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Abstract: When dealing with complex models in real situations, many optimization problems require
the use of more than one objective function to adequately represent the relevant characteristics of
the system under consideration. Multi-objective optimization algorithms that can deal with several
objective functions are necessary in order to obtain reasonable results within an adequate processing
time. This paper presents the multi-objective version of a recent metaheuristic algorithm that optimizes
a single objective function, known as the Majority–minority Cellular Automata Algorithm (MmCAA),
inspired by cellular automata operations. The algorithm presented here is known as the Multi-objective
Majority–minority Cellular Automata Algorithm (MOMmCAA). The MOMmCAA adds repository
management and multi-objective search space density control to complement the performance of the
MmCAA and make it capable of optimizing multi-objective problems. To evaluate the performance of
the MOMmCAA, results on benchmark test sets (DTLZ, quadratic, and CEC-2020) and real-world
engineering design problems were compared against other multi-objective algorithms recognized
for their performance (MOLAPO, GS, MOPSO, NSGA-II, and MNMA). The results obtained in this
work show that the MOMmCA achieves comparable performance with the other metaheuristic
methods, demonstrating its competitiveness for use in multi-objective problems. The MOMmCAA
was implemented in MATLAB and its source code can be consulted in GitHub.

Keywords: majority–minority cellular automata algorithm (MmCAA); multi-objective optimization;
metaheuristic; cellular automata; real-world engineering problems

1. Introduction

Many real-world problems in engineering and other research areas require multi-
objective optimization, where it is necessary to find a set of solutions in the search space
that are well-distributed along the Pareto-optimal front. Generally, in this type of problem
the computation of possible solutions must consider the existence of two or more conflicting
objective functions. A multi-objective optimization problem can be defined as follows:

min h(z) = (h1(z), h2(z), . . . , hm(z))
where z ∈ Q, m ≥ 2

(1)

where each hi(z) is a real-valued scalar function, h(z) is the set of objective or cost func-
tions that produce an m-dimensional vector in the Rm-objective space when evaluated,
z = (z1, z2, . . . , zn) is an n-dimensional vector in the search space Rn, and Q ⊆ Rn is the set
of all feasible solutions of Equation (1).

In this type of problem, identifying the set of best possible solutions can in many cases
be highly complicated or impossible. Rather than looking for globally optimal solutions to a
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multi-objective problem, it is possible to instead seek to compute satisfactory solutions that
can be obtained in adequate time, mainly to find the Pareto optimal (PS) set of solutions.
The mapping from the PS to the objective space is the Pareto front (PF). Examples of classi-
cal optimization techniques adapted to multi-objective problems are the Weighted Sum
Method [1], e-constraint method [2], goal programming [3], and lexicographic ordering [4]
among others.

Multi-objective optimization evolutionary algorithms (MOEAs) are highly suitable
for solving problems involving multiple objectives because they can generate a set of
PF-approximate solutions in a single run [5]. In recent decades, many multi-objective
optimization algorithms have been derived from classical single-objective metaheuris-
tics, showing efficiency and effectiveness on various complex problems. Single-objective
metaheuristics are optimization techniques that focus on finding a single optimal solu-
tion. Common examples include genetic algorithms (GA) [6], particle swarm optimization
(PSO) [7], ant colony optimization (ACO) [8], and simulated annealing (SA) [9].

Several techniques based on single-objective metaheuristics have been developed
to address multi-objective problems. Examples of the most outstanding options include
the Non-Dominated Sorting Genetic Algorithm (NSGA-II), which extends GAs to handle
multiple objectives using a non-dominated sorting scheme and population diversity [10];
the Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D), which
splits a multi-objective problem into several single-objective problems [11]; SPEA2, which
uses a list of non-dominated solutions and assigns strengths to each solution to guide
the search process [12]; Multi-objective PSO (MOPSO), which is an extension of PSO that
allows it to handle multiple objectives while maintaining an archive of non-dominated
solutions [13]; Multi-Objective Simulated Annealing (MOSA), which extends simulated
annealing to handle multiple targets in order to maintain a balance between exploration
and exploitation [14]; the Multi-objective Ant Lion Optimizer (MOALO), which expands
the Ant Lion Optimizer by applying a repository to store non-dominated solutions in the
Pareto set [15]; the Multi-objective Multi-Verse Optimizer (MOMVO), which builds on the
MVO to compare and optimize test and practical problems [16]; and the Multi-objective
ACO (MOACO), which adapts the ACO for multi-objective optimization using multiple
populations to improve computational efficiency [17,18]. MOACO has also been employed
to address multi-objective problems in airline crew turnover [19] and to improve the supply
chain configurations [20].

Another work that is an extension of a recent metaheuristic algorithm is the Multi-
objective Salp Swarm Algorithm (MSSA) [21]. Inspired by the swarming behavior of sea
salps, the MSSA splits the population into a leader and followers, using an external file
to store the non-dominated solutions. This approach shows adequate convergence and
coverage of the PS. The interplay of several PSO algorithms for simultaneous optimization
of single objectives in a multi-objective problem (MPMO) is described in [22] using multiple
populations. In discrete problems, the MPMOGA is a new algorithm inspired by the GA
which uses multiple populations to solve problems with multiple objectives. It was used
in [23] to address the job-shop scheduling problems, obtaining satisfactory results. Multi-
Objective Heat Transfer Search (MOHTS) based on Heat Transfer Search was proposed
in [24] to optimize structural multi-objective problems, obtaining better results compared
with other algorithms based on ant colonies and symbolic organisms. In related research,
a multi-objective version of the symbolic organism algorithm was presented in [25] for
optimal reinforcement design.

Multi-Objective Teaching–Learning-based Optimization (MOTLBO) is an extension
of the Teaching–Learning-based Optimization (TLBO) algorithm. This approach uses two
main phases: the teacher phase, where solutions are improved based on the best individual,
and the learner phase, where solutions are optimized through knowledge sharing between
individuals [26]. Multi-Objective Thermal Exchange Optimization (MOTEO), inspired by
the principles of thermodynamics and heat exchange, seeks to solve optimization problems
by considering multiple criteria simultaneously [27]. Multi-objective Plasma Generation
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Optimization (MOPGO) is inspired by the generation and behavior of plasmas, where
charged particles interact and move towards lower energy states [28]. the Multi-Objective
Crystal Structure Algorithm (MOCSA) is motivated by the formation and organization of
crystalline structures; solutions resemble atoms that organize themselves into configura-
tions that minimize the energy of the system [29]. The Multi-Objective Forest Optimization
Algorithm (MOFOA) follows the dynamics and ecology of forests; solutions resemble trees
competing for resources, allowing the solutions (trees) to evolve and adapt in a competitive
and cooperative environment [30]. The Competitive Mechanism Integrated Multi-Objective
Whale Optimization Algorithm with Differential Evolution (CMI-MOWOA-DE) combines
whale social behavior and differential evolution; the solutions simulate whale movement
and hunting strategy, while differential evolution introduces variation and diversification
to achieve a balance between multiple conflicting objectives. The Multi-Objective Harris
Hawks Optimizer (MOHHO) is an extension of the Harris Hawks Optimizer (HHO) algo-
rithm, which evokes the cooperative hunting strategies of Harris Hawks [31]. The Marine
Predators Algorithm (MPA) emulates the behavior of species such as sharks and dolphins
for multi-objective optimization, using search tactics and solution space exploitation to
optimize multiple objectives [32]. The Multi-Objective Sine–Cosine Algorithm (MOSCA)
is a variant of the Sine–Cosine Algorithm (SCA) that uses sine and cosine functions to
guide the exploration and exploitation of the search space, dynamically adjusting the posi-
tions of candidate solutions to maintain diversity and ensure convergence to the FP [33].
The Multi-objective Atomic Orbital Search (MAOS) algorithm is based on the concept of
atomic orbitals from quantum chemistry; the potential solutions are treated as electrons
in different orbitals, and the search process resembles the movement of these electrons
to reach lower energy configurations [34]. In the branch-and-bound framework for con-
tinuous global multi-objective optimization, the search space is recursively divided into
smaller subregions, then lower and upper bounds are computed for the objective func-
tions in these subregions. Subregions that cannot contain optimal solutions are discarded,
which reduces the overall search space. Multi-Objective Differential Evolution (MODE)
uses a population of candidate solutions that evolve through mutation operators. The
multi-objective optimization method based on adaptive parameter harmony search algo-
rithm simulates the improvisation process of musicians searching for the best harmony,
dynamically adapting its parameters using memory and tuning operators to explore new
solutions and preserve the best ones [35]. The Guided Population Archive Whale Opti-
mization Algorithm (GPA-WOA) is a variant of the Whale Optimization Algorithm (WOA)
that simulates the hunting behavior of humpback whales and uses guides or benchmark
solutions to direct the search and improve convergence to the FP; a population file is
dynamically updated to preserve diversity and ensure that solutions are optimal and
well-distributed [36]. The quantum-inspired Decomposition-based Quantum Salp Swarm
Algorithm (DQSSA) combines quantum mechanical principles with the swarming behavior
of salps to divide multi-objective problems into more tractable subproblems, allowing a set
of well-distributed optimal solutions to be found at the FP [37].

The above works are just a sample of the many single-objective algorithms that have
recently been extended in various ways to deal with multi-objective problems. Single-
objective optimization algorithms inspired by cellular automata are practical and have
competitive results on these types of problems compared to more recent metaheuristics.

For instance, Cellular Particle Swarm Optimization (CPSO) is a variant of the classical
PSO algorithm that organizes particles into a cellular lattice structure in which each particle
only interacts with its nearest neighbors, thereby improving exploration and reducing the
probability of premature convergence [38]. Island Cellular Model Differential Evolution
combines the principles of Differential Evolution (DE) with a distributed population struc-
ture; a cellular scheme divides the population into subpopulations, which promotes genetic
diversity, reduces premature convergence, and enhances exploration capability [39]. The
Continuous-State Cellular Automata Algorithm (CCAA) is inspired by cellular automata
but adapted to work with continuous rather than discrete variables. In this algorithm,
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individuals (or smart-cells) are organized in a spatial grid; each cell updates its state (can-
didate solution) based on the solutions of its local neighbors. Continuous states allow for
finer exploration of the search space, while the restricted neighborhood structure favors a
balance between local exploitation and global exploration [40]. The Cellular Learning Au-
tomata and Reinforcement Learning (CLARL) approach combines the principles of learning
automata and reinforcement learning. In this method, learning automata are organized
in a cellular mesh, where each automaton represents a potential solution and adapts its
behavior through local interactions and reward-based feedback. This scheme allows for
learning strategies that improve the system’s dynamic adaptability [41]. The Reversible
Elementary Cellular Automata Algorithm (RECAA) uses reversible rules, meaning that the
system can return to previous states without losing information. In this algorithm, each
potential solution follows simple local rules to update its state but with the property of
reversibility, enabling a more controlled and efficient search space exploration [42].

However, only a few works have applied the concept of cellular automata for general
multi-objective optimization. One of the most representative examples is the Cellular Ant
Algorithm (CAA) for multi-objective optimization, which combines the ant colony structure
with a cellular mesh in which ants only interact with their close neighbors. This mechanism
simultaneously optimizes several objective functions, achieving balanced solutions to com-
plex problems with multiple criteria [43]. Multi-objective Cellular Automata Optimization
is another approach that applies cellular automata. Potential solutions are cells in a network
that evolve based on local rules and interaction with their neighbors. This approach seeks
to reach a balance by facilitating the identification of solutions [44]. Cellular Multi-objective
Particle Swarm Optimization (CMPSO) is a variant of PSO in which particles are arranged
in a cellular structure and only interact with their close neighbors. This promotes solution
diversity by limiting global influences and encourages better exploration, and it is benefi-
cial in applications that require simultaneous optimization of several criteria [45]. Cellular
Teaching–Learning-Based Optimization (CTLBO) is a teaching-=learning-based approach
to optimization. In this method, solutions are organized in a cellular structure, where each
cell represents an individual who learns from its neighbors and a virtual teacher who
guides the process. This approach enhances the algorithm’s ability to adapt to dynamic
changes for multiple objectives that may vary over time [46].

Following this trend, a recent single-objective optimization algorithm is the Majority-
=minority Cellular Automata Algorithm (MmCAA), which was tested on several test
problems in multiple dimensions and for various applications in engineering, obtaining
satisfactory results against other well-recognized algorithms [47].

This paper presents a multi-objective version of this algorithm called MOMmCAA.
This algorithm is inspired by the local behavior of cellular automata, particularly the
majority and minority rules, which are intermixed and able to generate complex behaviors
in order to perform the tasks of exploration and exploitation in the search space.

The problem to be addressed in this work is the optimization of multi-objective
problems using a modification of the MmCAA to obtain an adequate approximation of
its PS. Although multi-objective algorithms are continuously proposed in the specialized
literature, they have yet to fully exploit the advantages offered by the different cellular
automata rules, such as the diversities and richness of their dynamic behaviors and their
easy implementation. Thus, this work aims to test and demonstrate the feasibility of
modifying the MmCAA to deal with multi-objective problems in a manner comparable to
current well-recognized algorithms for performing this task. The manuscript’s originality
lies in the fact that it is the first to propose an algorithm for multi-objective optimization
inspired by cellular automata using majority and minority rules, and is complemented by
managing a repository to control the density of solutions in the FP.



Algorithms 2024, 17, 433 5 of 25

To test the performance of the MOMmCAA, we used the DLTZ benchmark, ten
quadratic problems, and ten CEC2020 problems. The proposed algorithm was also tested on
two practical engineering problems, obtaining satisfactory results. In these cases, five other
algorithms were also considered for comparison: Multi-Objective Lightning Attachment
Procedure Optimization (MOLAPO) [48], Grid Search (GS) [49], Multi-Objective Particle
Swarm Optimization (MOPSO) [13], the Non-dominated Sorting Genetic Algorithm (NSGA-
II) [10], and the Multi-objective Nelder–Mead Algorithm (MNMA) [50].

Non-parametric Wilcoxon statistical tests were performed to show the statistical
significance of the experiments. The results indicate that the proposed algorithm ranks
among the best with respect to the other methods used in this work.

The rest of this article is organized as follows. Section 2 presents the details of the
Multi-Objective Majority–minority Cellular Automata Algorithm (MOMmCAA); Section 3
presents the results of our experiments on various test benches (DTLZ benchmark, ten
quadratic problems, and ten CEC2020 problems), providing a statistical comparison of the
MOMmCAA through the Wilcoxon test that relates it to other multi-objective algorithms
recognized for their performance; Section 4 describes the application of the MOMmCAA to
two practical engineering problems (design of a four-bar truss and a disk brake); finally,
Section 5 provides the paper’s conclusions.

2. The Proposed Multi-Objective Majority–Minority Cellular Automata
Algorithm (MOMmCAA)

This section briefly explains the concept of cellular automata, the general charac-
teristics of the Majority–minority Cellular Automata Algorithm, and the multi-objective
implementation of this algorithm. The concept of hypercubes is used to delimit a repository
for managing the PS solutions generated by the algorithm.

2.1. Basic Concepts of Cellular Automata with Majority Rule

Cellular Automata (CA) are dynamic systems of cells that initially take a value from
a finite set of possible states. The dynamics of CA proceed in discrete steps, making CA
discrete systems in time and space. At each step, a cell considers its current state and that of
its close neighbors in order to update its state at the next time step. In this way, a mapping
from blocks of states to individual states is called an evolution rule. CA can generate
chaotic and complex global behaviors depending on the evolution rule that defines their
local mapping. Because of this, they have been widely investigated and applied in various
engineering and computational problems [51,52].

One of the rules of evolution extensively studied in recent work is the majority rule.
In this rule, each cell takes its new state as the most common state in its local neighborhood.
The dynamics of this rule are characterized by patchy patterns that stabilize as the system’s
evolution progresses. Its counterpart is the minority rule, which takes the least common
element of each neighborhood to update the state of a cell in the next generation. The
evolution of the minority rule is characterized by the fact that it does not tend quickly to
a fixed or periodic state, as a minority state tends to become the majority and vice versa,
resulting in oscillating global dynamics.

Figure 1 shows various dynamic behaviors of the majority rule and minority rule
along with the application of the majority rule with probability in cellular automata of
two states and various neighborhood sizes. In these examples, 500 cells and 250 evolutions
were used. Evolution generates a periodic pattern for the original majority rule, while
the minority rule generates a chaotic pattern of heterogeneous triangular shapes. When
the rules are alternated probabilistically, the result is the formation of complex patterns in
which non-periodic structures are combined with a stable background.
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2 states, neighborhood size 3 2 states, neighborhood size 3 2 states, neighborhood size 3, majority 40%

Majority rule Minority rule Majority with probability

Figure 1. Examples of cellular automata with two states and a neighborhood size of 3, applying
majority, minority, and majority with probability evolution rules.

This combination of majority and minority rules was used as inspiration to define
the Majority–minority Cellular Automata Algorithm (MmCAA) for single-objective opti-
mization [47]. The inspiration behind the MmCAA is to emulate the dynamic behavior of
applying majority and minority rules in cellular automata.

The MmCAA starts by generating a random population S of nS smart-cells, where
each smart-cell is represented as s ∈ Rn. The dynamics of each s is defined by a set of rules,
with one of them chosen randomly to improve the position of the smart-cell. The rules
take information from other smart-cells to generate new neighbors, from which the best
one is selected to upgrade the smart-cell position. With this mechanism, the positions of
all smart-cells in the population are improved and the system evolves iteratively during
the optimization process. The rules used by the MmCAA for smart-cell evolution are
as follows.

The majority (minority) rule applied to a single smart-cell is described in Algorithm 1.
The input is a smart-cell si for 1 ≤ i ≤ nS and a weight parameter prop_w that defines a
limit on the change in the values of si. The rule takes the differences cm between the values
in si and the most repeated element el in the smart-cell, and rand generates a random value
between 0 and 1. A new solution evol is formed by taking the differences between the
original smart-cell and cm randomly weighted between 0 and prop_w. This rule helps to
bring the values of si closer to the most repeated value el.

Algorithm 1: Majority (minority) rule for a single smart-cell [47]
Result: New smart-cell evol
Input: si, prop_w;
el = most repeated element in si;
forall k in length(si) do

cm(k) = si(k)− el;
end
cm = cm ∗ prop_w ∗ rand;
evol = si − cm;

The majority (minority) rule applied to a neighboring smart-cell is described in
Algorithm 2. The most repeated value of a neighboring smart-cell sj is taken as the change
factor, depending on the average weight of the neighbor cost µ(h(sj)). If the cost µ(h(si))
is larger than µ(h(sj)), then the weight pon is large and there is a higher probability of
changing si by taking a random ratio between −prop_w and prop_w of the most repeated
element in sj and modifying each randomly selected position in si.
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Algorithm 2: Majority (minority) rule with one neighbor [47]
Result: New smart-cell evol
Input: si, µ(h(si)), sj, µ(h(sj)) prop_w;
evol = si;
sm = µ(h(si)) + µ(h(sj));
pon = 1 − (µ(h(sj))/sm);
el = most repeated element in neighbor sj;
r = (rand ∗ prop_w)− (prop_w/2);
forall k in length(evol) do

if rand <= pon then
evol(k) = evol(k) + (r ∗ el);

end
end

The rule for rounding values in a smart-cell (Algorithm 3) consists of rounding off nr to
the most significant decimal values of the selected elements in si [42]. The least significant
decimal digit is the nr-th digit to the right of the decimal point. The least significant digit
remains unchanged if the first non-significant digit is less than 5; otherwise, the least
significant digit is incremented by 1. This rule is applicable to find proper parameters for
optimization problems.

Algorithm 3: Rounding rule [42]
Result: New smart-cell evol
Input: si, f (si), f (bS), nr;
evol = si;
sum = f (si) + f (bS);
pon = 1 − ( f (si)/sum);
forall k in length(evol) do

if rand <= pon then
evol(k) = round(evol(k), nr);

end
end

The adaptation of the majority and minority rules considers the elements of each
solution that are repeated to a greater or lesser degree in the same smart-cell or in one or
two additional smart-cells to obtain a new position. The randomness in choosing evolution
rules and neighbors allows for access to the information in the rest of the population,
thereby generating large and small changes in the position of a smart-cell, which favors the
exploration and exploitation phases to escape from local optima and avoid the stagnation
of the solutions. The MmCAA is presented in Figure 2. In (A), each smart-cell checks its
neighbors using different majority and minority rules. These rules produce new solutions
(B) and the best solution in the neighborhood is selected to update the smart-cell (C). The
pseudo-code of MmCAA is described in (D).

2.2. Multi-Objective Majority–Minority Cellular Automata Algorithm (MOMmCAA)

The MmCAA was devised to solve single-objective optimization problems; therefore,
it needs to be modified to deal with multi-objective problems. This results in the creation of
the proposed multi-objective variant, MOMmCAA.

Taking as a basis the MmCAA inspired by the combination of majority and minority
cellular automata and the handling of a solution repository on the Pareto front of the MOPSO
algorithm, the MOMmCAA uses the following mechanisms for multi-objective optimization.
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A

B

C

D

Figure 2. Majority–minority Cellular Automata Algorithm (MmCAA) [42].

Updating of each smart-cell: Each smart-cell solution generates a new set of neigh-
boring solutions by taking its information or the information from one or two neighboring
smart-cells (depending on the evolution rule that is randomly selected). Certain rules favor
exploration by taking information from other smart-cells, while others favor exploitation
by only taking information contained in the same smart-cell. From this set of neighbors,
the one that is not dominated by the rest is used to update the smart-cell if it dominates it.

Repository with non-dominated solutions: The non-dominated smart-cells are stored
in a repository, which also serves as a file to take neighbors when applying the different
evolution rules that define the MOMmCAA optimization process. In order for a smart-cell
to enter the repository, either it must dominate another solution or it must be the case that
no other solution in the repository dominates it. The repository has a limited capacity; if a
new smart-cell enters the repository, then the smart-cell that is dominated or the one that is
in a region of the objective space with high density is deleted.

Hypercube density management in the objective space: Taking inspiration from
the MOPSO mechanism, solutions in the PS are ranked depending on the density of the
hypercube in which they are found in the solution space. If any other solution in the
repository does not dominate a new solution and in turn is in a hypercube of lower density,
then a solution that is in the hypercube with higher density is removed from the repository.
This allows the repository to contain a better diversity of solutions. If a new solution
is found in a new hypercube, then the boundaries of the solution space are expanded
and the hypercube densities are recalculated. Figure 3 shows the handling of smart-cell
selection in the repository using hypercubes; in (A), a new smart-cell replaces another
smart-cell in a hypercube if it dominates it. In (B), if the new smart-cell falls into a higher-
density hypercube and the repository is complete, then one of the smart-cells is randomly
removed. In (C), if the new smart-cell falls into a less dense hypercube and the repository
is complete, then one smart-cell is randomly removed from the denser hypercube. In
(D), the hypercube boundaries are updated if the new smart-cell falls outside the current
hypercube’s boundaries.
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A

DB

C

Figure 3. PS repository management using PF hypercubes.

The pseudocode of the MOMmCAA is presented in Algorithm 4.

Algorithm 4: Multi-Objective Majority–minority Cellular Automata Algorithm
(MOMmCAA)

Result: Repository BS of best smart-cells approximating PS
Generate random population S of nS smart-cells;
Evaluate S in h;
Initialize repository BS of non-dominated smart-cells;
Calculate hypercube with nint intervals and capacity cap;
forall i = 2 to nit do

Keep the best nel smart-cells in a new population;
forall j = nel + 1 to nS do

Take sj and other two random smart-cells sr1 , sr2 from S for rules requiring extra
solutions;

forall k = 1 to nne do
Choose a random rule R ;
Obtain evolk = R(sj, additional parameters of the rule);
Check that the nd values of evolk are between lb and ub and correct if necessary;
Calculate h(evolk);

end
Choose the neighbor evol that dominates sj and is in a hypercube with equal or

lower density than sj from the k generated neighbors. In other case, conserve sj;
If sj has been improved, update BS;
If BS has been improved, update the hypercube;

end
end
Return the repository BS with approximated PS;

2.3. Computational Complexity of the Proposed Algorithm

The computational time and space complexity of the MOMmCAA depends on the
number of smart-cells N, number of objective functions to be evaluated m, management of
the repository (where cap non-dominated solutions are stored), and total number of itera-
tions nit.

• Smart-cell evaluation: Each iteration evaluates all smart-cells, with a cost of O(Nm).
• Repository management: The repository stores the non-dominated solutions. The

cost of the Pareto dominance ordering mechanism can be high because the ordering
of the non-dominated solutions has a complexity of O(cap2). Methods with similar
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strategies attempt to reduce this cost by limiting the repository size; however, it is still
costly, especially as the number of non-dominated solutions grows.

• Iterations of the algorithm: The total number of iterations impacts the complexity, as
evaluations and repository management are performed at each step.

The overall complexity of the MOMmCAA can be approximated as O(nit(Nm +
cap2)). In summary, the time complexity of the MOMmCAA is quadratic in terms of the
repository size of non-dominated solutions. The space complexity is linear with respect to
the population of smart-cells, the number of objectives, and the number of iterations. One
of the advantages of using adaptive hypercubes is that the computational cost is better than
when using a niche strategy such as the one used by NSGA-II [53]. The only case where
both strategies have the same quadratic complexity is when the hypercubes are updated at
each generation [54]. Thus, the complexity of the MOMmCAA is similar to that of MOPSO.

3. Computational Experiments Comparing MOMmCAA to Other Algorithms

MOLAPO, GS, MOPSO, NSGA-II, MOMVO, and MNMA were compared to MOMm-
CAA in order to identify the best performance in calculating Pareto-optimal solutions. The
initial parameters of all described algorithms are summarized in Table 1. Each experiment
employed 50 PS solutions and a maximum of 1000 iterations. The proposed algorithm was
tested in 29 diverse case studies, including 27 unconstrained and constrained mathematical
problems and two real-world engineering design problems.

Table 1. Parameters of the algorithms used for comparison: MOLAPO, GS, MOPSO, NSGA-II,
MNMA, and MOMmCAA.

Algorithm Parameters

MOLAPO FE = 2, cap = 50
GS numparts = 20, cap = 50
MOPSO C1 = C2 = 2, w = wmax − t × (wmax − wmin)/(tmax),

wmax = 0.9, wmin = 0.4, cap = 50
NSGA-II pcross = 0.7, ncross = 2 ∗ round(pcross ∗ 100/2), pmut = 0.4,

nmut = round(pmut ∗ 100), µ = 0.02, Sigma = 0.1 ∗ (vmax − vmin)
MNMA δe = 2, δoc = 0.5, δic = −0.5, γ = 5
MOMmCAA cap = 50, nS = 11, nne = 3, nint = 5, prop_w = 5, 2 ≤ nr ≤ 5

The original Matlab implementations of these algorithms were taken directly from the
web addresses indicated in the reference articles. The Matlab code of the MOMmCAA can
be downloaded from Github using the link https://github.com/juanseck/MOMmCAA
(accessed on 2 September 2024). The MOMmCAA and other algorithms were executed
in Matlab 2015a on a PC with a 3.1 GHz Intel Xeon CPU with 64 GB of RAM using the
macOS Sonoma operating system. Thirty independent runs were made for each algorithm
on every benchmark function. A number of different metrics were used to compare the
results of the algorithms, as described below.

Hypervolume (HV): The diverseness in the search space through the hypervolume
metric was first introduced by Ulrich et al. to escalate the diversity in both decision space
and objective space [55]. The HV of a set of solutions measures the size of the portion of
the objective space dominated by those solutions as a group. In general, HV is favored
because it captures both the closeness of the solutions to the optimal set and (to some
extent) the distribution of solutions across the objective space in a single scalar. The HV
value measures both convergence and diversity, and can be calculated using the equation

HV = ∪sZ(s) | s ∈ PF, (2)

where Z(s) refers to the hypercube bounded by a solution s in the obtained PF. A larger
HV value indicates a better approximation of the PF.

Contribution (C): The Contribution metric counts the number of PS points used in the
combined solution of all algorithms. This metric is an extension of the Purity metric [56]

https://github.com/juanseck/MOMmCAA
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For two approximation Pareto sets A and B, where B ⊂ A, the C metric assigns A a higher
measure than B.

For O ≥ 2 MOEAs applied to a problem, let Ri be the non-dominated solutions
obtained by the i-th MOEA for 1 ≤ i ≤ O. The union of all these sets is R = ∪O

i=1Ri.
The set R∗ of non-dominated solutions is calculated from R. Let r∗i be the number of
non-dominated sets in R∗ obtained by the i-th MOEA:

r∗i = {s | s ∈ Ri and s ∈ R∗}. (3)

Thus, the Ci metric of the i-th MOEA is defined as

Ci =
|r∗i |
|Ri|

. (4)

The Ci value may lie between [0, 1], with a value nearer to 1 indicating better performance.
Epsilon Indicator (EI):
The Epsilon Indicator was defined in [57]. It measures the minimum value of the scalar

ϵ required to make the Pareto front (PF) dominated by the approximation set S. Epsilon
values fall within the range of [1, ∞).

Iϵ(PF, S) = inf
ϵ
{ϵ | ∀s ∈ S, ∃b ∈ PF such that b ≤ ϵa} (5)

In this case, the output of the epsilon indicator function is 1/ϵ; a value in the (0, 1]
range with a value near 1 is a close fit with the solution set.

3.1. Benchmark Instances

A total of 27 benchmark instances with complicated characteristics were used to
compare the performance of the proposed MOMmCAA: DLTZ1-DLTZ7, ten quadratic
problems, and ten CEC2020 test instances. These problems exhibit various characteristics,
such as a convex, concave, mixed, disconnected, or degenerated PFs and a multimodal,
biased, deceptive, and nonlinear variable PS.

For each instance, the compared algorithms are ranked according to the performance
metrics, with the ranks shown in square brackets. The mean rank (MR) for each algorithm
for each instance is also presented in the tables. As a result of the Wilcoxon rank sum test at a
5% significance level, a result labeled + denotes that the compared algorithm outperforms the
MOMmCAA; in contrast, − means that the MOMmCAA has a better performance than the
compared algorithm, while ≈ means that there is no statistically significant difference between
MOMmCAA and the compared algorithm. The data in orange in every table show the best
mean metric values yielded by the algorithms for each instance over 30 independent runs.

3.2. DLTZ Instances

Tables 2–4 present the results of the metric values obtained by algorithms.
As shown in Table 2, the MOMmCAA obtains significantly better HV values than

MOLAPO, GS, MOPSO, NSGA-II, and MNMA for four, four, one, five, and seven out of
the seven instances, respectively. Regarding the overall mean rankings, the MOMmCAA
obtains the second optimal mean rank value, below MOPSO, followed by GS, NSGA-II,
MOLAPO, and MNMA. The MOMmCAA has poor performance on the DLTZ1 and DLTZ3
test instances. In summary, the MOMmCAA is superior to the other four MOEAs on this
metric. Table 3 shows that the MOMmCAA achieves seven, seven, six, six, and seven better
C metric values than MOLAPO, GS, MOPSO, NSGA-II, and MNMA, respectively. This
indicates the quality of the solutions obtained by the MOMmCAA. Table 4 summarizes
the overall performance of six algorithms in terms of EI metric values. The MOMmCAA
yields significantly better EI values than MOLAPO, GS, MOPSO, NSGA-II, and MNMA
for six, four, one, seven, and five out of the seven instances, respectively. Overall, the EI
statistics are similar to those for HV. Figure 4 plots the representative PFs obtained by the
six comparison MOEAs. In summary, the MOMmCAA shows competitive performance on
the DLTZ benchmark.
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Table 2. Statistics (mean (std. dev.)) of Hypervolume metric values of the final populations obtained by MOLAPO, GS, MOPSO, NSGA-II, MNMA, and MOMmCAA
over 30 independent runs on the DLTZ benchmark. The ranking of each algorithm is in braces.

Fn MOLAPO GS MOPSO NSGA-II MNMA MOMmCAA
DLTZ1 0.9942 (0.0019) [3]+ 0.9999 (0.0035) [1]+ 0.9962 (0.0157) [2]+ 0.8081 (0.0372) [5]− 0.9579 (0.0121) [6]− 0.9867 (0.0028) [4]
DLTZ2 0.9960 (0.0039) [4]≈ 0.9709 (0.0026) [6]− 0.9985 (0.0016) [1]+ 0.9969 (0.0030) [2]≈ 0.9850 (0.0057) [5]− 0.9969 (0.0033) [3]
DLTZ3 0.9905 (0.0045) [3]+ 0.9989 (0.0022) [1]+ 0.9973 (0.0032) [2]+ 0.6326 (0.0529) [6]− 0.7055 (0.0608) [5]− 0.9746 (0.0058) [4]
DLTZ4 0.8115 (0.0480) [3]− 0.1597 (0.0039) [6]− 0.9916 (0.0346) [1]+ 0.6762 (0.1710) [4]− 0.6434 (0.1716) [5]− 0.8940 (0.0588) [2]
DLTZ5 0.0733 (0.0260) [6]− 0.3479 (0.0171) [3]− 0.9413 (0.0511) [2]− 0.1733 (0.0260) [4]− 0.1106 (0.0056) [5]− 0.9949 (0.0103) [1]
DLTZ6 0.9900 (0.0025) [5]− 0.9973 (0.0008) [3]≈ 0.9997 (0.0005) [1]≈ 0.979 (0.0057) [6]− 0.9944 (0.0146) [4]− 0.9984 (0.0008) [2]
DLTZ7 0.8767 (0.0306) [5]− 0.8489 (0.0643) [6]− 0.9895 (0.0074) [2]≈ 0.9898 (0.0008) [1]≈ 0.9389 (0.0952) [4]− 0.9894 (0.0330) [3]
Mean rank 4.14 3.71 1.57 4.00 4.85 2.71
+/−/≈ 2/4/1 2/4/1 4/1/2 0/5/2 0/7/0 —

Table 3. Statistics (mean (std. dev.)) of Contribution metric values of the final populations obtained by MOLAPO, GS, MOPSO, NSGA-II, MNMA, and MOMmCAA
over 30 independent runs on the DLTZ benchmark.

Fn MOLAPO GS MOPSO NGSGA-II MNMA MOMmCAA
DLTZ1 0.815 (2.5 × 10−16) [2]− 0.797 (1.8 × 10−16) [5]− 0.814 (2.6 × 10−16) [3]− 0.8095 (0.0124) [4]− 0.5406 (0.0061) [6]− 0.999 (1.5 × 10−16) [1]
DLTZ2 0.6088 (0.0461) [5]− 0.7600 (0.0644) [3]− 0.9908 (0.0404) [1]+ 0.6421 (0.1655) [4]− 0.1969 (0.0361) [6]− 0.9248 (0.0116) [2]
DLTZ3 0.815 (6.8 × 10−17) [2]− 0.797 (2.5 × 10−16) [5]− 0.814 (6.8 × 10−17) [3]− 0.8120 (0.0087) [4]− 0.4612 (0.0301) [6]− 0.997 (2.3 × 10−17) [1]
DLTZ4 0.810 (6.9 × 10−17) [3]− 0.797 (1.5 × 10−16) [5]− 0.814 (6.9 × 10−17) [2]− 0.804 (7.9 × 10−17) [4]− 0.6655 (0.0641) [6]− 0.966 (1.9 × 10−17) [1]
DLTZ5 0.0011 (0.0056) [6]− 0.1416 (0.0179) [4]− 0.8995 (0.1141) [2]− 0.1619 (0.2573) [3]− 0.0071 (0.0025) [5]− 0.9135 (0.1269) [1]
DLTZ6 0.0793 (0.0001) [6]− 0.1285 (0.0010) [5]− 0.3526 (0.0168) [3]− 0.9791 (0.0003) [1]+ 0.2968 (0.0908) [4]− 0.5203 (0.0135) [2]
DLTZ7 0.1476 (0.0034) [5]− 0.0976 (0.0205) [6]− 0.7690 (0.0170) [3]− 0.7783 (0.0327) [2]− 0.7655 (0.0684) [4]− 0.9489 (0.0001) [1]
Mean rank 4.14 4.71 2.42 3.14 5.28 1.28
+/−/≈ 0/7/0 0/7/0 1/6/0 1/6/0 0/7/0 —

Table 4. Statistics (mean (std. dev.)) of Epsilon Indicator metric values of the final populations obtained by MOLAPO, GS, MOPSO, NSGA-II, MNMA, and
MOMmCAA over 30 independent runs on the DLTZ benchmark.

Fn MOLAPO GS MOPSO NGSGA-II MNMA MOMmCAA
DLTZ1 0.9925 (0.0064) [3]≈ 0.9963 (0.0032) [2]+ 0.9994 (0.0015) [1]+ 0.8791 (0.0395) [6]− 0.9655 (0.0140) [5]− 0.9924 (0.0053) [4]
DLTZ2 0.9936 (0.0060) [3]− 0.9731 (0.0089) [6]− 0.9985 (0.0015) [1]≈ 0.9931 (0.0070) [4]− 0.9819 (0.1230) [5]− 0.9984 (0.0059) [2]
DLTZ3 0.9555 (0.0241) [4]− 0.9702 (0.0249) [2]+ 0.9995 (0.0020) [1]+ 0.6953 (0.0780) [6]− 0.7779 (0.0963) [5]− 0.9689 (0.0217) [3]
DLTZ4 0.8053 (0.1128) [4]− 0.9047 (0.0235) [2]+ 0.9978 (0.0069) [1]+ 0.7507 (0.1543) [5]− 0.7380 (0.1501) [6]− 0.8434 (0.1174) [3]
DLTZ5 0.8790 (0.0086) [5]− 0.737 (2.9 × 10−10) [6]− 0.911 (3.3 × 10−10) [4]− 0.979 (8.6 × 10−10) [2]− 0.921 (3.4 × 10−10) [3]− 0.999 (4.9 × 10−11) [1]
DLTZ6 0.8967 (0.0500) [5]− 0.9276 (0.0021) [4]− 0.9991 (0.0002) [1]+ 0.4459 (0.1339) [6]− 0.9687 (0.0611) [2]≈ 0.9684 (0.0228) [3]
DLTZ7 0.8996 (0.0315) [6]− 0.9427 (0.0038) [5]− 0.9957 (0.0072) [1]+ 0.9429 (0.0944) [4]− 0.9689 (0.0142) [3]≈ 0.9694 (0.0146) [2]
Mean rank 4.28 3.85 1.43 4.71 4.14 2.57
+/−/≈ 0/6/1 3/4/0 5/1/1 0/7/0 0/5/2 —
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DLTZ-1
(n=2, m=3)

DLTZ-2
(n=3, m=2)

DLTZ-3
(n=2, m=3)

DLTZ-4
(n=4, m=3)

DLTZ-5
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MOLAPO GS MOPSO NSGA-II MNMA MOMmCAA

Figure 4. Representative PFs obtained by the seven MOEAs on the DLTZ benchmark.
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3.3. Quadratic Instances

The Quadratics test set is a randomly generated test set described in [50]. The objective
functions are all of the form 1

2 xT Ax + bx + c, where the components A, b, and c are random
numbers in the range [−1, 1]. A is not a symmetric matrix, and the test set is non-convex.
Tables 5–7 expose the results of the metric values obtained by the algorithms over the
ten quadratic problems.

Table 5 shows that the MOMmCAA obtains significantly better HV values than MO-
LAPO, GS, MOPSO, NSGA-II, and MNMA for six, seven, two, eight, and seven out of the
eight instances, respectively. Regarding the overall mean rankings, the MOMmCAA ob-
tains the second optimal mean rank value after MOPSO, followed by the other algorithms.
The MOMmCAA demonstrates performance that is significantly equivalent to MOPSO
regarding the other three instances. Table 6 shows that the MOMmCAA achieves ten, ten,
five, eight, and seven better C metric values than MOLAPO, GS, MOPSO, NSGA-II, and
MNMA, respectively. This indicates the quality of the solutions obtained by the MOMm-
CAA. Table 7 depicts the overall performance of the six algorithms in terms of their EI
metric values. The MOMmCAA yields significantly better EI values than MOLAPO, GS,
MOPSO, NSGA-II, and MNMA for nine, seven, six, eight, and nine out of the ten instances,
respectively. Figure 5 shows representative Pareto fronts (PFs) obtained by the six com-
parison MOEAs. In summary, the MOMmCAA shows competitive performance on the
Quadratic benchmark.

3.4. CEC2020 Instances

Tables 8–10 present the results of the metric values obtained by the algorithms on
ten benchmark CEC2020 problems.

Table 8 shows that the MOMmCAA obtains significantly better HV values than
MOLAPO, GS, MOPSO, NSGA-II, and MNMA for eight, nine, four, eight, and seven out of
the ten instances, respectively. In the case of MOPSO, there are six results with no significant
difference. Concerning the overall mean rankings, the MOMmCAA obtains the optimal
mean rank value. The MOMmCAA demonstrates poor performance on the MMF-2 and
MMF-7 test instances. In summary, the MOMmCAA is superior to all the other MOEAs in
terms of this metric. Table 9 shows that the MOMmCAA achieves ten, ten, seven, eight, and
six better C metric values than MOLAPO, GS, MOPSO, NSGA-II, and MNMA, respectively.
In the case of MNMA, there are four results with the worst significant difference. Table 10
summarizes the overall performance of the six algorithms in terms of their EI metric values.
The MOMmCAA yields significantly better EI values than MOLAPO, GS, MOPSO, NSGA-
II, and MNMA for ten, ten, six, ten, and eight out of the ten instances, respectively. Figure 6
depicts the representative Pareto fronts (PFs) obtained by the seven comparison MOEAs.
In summary, the MOMmCAA shows competitive behavior on the CEC2020 benchmark.
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Table 5. Statistics (mean (std. dev.)) of Hypervolume metric values of the final populations obtained by MOLAPO, GS, MOPSO, NSGA-II, MNMA, and MOMmCAA
over 30 independent runs on the Quadratic test suite.

Fn MOLAPO GS MOPSO NSGA-II MNMA MOMmCAA
Quad-1 0.7832 (0.0465) [5]− 0.9192 (0.2361) [3]− 0.9999 (0.0105) [1]+ 0.9008 (0.0359) [4]− 0.7501 (0.1797) [6]− 0.9730 (0.0100) [2]
Quad-2 0.7556 (0.0364) [6]− 0.7834 (0.2361) [5]− 0.9942 (0.0986) [1]+ 0.8271 (0.0389) [4]− 0.9267 (0.1588) [3]− 0.9668 (0.0118) [2]
Quad-3 0.9828 (0.0038) [5]− 0.9744 (0.0040) [6]− 0.9901 (0.0034) [4]− 0.9983 (0.0022) [1]+ 0.9954 (0.0041) [2]≈ 0.9953 (0.0050) [3]
Quad-4 0.9988 (0.0017) [1]≈ 0.9957 (0.0046) [3]≈ 0.9911 (0.0032) [4]− 0.9836 (0.0037) [5]− 0.9751 (0.0048) [6]− 0.9969 (0.0029) [2]
Quad-5 0.9409 (0.0108) [4]≈ 0.9232 (0.0164) [5]− 0.9999 (0.0044) [1]+ 0.9932 (0.0037) [2]+ 0.8947 (0.0141) [6]− 0.9687 (0.0059) [3]
Quad-6 0.9834 (0.0050) [4]≈ 0.9674 (0.0082) [6]− 0.9876 (0.0072) [3]≈ 0.9759 (0.0114) [5]− 0.9993 (0.0015) [1]≈ 0.9965 (0.0038) [2]
Quad-7 0.4328 (0.2074) [6]− 0.4650 (0.0808) [5]− 0.9880 (0.0653) [1]+ 0.7888 (0.0595) [3]− 0.5682 (0.1853) [4]− 0.9374 (0.0143) [2]
Quad-8 0.9929 (0.0042) [4]≈ 0.9983 (0.0028) [1]≈ 0.9930 (0.0041) [3]≈ 0.9649 (0.0151) [5]− 0.9622 (0.0204) [6]− 0.9947 (0.0058) [2]
Quad-9 0.9692 (0.0092) [4]− 0.9788 (0.0061) [3]− 0.9977 (0.0010) [1]≈ 0.9010 (0.0203) [6]− 0.9077 (0.0257) [5]− 0.9973 (0.0058) [2]
Quad-10 0.8677 (0.0117) [4]− 0.9744 (0.0046) [2]+ 0.9814 (0.0055) [1]+ 0.7300 (0.0677) [6]− 0.8431 (0.0594) [5]− 0.9210 (0.0101) [3]
Mean rank 4.30 3.90 2.00 4.10 4.40 2.30
+/−/≈ 0/6/4 1/7/2 5/2/3 2/8/0 0/8/2 —

Table 6. Statistics (mean (std. dev.)) of Contribution metric values of the final populations obtained by MOLAPO, GS, MOPSO, NSGA-II, MNMA, and MOMmCAA
over 30 independent runs on the Quadratic test suite.

Fn MOLAPO GS MOPSO NGSGA-II MNMA MOMmCAA
Quad-1 0.7548 (0.0227) [4]− 0.8559 (0.3276) [3]− 0.9938 (0.0237) [1]+ 0.6563 (0.0716) [5]− 0.6304 (0.0708) [6]− 0.9158 (0.0698) [2]
Quad-2 0.6150 (0.0140) [6]− 0.7628 (0.1674) [4]− 0.9189 (0.1903) [1]≈ 0.7564 (0.2903) [5]− 0.8209 (0.0154) [3]− 0.9181 (0.1407) [2]
Quad-3 0.5834 (0.0181) [5]− 0.5745 (0.0118) [6]− 0.6594 (0.0327) [4]− 0.9827 (0.0828) [1]+ 0.8591 (0.1329) [2]+ 0.7498 (0.0357) [3]
Quad-4 0.9591 (0.1329) [2]− 0.9498 (0.0357) [3]− 0.8594 (0.0227) [4]− 0.6745 (0.0818) [6]− 0.6834 (0.0181) [5]− 0.9827 (0.0823) [1]
Quad-5 0.8493 (0.0419) [4]− 0.6621 (0.0211) [5]− 0.9848 (0.0452) [1]+ 0.9398 (0.1482) [2]+ 0.6382 (0.0162) [6]− 0.8862 (0.0741) [3]
Quad-6 0.8290 (0.0486) [3]− 0.6627 (0.0202) [6]− 0.7066 (0.0408) [4]− 0.6643 (0.0172) [5]− 0.9965 (0.0130) [1]+ 0.9176 (0.0761) [2]
Quad-7 0.5266 (0.0516) [5]− 0.4667 (0.0821) [6]− 0.9711 (0.0453) [1]+ 0.8471 (0.2180) [3]− 0.7424 (0.0153) [4]− 0.9264 (0.0303) [2]
Quad-8 0.7772 (0.0072) [4]− 0.8870 (0.0048) [2]− 0.8073 (0.0092) [3]− 0.6046 (0.0122) [5]− 0.5718 (0.0162) [6]− 0.9951 (0.0031) [1]
Quad-9 0.5452 (0.0215) [5]− 0.4369 (0.0118) [6]− 0.8706 (0.0423) [2]− 0.6800 (0.0718) [4]− 0.8547 (0.0887) [3]− 0.9990 (0.0051) [1]
Quad-10 0.6170 (0.0055) [6]− 0.6607 (0.0112) [5]− 0.9051 (0.0803) [2]+ 0.7536 (0.1651) [4]− 0.9722 (0.0694) [1]+ 0.0585 (0.8018) [3]
Mean rank 4.40 4.60 2.30 4.00 3.70 2.00
+/−/≈ 0/10/0 0/10/0 4/5/1 2/8/0 3/7/0 —
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Table 7. Statistics (mean (std. dev.)) of Epsilon Indicator metric values of the final populations obtained by MOLAPO, GS, MOPSO, NSGA-II, MNMA, and
MOMmCAA over 30 independent runs on the Quadratic test suite.

Fn MOLAPO GS MOPSO NGSGA-II MNMA MOMmCAA
Quad-1 0.6240 (0.0944) [5]− 0.7748 (0.1275) [3]− 0.9951 (0.0044) [2]≈ 0.6962 (0.3369) [4]− 0.5028 (0.2753) [6]− 0.9981 (0.0036) [1]
Quad-2 0.5449 (0.0991) [6]− 0.8027 (0.2635) [3]− 0.9879 (0.0244) [1]+ 0.5542 (0.2826) [5]− 0.5996 (0.1161) [4]− 0.9779 (0.0194) [2]
Quad-3 0.8620 (0.1774) [5]− 0.7980 (0.1186) [6]− 0.8751 (0.1856) [4]− 0.9776 (0.0347) [1]+ 0.9108 (0.1406) [3]− 0.9432 (0.0674) [2]
Quad-4 0.9783 (0.0343) [1]+ 0.9181 (0.1343) [3]− 0.7756 (0.1862) [4]− 0.3984 (0.1191) [6]− 0.4685 (0.1619) [5]− 0.9439 (0.0679) [2]
Quad-5 0.8844 (0.1060) [4]− 0.4184 (0.0458) [6]− 0.9909 (0.0175) [1]+ 0.9082 (0.0663) [3]− 0.4975 (0.0550) [5]− 0.9383 (0.0701) [2]
Quad-6 0.6550 (0.1195) [6]− 0.7024 (0.1305) [5]− 0.7376 (0.1019) [4]− 0.8806 (0.0519) [3]≈ 0.9658 (0.0430) [1]+ 0.8999 (0.0771) [2]
Quad-7 0.5581 (0.0323) [5]− 0.5366 (0.1128) [6]− 0.9571 (0.1227) [2]− 0.7736 (0.1198) [3]− 0.6356 (0.1532) [4]− 0.9747 (0.0266) [1]
Quad-8 0.9234 (0.0884) [3]− 0.9878 (0.0524) [1]+ 0.9188 (0.0135) [4]− 0.8119 (0.0454) [6]− 0.8986 (0.0560) [5]− 0.9488 (0.0476) [2]
Quad-9 0.6500 (0.1554) [6]− 0.9671 (0.1128) [1]+ 0.9536 (0.0220) [2]≈ 0.7165 (0.1319) [5]− 0.7200 (0.2024) [4]− 0.9484 (0.1139) [3]
Quad-10 0.6713 (0.0765) [4]− 0.9971 (0.0120) [1]+ 0.9174 (0.0983) [2]+ 0.5120 (0.0297) [6]− 0.5753 (0.0895) [5]− 0.7920 (0.0212) [3]
Mean rank 4.50 3.50 2.60 4.20 4.20 2.00
+/−/≈ 1/9/0 3/7/0 2/6/2 1/8/1 1/9/0 —

Table 8. Statistics (mean (std. dev.)) of Hypervolume metric values of the final populations obtained by MOLAPO, GS, MOPSO, NSGA-II, MNMA, and MOMmCAA
over 30 independent runs on the CEC2020 test suite.

Fn MOLAPO GS MOPSO NGSGA-II MNMA MOMmCAA
MMF-1 0.9955 (0.0038) [2]≈ 0.9792 (0.0043) [5]− 0.9952 (0.0036) [3]≈ 0.9850 (0.0100) [4]− 0.9533 (0.0468) [6]− 0.9997 (0.0006) [1]
MMF-2 0.9451 (0.2137) [3]≈ 0.9451 (0.2139) [5]≈ 0.9453 (0.2134) [2]≈ 0.9446 (0.2154) [6]− 0.9732 (0.2031) [1]+ 0.9451 (0.2138) [4]
MMF-4 0.9276 (0.3679) [3]− 0.9171 (0.3664) [4]− 0.8989 (0.3692) [5]− 0.8378 (0.3683) [6]− 0.9785 (0.2451) [2]− 0.9983 (0.3689) [1]
MMF-5 0.9906 (0.0088) [4]− 0.9851 (0.0072) [6]− 0.9918 (0.0077) [3]− 0.9865 (0.0112) [5]− 0.9962 (0.0048) [2]≈ 0.9976 (0.0042) [1]
MMF-7 0.9736 (0.0431) [5]− 0.9662 (0.0398) [6]− 0.9755 (0.0419) [2]≈ 0.9754 (0.0425) [4]≈ 0.9968 (0.0481) [1]+ 0.9755 (0.0417) [3]
MMF-8 0.9116 (0.0631) [4]− 0.9102 (0.0591) [5]− 0.9555 (0.0519) [2]− 0.9324 (0.0521) [3]− 0.3913 (0.0531) [6]− 0.9713 (0.0466) [1]
MMF-10 0.8607 (0.0026) [6]− 0.9331 (0.0489) [4]− 0.9602 (0.0238) [3]− 0.9793 (0.0029) [1]≈ 0.9055 (0.0967) [5]− 0.9721 (0.0223) [2]
MMF-11 0.8512 (0.0338) [6]− 0.8627 (0.0011) [5]− 0.9723 (0.0211) [1]≈ 0.9278 (0.0887) [3]− 0.8891 (0.0261) [4]− 0.9715 (0.0018) [2]
MMF-12 0.9618 (0.0038) [5]− 0.9319 (0.0842) [6]− 0.9973 (0.0034) [2]≈ 0.9639 (0.0138) [4]− 0.9773 (0.0094) [3]− 0.9987 (0.0029) [1]
MMF-13 0.9068 (0.0054) [6]− 0.9192 (0.0026) [5]− 0.9991 (0.0017) [1]≈ 0.9788 (0.0049) [3]− 0.9689 (0.0247) [4]− 0.9982 (0.0020) [2]
Mean rank 4.4 5.1 2.4 3.9 3.2 1.8
+/−/≈ 0/8/2 0/9/1 0/4/6 0/8/2 2/7/1 —
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Table 9. Statistics (mean (std. dev.)) of Contribution metric values of the final populations obtained by MOLAPO, GS, MOPSO, NSGA-II, MNMA, and MOMmCAA
over 30 independent runs on the CEC2020 test suite.

Fn MOLAPO GS MOPSO NGSGA-II MNMA MOMmCAA
MMF-1 0.2128 (0.0289) [6]− 0.4868 (0.0616) [3]− 0.2676 (0.0319) [5]− 0.3151 (0.0662) [4]− 0.9763 (0.0461) [1]+ 0.8734 (0.1375) [2]
MMF-2 0.2715 (0.0014) [6]− 0.3240 (0.0122) [4]− 0.3588 (0.0870) [3]− 0.8086 (0.0059) [5]− 0.9993 (0.1599) [1]+ 0.9369 (0.1297) [2]
MMF-4 0.1328 (0.0583) [6]− 0.5403 (0.2403) [3]− 0.2297 (0.1104) [5]− 0.3263 (0.1457) [4]− 0.8489 (0.2181) [2]− 0.8717 (0.2841) [1]
MMF-5 0.1913 (0.0175) [6]− 0.3997 (0.0524) [3]− 0.2309 (0.0374) [5]− 0.3514 (0.0576) [4]− 0.9977 (0.0074) [1]+ 0.9444 (0.0169) [2]
MMF-7 0.1712 (0.2828) [6]− 0.7725 (0.0934) [3]− 0.3623 (0.0616) [5]− 0.6166 (0.2130) [4]− 0.9838 (0.1464) [1]+ 0.9029 (0.1444) [2]
MMF-8 0.3752 (0.0038) [5]− 0.8731 (0.0093) [3]− 0.8623 (0.0061) [4]− 0.9153 (0.0028) [1]+ 0.1718 (0.0014) [6]− 0.9011 (0.0014) [2]
MMF-10 0.8731 (0.0420) [6]− 0.9011 (0.0285) [4]− 0.9302 (0.0131) [3]− 0.9561 (0.0023) [2]≈ 0.8925 (0.0367) [5]− 0.9573 (0.0019) [1]
MMF-11 0.6796 (0.0416) [6]− 0.7734 (0.0183) [5]− 0.9407 (0.0223) [1]+ 0.9167 (0.0071) [3]− 0.7992 (0.0331) [4]− 0.9366 (0.0112) [2]
MMF-12 0.5151 (0.0734) [5]− 0.4905 (0.0204) [6]− 0.9854 (0.0601) [2]≈ 0.6131 (0.1622) [3]− 0.5951 (0.2830) [4]− 0.9866 (0.0511) [1]
MMF-13 0.5081 (0.0882) [6]− 0.6111 (0.0613) [5]− 0.9618 (0.0883) [1]+ 0.8055 (0.0775) [4]− 0.8305 (0.0798) [3]− 0.9189 (0.0613) [2]
Mean rank 5.8 3.9 3.4 3.4 2.8 1.7
+/−/≈ 0/10/0 0/10/0 2/7/1 1/8/1 4/6/0 —

Table 10. Statistics (mean (std. dev.)) of Epsilon Indicator metric values of the final populations obtained by MOLAPO, GS, MOPSO, NSGA-II, MNMA, and
MOMmCAA over 30 independent runs on the CEC2020 test suite.

Fn MOLAPO GS MOPSO NGSGA-II MNMA MOMmCAA
MMF-1 0.9787 (0.0493) [3]− 0.9528 (0.0410) [4]− 0.9802 (0.0472) [2]≈ 0.9349 (0.0475) [5]− 0.8351 (0.1070) [6]− 0.9832 (0.0498) [1]
MMF-2 0.9586 (0.0293) [3]− 0.9328 (0.0209) [4]− 0.9602 (0.0272) [2]≈ 0.9149 (0.0275) [5]− 0.7652 (0.1236) [6]− 0.9632 (0.0298) [1]
MMF-4 0.6585 (0.0393) [6]− 0.8386 (0.0229) [3]− 0.6602 (0.0282) [5]≈ 0.7149 (0.0295) [4]− 0.8402 (0.1036) [2]− 0.8632 (0.0197) [1]
MMF-5 0.8870 (0.1226) [4]− 0.8793 (0.1163) [5]− 0.8922 (0.1229) [3]− 0.8787 (0.1204) [6]− 0.9858 (0.0285) [1]≈ 0.9851 (0.0124) [2]
MMF-7 0.8289 (0.1358) [6]− 0.8314 (0.1339) [4]− 0.8345 (0.1374) [3]− 0.8310 (0.1347) [5]− 0.9988 (0.0466) [1]+ 0.9333 (0.0137) [2]
MMF-8 0.7739 (0.0043) [5]− 0.7900 (0.0039) [4]− 0.8999 (0.0002) [1]≈ 0.8696 (0.0038) [3]− 0.3130 (0.0389) [6]− 0.8994 (0.0010) [2]
MMF-10 0.8611 (0.0041) [6]− 0.8918 (0.0081) [5]− 0.9192 (0.0113) [4]≈ 0.9351 (0.0066) [2]− 0.9302 (0.0023) [3]− 0.9416 (0.0031) [1]
MMF-11 0.6951 (0.0164) [6]− 0.7959 (0.0217) [5]− 0.9023 (0.0086) [1]+ 0.8365 (0.0043) [3]− 0.8052 (0.0065) [4]− 0.8974 (0.0019) [2]
MMF-12 0.7487 (0.2003) [6]− 0.9148 (0.0109) [5]− 0.9892 (0.0113) [2]≈ 0.9280 (0.0905) [4]− 0.9529 (0.0356) [3]− 0.9956 (0.0125) [1]
MMF-13 0.9369 (0.0115) [5]− 0.8624 (0.1193) [6]− 0.9965 (0.0101) [1]+ 0.9458 (0.0317) [4]− 0.9575 (0.0244) [3]− 0.9754 (0.0301) [2]
Mean rank 4.8 4.5 2.4 4.1 3.5 1.5
+/−/≈ 0/10/0 0/10/0 2/6/2 0/10/0 1/8/1 —
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Figure 5. Representative PFs obtained by the six MOEAs on the Quadratic benchmark set.
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MMF-7
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Figure 6. Representative PFs obtained by the six MOEAs on the CEC2020 benchmark set.

4. Engineering Design Problems

In this section, the capability of the MOMmCAA is evaluated in solving two real-world
engineering design problems: design of a four-bar truss and design of a disk brake.
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4.1. Four-Bar Truss Design Problem

In the four-bar truss design [58], the structural volume h1 and displacement h2 have
to be minimized. This problem consists of four design variables z1 to z4 corresponding
to the cross-sectional area of parts 1 to 4, as illustrated in Figure 7 The equations are
provided below.

Minimize:
h1(z) = 200

(
2z1 +

√
2z2 +

√
z3 + z4

)
h2(z) = 0.01

(
2
z1
+ 2

√
2

z2
− 2

√
2

z3
+ 2

z4

)
where:
1 ≤ z1 ≤ 3, 1.4142 ≤ z2 ≤ 3
1.4142 ≤ z3 ≤ 3, 1 ≤ z4 ≤ 3

(6)

This problem involves minimizing two components, h1 and h2. One approach is to
combine both functions using h(z) = λ1h1(z) + λ2h2(z) or h(z) = hq1

1 (z) + hq2
2 (z), where

λi and qi are the weighting coefficients [59]. However, determining these coefficients relies
on experience and a trial-and-error process to achieve the desired results. Therefore, the
multi-objective approach considers both functions separately in order to approximate the
PF and obtain multiple non-dominated solutions.

Figure 7. Description of the four-bar truss design problem.

4.2. Disk Brake Design Problem

The multi-objective disc brake design problem proposed in [60] has five constraints
and two objectives to be minimized, namely, the stopping time h1 and brake mass h2. This
problem has four design variables: the inner radius of the disc z1, the outer radius z2, the
engaging force z3, and the number of friction surfaces z4. Figure 8 depicts the system and
Equation (7) describes the problem.

Figure 8. Description of the disk brake design problem.
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Minimize:
h1(z) = (4.9 ∗ 10−5)(z2

2 − z2
1)(z4 − 1)

h2(z) = (9.82 ∗ 106)
z2

2−z2
1

(z3
2−z3

1)(z4z3)

Subject to:
g1(z) = z2 − z1 − 20
g2(z) = 30 − (2.5(z4 − 1))
g3(z) = 0.4 − z3

3.14∗(z2
2−z2

1)

g4(z) = 1 − (2.22 ∗ 10−3) z3(z3
2−z3

1)

(z2
2−z2

1)
2

g5(z) = (2.66 ∗ 10−2)
z3z4(z3

2−z3
1)

(z2
2−z2

1)
− 900

where:
55 ≤ z1 ≤ 80, 75 ≤ z2 ≤ 110
1000 ≤ z3 ≤ 3000, 2 ≤ z4 ≤ 20

(7)

4.3. Design Problem Results

Table 11 presents the statistical results of the MOMmCAA and the other algorithms
in dealing with the engineering design problems using the performance metrics of HV,
C and EI. It can be seen that the MOMmCAA is one of the two best algorithms for these
metrics in both cases, demonstrating the competitiveness of the proposed algorithm. The
MOMmCAA is able to calculate better results than MOLAPO, GS, NSGA-II, and MNMA,
and its results are very close to those obtained with MOPSO. Figure 9 presents the PFs
obtained by the different algorithms for the two engineering design problems.

Table 11. Statistics (mean (std. dev.)) of all metric values of the final populations obtained by
MOLAPO, GS, MOPSO, NSGA-II, MNMA, and MOMmCAA over 30 independent runs on the
four-bar truss and disk brake design problems.

Four-Bar Truss MOLAPO GS MOPSO NGSGA-II MNMA MOMmCAA
HV 0.8459 (0.0123) [6] 0.8719 (0.0234) [5] 0.9598 (0.0041) [2] 0.9370 (0.0098) [3] 0.9182 (0.0377) [4] 0.9678 (0.0026) [1]
C 0.2666 (0.0146) [6] 0.3927 (0.0725) [5] 0.9790 (0.0704) [1] 0.7765 (0.3033) [3] 0.7477 (0.0203) [4] 0.9681 (0.0641) [2]
EI 0.5127 (0.0605) [6] 0.5824 (0.0274) [5] 0.9204 (0.0389) [1] 0.8913 (0.2059) [3] 0.8603 (0.2389) [4] 0.9184 (0.0270) [2]
Disk Brake MOLAPO GS MOPSO NGSGA-II MNMA MOMmCAA
HV 0.8780 (0.0180) [5] 0.8737 (0.0051) [6] 0.9947 (0.0024) [1] 0.9857 (0.0023) [4] 0.9923 (0.0027) [3] 0.9931 (0.0012) [2]
C 0.6498 (0.0882) [5] 0.5346 (0.1352) [6] 0.9128 (0.2202) [2] 0.8296 (0.2406) [3] 0.7847 (0.3748) [4] 0.9128 (0.2202) [1]
EI 0.7637 (0.0608) [5] 0.7329 (0.0252) [6] 0.9614 (0.0092) [2] 0.9216 (0.0325) [3] 0.8936 (0.0888) [4] 0.9971 (0.0080) [1]

Four-Bar 
Truss

Disk Brake

MOLAPO GS MOPSO NSGA-II MNMA MOMmCAA

Figure 9. Representative PFs obtained by the six MOEAs on the two engineering design problems.
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5. Conclusions and Further Work

This paper presents a new multi-objective optimization algorithm called the MOMm-
CAA inspired by the neighborhood and local interaction rules of majority and minority
cellular automata. The randomness, concurrency, and information exchange generated be-
tween the smart-cells by applying different rules produce an appropriate balance between
exploration and exploitation actions.

Comparative computational testing was carried out on 27 test functions with various
characteristics, including convex, concave, mixed, disconnected, and degenerated PFs.
These test functions were used to challenge the MOMmCAA, and its performance was
compared against five other algorithms recognized for their efficiency. The experiments
showed satisfactory performance on the part of the MOMmCAA.

In addition, two multi-objective engineering problems from the recent literature were
used to test the MOMmCAA against the results obtained by the other algorithms. The
MOMmCAA again demonstrated its high quality in finding solutions to these problems,
proving its competitiveness against other recent metaheuristics.

Compared to classical techniques, the MOMmCAA provides improved flexibility.
It can explore large search spaces and adapt to problems with multiple objectives and
complex constraints. These features make the MOMmCAA especially useful for solving
multi-objective optimization problems, where traditional methods may be inefficient due
to assumptions about the problem’s nature, the need for derivatives, or the complexity of
the objective functions.

As further work, the MOMmCAA has to be proven effective in solving real-world
problems such as power grid design, vehicle routing optimization, industrial systems
control, and feature selection in bioinformatics. Its ability to balance multiple conflicting
criteria makes it suitable for multi-objective situations.

However, the MOMmCAA has limitations in scalability for high-dimensional prob-
lems, where managing the repository of non-dominated solutions and correctly selecting
the algorithm parameters are critical aspects affecting its performance. Its computational
cost can also be high when dealing with complex problems, especially when requiring
many iterations or accurate PF estimation.

These limitations provide opportunities for future algorithm refinement, including
testing improvements with fewer parameters, dynamic parameter control, or other solution
control mechanisms such as niche strategy, clustering, rank dominance, or FP maintenance
methods. The richness of cellular automata behaviors also presents new opportunities for
proposing new multi-objective optimization algorithms, such as the utilization of periodic,
chaotic, universal, complex, or surjective and reversible cellular automata.
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