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Abstract: Transfer learning has gained significant traction in natural language processing due to
the emergence of state-of-the-art pre-trained language models (P.L.M.s). Unlike traditional word
embedding methods such as TF-IDF and Word2Vec, P.L.M.s are context-dependent and outperform
conventional techniques when fine-tuned for specific tasks. This paper proposes an innovative hard
voting classifier to enhance crash severity classification by combining machine learning and deep
learning models with various word embedding techniques, including BERT, RoBERTa, Word2Vec,
and TF-IDF. Our study involves two comprehensive experiments using motorists’ crash data from
the Missouri State Highway Patrol. The first experiment evaluates the performance of three machine
learning models—XGBoost (X.G.B.), random forest (R.F.), and naive Bayes (N.B.)—paired with TF-IDF,
Word2Vec, and BERT feature extraction techniques. Additionally, BERT and RoBERTa are fine-tuned
with a Bidirectional Long Short-Term Memory (Bi-LSTM) classification model. All models are initially
evaluated on the original dataset. The second experiment repeats the evaluation using an augmented
dataset to address the severe data imbalance. The results from the original dataset show strong
performance for all models in the “Fatal” and “Personal Injury” classes but a poor classification of the
minority “Property Damage” class. In the augmented dataset, while the models continued to excel
with the majority classes, only XGB/TFIDF and BERT-LSTM showed improved performance for the
minority class. The ensemble model outperformed individual models in both datasets, achieving an
F1 score of 99% for “Fatal” and “Personal Injury” and 62% for “Property Damage” on the augmented
dataset. These findings suggest that ensemble models, combined with data augmentation, are highly
effective for crash severity classification and potentially other textual classification tasks.

Keywords: ensemble learning; natural language processing; pre-trained language models; transformers;
machine learning; crash severity

1. Introduction

Natural language processing (N.L.P.) and artificial intelligence have provided new op-
portunities for acquiring knowledge from unstructured raw data. Text mining has become
a promising tool to extract meaningful data in a world that generates 2.5 quintillion bytes
every day [1]. Text mining involves constructing suitable models to retrieve effective, novel,
valuable information scattered in the text to better organize information [2]. Several studies
have been conducted to classify crash severity using statistical and machine learning meth-
ods. These methods can be divided into tabular/quantitative and textual/qualitative data
approaches. The development in word embeddings such as TF-IDF [3] and Word2Vec [4]
has facilitated text classification tasks. Furthermore, the recent emergence of pre-trained
language models (P.L.M.s) such as BERT [5], RoBERTa [6], and DeBERTa [7] has revealed
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promising results in text classification that outperformed traditional techniques such as
TF-IDF and Word2Vec.

Transfer learning has recently become very popular in N.L.P. applications [8]. It allows
the model to utilize the knowledge captured from a source task to be fine-tuned to a
downstream target task. Due to the data being scarce, inaccessible, or expensive to collect
in some domains, transfer learning solutions provide a promising approach.

Most of the existing research focused on a single classifier to perform the classification
task. Thus, incorporating multiple classifiers has been shown to improve many N.L.P.
applications. In particular, the ensemble technique has been proven to improve overall
efficiency [9].

In transportation, N.L.P. applications have attracted researchers in the last few years to
carry out different tasks. For example, professional investigators determine crash severity
through the available crash report derived from the crash scene. However, this process
requires considerable effort, and expert subjectivity might affect the accuracy. The recent
development in deep learning and N.L.P. makes it possible to automate the analysis and
classification of crash severity with a precision that may surpass human accuracy. Therefore,
we aim to build a high-performance text classification model based on transfer learning
that can be generalized for different traffic textual data.

The motivation for this research stems from the huge amount of textual data over
the last few years. Further, recent studies point to the limitation of not considering the
advancement of N.L.P. tools. Another motivation is that previous work did not consider
deploying several combinations of machine learning and N.L.P. pairs to identify the most
powerful combination. Moreover, an ensemble model is proposed in this work to improve
the performance.

To the best of our knowledge, this is the first work that uses transfer learning and
pre-trained transformers for crash severity classification. Further, our proposed ensemble
strategy is the first of its kind applied to model crash severity classification and build an ef-
ficient model capable of dealing with noisy and informally written crash reports. Moreover,
the previous studies in this domain have not compared a combination of different word
embedding techniques with machine learning algorithms. Further, this study is the first
use of BERT fine-tuned with Bidirectional Long Short-Term Memory (Bi-LSTM) for crash
severity classification. The main contributions of this study are in the following aspects.

• We present an ensemble voting classifier for crash severity classification, which is
constituted by machine learning and pre-trained transformers that are individually
fine-tuned.

• We propose a comparison approach for crash severity classification using three feature
extraction techniques (TF-IDF, Word2Vec, and BERT) combined with machine learning
classifiers (random forest, XGBoost, and naive Bayes).

• We fine-tune the cutting-edge transformers BERT and RoBERTa using Bi-LSTM to
model crash severity and analyze the performance.

• We demonstrate that the proposed ensemble technique outperforms the sepa-
rate classifiers.

The rest of this paper is organized as follows. Section 2 presents the literature review.
Section 3 gives an overview of the proposed methodology as well as a description of the
dataset. Section 4 discusses the experiments. The results are discussed in Section 5, while
the conclusions and future works are discussed in Section 6.

2. Literature Review
2.1. Transfer Learning and Pre-Trained Language Models

Transfer learning has been applied in different research areas such as image classifica-
tion, video classification, sentiment analysis, and text classification among others [8]. This
phenomenon allows the information gained in one domain to be used in another domain to
improve the results of the target domain. Further, this task can be used in areas where the
target training data are limited and using deep neural networks may result in overfitting.
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The concept of transfer learning resolved this issue by training deep neural networks on
a very large dataset and using it on a similar target task with different data. These deep
networks are known as pre-trained models and have been used in many domains for a long
time [8]. In real life, there are many examples which relate to this concept. For example, a
system that is trained to recognize large vehicles, with a little fine-tuning, can recognize
small cars.

With the introduction of P.L.M.s such as Bidirectional Encoder Representation from
Transformers (BERT) [5] and its variants in 2018, transfer learning has become very popular
in N.L.P. P.L.M.s work collaboratively, bidirectionally from left to right, on huge machines
and large textual datasets to gain a deep language understanding and learn the context of
the word based on the sentence and the surrounding words [10]. For example, BERT gener-
ates a different vector representation for the word “jam” in both the phrases “traffic jam”
and “strawberry jam”, whereas TF-IDF and Word2Vec may have the same numeric repre-
sentation which impacts the model understanding and performance. Therefore, P.L.M.s
were adapted to downstream tasks through fine-tuning methods and transfer learning.

Transformers overcome the computational bottleneck suffered by sequential text
processing, such as convolutional neural networks and recurrent neural networks since
they allow for parallelization which makes it possible to train a large amount of data. PLM-
based models use deeper architecture compared with previous contextualized embedding
and are fine-tuned on task-specific data [11]. Fine-tuning may involve freezing some layers
and training the others, or in other scenarios, it may involve freezing the entire network
and training the last classification layer [12]. These models have shown promising results
in various N.L.P. tasks compared with traditional techniques. The authors of ref. [13]
stated that transfer learning performs much better than task-specific models. A variety of
P.L.M.s are found in the literature and have achieved promising results, such as DistilBERT,
RoBERTa, and DeBERTa [8].

DistilBERT [14] is a pre-trained transformer-based language representation model
which can be fine-tuned in a wide range of N.L.P. tasks by adding a classification head
on top of the model base. This model is a 40% smaller version of BERT, cheaper to train
and 60% faster while retaining more than 97% of BERT’s capabilities. While operating
large models remains a challenge and raises several concerns, these smaller versions have
become more prevalent. RoBERTa [6] is an improved version of BERT pre-training with a
careful consideration of hyperparameters and training size. This improved model exceeds
BERT’s performance and outperforms state-of-the-art models. The improvement is due to
the longer training time and larger dataset size with a higher batch size. DeBERTa [7] is
a new model architecture that outperforms BERT and RoBERTa through applying novel
training methods. This new model is trained on half of the training data and achieves a
higher performance in different N.L.P. tasks. This cutting-edge model outperforms human
performance and boosts the overall results. Figure 1 shows the timeline for the most
common deep learning-based text embedding and classification models. While DistilBERT
and DeBERTa are mentioned as part of the broader evolution of N.L.P. models, this study
focuses on Word2Vec and BERT due to their efficiency and adequacy for the size and
characteristics of the dataset used. Future research could explore the incorporation of these
more advanced models to potentially enhance classification accuracy.

In the development of our methodology for crash severity classification, a critical
decision was made to employ a comparative analysis of three distinct word embedding
techniques: TF-IDF, Word2Vec, and BERT. This choice was driven by the need to balance
computational efficiency with predictive performance across varying scales of data. TF-IDF
was selected for its simplicity and effectiveness in representing text data within traditional
machine learning frameworks. Word2Vec was chosen for its ability to capture semantic
relationships between words in a way that is computationally feasible for moderate-sized
datasets. BERT, representing the cutting-edge in contextualized word embeddings, was
included to explore potential gains in model accuracy from deep learning advancements.
These techniques provided a broad spectrum of capabilities, enabling a robust evaluation
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of methods from simple to complex without the computational overhead associated with
more recent models like GPT-3.5 or newer versions. This strategic choice allowed for an
extensive assessment of each technique’s utility in real-world applications where resources
may be limited and also provided a foundational comparison that remains relevant despite
rapid advancements in N.L.P. technologies.
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2.2. Related Work

The transportation domain has an enormous amount of unstructured textual data,
including crash data narratives. These data sources can be utilized to generate deeper
understanding and insights from the crash scene to improve traffic safety [15]. There are a
limited number of studies that adopt crash narratives to classify crash severity. In general,
the two main approaches in traffic research for crash severity classification are tabular and
textual data approaches.

2.2.1. Tabular Data Approaches

A significant body of the literature is focused on statistical and machine learning
approaches to study the factors associated with crash severity and predict crash severity
levels. Both approaches significantly overlap since they deal with data analysis. A critical
difference between statistical and machine learning approaches is that the former requires
some assumptions about the predefined relations between the dependent and independent
variables. In contrast, the latter does not require any previous assumptions [16]. Statistical
models have been widely used since the 1980s and 1990s to model road accidents [17].
A common approach in these models is to use explanatory regressors such as driver
information, weather, and road conditions, among others, as independent variables and
crash severity as the dependent variable in binary (logit or probit) with two discrete
outcomes [18–20] or multinomial models with multiple crash severity outcomes [21,22].
Regression models are the most common statistical modeling techniques to measure the
level of severity of road crashes [23–25]. Apart from statistical methods, machine learning
algorithms are booming in the transportation area because of their ability to model complex
nonlinear functions without the need to understand the underlying mechanism [16,26].
Artificial neural networks are the most applied machine learning technique, followed by
decision trees and support vector machines [27–29]. Also, Bayesian networks, random
forests, boosting classifiers, and many other machine learning techniques have been used
to model crash severity [30–32]. Deep learning approaches such as convolutional neural
networks and recurrent neural networks have recently become widely used for prediction
tasks in transportation research, demonstrating their outstanding performance [33,34].
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2.2.2. Textual Data Approaches

Several recent domains have sought to apply text mining in unstructured data. For
example, transportation studies utilized N.L.P. and text mining techniques to extract
insights from unstructured crash narratives. However, these studies focused primarily
on addressing two research directions: (1) classification tasks and (2) extracting hidden
trends from the unstructured data. The crash narratives may include valuable information
that does not exist in the tabular analyses. This asset can provide contextual information
by applying cutting-edge text mining techniques, resulting in a better understanding of
crash severity outcomes to help policymakers develop prevention strategies. Remarkably,
little research has focused on crash narratives to enhance the understanding of the factors
influencing crash severity levels.

Advances in machine learning have contributed significantly to text classification.
Several machine learning-based studies have been conducted for text classification in traffic
narratives. For example, [35] proposed an approach that combines text mining with inter-
pretable machine learning to identify causal factors associated with injury severity. They
adopted a variety of text mining and machine learning models such as neural networks,
support vector machines, the naive Bayes algorithm, random forests, XGBoost, and logistic
regression to classify crash severity. The neural network showed the best performance
among the tested models. This proposed approach showed a new analytic perspective
to explain key factors associated with high-severity crashes which cannot be obtained
through classification tabular data analysis. However, textual data were converted into
numeric vectors using TF-IDF representation. In contrast to word frequency vectorization,
the TF-IDF approach ignores the words with low importance to provide a meaningful
explanation. This study’s limitation is that the bag-of-words method does not consider the
contextual semantic relation between the words.

Another study used three machine learning algorithms to find vehicles involved in
hydroplaning crashes [36]. This study demonstrated the capability of text mining to detect
vehicle crashes and provided a platform to understand interpretability in machine learning.
XGBoost was found to be the most effective classifier. The benefit of this study is that the
accuracy could be improved, and extra crash variables could be included to improve model
performance. The author of ref. [37] presented a text mining-based approach to reveal
contextual relationships in motor vehicle crash narratives based on word frequency. The
study used Queensland traffic accidents between 2004 and 2005 to extract the causes of the
crashes and determine the leading causes of those crashes. Their results were interesting in
that they can help policymakers to better assess road crashes. However, this study did not
consider severity analysis interpretation.

In contrast to machine learning, deep learning models can extract complex characters
from the word order of input data with superior classification accuracy. These models re-
quire word embeddings such as Word2Vec, a two-layer neural network. Word embeddings
are capable of extracting semantic relations in the text [38].

The author of ref. [39] developed a verb-based text mining algorithm to identify and
extract the main verbs associated with vehicles’ actions in a crash accident. The proposed
approach was evaluated using 945 crash reports. The results showed that the extracted
information is helpful for crash classifications and identifying the causes of the crash. The
authors of ref. [40] conducted a study to predict secondary crashes. The authors developed
a text mining approach to recognize secondary crashes from crash narratives. Four steps
were used to process the data: tokenization, counting, vectorization, and normalization to
convert the text narratives into vector structure. The logistic regression model achieved the
highest accuracy of all the models used. This model is efficient in identifying keywords
associated with secondary crashes. The authors of ref. [41] conducted a study to measure
the injury severity of pedestrian and bicyclist trespassing crashes at non-crossings. The
authors proposed a two-stage statistical and machine learning hybrid approach to extract
information regarding the severity of trespassers’ injuries. This study focused on pedestrian
trespassers and did not discuss the injury caused by all types of crashes. Moreover, the



Algorithms 2024, 17, 284 6 of 23

study focused on rail trespassing crashes. The authors of ref. [42] developed a classifier
to discover missing classified work-zone crashes using the information in text narratives.
The study used three years of crash narrative data (2017–2019). The classifier used key
information from the crash textual data and proved to be efficient and effective in classifying
road crashes.

The authors of ref. [43] conducted a study on N.L.P.’s effectiveness in analyzing mine
accident narratives. The authors developed nine models to classify mine safety narratives
into nine accident types. The automatic classification process achieved an accuracy of 96%.
The study demonstrated that N.L.P. and text analysis could be powerful tools for analyzing
textual data.

The authors of ref. [44] carried out a study to inspect road safety through applying
Latent Dirichlet Allocation (LDA). The purpose of the study was to identify the safety
issues on main roads. The paper showed how topic modeling can identify run-off-road
crashes through highlighting the associated patterns embedded in the narratives. Topic
modeling was able to divide the topics into two groups of problems and solutions. The
study gathered crash reports over six years, reflecting 4011 km of Irish roads. The findings
showed the importance of keywords related to “forgiving roadside” and “clear zone”
topics. Moreover, the authors found that categories related to road safety were higher in
the problem reports, which means that problems are discovered more easily than solution
interventions. The study showed that the topic modeling methodology is appropriate to
identify specific patterns related to traffic safety and road crashes. However, their approach
was based on a bag-of-words representation, which does not consider semantic correlations
between the words. Also, their study could be improved by considering other types of
crashes, such as multi-vehicle crashes.

3. Material and Methods

This section describes the dataset and the methodology used in this research. The
proposed method involves four main stages: data augmentation, data preprocessing,
comparing machine learning classifiers on different word embeddings, and building an
ensemble classifier based on the three best-performing models. Figure 2 presents the
architecture of the proposed methodology.

3.1. Data Augmentation

The original dataset for this research comprises 6400 crash accidents from the Missouri
State Highway Patrol, recorded between 2019 and 2020. Each record is classified as “fatal”,
“property damage”, or “personal injury” based on the crash severity. The dataset is notably
imbalanced, with only 41 instances labeled as “property damage”.

The dataset was initially divided into separate training and testing sets to prevent
information leakage. The testing set includes 588 records of “Personal Injury”, 48 records
of “Fatal”, and 20 records of “Property Damage”. The remaining data were allocated to
the training set, comprising 5295 records of “Personal Injury”, 428 records of “Fatal”, and
21 records of “Property Damage”.

Addressing the imbalance in the training set, we employed data augmentation tech-
niques exclusively on the training data to upsample the minority classes. Specifically, the
“Fatal” and “Property Damage” records were increased to 1000 each while maintaining
the “Personal Injury” records at 5295. This augmentation was achieved by utilizing a
BERT model, which generates new samples through techniques like insertion and substi-
tution to create synthetically meaningful data. Table 1 details the class distributions of
both the original and augmented training datasets alongside the testing set. We incorpo-
rated regularization techniques and dropout during model training to mitigate overfitting
risks. Additionally, we applied 5-fold cross-validation to validate the model’s performance
across various data subsets. This rigorous approach ensures the robustness of our models,
preventing overfitting by assessing the model’s performance on multiple data partitions.
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Table 1. Distribution of training and testing datasets before and after augmentation.

Dataset Personal
Injury Fatal Property

Damage Total

Training set (original dataset) 5295 428 21 5744
Training set (augmented dataset) 5295 1000 1000 7295

Testing set 588 48 20 656

3.2. Methodology

This research encompasses several key stages to enhance the classification efficiency
and robustness of the models.

• Data Processing: We opted for minimal data preprocessing steps, such as basic text
normalization and removing non-textual characters, instead of extensive preprocess-
ing like tokenization, stop-word removal, or stemming, as these extensive steps may
lead to the loss of important contextual information. Advanced word embedding tech-
niques like BERT and RoBERTa are designed to handle raw text inputs effectively [5,6].
This approach preserves contextual information and reduces computational overhead,
aligning with recent findings emphasizing the efficiency of using raw data with sophis-
ticated models [45]. Modern learning models, particularly those involving transformer
architectures, are highly robust and capable of learning from raw data [46].

• Data Splitting and Augmentation: To address the severe class imbalance in the dataset,
data splitting was conducted using specific numbers for each class to ensure a bal-
anced representation. The Missouri State Highway Patrol dataset was divided into
training and testing sets based on a fixed number of instances per class for testing.
The remaining samples were used for training. Data augmentation techniques were
applied exclusively to the training set to upsample the minority classes by generating
synthetic data. This step increased the representation of the minority classes, “Fatal”
and “Property Damage” classes, thereby balancing the class distributions.

• Cross-Validation: To ensure the robustness of our results and mitigate the risk of
overfitting, 5-fold cross-validation was employed during the training process. This
approach validates the model’s performance across different subsets of the data,
providing a comprehensive evaluation.

• Feature Extraction Techniques and Classifiers: We investigate multiple feature extrac-
tion techniques and machine learning classifiers. The classifiers used in this study in-
clude random forest (R.F.) [47], naive Bayes (N.B.) [48], and XGBoost (X.G.B.) [49], each
paired with various word embedding techniques such as TF-IDF [3], Word2Vec [4], and
BERT [5]. Additionally, two state-of-the-art pre-trained language models, BERT [5]
and RoBERTa [6], were fine-tuned with a Bidirectional Long Short-Term Memory
(Bi-LSTM) classification model [50]. These selections are based on their demonstrated
efficiency in various N.L.P. tasks [30–32,35,44,51].

• Model Training: In the model training phase, we utilized a combination of tradi-
tional machine learning models and advanced deep learning techniques. Specifi-
cally, we paired three machine learning models—XGBoost (X.G.B.) [49], naive Bayes
(N.B.) [48], and random forest (R.F.) [47]—with three-word embedding techniques: TF-
IDF [3], Word2Vec [4], and BERT [5]. Additionally, we fine-tuned two state-of-the-art
pre-trained language models, BERT [5] and RoBERTa [6], with a Bidirectional Long
Short-Term Memory (Bi-LSTM) classification model [50]. These models were trained
separately on both the original and augmented datasets to comprehensively evaluate
performance differences and the impact of data augmentation on model robustness
and accuracy.

• Ensemble Hard Voting: In this study, we utilized a hard voting ensemble method to
combine the predictions of three top-performing models: TF-IDF/XGB, BERT-LSTM,
and RoBERTa-LSTM. This technique aggregates the predictions from each model
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and selects the majority vote as the final prediction, enhancing overall classification
accuracy and robustness.

• Model Evaluation: Model evaluation was conducted using precision, recall, and
F1 score metrics, particularly chosen to address the severe class imbalance in the
dataset. Precision measures the accuracy of positive predictions, recall evaluates
the ability to identify all relevant instances, and the F1 score provides a balance
between precision and recall. These metrics ensure a reliable assessment of the model’s
effectiveness in classifying crash severity, offering a more comprehensive evaluation
than accuracy alone.

3.3. Text Embedding Approaches

Machine learning models cannot deal with raw textual inputs. Text representation
is a mandatory step to generate numeric vectors to be processed by the classification
models. Word embeddings are numeric representations (vectors) in n-dimensional space
that capture the word meanings. It is a technique used to map words in the text to vectors
in the space. The evolution of word embedding techniques has facilitated text classification
tasks. In the literature, three dominant word embeddings exist, namely traditional word
embeddings, static word embeddings, and contextualized word embeddings [51]. Figure 3
shows the main three categories of word embedding methods.
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Figure 3. Categories of word embedding methods.

We now describe the most commonly used feature extraction methods that exist in
the literature, and which are deployed in our study, namely TF-IDF, Word2Vec, and BERT.
TF-IDF is a popular method to convert text into features by giving calculated weights to
words according to their importance in the corpus. It is used to measure the importance of
words in the corpus. This measure is widely used in information retrieval to reflect how
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relevant a word is in each document. While the term frequency (T.F.) measures the number
of times a certain word occurs in the document, all words are given the same importance.
However, the inverse document frequency (I.D.F.) rewards the rare words in the corpus
as they may involve important information. For a given word, I.D.F. = N/n, where N is
the number of documents in the corpus, and n is the number of documents containing the
word. Then, TF-IDF = T.F. × I.D.F., where T.F. is the term frequency of the word.

However, this method does not consider semantics as compared to other word em-
beddings. In contrast, Word2Vec pre-trained models that were trained by using Google
News are another popular method for word representations capable of capturing word
semantics [4]. This method generates a context-independent vectorized representation for
the word regardless of an occurrence in which similar words are embedded in the same
space. The shortcomings of previous approaches motivated the introduction of P.L.M.s
such as BERT and its successors such as RoBERTa and DeBERTa, which have revolutionized
the performance of many N.L.P. tasks.

In this study, we carefully selected one representative technique from each of the three
primary categories of word embeddings to compare their performance in crash severity
classification tasks. Specifically, from the category of traditional word embeddings, we
utilized TF-IDF, which focuses on the frequency and rarity of terms across the documents
without considering semantic relationships. From the static word embeddings group, we
chose Word2Vec, which is particularly effective in capturing semantic and syntactic word
relationships through its neural network-based model trained on Google News data [4].
Finally, from the contextualized word embeddings, we incorporated BERT, a transformer-
based model that understands the context of a word based on all its surrounding words,
significantly enhancing the model’s ability to discern the nuanced meanings of words in
varied contexts. This comparative approach allows us to empirically determine which
embedding technique provides the most robust feature set for enhancing the performance
of our crash severity classification model.

3.4. Evaluation Metrics

Given the imbalanced nature of our dataset, accuracy alone is not a suitable metric
for evaluating model performance [52,53]. Therefore, we prioritize precision, recall, and
F1 score. Precision measures the proportion of true positive results among all positive
predictions, recall measures the proportion of actual positives correctly identified, and the
F1 score balances precision and recall. This approach provides a more accurate and reliable
evaluation of the model’s effectiveness in handling imbalanced data. We consider that true
positive (T.P.) is the number of positive cases predicted as positive, True Negative (T.N.) is
the number of negative cases predicted as negative, False Negative (F.N.) is the number
of positive cases predicted as negative, and False Positive (F.P.) is the number of negative
cases predicted as positive. Here are the metrics upon which our evaluations rely.

• Precision measures the percentage of accurate positive predictions compared to the
total number of samples classified as positive.

Precision = TP/(TP + FP)

• Recall measures the percentage of accurate positive predictions compared to the total
number of actual positives.

Recall = TP/(TP + FN)

• The F1 score is a trade-off between precision and recall, which combines precision and
recall assessing the performance of the model. It represents a better metric in the case
of imbalanced classes.

F1 score = 2 × (Precision × Recall)/(Precision + Recall)
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4. Experiments

The main objective of our work is to use the ensemble technique, which combines
three best-performing machine learning and fine-tuned models. To achieve this goal, we
conducted two experiments to evaluate models deploying the ensemble model. The first
experiment compared various machine learning models and N.L.P. word embeddings
on the original dataset. The second experiment focused on evaluating the same models
on the augmented dataset. Upon identifying the best classifiers in the two experiments,
we deployed an ensemble voting model to improve performance by combining the three
highest-performing base classifiers.

We used the same models on the original and augmented datasets to ensure con-
sistency and fair comparison. This approach allowed us to analyze the impact of data
augmentation on the performance of the models. The ensemble of the top three models
was applied to both datasets, and the results were reported for each. Overall, the ensemble
with hard voting on the augmented dataset showed a higher improvement in performance.

4.1. Experiment 1: Classification Using Machine Learning Models and Deep Learning on the
Original Dataset

Three well-known machine learning models, namely the XGBoost classifier [49], ran-
dom forest [47], and the naive Bayes algorithm [48], were combined with three embedding
techniques (TF-IDF, Word2Vec, and BERT). Additionally, we assessed the performance of
the fine-tuned BERT-LSTM and RoBERTa-LSTM models.

Bi-LSTM is a deep learning algorithm that is effective for sequence modeling, utilizing
LSTM units capable of operating in both directions to retain semantic context. In this
experiment, transformer versions BERT and RoBERTa (bert-large-uncased and roberta-base,
respectively) were further fine-tuned on the target dataset by adding an additional Bi-LSTM
layer for the classification task. Specifically, BERT and RoBERTa were used as embedding
layers to capture contextual semantics and generate word vectors fed into the Bi-LSTM
with the SoftMax network. The model architecture is shown in Figure 4.
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To optimize the model and test its performance, we divided the dataset into three
subsets: training, validation, and testing. We used dense layers with ReLU activation
and dropout layers to prevent overfitting, and the output layer was a 3-unit layer with
the SoftMax activation function. The Adam optimizer and Cross-Entropy Loss were used
as the loss functions. All model development was carried out using Python 3.7 and the
TensorFlow framework.

After identifying the top three performing models (XGB-TFIDF, BERT-LSTM, RoBERTa-
LSTM), we applied ensemble hard voting to combine their predictions. The ensemble model
outperformed individual models, as depicted in the figures below. Figures 5–7 display the
precision, recall, and F1 score on the original dataset for the BERT-LSTM, RoBERTa-LSTM,
and X.G.B. models, respectively.
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4.2. Classification Using Machine Learning Models and Deep Learning on the Augmented Dataset

In Experiment 2, we repeated the same evaluation using the augmented dataset. The
same machine learning models (X.G.B., RF, NB) combined with TF-IDF, Word2Vec, and
BERT embeddings were assessed. Additionally, the BERT-LSTM and RoBERTa-LSTM
models were fine-tuned and evaluated on the augmented dataset. The best-performing
models (XGB-TFIDF, BERT-LSTM, RoBERTa-LSTM) were again used to create an ensem-
ble hard voting model. Figures 8–10 display the precision, recall, and F1 score on the
augmented dataset for the BERT-LSTM, RoBERTa-LSTM, and X.G.B. models, respectively.
The performance metrics for the ensemble model on the augmented dataset are shown in
Section 5.
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Both the BERT-LSTM and RoBERTa-LSTM models were trained and evaluated on both
the original and augmented datasets, with their performances compared to analyze the
impact of data augmentation.

4.3. Ensemble Model with Hard Voting
4.3.1. Background

Generally, machine learning and deep learning algorithms require a large number of
samples to train a robust model capable of performing the classification task efficiently.
To improve the classification performance, researchers have adopted ensemble-based
classification using different voting schemes, such as soft vs. hard voting [12,54,55]. In
ensemble voting, the decisions of multiple base models are aggregated to produce the final
decision that results in the overall classification accuracy surpassing any individual base
model [56]. Ensemble techniques have been applied in different domains like document
classification [57], image classification [58], and biomedical classification with promising
results [59]. However, to the best of the author’s knowledge, this study is the first to be
used in transportation to address crash severity classification.

4.3.2. Hard Voting Model

To enhance the crash severity classification, we employed three different models:
BERT (DistilBERT), RoBERTa, and XGBoost (with TF-IDF). Each model was fine-tuned
and configured with specific parameters to maximize performance. This approach aimed
to improve performance by leveraging the strengths of each model on both the original
and augmented datasets. Figure 11 shows an overview of the ensemble model with
the top-performing classifiers. Table 2 provides an overview of the main settings and
hyperparameters used for each model.
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Table 2. Main settings and hyperparameters for BERT, RoBERTa, and XGBoost models.

Model Name Parameters BERT (DistilBERT) RoBERTa X.G.B. (TF-IDF)

Model Architecture DistilBERT with
Bi-LSTM RoBERTa with Bi-LSTM XGBoost with TF-IDF

Tokenizer DistilBERTTokenizer RobertaTokenizer TfidfVectorizer
Max Length 200 200 N/A
Optimizer Adam Adam Default (XGBoost)

Loss Function Sparse Categorical
Crossentropy

Sparse Categorical
Crossentropy Mlogloss

Batch Size 16 16 N/A
Epochs 5 10 N/A

Class Weight {0: 1.0, 1: 1.0, 2: 1.0} {0: 1.0, 1: 1.0, 2: 10.0} N/A

Callbacks
ModelCheckpoint,

EarlyStopping,
ReduceLROnPlateau

ModelCheckpoint,
EarlyStopping,

ReduceLROnPlateau
N/A

Preprocessing Tokenization, Attention
Masks

Tokenization, Attention
Masks

TF-IDF Vectorization
(max_features = 5000)

The BERT model (DistilBERT) was fine-tuned with a Bidirectional Long Short-Term
Memory (Bi-LSTM) layer, using the DistilBERT tokenizer with a maximum token length
of 200. The model was optimized with the Adam optimizer and trained using a sparse
categorical crossentropy loss function, with a batch size of 16 for 5 epochs. Uniform class
weights were applied, and training dynamics were managed using ModelCheckpoint,
EarlyStopping, and ReduceLROnPlateau callbacks. Similarly, the RoBERTa model was
fine-tuned with a Bi-LSTM layer, employing the RobertaTokenizer with a maximum token
length of 200. It shared the same optimizer and loss function as BERT but was trained for
10 epochs to ensure more extensive learning. Class weights were significantly adjusted
to address class imbalance, particularly for the minority class, and the same callbacks as
BERT were used. The XGBoost model, combined with TF-IDF vectorization for feature
extraction, utilized a TF-IDF vectorizer configured to consider a maximum of 5000 features.
The XGBoost classifier operated with default parameters and the m‘logloss’ evaluation
metric, focusing on leveraging the TF-IDF vectorized features for classification without the
need for the same type of preprocessing or callbacks required by the transformer models.

The ensemble method involved aggregating the predictions from each model into a
2D array and applying the mode function from scipy.stats to determine the most frequent
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prediction for each instance. By adopting the majority voting principle, where the class label
predicted by at least two out of the three classifiers was selected as the final classification, the
hard voting ensemble effectively combined the individual strengths of TF-IDF/XGB, BERT-
LSTM, and RoBERTa-LSTM. This method improved the overall classification performance,
particularly for the minority “Property Damage” class, by providing a more robust and
accurate classification than any single model.

5. Experimental Results and Discussion
5.1. Experiment 1 Results

In Experiment 1, we trained three machine learning models (XGBoost, random for-
est, naive Bayes) using three embedding techniques (TF-IDF, Word2Vec, BERT) and two
transformer-based models (BERT-LSTM and RoBERTa-LSTM) on the original dataset. After
identifying the best-performing models, we applied an ensemble hard voting technique.

Table 3 shows the evaluation metrics for each model on the original dataset. The
models performed differently based on the embedding techniques used.

Table 3. Evaluation metrics for models on the original dataset.

Model Class Precision Recall F1 Score

XGB-TFIDF Fatal 0.9789 0.9748 0.9768
Personal Injury 0.9919 0.9990 0.9954

Property Damage 0.0 0.0 0.0
XGB-Word2Vec Fatal 0.9671 0.8655 0.9135

Personal Injury 0.9833 0.9980 0.9906
Property Damage 0.0 0.0 0.0

XGB-BERT Fatal 0.9573 0.9412 0.9492
Personal Injury 0.9895 0.9976 0.9936

Property Damage 0.0 0.0 0.0
BERT-LSTM Fatal 0.98 0.98 0.98

Personal Injury 1.00 0.39 0.56
Property Damage 0.01 0.75 0.02

RoBERTa-LSTM Fatal 0.99 0.99 0.99
Personal Injury 0.99 1.00 1.00

Property Damage 0.00 0.00 0.00

After evaluating the models, we found that the RoBERTa-LSTM, XGB-TFIDF, and
BERT-LSTM were the best-performing models on the original dataset. Therefore, we
applied an ensemble hard voting technique to these models. Table 4 shows the performance
of the ensemble model on the original dataset.

Table 4. Ensemble model performance on the original dataset.

Metric Precision Recall F1 Score

Fatal 0.99 0.99 0.99
Personal Injury 0.99 1.00 1.00

Property Damage 0.00 0.00 0.00
Accuracy 0.99 - -

Macro Avg 0.66 0.66 0.66
Weighted Avg 0.99 0.99 0.99

5.2. Experiment 2 Results

In Experiment 2, we repeated the evaluation of the augmented dataset using the same
models and embedding techniques. We then applied an ensemble hard voting technique
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to the best-performing models. Table 5 shows the evaluation metrics for each model on
the augmented dataset. The best-performing models on the augmented dataset were XGB-
TFIDF, BERT-LSTM, and RoBERTa-LSTM. We combined these models using an ensemble
hard voting technique. Table 6 shows the performance of the ensemble model on the
original dataset.

Table 5. Evaluation metrics for models on the augmented dataset.

Model Class Precision Recall F1 Score

XGB-TFIDF Fatal 0.9958 1.0 0.9979
Personal Injury 1.0 0.9652 0.9823

Property Damage 0.3443 1.0 0.5122
XGB-Word2Vec Fatal 0.9167 0.9231 0.9199

Personal Injury 0.9875 0.9841 0.9858
Property Damage 0.0000 0.0000 0.0000

XGB-BERT Fatal 0.9514 0.9580 0.9547
Personal Injury 0.9899 0.9949 0.9924

Property Damage 0.0000 0.0000 0.0000
BERT-LSTM Fatal 0.99 0.98 0.98

Personal Injury 0.99 0.93 0.96
Property Damage 0.19 0.86 0.31

RoBERTa-LSTM Fatal 1.00 0.97 0.98
Personal Injury 0.98 1.00 0.99

Property Damage 0.00 0.00 0.00

Table 6. Ensemble model performance on the augmented dataset.

Metric Precision Recall F1 Score

Fatal 1.00 0.98 0.99
Personal Injury 0.99 0.98 0.99

Property Damage 0.49 0.86 0.62
Accuracy 0.98 - -

Macro Avg 0.83 0.94 0.87
Weighted Avg 0.99 0.98 0.98

5.3. Hard Voting Model

The ensemble model demonstrated significant improvements in precision, recall,
and F1 score compared to individual models, as shown in Figures 12 and 13. These
figures highlight the performance metrics of the ensemble model on both the original and
augmented datasets, clearly indicating the advantages of data augmentation and the hard
voting approach for crash severity classification.

To enhance crash severity classification, we implemented an ensemble method using
a hard voting classifier. This involved combining predictions from three top-performing
models, BERT (DistilBERT), RoBERTa, and XGBoost, each trained on the augmented dataset.
This hard voting mechanism capitalized on the strengths of each model, improving the
overall classification performance, especially for the minority “Property Damage” class.
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5.4. Discussion

The main observations from our study indicate that model performance varies signifi-
cantly between the original and augmented datasets. On the original dataset, all models
demonstrated strong performance for the Fatal and Personal Injury classes but struggled
to classify the “Property Damage” classes. For instance, the XGB-TFIDF model achieved
an F1 score of 0.9768 for “Fatal” and 0.9954 for “Personal Injury” but 0.0 for “Property
Damage”. This pattern was consistent across other models, highlighting the challenge of
classifying minority classes in imbalanced datasets. In contrast, the augmented dataset
showed improved performance for minority class classification, particularly for the “Prop-
erty Damage” class. The XGB-TFIDF model, for example, achieved an F1 score of 0.5122 for
“Property Damage,” demonstrating the effectiveness of data augmentation.

Based on the performance metrics, the best three models selected for the ensemble hard
voting were XGB-TFIDF, BERT-LSTM, and RoBERTa-LSTM. These models were chosen
due to their superior performance across both datasets. For instance, BERT-LSTM achieved
an F1 score of 0.98 for “Fatal” and 0.56 for “Personal Injury” on the original dataset while
improving to 0.98 for “Fatal” and 0.96 for “Personal Injury” on the augmented dataset.
Similarly, the RoBERTa-LSTM model consistently performed well, with an F1 score of
0.99 for “Fatal” and 1.00 for “Personal Injury” on the original dataset and maintaining
high scores on the augmented dataset. These selections were justified by their robust
performance and ability to handle the increased complexity of the data, thus making them
ideal candidates for ensemble learning.

The ensemble model’s performance on both the original and augmented datasets
underscores its effectiveness. On the original dataset, the ensemble model achieved high
precision, recall, and F1 scores for the “Fatal” and “Personal Injury” classes, with F1 scores
of 0.99 and 1.00, respectively, but failed to classify the “Property Damage” class, resulting
in an F1 score of 0.0. In contrast, on the augmented dataset, the ensemble model showed
significant improvement, with the “Property Damage” class achieving an F1 score of
0.62 and macro and weighted average F1 scores increasing to 0.87 and 0.98, respectively.
These results demonstrate the ensemble model’s robustness and enhanced capability to
handle imbalanced datasets through data augmentation. Despite these improvements, the
performance for the “Property Damage” class remains lower than desired, indicating a
need for further research to refine augmentation techniques and model architectures to
address this challenge better.

6. Conclusions and Future Work

This study significantly contributes to crash severity classification using ensemble
learning with pre-trained transformers and traditional machine learning models. We
evaluated the effectiveness of various word embedding techniques (TF-IDF, Word2Vec, and
BERT) combined with machine learning classifiers (XGBoost, random forest, and naive
Bayes) and advanced models (BERT and RoBERTa fine-tuned with Bi-LSTM) through two
comprehensive experiments.

The findings demonstrate that data augmentation and ensemble learning notably
improve model performance, particularly in addressing class imbalance issues. In the first
experiment on the original dataset, the combination of TF-IDF with XGBoost achieved
high F1 scores for “Personal Injury” (99%) but struggled with the “Property Damage”
class. Similarly, BERT-LSTM performed well for “Fatal” (98%) but poorly for “Property
Damage” (2%). The ensemble model, combining TF-IDF/XGB, BERT-LSTM, and RoBERTa-
LSTM, improved the overall performance with an F1 score of 99% for “Fatal” and 100% for
“Personal Injury” but still failed to classify “Property Damage” effectively.

In the second experiment on the augmented dataset, the ensemble model significantly
improved classification performance across all classes. It achieved F1 scores of 99% for
“Fatal”, 99% for “Personal Injury”, and 62% for “Property Damage”, showing substantial
improvement for the minority class compared to individual models. For instance, the
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XGB-TFIDF model achieved F1 scores of 98% for “Fatal”, 98% for “Personal Injury”, and
51% for “Property Damage”.

Despite these improvements, the classification performance for the “Property Damage”
class still needs further enhancement, highlighting the necessity for additional research.
Future work will focus on expanding the dataset to include traffic data from various sources
to further evaluate model robustness. Additionally, we aim to integrate hybrid features
from both text narratives and tabular data and apply explainable A.I. techniques to interpret
model results and identify key factors contributing to crash severity. Further research will
also explore new data augmentation methods and advanced modeling approaches to
improve performance for minority classes. Moreover, we plan to refine our approach
by considering the potential benefits of employing a weighted voting system, as well
as other ensembling techniques, to further enhance the robustness and accuracy of our
classification models.
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