However, despite the enhanced security provided by those environments, new types 

of attacks may emerge. Attackers may focus on exploiting vulnerabilities in the authenti-

cation and verification mechanisms themselves, attempting to bypass or compromise 

them. For example, they might target weaknesses in the implementation of ZKP’s proto-

cols or attempt to deceive the ZTA infrastructure into granting unauthorized access [197]. 

Anomaly detection approaches in such environments may need to adapt also in or-

der to account for the unique characteristics of ZTA and ZKP. Traditional anomaly detec-

tion methods rely on identifying patterns of normal behavior and flagging deviations 

from these patterns as anomalies. In ZTA environments, where every interaction is treated 

with skepticism, normal behavior may vary significantly from user to user and over time 

[197]. Anomaly detection algorithms would need to be more dynamic and context-aware, 

continuously adjusting their understanding of normal behavior based on real-time obser-

vations. 

Furthermore, anomaly detection approaches in ZTA and ZKP may need to incorpo-

rate additional layers of verification and validation. For example, anomaly detection algo-

rithms could leverage ZKP techniques to verify the authenticity of transactions or user 

interactions without revealing sensitive information. By combining anomaly detection 

with ZKPs, organizations can enhance their ability to detect and respond to suspicious 

activities while preserving privacy and security. It is worth noting that zero-knowledge 

attacks pose a significant challenge to authentication systems, particularly in 
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decentralized peer-to-peer (P2P) environments. Traditional public key infrastructure 

models rely on centralized trust servers, such as certification authorities (CAs), to validate 

the binding of user public keys and identities. However, in decentralized P2P networks, 

the CA-based models become impractical. Instead, anonymous systems in P2P environ-

ments adopt self-signed certificates to authenticate peers, providing anonymity but leav-

ing them vulnerable to man-in-the-middle attacks. In these attacks, an attacker can inter-

cept and impersonate transaction participants without detection due to the lack of 

knowledge about communication channels. However, a promising approach to mitigating 

such types of attacks is the pseudo trust mechanism, which embeds the knowledge of the 

communication path in exchanged messages [197]. By verifying the validity of combined 

messages, transaction participants can detect impersonation attempts, offering enhanced 

security. 

8.6. Privacy Concerns in Unsupervised Learning for Anomaly Detection 

Despite the potential benefits of unsupervised learning in anomaly detection, privacy 

concerns are likely to arise [62]. As these algorithms often operate without explicit labels 

or supervision, they may inadvertently reveal sensitive information or patterns that com-

promise user privacy [36]. For example, clustering algorithms that group similar transac-

tions or behaviors may disclose patterns of user activity, potentially enabling deanony-

mization or profiling attacks [36]. Similarly, dimensionality reduction techniques applied 

to blockchain data may expose underlying relationships or correlations, raising concerns 

about user privacy and data confidentiality [63]. 

Addressing privacy concerns in unsupervised learning for anomaly detection re-

quires careful consideration of data anonymization techniques, differential privacy mech-

anisms, and privacy-enhancing technologies [198]. Techniques such as data masking, 

noise injection, and anonymization algorithms can help mitigate the risk of privacy 

breaches while preserving the utility of the data [199]. Moreover, integrating privacy-pre-

serving models with federated learning approaches can enable collaborative anomaly de-

tection without compromising individual user privacy. 

While unsupervised learning algorithms offer promising solutions, it is imperative 

to address privacy concerns to ensure the ethical and responsible use of these technologies 

[199]. By using privacy-enhancing techniques and adopting privacy-preserving models, 

stakeholders can harness the benefits of unsupervised learning while safeguarding user 

privacy and data confidentiality. 

9. Conclusions 

The necessity of unsupervised learning spans diverse domains within the realm of 

blockchain and emerging technologies, where their presence offers unparalleled adapta-

bility in dynamically distinguishing between normal and anomalous behaviors, crucial 

for maintaining system integrity amidst evolving threats. As scalability and complexity 

challenges persist, the current investigation focused on studying the integration of unsu-

pervised learning methods and on identifying certain advantages that render that integra-

tion an effective tool, considering both public and private networks. The whole approach 

encompassed three basic levels of analysis. First, it scrutinized the blockchain anomalies 

and provided a brief overview of the general machine-learning frameworks used. Second, 

the data structures employed by several approaches were meticulously reported and an-

alyzed. Regarding this task, it was shown that the way the data are transformed and pro-

cessed plays an important role in the effectiveness of the anomaly detection model. Third, 

the most important level that defines the whole analysis was the categorization of the 

methods that exist in the literature into three distinct categories depending on the way the 

unsupervised learning algorithms are used and/or combined to tackle the problem at 

hand. Finally, the survey delineates certain challenges that are related to the field and 

concern the development of robust, secure, and privacy-preserving systems across various 

domains, driving technological advancements and innovation in blockchain ecosystems. 
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