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Abstract: We study an online distribution problem in which a producer has to send a load from an
origin to a destination. At each time period before the deadline, they ask for transportation price
quotes and have to decide to either accept or not accept the minimum offered price. If this price is not
accepted, they have to pay a penalty cost, which may be the cost to ask for new quotes, the penalty
cost for a late delivery, or the inventory cost to store the load for a certain duration. The aim is to
minimize the sum of the transportation and the penalty costs. This problem has interesting real-world
applications, given that transportation quotes can be obtained from professional websites nowadays.
We show that the classical online algorithm used to solve the well-known Secretary problem is not
able to provide, on average, effective solutions to our problem, given the trade-off between the
transportation and the penalty costs. Therefore, we design two classes of online algorithms. The first
class is based on a given time of acceptance, while the second is based on a given threshold price. We
formally prove the competitive ratio of each algorithm, i.e., the worst-case performance of the online
algorithm with respect to the optimal solution of the offline problem, in which all transportation
prices are known at the beginning, rather than being revealed over time. The computational results
show the algorithms’ performance on average and in the worst-case scenario when the transportation
prices are generated on the basis of given probability distributions.

Keywords: distribution; online algorithms; competitive analysis

1. Introduction

Online problems are optimization problems in which the instance is revealed in an
online manner and the solution is produced online. We study an online distribution
problem where transportation prices are revealed over time. The producer has to accept
one of these prices in order to send a load to a customer. The decision is taken on the basis
of the transportation prices revealed so far. Only the range in which the transportation
prices will fall is known, and the unit penalty cost must be paid whenever the offered price
is not accepted. The latter cost may be the cost of obtaining a new quote, the penalty for a
late delivery, the inventory cost the company has to pay to store the load for a certain time,
or a combination of these costs. This penalty cost is constant from one period to the next.

This problem has interesting real-world applications. In the last few years, trans-
portation quotes have been easily obtainable from professional websites. For example,
please refer to Shiply (www.shiply.com) or to Freightquote (www.freightquote.com). After
providing the data concerning the load (origin, destination, type of products, weight and
volume), transportation prices are obtained from transportation companies. At the end
of the first time period, a decision must be made: to accept or to reject the minimum
offered price without any information on the prices that will be observed in the future.
These steps are repeated until a price is accepted. Note that the prices provided by the
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transportation companies over time do not follow any trend because they mainly depend
on the availability of other requests from close enough origins and destinations.

For this problem, we design online algorithms, i.e., algorithms that make irrevocable
decisions without full knowledge of the problem instance. The decision makers have full
knowledge of the past, but no (or just partial) knowledge of the future. To evaluate their
performance, Sleator et al. [1] suggested that these algorithms be compared with optimal
offline algorithms. Moreover, Karlin et al. [2] introduced the concept of a competitive ratio.
An online algorithm ALG is c-competitive (with c ≥ 1) if, given any problem instance I,
the cost ALG(I) of the solution given by the online algorithm ALG is no more than c
times the cost OPT(I) of an optimal offline algorithm that knows the entire sequence of
transportation prices in advance:

ALG(I)
OPT(I)

≤ c, for any problem instance I.

The smallest c such that ALG(I) ≤ cOPT(I) is called the competitive ratio of ALG. For the
sake of simplicity, in the following, we will omit the reference to I. The availability of
the competitive ratio provides a guarantee for the worst-case performance of the online
algorithm with respect to the optimal solution of the offline problem, where all information
is already available at the beginning, before the first decision is made. The competitive
ratio is also interesting from a managerial point of view, because the producer knows that,
by using the online algorithm, the total cost they will pay over the time horizon will be
at most c times the cost of the offline problem. If several online algorithms are available,
the one with the smallest competitive ratio should be used to achieve the best possible
worst-case performance guarantee.

We refer to Borodin and El-Yaniv [3] and to Hentenryck and Bent [4] for a compre-
hensive description of online algorithms and competitive analyses, to Albers [5] for a
survey on online algorithms, and to Jaillet and Wagner [6] for a survey of online vehicle
routing problems. Recent contributions have been presented by Chen et al. [7] for an
online machine minimization problem; Ma et al. [8] for online knapsack problems; Berǵe
et al. [9] for the online k-Canadian traveller problem; Li et al. [10,11], Yu and Jacobson
[12], Shamsaei et al. [13], and Jiang et al. [14] for online scheduling problems; Akbari et
al. [15] for a post-disaster road restoration problem; Zhang et al. [16] for the management
of online orders in modern crowdsourced truck logistics platforms; Shiri et al. [17] for
ambulance routing in disaster response with partial or no information on victim conditions;
Fujii et al. [18] for the Secretary problem with predictions; Arnosti et al. [19] for static
threshold policies in the prophet Secretary problem; Salem et al. [20] for Secretary problems
with biased evaluations using partial ordinal information; Shiri et al. [21] for the ambulance
routing problem on a road network; and Chen et al. [22] for a review of online integrated
production and distribution scheduling. Finally, for an extensive overview of the most
recent contributions on online algorithms, we refer the work by to Höhne et al. [23–25]
and Amouzandeh et al. [26]. In particular, the last survey covers papers published in 2023
concerning online algorithms for server problems, matching problems, packing problems,
scheduling problems, allocations and auction problems, and other miscellaneous problems.

The distribution problem we study is related to the well-known Secretary problem,
the prophet inequality problem (see Ferguson [27] and Correa et al. [28]), and the one-way
trading problem (see El-Yaniv et al. [29]). However, to the best of our knowledge, our
problem is new. In fact, in the Secretary problem, the number of secretaries who will be
interviewed is known in advance, while in our problem, only the maximum number of
quotes is known. Moreover, no penalty cost is charged in the Secretary problem. In addition,
in the Secretary problem, the objective is slightly different; namely, in the Secretary problem,
we seek to maximize the probability of selecting the best option, while in our problem, we
minimize the total cost. Finally, the Secretary problem has a simple solution: reject the first
k offers and, after that, accept the next better one. Instead, we will computationally show
that this solution is significantly worse than those of the online algorithms we propose for
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the distribution problem. Our problem is also different from the one-way trading problem,
as we pay the penalty cost.

The paper is organized as follows. In Section 2, the problem is formally described.
In Sections 3 and 4, the competitive ratio of algorithms with a given time of acceptance
and of algorithms with a threshold price, respectively, is provided. In Sections 5 and 6,
a numerical comparison of these competitive ratios and computational results, obtained
when transportation prices are randomly generated from given probability distributions,
is provided.

2. Problem Description

We consider the problem in which a producer has to ship a load to a customer. The
shipment can be performed in any of the discrete time periods t = {0, 1, . . . , H}, where H
is the deadline to send this load. In each time period t, each transportation company in a
given set offers a price to send this load. Each offered price is not lower than a minimum
value p and not greater than a maximum value P, where P is the default price, e.g., the cost
the producer has to pay to send the load by using their own vehicles or the transportation
price to pay to a carrier with predefined tariffs. The producer has to decide either to accept
the minimum price offered at time period t, say Pt, or to reject it. In the former case, the
shipment is performed at price Pt, while in the latter case, a penalty cost h is charged to
obtain new quotes, due to a late delivery, to store the load for one time period, or due to a
combination of the above. The problem is to determine the price the producer has to accept
in order to minimize the sum of transportation and penalty costs.

3. Online Algorithms with a Given Time of Acceptance

In this section, we provide the competitive ratio of online algorithms in which the
minimum price Pj offered at a given time period j is accepted. Each of these algorithms can
be formally described as follows.

Algorithm ALGj
1: At time period j, accept Pj.

If we denote the total cost obtained by applying the algorithm ALGj
1 by ALGj

1 and the
optimal cost of the offline problem by OPT, then the following theorem holds.

Theorem 1. ALGj
1

OPT ≤ P+hj
p .

Proof of Theorem 1. Since the producer accepts price Pj at time period j, the total cost

obtained by applying algorithm Aj
1 is ALGj

1 = Pj + hj. The optimal offline cost OPT is not

lower than p. Therefore, ALGj
1

OPT ≤ Pj+hj
p ≤ P+hj

p .

We now show that this algorithm cannot have a better competitive ratio. Consider
first the following instance: j > 0, Pj = P, Pt = p for t ̸= j. The total cost generated by the

algorithm ALGj
1 is P + hj, while the optimal offline cost is OPT = p (obtained by accepting

the price offered at time 0); therefore, in this instance, ALGj
1

OPT = P+hj
p . Consider now the

following instance: j = 0, P0 = P, Pt = p for 0 < t ≤ H and h < P − p. Since the total cost
generated by the algorithm is ALGj

1 = P and the optimal cost is OPT = p + h (obtained by

accepting the price offered at time 1), then in this instance, ALGj
1

OPT = P
p+h → P

p for h → 0.

Since the worst-case ratio of the algorithms ALGj
1 is increasing in j, the following

theorem holds.

Theorem 2. In the worst case, the best algorithm with a given time of acceptance is ALG0
1, with a

competitive ratio P
p .
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This result is very interesting also from a managerial point of view. If ALG0
1 is used, the

maximum percent cost increase with respect to the optimal solution of the offline problem
is given by ( P

p − 1) ∗ 100. For example, if P
p = 2, this means that the online algorithm will

give a percent cost increase of at most 100% with respect to the cost of the optimal solution
of the offline problem.

We now show that there exists a class of instances in which the algorithm ALG0
1 gives

an optimal solution to the online problem. In particular, when the penalty cost h is greater
than or equal to the difference between the default price P and the minimum price p, it is
always optimal to select the first offered price.

Theorem 3. ALG0
1 is optimal in the class of instances with h ≥ P − p.

Proof of Theorem 3. The total cost ALG generated by any algorithm ALG either is the
cost of accepting P0 at time 0, that is, ALG0

1 , or is not lower than the cost of accepting the
minimum price p at time 1, that is, p+ h. Since in the latter case, ALG ≥ p+ h ≥ P ≥ ALG0

1 ,
as h ≥ P − p and ALG0

1 ≤ P, then ALG0
1 gives an optimal solution.

We now analyze the worst-case performance of online algorithms in which the mini-
mum price offered from 0 to a given time period j is accepted at time period j. Although
these algorithms are not fairly comparable to the previous ones, since the price offered in a
period does not expire at the end of the period, the results can serve, in most cases, as an
aspirational benchmark. Each of these algorithms can formally be described as follows.

Algorithm ALGj
2: At time period j, accept the minimum price offered from time period 0 to time

period j.

If we denote the total cost obtained by applying the algorithm ALGj
2 by ALGj

2, then
the following theorem holds.

Theorem 4. ALGj
2

OPT ≤ max{ P
p , p+hj

p }.

Proof of Theorem 4. Since the producer accepts the minimum price offered from 0 to j
at time period j, the total cost obtained by applying algorithm ALGj

2 is P∗
j + hj, where

P∗
j = min0≤t≤j Pt. Let us distinguish the following two cases.

Case 1: Pt ≥ P∗
j , ∀t > j

In this case, the optimal offline cost OPT is not lower than P∗
j . Therefore, ALGj

2
OPT ≤

P∗
j +hj
P∗

j
≤

p+hj
p , since

P∗
j +hj
P∗

j
is a decreasing function in P∗

j and P∗
j ≥ p.

Case 2: Pi < P∗
j for some i > j

In this case, the optimal offline cost OPT is not lower than the minimum between P∗
j and

p + hj. Therefore, ALGj
2

OPT ≤ max{
P∗

j +hj
P∗

j
,

P∗
j +hj
p+hj } ≤ max{ p+hj

p ,
P∗

j
p } ≤ max{ p+hj

p , P
p }.

We now show that this algorithm cannot have a better competitive ratio. Consider the
following instance for Case 1: Pt = p, ∀t. The total cost generated by algorithm ALGj

2 is
p + hj, while the optimal offline cost is OPT = p (obtained by accepting the price offered at

time 0). Therefore, in this instance, ALGj
2

OPT = p+hj
p . Consider now the following two instances

for Case 2: Pt = p + ϵ for 0 ≤ t ≤ j, where ϵ < h, and Pt = p, ∀t > j. The total cost
generated by algorithm ALGj

2 is p + ϵ + hj, while the optimal offline cost is OPT = p + ϵ
(obtained by accepting the price offered at time 0, since ϵ < h). Therefore, in this instance,
ALGj

2
OPT = p+ϵ+hj

p+ϵ → p+hj
p for ϵ → 0. The second instance is the following: Pt = P, ∀t ≤ j,
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Pt = p, ∀t > j, and h < P−p
j+1 . The total cost generated by algorithm ALGj

2 is P + hj, while
the optimal offline cost is OPT = p + h(j + 1) (obtained by accepting the price offered at

time j + 1, as h < P−p
j+1 ); therefore, in this instance, ALGj

2
OPT = P+hj

p+h(j+1) →
P
p for h → 0.

Since the competitive ratio of algorithm ALGj
1 is P+hj

p , while it is max{ P
p , p+hj

p } for

ALGj
2, the two algorithms have the same worst-case performance for j = 0, while the

following theorem holds for j > 0.

Theorem 5. In the worst case, ALGj
2 dominates ALGj

1 when j > 0.

4. Online Algorithms with a Given Threshold Price

In this section, we analyze the class of algorithms in which the first price less than
or equal to a given threshold p̄ (p ≤ p̄ ≤ P) is accepted. This type of online algorithm is
very useful from a practical point of view, given that it is simple to use. Moreover, we will
now prove that it has a better worst-case performance with respect to the algorithms with a
given time of acceptance. We first consider the case in which, at time period H, the price
PH is accepted if every prior price has been rejected (algorithm ALGp̄

3 ); then, we consider
the case in which the minimum price offered from 0 to H is accepted at time period H if
every prior price has been rejected (algorithms ALGp̄

4 ).
Each of the algorithms ALGp̄

3 can be formally described as follows.

Algorithm ALGp̄
3 : Accept the first price that is no greater than p̄. At time period H, accept PH if

every prior price has been rejected.

If we denote the total cost obtained by applying the algorithm ALGp̄
3 by ALG p̄

3 , then
the following theorem holds.

Theorem 6. ALG p̄
3

OPT ≤ max{ p̄
p , P+hH

p̄ }.

Proof of Theorem 6. Consider first the case in which there exists a time period s between
0 and H − 1 such that Ps ≤ p̄. The cost ALG p̄

3 generated by algorithm ALGp̄
3 is Ps + hs.

The optimal offline cost OPT is no lower than the minimum between p̄ and p + hs, as Pt
is greater than p̄ for t < s and it is greater or equal than p starting from time period s.

Therefore, ALG p̄
3

OPT ≤ max{ Ps+hs
p̄ , Ps+hs

p+hs } ≤ max{ P+hH
p̄ , p̄+hs

p+hs} ≤ max{ P+hH
p̄ , p̄

p}.
Consider now the case in which the producer accepts PH . The cost generated by the

algorithm ALGp̄
3 is no greater than P + hH, while the optimal cost OPT is no lower than p̄,

as Pt was greater than p̄ for each 0 ≤ t < H. Therefore, in this case, ALG p̄
3

OPT ≤ P+hH
p̄ . Hence,

ALG p̄
3

OPT ≤ max{ p̄
p , P+hH

p̄ }.

We now show that this algorithm cannot have a better competitive ratio. Consider first
the following instance: Pt = P for all 0 ≤ t < s, Ps = p̄, Pt = p for all t > s and h such that
p̄ + hs > p + h(s + 1), i.e., h < p̄ − p, and h < P−p

s+1 . The cost generated by algorithm ALGp̄
3

is p̄ + hs, while the optimal offline cost is OPT = p + h(s + 1). Therefore, in this instance,
ALG p̄

3
OPT = p̄+hs

p+h(s+1) →
p̄
p for h → 0. Consider now the following instance: Pt = p̄ + ϵ, where

ϵ << 1, for all 0 ≤ t < H − 1 and PH = P. The cost generated by algorithm ALGp̄
3 is

P + hH, while the optimal offline cost is obtained by accepting p̄ + ϵ at time 0, that is,

OPT = p̄ + ϵ. Therefore, in this instance, ALG p̄
3

OPT = P+hH
p̄+ϵ → P+hH

p̄ for ϵ → 0.
Let us now compute the optimal threshold p̄∗3 in the worst case.
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Theorem 7. In the worst case, if p ≤
√

p(P + hH) ≤ P, then the optimal threshold is
p̄∗3 =

√
p(P + hH).

Proof of Theorem 7. Consider the competitive ratio max{ p̄
p , P+hH

p̄ }. Since the first com-
ponent is increasing in p̄ and the second is decreasing in p̄, the threshold that mini-
mizes the competitive ratio satisfies p̄

p = P+hH
p̄ . Therefore, since p̄∗3 is non-negative, then

p̄∗3 =
√

p(P + hH).

Note that if
√

p(P + hH) < p or if
√

p(P + hH) > P, then p̄∗3 = P is the optimal
threshold, implying that P0 is accepted at time 0. In fact, in the second case, the competitive
ratio is a decreasing function in p̄ in the interval [p, P], while in the first case, the competitive
ratio is an increasing function in p̄. However, setting p̄∗3 = p implies accepting price PH at
time period H in the worst case. This is dominated by accepting P0 at time period 0.

Theorem 8. If p ≤
√

p(P + hH) ≤ P, then ALG
p̄∗3
3

OPT ≤
√

P+hH
p . Otherwise, ALG

p̄∗3
3

OPT ≤ P
p .

Consider now the case in which the minimum price offered from 0 to H is accepted
at time period H if every prior price has been rejected (algorithm ALGp̄

4 ). Although these
algorithms are not fairly comparable to the previous one, since the price offered in a period
does not expire at the end of the period, the result can serve, in most cases, as an aspirational
benchmark. Each of these algorithms can be described as follows.

Algorithm ALGp̄
4 : Accept the first price that is no greater than p̄. At time period H, accept the

minimum price offered from 0 to H if every prior price has been rejected.

Let us denote the total cost generated by applying Algorithm ALGp̄
4 by ALG p̄

4 .

Theorem 9. ALG p̄
4

OPT ≤ max{ p̄
p , p̄+hH

p̄ }.

Proof of Theorem 9. Consider first the case in which there exists a time period s between
0 and H − 1 such that Ps ≤ p̄. The cost ALG p̄

4 generated by algorithm ALGp̄
4 is Ps + hs. The

optimal offline cost OPT is no lower than the minimum between p̄ and p + hs. Therefore,
ALG p̄

4
OPT ≤ max{ Ps+hs

p̄ , Ps+hs
p+hs } ≤ max{ p̄+hH

p̄ , p̄+hs
p+hs} ≤ max{ p̄+hH

p̄ , p̄
p}.

Consider now the case in which at time period H the producer accepts the minimum
price P∗ offered between 0 and H. The cost generated by algorithm ALGp̄

4 is P∗ + hH,
while the optimal offline cost OPT is no lower than P∗, as Pt was greater than P∗ for each

0 ≤ t < H. Therefore, in this case, ALG p̄
4

OPT ≤ P∗+hH
P∗ < p̄+hH

p̄ , since P∗ > p̄ and P∗+hH
P∗ are

decreasing functions in P∗. Therefore, ALG p̄
4

OPT ≤ max{ p̄
p , p̄+hH

p̄ }.

We now show that this algorithm cannot have a better competitive ratio. Consider
first the following instance: Pt = P for all 0 ≤ t < s, Ps = p̄, Pt = p for all t > s and
h such that p̄ > p + h(s + 1), i.e., h < p̄−p

s+1 . The cost generated by algorithm ALGp̄
4 is

ALG p̄
4 = p̄ + hs, while the optimal offline cost is OPT = p + h(s + 1). Therefore, in this

instance, ALG p̄
4

OPT = p̄+hs
p+h(s+1) →

p̄
p for h → 0. Consider now the following instance: Pt = p̄+ ϵ,

where ϵ << 1, for all 0 ≤ t < H − 1 and PH = P. The cost generated by algorithm ALGp̄
4 is

ALG p̄
4 = p̄ + ϵ + hH, while the optimal offline cost is obtained by accepting p̄ + ϵ at time 0,

that is, OPT = p̄ + ϵ. Therefore, in this instance, ALG p̄
4

OPT = p̄+ϵ+hH
p̄+ϵ → p̄+hH

p̄ for ϵ → 0.

Since the competitive ratio of algorithm ALGp̄
3 is max{ p̄

p , P+hH
p̄ }, while it is max{ p̄

p , p̄+hH
p̄ } for

ALGp̄
4, the following theorem holds.
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Theorem 10. In the worst case, ALGp̄
4 dominates ALGp̄

3 .

Let us now compute the optimal threshold p̄∗4 in the worst case.

Theorem 11. In the worst case, if p+
√

p(p+4hH)
2 ≤ P, then the optimal threshold is

p̄∗4 =
p+
√

p(p+4hH)
2 .

Proof of Theorem 11. Consider the competitive ratio max{ p̄
p , p̄+hH

p̄ }. Since the first com-
ponent is increasing in p̄ and the second is decreasing in p̄, the threshold that mini-
mizes the competitive ratio satisfies p̄

p = p̄+hH
p̄ . Therefore, since p̄∗4 is non-negative, then

p̄∗4 =
p+
√

p(p+4hH)
2 .

Note that p+
√

p(p+4hH)
2 ≥ p. If p+

√
p(p+4hH)

2 > P, then p̄∗4 = P is the optimal thresh-
old, implying that P0 is accepted at time 0. In fact, in this case, the competitive ratio is a
decreasing function in p̄ in the interval [p, P].

Theorem 12. If p+
√

p(p+4hH)
2 ≤ P, then ALG

p̄∗4
4

OPT ≤ p+
√

p(p+4hH)
2p . Otherwise, ALG

p̄∗4
4

OPT ≤ P
p .

5. Comparison of the Competitive Ratios

In this section, we provide a numerical comparison of the competitive ratios when
p = 100, P = 200, H = 5, 15 and h = 0.01, 0.1, 1, 10, 100. The results are shown in Table 1.

We just consider ALG0
1, ALGp̄∗3

3 and ALGp̄∗4
4 because all other algorithms are dominated in

the worst case. In particular, we do not show the performance ratios of ALG0
2, as it has

the same worst-case performance of ALG0
1, as stated in Section 3. Instead, we show the

performance ratios of ALGp̄∗4
4 in a separate column, as it provides an aspirational benchmark

for the performance of ALGp̄∗3
3 , as stated in Section 4.

Table 1. Comparison of the competitive ratios.

h H = 5 H = 15

ALG0
1 ALG

p̄∗3
3 ALG

p̄∗4
4 ALG0

1 ALG
p̄∗3
3 ALG

p̄∗4
4

0.01 2 1.4144 1.0005 2 1.4147 1.0015
0.1 2 1.4160 1.0050 2 1.4195 1.0148
1 2 1.4318 1.0477 2 1.4663 1.1325
10 2 1.5811 1.3660 2 1.8708 1.8229
100 2 2 2 2 2 2

Note that all competitive ratios are not decreasing in h and that ALG0
1 is dominated by

ALGp̄∗3
3 , which is dominated, not surprisingly, by ALGp̄∗4

4 , in the worst case. This means that

ALGp̄∗3
3 should be used in practice. Moreover, if it is possible to select the minimum price

offered from 0 to H at time period H, instead of just the price offered at time period H,

ALGp̄∗4
4 is able to provide better competitive ratios when the penalty cost is small enough.

6. Computational Results

In this section, we first show the performance of the online algorithms when the
transportation prices are obtained from a professional website. Then, we show the results
we obtained in a systematic computational experiment in which the transportation prices
are randomly generated in the interval [p, P] on the basis of given probability distributions.
Our competitive algorithms are compared with the algorithm used to optimally solve
the Secretary problem: reject the first k offers and, after that, accept the next better one.
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This algorithm is called ALGk
5. For the sake of convenience, we provide a glossary of the

algorithms that have been implemented in this article in Table 2.

Table 2. Glossary of algorithms.

ALG0
1 Best algorithm with a given time of acceptance

ALGp̄∗3
3 Best algorithm with a given threshold price

ALGp̄∗4
4 Best algorithm with a given threshold price when the minimum price offered from

0 to H is accepted at time period H if every prior price has been rejected
ALGk

5 Secretary problem algorithm

6.1. A Real-World Instance

We first show the performance of the online algorithms with transportation prices
obtained from a professional website to check what happens under real market conditions.
We consider a load of 20 pallets, with a weight of 1000 pounds each, sent from New York to
Los Angeles. The minimum price p is set to USD 3000, while the default price P is set to
USD 6000. The deadline H is set to 8 days. For this load, we obtained the prices shown in
Figure 1. Given these prices, we analyze the performance of the online algorithms when the
penalty cost h is set equal to USD 0.01, 0.1, 1, 10, 100 to cover different practical situations.
In the Secretary problem algorithms, k is set equal to 1 and 3.

Figure 1. Offered transportation prices.

The results reported in Table 3 show that ALG0
1 is significantly dominated by ALGp̄∗3

3 .

In fact, the average cost increase for ALG0
1 is 29.07%, while for ALGp̄∗3

3 , it is only 1.77%.

Moreover, ALGp̄∗4
4 is able to outperform ALGp̄∗3

3 in all cases, with the only exception of the
case with h = 100, due to the high penalty cost. On average, the cost increase is 2.12%.

The Secretary problem algorithms ALG1
5 and ALG3

5 perform worse than ALGp̄∗3
3 , as their

cost increase is 4.43% and 2.03%, respectively. Finally, as expected, ALG3
5 dominates, on

average, ALG1
5.

Table 3. Performance of the online algorithms on the real-world data.

h ALG0
1 ALGp̄∗

3
3 ALGp̄∗

4
4 ALG1

5 ALG3
5

0.01 1.3161 1.0249 1.0000 1.0597 1.0249
0.1 1.3159 1.0248 1.0000 1.0596 1.0248

1 1.3138 1.0239 1.0002 1.0581 1.0239
10 1.2939 1.0149 1.0024 1.0442 1.0149

100 1.2138 1.0000 1.1033 1.0000 1.0132
Av. 1.2907 1.0177 1.0212 1.0443 1.0203

6.2. Randomly Generated Instances

We now show the results obtained when the transportation prices are randomly
generated in the interval [p, P] on the basis of the following probability distributions:
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uniform, exponential with λ = 0.01, normal with mean 150 and standard deviation 5,
normal with mean 150 and standard deviation 15, triangular with mode 150, and beta with
α = β = 2. We consider the discretized and truncated version of these distributions in the
support [100, 200]. These probability distributions have been selected to capture different
market conditions with low and high volatilities.

We generate 100, 500, and 1000 scenarios to check the convergence of the expected
costs of the online algorithms. Since convergence is computationally guaranteed with
1000 scenarios, we only show the results obtained with 1000 scenarios. The values of the
parameters p, P, H, and h are defined as in Section 5. Note that H is equal to 5 and 15 time
periods and the penalty cost h ranges from 0.01 to 100 to cover very different scenarios in
terms of penalty costs and deadlines. This allows us to check the versatility and adaptability
of the algorithms. In the Secretary problem algorithms, k is set equal to 1 and 2 when H = 5
and is equal to 1, 2, . . . , 5 when H = 15. For the sake of brevity, we do not show the results
obtained for k = 2, 3, 4 when H = 15, as the resulting cost tends to increase with k due to
the penalty cost.

The computational results are shown in Tables 4–9. Each table is organized as follows:
the first column gives the unit penalty cost h. Then, for each probability distribution, five
columns show, for each value of the penalty cost, the average results obtained by the

corresponding online algorithms ALG0
1, ALGp̄∗3

3 , ALGp̄∗4
4 , and ALGk

5, where k = 1, 2 when
H = 5 and k = 1, 5 when H = 15, over 1000 scenarios. Tables 4–6 show the average cost, the
average ratio of the cost with respect to the cost of the offline problem, and the maximum
ratio of the cost with respect to the cost of the offline problem, respectively, when H = 5.
Tables 7–9 show the average cost, the average ratio, and the maximum ratio, respectively,
when H = 15.

Table 4. Average costs when H = 5.

Uniform Exponential

h ALG0
1 ALG

p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG2
5 ALG0

1 ALG
p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG2
5

0.01 150.04 122.73 113.69 133.24 133.25 141.36 119.83 109.55 127.07 127.36
0.1 150.04 122.85 114.13 133.45 133.57 141.36 119.90 109.98 127.28 127.68

1 150.04 124.75 118.01 135.49 136.78 141.36 121.23 113.52 129.37 130.93
10 150.04 135.96 135.18 155.95 168.83 141.36 129.90 127.67 150.25 163.39

100 150.04 150.04 150.04 360.52 489.41 141.36 141.36 141.36 359.14 488.02
Av. 150.04 131.27 126.21 183.73 212.37 141.36 126.44 120.42 178.62 207.48

Normal(150,5) Normal(150,15)

h ALG0
1 ALG

p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG2
5 ALG0

1 ALG
p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG2
5

0.01 149.59 147.28 143.33 146.52 146.64 148.81 135.46 130.93 140.87 141.19
0.1 149.59 147.66 143.78 146.73 146.98 148.81 135.64 131.38 141.08 141.51

1 149.59 149.40 148.28 148.87 150.30 148.81 137.53 135.87 143.23 144.75
10 149.59 149.53 192.59 170.19 183.51 148.81 145.93 159.52 164.76 177.13

100 149.59 149.59 149.59 383.40 515.61 148.81 148.81 148.81 380.04 500.95
Av. 149.59 148.69 155.52 199.14 228.61 148.81 140.67 141.30 194.00 221.11

Triangular Beta

h ALG0
1 ALG

p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG2
5 ALG0

1 ALG
p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG2
5

0.01 149.30 130.25 124.00 138.91 138.52 150.55 128.54 121.71 137.37 136.54
0.1 149.30 130.40 124.45 139.12 138.84 150.55 128.68 122.16 137.57 136.86

1 149.30 132.05 128.89 141.21 142.08 150.55 130.83 126.57 139.64 140.10
10 149.30 143.22 148.12 162.13 174.47 150.55 141.98 144.41 160.31 172.45

100 149.30 149.30 149.30 371.29 498.38 150.55 150.55 150.55 367.04 496.00
Av. 149.30 137.04 134.95 190.53 218.46 150.55 136.12 133.08 188.39 216.39
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Table 5. Average ratios when H = 5.

Uniform Exponential

h ALG0
1 ALG

p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG2
5 ALG0

1 ALG
p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG2
5

0.01 1.3272 1.0828 1.0002 1.1760 1.1763 1.2939 1.0964 1.0002 1.1621 1.1645
0.1 1.3245 1.0815 1.0021 1.1755 1.1769 1.2911 1.0947 1.0021 1.1617 1.1653

1 1.2980 1.0769 1.0164 1.1715 1.1842 1.2652 1.0850 1.0143 1.1589 1.1740
10 1.1437 1.0355 1.0269 1.2085 1.3159 1.1279 1.0382 1.0197 1.2218 1.3339

100 1.0000 1.0000 1.0000 2.6538 3.4633 1.0000 1.0000 1.0000 2.8084 3.6750
Av. 1.2187 1.0553 1.0091 1.4771 1.6633 1.1956 1.0629 1.0073 1.5026 1.7025

Normal(150,5) Normal(150,15)

h ALG0
1 ALG

p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG2
5 ALG0

1 ALG
p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG2
5

0.01 1.0441 1.0275 1.0002 1.0226 1.0235 1.1406 1.0354 1.0002 1.0784 1.0804
0.1 1.0426 1.0286 1.0018 1.0226 1.0243 1.1387 1.0350 1.0020 1.0783 1.0811

1 1.0293 1.0275 1.0203 1.0245 1.0345 1.1204 1.0334 1.0203 1.0779 1.0893
10 1.0019 1.0015 1.2909 1.1433 1.2317 1.0357 1.0155 1.1062 1.1567 1.2441

100 1.0000 1.0000 1.0000 2.5912 3.4617 1.0000 1.0000 1.0000 2.6536 3.4349
Av. 1.0236 1.0170 1.0626 1.3609 1.5551 1.0871 1.0239 1.0257 1.4090 1.5860

Triangular Beta

h ALG0
1 ALG

p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG2
5 ALG0

1 ALG
p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG2
5

0.01 1.2099 1.0521 1.0002 1.1255 1.1216 1.2438 1.0582 1.0002 1.1336 1.1258
0.1 1.2077 1.0513 1.0021 1.1252 1.1223 1.2414 1.0573 1.0021 1.1332 1.1265

1 1.1863 1.0464 1.0205 1.1231 1.1302 1.2188 1.0562 1.0204 1.1306 1.1342
10 1.0717 1.0275 1.0585 1.1805 1.2730 1.0931 1.0302 1.0441 1.1796 1.2723

100 1.0000 1.0000 1.0000 2.6539 3.4611 1.0000 1.0000 1.0000 2.6207 3.4358
Av. 1.1351 1.0354 1.0163 1.4416 1.6217 1.1594 1.0404 1.0134 1.4395 1.6189

Table 6. Maximum ratios when H = 5.

Uniform Exponential

h ALG0
1 ALG

p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG2
5 ALG0

1 ALG
p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG2
5

0.01 1.9898 1.4099 1.0005 2.0005 2.0005 1.9998 1.4094 1.0005 1.9325 1.9513
0.1 1.9880 1.4086 1.0050 2.0050 2.0050 1.9980 1.4044 1.0050 1.9369 1.9540

1 1.9703 1.3960 1.0476 2.0500 2.0500 1.9802 1.4020 1.0476 1.9806 1.9806
10 1.8091 1.4250 1.3650 2.5000 2.5000 1.8182 1.3750 1.3650 2.4175 2.4175

100 1.0000 1.0000 1.0000 7.0000 7.0000 1.0000 1.0000 1.0000 6.8400 6.8400
Av. 1.7514 1.3279 1.0836 3.1111 3.1111 1.7592 1.3182 1.0836 3.0215 3.0287

Normal(150,5) Normal(150,15)

h ALG0
1 ALG

p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG2
5 ALG0

1 ALG
p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG2
5

0.01 1.2264 1.1410 1.0004 1.1627 1.1717 1.7401 1.3426 1.0005 1.6301 1.6301
0.1 1.2246 1.1420 1.0038 1.1642 1.1742 1.7343 1.3403 1.0048 1.6343 1.6343

1 1.2137 1.1622 1.0376 1.1971 1.1986 1.6786 1.3311 1.0463 1.6759 1.6759
10 1.1357 1.1132 1.3650 1.5255 1.5255 1.4453 1.2469 1.3650 2.0926 2.0926

100 1.0000 1.0000 1.0000 4.8872 4.8872 1.0000 1.0000 1.0000 6.2593 6.2593
Av. 1.1601 1.1117 1.0813 1.9874 1.9914 1.5197 1.2522 1.0833 2.6584 2.6584

Triangular Beta

h ALG0
1 ALG

p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG2
5 ALG0

1 ALG
p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG2
5

0.01 1.8166 1.3587 1.0005 1.7848 1.7848 1.8313 1.3995 1.0005 1.8534 1.8534
0.1 1.8103 1.3540 1.0049 1.7892 1.7892 1.8267 1.3950 1.0050 1.8578 1.8578

1 1.7500 1.3364 1.0476 1.8333 1.8333 1.7818 1.3619 1.0476 1.9020 1.9020
10 1.6148 1.3929 1.3623 2.2745 2.2745 1.6017 1.4220 1.3650 2.3431 2.3431

100 1.0000 1.0000 1.0000 6.6863 6.6863 1.0000 1.0000 1.0000 6.7549 6.7549
Av. 1.5983 1.2884 1.0831 2.8736 2.8736 1.6083 1.3157 1.0836 2.9423 2.9423
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Table 7. Average costs when H = 15.

Uniform Exponential

h ALG0
1 ALG

p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG5
5 ALG0

1 ALG
p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG5
5

0.01 149.36 120.62 105.57 128.63 123.81 141.52 119.07 103.43 121.90 118.62
0.1 149.36 120.75 106.72 128.94 124.72 141.52 119.15 104.49 122.21 119.53

1 149.36 124.44 113.12 132.00 133.83 141.52 121.78 110.30 125.27 128.71
10 149.36 144.26 142.57 162.65 224.91 141.52 138.45 137.17 155.90 220.41

100 149.36 149.36 149.36 469.10 1135.71 141.52 141.52 141.52 462.17 1137.42
Av. 149.36 131.89 123.47 204.26 348.60 141.52 127.99 119.38 197.49 344.94

Normal(150,5) Normal(150,15)

h ALG0
1 ALG

p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG5
5 ALG0

1 ALG
p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG5
5

0.01 149.24 143.98 140.83 145.71 144.91 149.74 132.54 123.33 138.19 135.23
0.1 149.24 144.88 142.18 146.06 145.83 149.74 132.75 124.68 138.50 136.16

1 149.24 146.20 155.68 149.49 155.09 149.74 137.40 137.29 141.55 145.41
10 149.24 149.24 149.24 183.81 247.71 149.74 149.60 149.45 172.11 237.90

100 149.24 149.24 149.24 526.98 1173.90 149.74 149.74 149.74 477.66 1162.83
Av. 149.24 146.71 147.44 230.41 373.49 149.74 140.41 136.90 213.60 363.50

Triangular Beta

h ALG0
1 ALG

p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG5
5 ALG0

1 ALG
p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG5
5

0.01 148.99 127.63 115.44 133.62 130.91 150.55 126.18 113.37 133.01 129.59
0.1 148.99 127.81 116.78 133.92 131.83 150.55 126.33 114.71 133.31 130.54

1 148.99 132.33 126.64 137.01 141.09 150.55 130.58 123.70 136.27 139.98
10 148.99 148.22 147.37 167.90 233.68 150.55 149.36 148.29 165.83 234.37

100 148.99 148.99 148.99 476.78 1159.60 150.55 150.55 150.55 461.48 1178.29
Av. 148.99 136.99 131.04 209.85 359.42 150.55 136.60 130.12 205.98 362.55

Table 8. Average ratios when H = 15.

Uniform Exponential

h ALG0
1 ALG

p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG5
5 ALG0

1 ALG
p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG5
5

0.01 1.4176 1.1449 1.0006 1.2204 1.1745 1.3701 1.1525 1.0006 1.1798 1.1479
0.1 1.4088 1.1390 1.0053 1.2158 1.1765 1.3613 1.1458 1.0044 1.1753 1.1500

1 1.3410 1.1175 1.0147 1.1864 1.2080 1.2990 1.1179 1.0124 1.1515 1.1872
10 1.1394 1.1007 1.0883 1.2731 1.7680 1.1310 1.1074 1.0974 1.2804 1.8092

100 1.0000 1.0000 1.0000 3.6490 8.0263 1.0000 1.0000 1.0000 3.7895 8.4663
Av. 1.2614 1.1004 1.0218 1.7089 2.6707 1.2323 1.1047 1.0230 1.7153 2.7521

Normal(150,5) Normal(150,15)

h ALG0
1 ALG

p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG5
5 ALG0

1 ALG
p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG5
5

0.01 1.0607 1.0227 1.0006 1.0355 1.0297 1.2192 1.0784 1.0006 1.1238 1.0986
0.1 1.0559 1.0244 1.0056 1.0332 1.0316 1.2124 1.0742 1.0061 1.1201 1.1003

1 1.0285 1.0073 1.0730 1.0305 1.0695 1.1582 1.0622 1.0590 1.0940 1.1256
10 1.0014 1.0014 1.0014 1.2407 1.6663 1.0382 1.0372 1.0362 1.2089 1.6693

100 1.0000 1.0000 1.0000 3.6024 7.8959 1.0000 1.0000 1.0000 3.3990 7.8924
Av. 1.0293 1.0112 1.0161 1.5885 2.5386 1.1256 1.0504 1.0204 1.5891 2.5772

Triangular Beta

h ALG0
1 ALG

p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG5
5 ALG0

1 ALG
p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG5
5

0.01 1.2953 1.1092 1.0007 1.1609 1.1366 1.3331 1.1162 1.0007 1.1767 1.1460
0.1 1.2877 1.1042 1.0065 1.1568 1.1384 1.3252 1.1110 1.0067 1.1724 1.1481

1 1.2274 1.0898 1.0399 1.1288 1.1658 1.2626 1.0944 1.0339 1.1427 1.1783
10 1.0695 1.0642 1.0582 1.2283 1.7107 1.0933 1.0849 1.0774 1.2281 1.7418

100 1.0000 1.0000 1.0000 3.5268 8.0112 1.0000 1.0000 1.0000 3.4253 8.1109
Av. 1.1760 1.0735 1.0211 1.6403 2.6326 1.2028 1.0813 1.0237 1.6290 2.6650



Algorithms 2024, 17, 237 12 of 14

Table 9. Maximum ratios when H = 15.

Uniform Exponential

h ALG0
1 ALG

p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG5
5 ALG0

1 ALG
p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG5
5

0.01 1.9976 1.4094 1.0015 1.9718 2.0007 1.9996 1.4089 1.0015 2.0015 2.0015
0.1 1.9801 1.4044 1.0147 1.9851 2.0070 1.9960 1.3990 1.0147 2.0150 2.0150

1 1.9417 1.4314 1.1316 2.1188 2.1188 1.9608 1.4314 1.1304 2.1500 2.1500
10 1.7522 1.6404 1.5727 3.4554 3.4554 1.7636 1.6636 1.6455 3.5000 3.5000

100 1.0000 1.0000 1.0000 16.8800 16.8800 1.0000 1.0000 1.0000 17.0000 17.0000
Av. 1.7343 1.3771 1.1441 5.2822 5.2924 1.7440 1.3806 1.1584 5.3333 5.3333

Normal(150,5) Normal(150,15)

h ALG0
1 ALG

p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG5
5 ALG0

1 ALG
p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG5
5

0.01 1.1959 1.1550 1.0011 1.1617 1.1701 1.7190 1.3894 1.0014 1.6195 1.6195
0.1 1.1850 1.1557 1.0115 1.1715 1.1793 1.7097 1.3837 1.0138 1.6318 1.6318

1 1.1667 1.1633 1.1145 1.2701 1.2701 1.6226 1.3942 1.1271 1.7545 1.7545
10 1.0922 1.0922 1.0922 2.2901 2.2901 1.4655 1.4655 1.4655 2.9818 2.9818

100 1.0000 1.0000 1.0000 12.5954 12.5954 1.0000 1.0000 1.0000 15.2545 15.2545
Av. 1.1279 1.1132 1.0439 3.6978 3.7010 1.5034 1.3266 1.1216 4.6485 4.6485

Triangular Beta

h ALG0
1 ALG

p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG5
5 ALG0

1 ALG
p̄∗3
3 ALG

p̄∗4
4 ALG1

5 ALG5
5

0.01 1.8909 1.3956 1.0015 1.7443 1.8853 1.9685 1.3647 1.0015 1.8279 1.8314
0.1 1.8793 1.3921 1.0146 1.7571 1.8918 1.9529 1.3565 1.0147 1.8093 1.8426

1 1.8148 1.3810 1.1316 1.8857 1.9537 1.8091 1.4135 1.1316 1.9151 1.9533
10 1.5366 1.5289 1.4643 3.1714 3.1714 1.6466 1.5752 1.5752 3.1887 3.1887

100 1.0000 1.0000 1.0000 16.4455 16.4455 1.0000 1.0000 1.0000 16.4020 16.4020
Av. 1.6243 1.3395 1.1224 5.0008 5.0696 1.6754 1.3420 1.1446 5.0286 5.0436

The computational results show that, for both H = 5 and H = 15, the average
ratios are significantly lower than the corresponding maximum ratios. Moreover, the
maximum ratios tend to be very close to the competitive ratios shown in Table 1. ALG0

1

is significantly dominated by ALGp̄∗3
3 , which is dominated by ALGp̄∗4

4 when the maximum
ratios are computed, and tends to be dominated on average. The performance of the latter
algorithm is very good. For each probability distribution, the average and maximum ratios
decrease, even if not monotonically, with h and they are equal to 1, as expected, for h = 100
(see Theorem 3). The ratios are very different with different probability distributions. In
particular, the uniform distribution gives the largest ratios, while the normal distribution
with a mean of 150 and a standard deviation of 5 gives the smallest ratios.

We do not show in detail the performance of the algorithms ALGj
1 and ALGj

2 for j > 0.
As expected, the computational results show that the average and the maximum ratios
increase with j and that ALGj

2 dominates ALGj
1 (as an example, see Table 10 for the case

with H = 5 and Uniform distribution).

Table 10. Average and maximum ratios for ALGj
1 and ALGj

2 when H = 5 and a uniform distribution
is assumed.

ALG0
1 ALG1

1 ALG2
1 ALG3

1 ALG4
1 ALG5

1

Average 1.2187 1.3786 1.5374 1.7047 1.85472 2.0103
Maximum 1.7514 2.1737 2.3897 2.6502 2.8602 3.1111

ALG0
2 ALG1

2 ALG2
2 ALG3

2 ALG4
2 ALG5

2

Average 1.2187 1.2345 1.3232 1.4440 1.5721 1.7065
Maximum 1.7514 1.8865 1.9202 2.1267 2.1902 2.1111

Finally, the results show that, for any probability distribution, the algorithm ALGk
5

used to optimally solve the Secretary problem is significantly worse than the algorithms
we propose to solve the distribution problem, both for H = 5 and H = 15. Moreover, the
average and maximum ratios of the algorithm ALGk

5 tend to increase when k increases due
to the penalty cost. These results highlight the need for designing specific algorithms for
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the online distribution problem. Finally, we note that the Secretary problem algorithms
become more competitive when the penalty cost is low.

7. Conclusions

We studied an online distribution problem in which a producer has to decide either to
accept or not accept the transportation price currently offered to send a load to a customer.
The aim is to minimize the sum of transportation costs and penalty costs, which are
incurred whenever the current price is not accepted. This problem can be viewed as a new
variant of the Secretary problem. We demonstrated computationally that the algorithm
used to optimally solve the Secretary problem is not effective for this problem due to
the different objective functions. Therefore, we designed two specific classes of online
algorithms to solve it: algorithms with a given time of acceptance and algorithms with a
given threshold price. For each algorithm, we proved its competitive ratio. We showed
that the competitive ratios of the algorithms in the second class dominate the ones of
the algorithms in the first class. The computational results, for which the transportation
prices were either obtained from a professional website or randomly generated from given
probability distributions, allowed us to computationally demonstrate the same type of
dominance. The probability distributions we used were able to generate scenarios with
different levels of volatility in the transportation prices. Moreover, note that our algorithms
require short computational times and, therefore, they are scalable to any deadline we
may have in real-world online distribution settings. However, in future work, we might
experiment with more sophisticated algorithms, including hybrid algorithms that combine
the features of some of the algorithms proposed in this paper. We might also modify the
algorithm based on the Secretary problem to take into account the size of the penalty, as
well as the deadline. In addition, a user-friendly software package could be developed to
implement the algorithms we have proposed, making them accessible to professionals who
may benefit from their application.
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