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Abstract: This study reviews advanced methods for corrosion detection and characterization in 
pipes using thermography, with a focus on addressing the limitations posed by small datasets. Ther-
mography captures temperature distributions on the surface of pipes to identify subsurface defects. 
The challenges of sequential data processing, neural network performance, feature extraction, and 
dataset size are discussed, with proposed solutions such as advanced algorithms, feature selection 
techniques, and data augmentation. Given the significant gap in the current literature, there is a 
need for larger, more diverse datasets to train more robust and accurate machine learning models. 
A case study combining experimental data with Finite Element Method (FEM) simulations demon-
strates that augmenting datasets with synthetic data significantly improves defect detection accu-
racy. These findings highlight the potential of integrating thermography with machine learning to 
enhance defect detection, providing insights for future research and practical applications. 

Keywords: thermography; defect; subsurface; deep learning; machine learning; finite element anal-
ysis 
 

1. Introduction 
1.1. Thermography 

Thermography is a non-destructive testing (NDT) technique that employs infrared 
thermography (IRT) to evaluate the thermal characteristics of materials and structures. 
Infrared cameras measure the infrared radiation emitted by objects, capturing variations 
that correspond to different surface temperatures. The underlying principle is that mate-
rials with varying thermal conductivities emit different levels of infrared radiation. By 
analyzing these radiation patterns, IRT can determine the apparent surface temperature 
and detect anomalies or subsurface defects [1]. Thermography methods can be catego-
rized into two types: active and passive. Active thermography involves applying an ex-
ternal heat source to the specimen, while passive thermography relies on the specimen’s 
natural thermal emissions. The choice between active or passive thermography depends 
on the specific requirements of the testing scenario [2]. 

1.2. Subsurface Defects 
Subsurface defects in materials significantly impact the strength, durability, and 

overall performance of these objects. Early detection is crucial for ensuring the safe and 
effective functioning of materials and structures. Non-destructive testing (NDT) methods 
evaluate the quality and condition of materials and structures without causing damage, 
allowing for regular and ongoing monitoring. This ensures that any potential issues are 
identified and addressed promptly [3]. 
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1.3. Traditional Methods and Challenges 
Traditional methods for subsurface defect detection include visual inspection, ultra-

sonic testing, and X-ray imaging. While these methods have proven effective, they often 
require significant time, specialized equipment, and can sometimes be intrusive. Visual 
inspections are subjective and dependent on the inspector’s experience. Ultrasonic and X-
ray methods, although precise, involve complex equipment and safety concerns, particu-
larly with radiation exposure [4]. 

1.4. Importance of Corrosion Detection 
Corrosion in pipes is a critical issue in various industries, including oil and gas, water 

supply, and chemical processing. Corrosion can lead to leaks, structural failures, and sig-
nificant economic losses. Therefore, early and accurate detection of corrosion is essential 
for maintaining the integrity and safety of infrastructure. 

1.5. Objective and Significance of This Study 
This paper aims to review state-of-the-art machine learning methods for characteriz-

ing subsurface defects using thermography, addressing the limitations posed by small 
datasets. By enhancing data through synthetic means, such as Finite Element Method 
(FEM) simulations, this study seeks to improve the robustness and accuracy of defect de-
tection models. The findings underscore the potential of integrating thermography with 
machine learning to advance the field of corrosion detection and ensure safer and more 
efficient infrastructure maintenance. The paper is organized as follows: Section 2 provides 
a literature review of methods for characterizing subsurface defects by thermography. 
Section 3 discusses the challenges of subsurface defect characterization by thermography 
and state-of-the-art solutions to overcome these challenges. In Section 4, a case study is 
presented, demonstrating the automatic detection of subsurface defects in steel pipes us-
ing thermography and synthetic datasets. 

2. Literature Review 
The role of thermography in detecting and characterizing subsurface defects is sig-

nificant, as this method allows for the identification of defects beneath the surface of ma-
terials and structures without causing any damage. This is particularly important in the 
assessment of critical infrastructure where disruptions to operations must be minimized. 
Recent advancements in thermography have led to the development of state-of-the-art 
methods providing improved accuracy and sensitivity for subsurface defect detection. 
Awareness of these new techniques is crucial for assessing the integrity of materials and 
structures, ensuring the continued safe and effective functioning of these critical assets [5]. 

Traditional methods for subsurface defect characterization include techniques based 
on the physical properties of materials [6]. Widely used traditional methods include linear 
regression, Gaussian regression, support vector machines (SVM) [7], polynomial approx-
imation [8], and classification trees [9]. These methods model the relationship between 
thermal data features and defect characteristics, providing basic yet effective approaches 
for defect detection. Traditional machine learning methods are favored for their simplic-
ity, stability, and interpretability. They tend to produce consistent results even with small 
variations in input data, and their decision-making processes are transparent, making 
them suitable for applications where accountability is critical [10]. Advancements in ther-
mography have focused on enhancing the detection capabilities and accuracy of defect 
characterization. These improvements are driven by innovations in both hardware and 
software, including high-resolution infrared cameras and sophisticated data processing 
algorithms. Enhanced imaging techniques, such as lock-in thermography and pulsed ther-
mography, have improved the resolution and depth of defect detection. Furthermore, in-
tegrating thermography with other NDT techniques like ultrasonic testing and X-ray im-
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aging has resulted in more comprehensive assessments of material integrity. These ad-
vancements have expanded the applicability of thermography in various industrial set-
tings, making it a more robust tool for subsurface defect detection [11,12]. 

Machine learning methods have revolutionized subsurface defect characterization by 
automating feature extraction and improving predictive accuracy. These methods can be 
broadly categorized into traditional machine learning techniques and deep learning ap-
proaches. Traditional techniques, as mentioned, offer interpretability and consistent per-
formance with smaller datasets. However, deep learning has achieved state-of-the-art re-
sults in tasks such as image segmentation, speech recognition, and sequential data pro-
cessing. The key advantages of deep learning include its ability to automatically learn rel-
evant features from raw input data, reducing the need for manual feature engineering. 
Deep learning models are highly scalable and capable of handling large amounts of data, 
making them ideal for applications that require processing vast datasets. Moreover, these 
models can learn hierarchical representations of data, capturing complex relationships 
and patterns within the data. 

Recent studies have demonstrated the efficacy of deep learning models in thermo-
graphic applications, with convolutional neural networks (CNNs) being successfully ap-
plied to segment thermal images and identify defect locations with high precision [13]. In 
recent years, the 1-D approach has been used, which corresponds to training the CNN 
with thermal temporal signals. This method has shown significant advantages in handling 
sequential thermal data, improving defect detection accuracy and computational effi-
ciency. The 1-D CNN approach allows for the effective analysis of thermal profiles over 
time, making it particularly useful for applications where temporal thermal variations are 
critical [14,15]. 

Despite significant advancements, gaps in the current literature need to be addressed. 
One primary challenge is the limited availability of large, diverse datasets for training 
machine learning models. Small datasets restrict the performance and generalization ca-
pabilities of these models. The integration of synthetic data through techniques like Finite 
Element Method (FEM) simulations can augment datasets and enhance model robustness. 
Further research is needed to explore these avenues and develop more reliable and accu-
rate defect detection systems. 

3. Challenges of Subsurface Defect Characterization by Thermography 
3.1. Sequential Data Processing 

Sequential thermal data are pivotal in thermography methods like lock-in and pulsed 
thermography for defect detection, offering a time-resolved perspective that facilitates the 
identification of material defects such as cracks, voids, and delamination through the anal-
ysis of thermal process evolution. The acquisition and analysis of these data are vital for 
enhancing the reliability, safety, and performance of materials and components [16,17]. 
However, challenges such as data quality issues, the need for synchronization, high com-
putational demands, and the complexity of data interpretation underscore the importance 
of advanced research. 

Recent efforts in thermography for subsurface defect characterization have increas-
ingly turned towards innovative neural network architectures to address these challenges. 
These architectures aim to enhance data processing speeds, accuracy, and overall quality 
in defect detection [18,19]. The Long Short-Term Memory Recurrent Neural Network 
(LSTM-RNN) architecture, for instance, is effective in capturing long-term dependencies 
in sequential data without succumbing to the vanishing gradient problem. Researchers, 
including Hu et al., have leveraged LSTM-RNN for automatic classification of common 
defects in materials such as honeycomb structures, achieving enhanced accuracy and re-
liable identification of defects by analyzing the thermal response over time [20]. 
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Parallel to LSTMs, Gated Recurrent Unit (GRU) networks simplify the model struc-
ture while maintaining the ability to handle long-term dependencies effectively. This re-
sults in faster training times and reduced risk of overfitting [21]. GRUs have outperformed 
traditional RNNs and backpropagation networks in various sequential data modeling 
tasks, including defect depth recognition and quantification. Fang and Maldague demon-
strated the effectiveness of GRUs in quantifying defect depths in composite materials us-
ing pulsed thermography, showcasing GRUs’ capability to process and analyze complex 
thermal datasets for accurate defect detection [22]. Figure 1 shows the structural differ-
ences between the LSTM and GRU architecture. 

 
Figure 1. Comparison of LSTM and GRU architecture [23]. 

In three-dimensional data analysis, 3D neural networks excel in processing 3D data, 
such as images and videos, enhancing object recognition, segmentation, and temporal 
changes handling. The introduction of a 3D convolutional neural network (CNN) model 
by Dong et al. [24], tailored for lock-in thermography in carbon fiber-reinforced polymer 
(CFRP), integrates spatial and temporal convolutional filters with batch-size independent 
group normalization, showcasing superior accuracy in detecting and estimating subsur-
face defect depths [25]. Figure 2 compares the architectures of 2D-CNN and 3D-CNN. 

 
Figure 2. Comparing the architecture of 2D-CNN and 3D-CNN [25]. 

3.2. Increasing Performance of the Deep Learning Method 
Enhancing the performance of neural networks is pivotal for advancing thermogra-

phy techniques, especially for subsurface defect characterization where precision and ef-
ficiency are paramount. The complexity of thermographic data, compounded by noise 
and inhomogeneous backgrounds, necessitates sophisticated neural network models. 
Neural Architecture Search (NAS) and hyperparameter tuning emerge as critical strate-
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gies for optimizing neural network architectures [26]. NAS systematically explores vari-
ous architectures to find the most effective model for specific thermographic tasks, signif-
icantly boosting model accuracy [27]. For instance, Chen et al.’s utilization of NAS in mul-
tilayer perceptron models for defect classification achieved unparalleled accuracy [28]. 
Similarly, hyperparameter optimization techniques like Gray Wolf Optimization (GWO) 
fine-tune model parameters to optimize performance, as demonstrated by Chen et al. in 
classifying subsurface defects in carbon fiber-reinforced polymers [29]. 

3.3. Feature Extraction 
Beyond architecture and parameter optimization, effective feature extraction is cru-

cial for thermography applications. Techniques like Extended Blind End-Member and 
Abundance Extraction (EBEAE) [30] and Convolutional Autoencoders (CAEs) [31] have 
been instrumental in improving feature extraction. EBEAE enhances the identification and 
characterization of thermal features, leading to more accurate defect depth estimation in 
composite materials. Marani and Campos-Delgado’s work exemplifies EBEAEs’ effective-
ness in extracting precise features from thermal maps for SVM classification [32]. CAEs, 
particularly in denoising and data enhancement roles, maintain deep spatial information 
while reducing noise, as seen in Li et al.’s improved DCAE (Data-enhanced Convolutional 
Autoencoders) model [33,34]. 

In addition to these methods, features can also be extracted using specific algorithms 
associated with different thermography techniques. Pulsed thermography features can be 
obtained by performing algorithms such as Thermal Signal Reconstruction (TSR) [35], 
Pulse Phase Thermography (PPT) [36], and Principal Component Analysis (PCA) [37]. 
These methods analyze the thermal response over time to identify and characterize sub-
surface defects. Lock-in thermography, on the other hand, allows for feature extraction by 
analyzing amplitude and phase maps obtained through lock-in (LI) algorithms. These 
maps provide detailed information about the thermal properties and the presence of de-
fects within the material [38]. Incorporating these approaches enhances the capability to 
detect and quantify subsurface defects more accurately. By integrating a variety of feature 
extraction techniques, both traditional and advanced, we can improve the reliability and 
accuracy of thermographic inspections, thereby providing a more comprehensive assess-
ment of material integrity. 

Addressing the challenge of dataset size is paramount in machine learning, especially 
for thermography, where data diversity and volume directly influence model perfor-
mance. Larger datasets enable training of more complex models, enhancing performance 
and reducing overfitting risks [39,40]. Innovative strategies include deep autoencoders, 
which leverage unsupervised learning to process and analyze thermographic data, iden-
tifying subtle, nonlinear patterns in noisy images. Liu et al.’s work with deep autoencod-
ers facilitates detailed visualization of defect features and accurate identification in com-
posite materials [41]. 

Semi-supervised learning, which utilizes both labeled and unlabeled data, enhances 
model performance and generalization, as demonstrated by Liu et al.’s semi-supervised 
framework for transient thermography [42]. Generative Adversarial Networks (GANs) 
address data scarcity by generating synthetic data that mimics real thermal images, aug-
menting existing datasets and improving model robustness [43]. Liu et al.’s application of 
GANs for thermal image augmentation highlights their potential in enhancing thermo-
graphic analysis [44], showing a flowchart suggested by the generative network for in-
creasing the size of the dataset. 
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3.4. Dataset Augmentation 
Dataset augmentation is a crucial technique in machine learning, particularly for 

thermography, where data diversity and volume significantly influence model perfor-
mance. Several methods have been developed to augment datasets, each with its own ad-
vantages and limitations. 

Generative Adversarial Networks (GANs) are powerful tools for generating new, 
synthetic data that mimic real data. GANs consist of two neural networks, a generator and 
a discriminator, that are trained simultaneously. The generator creates synthetic data, 
while the discriminator evaluates its authenticity. This adversarial process helps produce 
high-quality synthetic data that can be used to augment datasets, improving model ro-
bustness and performance, especially when dealing with small sample sizes [45,46]. How-
ever, training GANs can be complex and computationally intensive, and they require a 
significant amount of data to begin with [47]. 

U-Net is another advanced technique particularly useful for image segmentation 
tasks. Originally developed for biomedical image segmentation, U-Net has been adapted 
for various applications, including thermography. It works by capturing the context of an 
image through a contracting path and then enabling precise localization through an ex-
pansive path. U-Net can be used for data augmentation by generating segmented images 
from raw input, thereby increasing the diversity and volume of the training dataset [47]. 

Traditional methods such as image rotation, scaling, flipping, and cropping are also 
widely used to augment datasets. These techniques are relatively simple to implement 
and computationally inexpensive. They work by applying various transformations to the 
original images, thereby creating new training samples. While these methods can signifi-
cantly increase the dataset size and help prevent overfitting, they do not add new infor-
mation to the dataset as GANs do [48,49]. 

Table 1 shows the summary of challenges researchers face in subsurface defect char-
acterization by machine learning algorithms with thermography and the state-of-the-art 
solutions they proposed to these challenges. 

Table 1. Challenges researchers face in subsurface defect characterization by machine learning al-
gorithms with thermography and state-of-the-art solutions. 

Challenge Solution 

Sequential data processing 
LSTM-RNN 

GRU 
3D CNN 

Increasing performance Design of neural network architecture 
Hyperparameter optimization 

Feature extraction 
Extended Blind End-Member and Abundance Ex-

traction (EBEAE) 
Convolutional Autoencoder 

Increasing the size of the dataset 
Deep Autoencoder (unsupervised learning) 

Semi-supervised learning (SSL) 
GAN 

4. Case Study 
This case study explores the detection and characterization of corrosion in steel pipes 

using thermography, emphasizing the usage of synthetic datasets to enhance machine 
learning model training. This methodology aims to improve the accuracy and reliability 
of defect detection in steel pipe insulation, addressing the challenges highlighted in the 
literature. 
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4.1. Experimental Setup 
Infrared thermography (IRT) is a powerful technique for identifying defects within 

the insulation of steel pipes, with moisture presence being a key indicator of potential 
corrosion under insulation (CUI). Moisture ingress alters the insulation’s heat transfer co-
efficient, resulting in observable temperature variance in the pipe’s surface, crucial for 
pinpointing defect locations and extents. For this experiment, six different steel pipes of 
varying sizes and thicknesses were selected to create a diverse set of scenarios. The geo-
metrical properties of each pipe are detailed in Table 2. 

Table 2. Dimension of the pipes. 

Pipe ID Length (mm) Diameter (mm) SCH Thickness (mm) 
1 3200 50.8 40 3.91 
2 3200 50.8 80 5.54 
3 3200 76.2 40 5.49 
4 3200 76.2 80 7.62 
5 3200 152.4 40 7.11 
6 3200 152.4 80 10.97 

Note: SCH (Schedule) refers to the wall thickness of the pipes. 

To simulate moisture ingress and enhance realism, each pipe was insulated with fi-
berglass, selected for its widespread industrial use and favorable thermal properties. The 
insulation applied at a thickness of 12.7 mm (0.5 inches) was cut to create defects of vary-
ing sizes. These sections were saturated with water to 70% of their weight before being 
reattached to the pipes. An aluminum cladding, 0.76 mm (0.03 inches) thick, enveloped 
the insulation, mimicking operational insulation systems’ protective layer, providing me-
chanical protection and weather resistance. Figure 3 provides additional clarity on the ge-
ometrical positioning and dimensions of these defects relative to the pipes, aiding in the 
understanding of the simulated defect’s types and placements. 

  
(a)  (b)  

Figure 3. Experimental setup showing the moisture simulation process. (a) Cut of insulation at 
planned geometry [50]. (b) Installation of wet insulation in cut regions [51]. 

A FLIR T650Sc thermal camera, with a high resolution of 640 × 480 pixels, was used 
to capture thermal images. In this study, median filtering was primarily used due to its 
simplicity and effectiveness in reducing noise without significantly affecting the im-
portant features of the thermal images. This preprocessing step ensured that the subse-
quent analysis and defect detection algorithms operated on clearer and more reliable data. 
Given the predefined locations of the defects, Regions of Interest (ROIs) were established 
based on these positions for later analysis. Figure 4 shows the defined ROI, based on the 
position and size of the defect, for pipe number 6. As can be seen, the position of the defect 
is known in the thermal image, so a circle which circumscribes the square is defined. 
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Figure 4. Defined ROI for the thermal image of pipe number 6 and 12.7 cm defect [51]. 

4.2. Data Augmentation with FEM 
To enhance the dataset and complement the experimental findings, this study’s setup 

was replicated within the COMSOL Multiphysics environment. This simulation aimed to 
precisely model the steel pipes, fiberglass insulation, and aluminum cladding, incorporat-
ing defects similar to moisture ingress to thoroughly analyze their thermal impact. The 
simulation was based on the assumption of material homogeneity across all components, 
with boundary conditions set to no heat loss at the pipe ends, reflecting the experimental 
setup. This approach ensured a focused analysis of the thermal behavior attributable to 
the introduced defects, aligning the computational model closely with the physical exper-
iments. 

Defects were introduced in the simulation by substituting sections of the original in-
sulation with new material representing wet insulation. This method simulated various 
moisture levels, expanding the range of defect sizes from as small as 0.1 inches to as large 
as 5 inches, aiming to understand the impact of defect size on thermal performance more 
comprehensively. Table 3 details the range of simulated defect sizes for each pipe ID. The 
simulations used steady-state conditions to mirror the experimental setup, focusing on 
achieving a uniform thermal regime. 

Table 3. Range of simulated defects for each pipe ID. 

Pipe ID Size of Defects (mm) 
1,2 25.4, 50.8, 76.2, …, 101.6 

3,4,5,6 25.4, 50.8, 76.2, …, 127 

To accurately model the wet insulation’s thermal properties, mixture rules were uti-
lized. These rules allow for the calculation of effective thermal properties such as thermal 
conductivity (k), density (𝜌), and specific heat capacity at constant pressure (𝑐௣) for the 
insulation, taking into account varying moisture contents. The equations used are as fol-
lows: 𝑘௪௘௧ =  𝑉௪௔௧௘௥ .𝑘௪௔௧௘௥ + 𝑉௜௡௦௨௟௔௧௜௢௡.𝑘௜௡௦௨௟௔௧௜௢௡ (1)𝜌௪௘௧ =  𝑉௪௔௧௘௥ .𝜌௪௔௧௘௥ + 𝑉௜௡௦௨௟௔௧௜௢௡.𝜌௜௡௦௨௟௔௧௜௢௡ (2)

𝑐௣ೢ೐೟ = 𝑉௪௔௧௘௥ .𝜌௪௔௧௘௥ . 𝑐௣ೢೌ೟೐ೝ + 𝑉௜௡௦௨௟௔௧௜௢௡.𝜌௜௡௦௨௟௔௧௜௢௡. 𝑐௣೔೙ೞೠ೗ೌ೟೔೚೙𝜌௪௘௧  (3)

where 
• 𝑉௪௔௧௘௥ and 𝑉௜௡௦௨௟௔௧௜௢௡ are the volume fractions of water and insulation, respectively, 

satisfying 𝑉௪௔௧௘௥ + 𝑉௜௡௦௨௟௔௧௜௢௡ = 1. 
• 𝑘௪௔௧௘௥ , 𝜌௪௔௧௘௥ , and 𝑐௣ೢೌ೟೐ೝ  are the thermal conductivity, density, and specific heat 

capacity at constant pressure of water, respectively. 
• 𝑘௜௡௦௨௟௔௧௜௢௡, 𝜌௜௡௦௨௟௔௧௜௢௡, and 𝑐௣೔೙ೞೠ೗ೌ೟೔೚೙ are the corresponding properties of the insula-

tion material. 
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• This formulation provides a nuanced view of how moisture content influences the 
insulation’s thermal properties. These formulations allowed us to accurately model 
the thermal behavior of insulation with 70% wetness levels, directly correlating with 
the experimental conditions. Table 4 presents the material properties used in the sim-
ulation, including the base properties of steel, fiberglass insulation, water, and alu-
minum. 

Table 4. Thermophysical properties considered in the computational simulation. 

Property Thermal Conductivity Specific Heat at Constant Pressure Density Emissivity 
Symbol 𝑘 (J/m.K) 𝑐௣ (J/kg.K) 𝜌 (Kg/m3) 𝜀 

Aluminum 220 2710 1890 0.9 
Carbon Steel 54 456 7830 - 

Insulation 0.086 387 208 - 
Water 0.6 4186 1000 - 

Mobil Therm 603 0.127 2330 784 - 

The conduction occurs between solid phases in each material and at contact surfaces. 
The conduction heat transfer is governed by 𝑞 =  െ𝑘ሺ𝑇௘௫௧ െ 𝑇ሻ where 𝑘 is the conduc-
tion heat transfer coefficient, 𝑇௘௫௧ is the external temperature, and 𝑇 is the surface tem-
perature. Inside the pipe, forced internal convection is set to replicate the experimental 
conditions, with the fluid being Mobil Therm 603. The convection heat transfer is de-
scribed by 𝑞 = ℎሺ𝑇௙௟௨௜ௗ െ 𝑇௦௢௟௜ௗሻ where 𝑞 represents the heat transfer rate per unit area, ℎ is the convective heat transfer coefficient, 𝑇௙௟௨௜ௗ is the fluid temperature, and 𝑇௦௢௟௜ௗ is 
the solid surface temperature. The outer surface of the aluminum cladding experiences 
both natural convection with the ambient environment and radiation heat transfer, with 
a surface emissivity set at 0.9. The radiation heat transfer is governed by 𝑞 =  𝜀𝜎ሺ𝑇௔௠௕ସ െ𝑇ସሻ, where 𝜀 is the emissivity and 𝑇௔௠௕ is the ambient temperature. 

Mesh size was set to automatic, allowing for finer mesh in areas with defects and 
around thin structures, while coarser mesh was applied elsewhere. This strategy opti-
mized computational resource utilization. 

The simulations were conducted under steady-state conditions to mimic the experi-
mental setup, focusing on achieving a uniform thermal regime. Figure 5 showcases the 
simulation results for Pipe ID 1, featuring a defect characterized by 70% wetness and a 
size of 2.54 cm. These results highlight the thermal patterns and anomalies induced by the 
wet insulation defect. 

 
Figure 5. Simulation results for Pipe ID 1 with a 2.54 cm defect and 70% wetness [51]. 

4.3. Results and Discussion 
4.3.1. Introduction to UNET+ 

The UNET+ model is an advanced convolutional neural network designed for image 
segmentation tasks. Its architecture includes a contracting path to capture context and a 
symmetric expanding path that ensures precise localization. The contracting path consists 
of repeated applications of convolutional layers followed by max-pooling for down-sam-
pling, capturing high-level features and context information. Conversely, the expanding 
path uses transposed convolutions for up-sampling, restoring the spatial resolution of the 
features for accurate segmentation of fine details. UNET+ incorporates additional features 
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such as residual connections, multi-scale feature integration, and attention mechanisms, 
improving upon the traditional UNET architecture. These enhancements enable the 
model to handle variations in defect size, shape, and contrast in thermographic images 
more effectively. 

In the context of this work, the use of UNET+ is highly advantageous due to the com-
plex nature of the thermal patterns associated with corrosion. Corrosion often manifests 
in irregular shapes and varying thermal contrasts, challenging simpler models to detect 
accurately. The multi-scale feature integration in UNET+ allows the model to consider 
both global and local features simultaneously, enhancing its ability to detect corrosion 
regardless of size or intensity. Additionally, the residual connections help mitigate the 
vanishing gradient problem during training, leading to a more stable and efficient learn-
ing process. These qualities make UNET+ not only suitable but also highly effective for 
detecting and characterizing corrosion in thermographic images of steel pipes. 

In this study, the UNET+ model was trained on a combination of experimental and 
synthetic datasets. The experimental dataset consisted of thermal images captured from 
steel pipes with induced defects, while the synthetic dataset was generated using Finite 
Element Method (FEM) simulations to augment the available data. The training process 
involved several preprocessing steps, including normalization and augmentation tech-
niques to enhance the model’s robustness. Figure 6 shows the UNET+ model architecture 
which is used in this research. 

 
Figure 6. UNET+ model architecture [52]. 

4.3.2. Results 
The UNet+ model was trained under two scenarios to evaluate the impact of dataset 

composition on defect detection performance. Initially, the model was trained solely with 
20 experimental images. The second scenario included 2000 synthetic images generated 
via FEM simulations, along with the 20 experimental images. Validation against unused 
experimental images provided a clear performance comparison. The performance of the 
UNET+ model was evaluated using metrics such as the F1 score, loss, and Mean Intersec-
tion over Union (Mean IoU). The F1 score is the harmonic mean of precision and recall, 
providing a balance between the two. Loss measures the difference between the predicted 
values and the actual values, indicating how well the model is performing. Mean IoU is a 
metric used for evaluating the accuracy of object detection models, calculated by dividing 
the intersection of the predicted and ground truth regions by their union [53,54]. Table 5 
presents a comparison of these metrics for the model trained on the experimental dataset 
alone versus the combined dataset. The results indicate that incorporating synthetic data 
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significantly improved the model’s performance, enhancing its accuracy and ability to 
generalize across unseen defect types and conditions. 

Table 5. Evaluation metrics of UNET+ for each dataset. 

Dataset F1 Loss Mean IoU 
Experiment 0.89 0.57 0.66 

FEM + Experiment 0.90 0.26 0.87 

The inclusion of synthetic data in the training process addressed the common chal-
lenge of limited experimental data, resulting in a more robust and accurate model. The 
improved performance metrics demonstrate the value of data augmentation through FEM 
simulations. As shown in the learning curves (Figure 7), the UNET+ model trained on the 
FEM + experimental dataset exhibits steady improvement in accuracy throughout the 
training steps, reaching a final accuracy of approximately 0.88. In contrast, the model 
trained solely on the experimental dataset shows signs of overfitting, with accuracy plat-
eauing and fluctuating around 0.85 after 10–14 steps. This indicates that while the model 
initially learns from the limited data, it eventually starts to memorize the training set ra-
ther than generalize to new data. 

 
Figure 7. Comparison of UNET+ model performance on different databases. 

The performance metrics in Table 4 further corroborate these findings. The F1 score 
for the FEM + experimental dataset is 0.90, compared to 0.89 for the experimental dataset 
alone. The Mean IoU also saw a substantial increase from 0.66 to 0.87, and the loss for the 
FEM + experimental dataset was significantly lower at 0.26, compared to 0.57 for the ex-
perimental dataset. These results highlight that augmenting the training data with syn-
thetic data from FEM simulations not only improves the overall accuracy and robustness 
of the model but also mitigates the risk of overfitting, ensuring better applicability to real-
world scenarios. 

5. Conclusions 
This study demonstrated the effectiveness of integrating thermography with ma-

chine learning, particularly through the use of synthetic datasets, to improve the detection 
and characterization of corrosion in steel pipes. Key findings indicate that augmenting 
experimental data with Finite Element Method (FEM) simulations significantly enhances 
the performance of machine learning models, as evidenced by the improved metrics of 
the UNet model in detecting defects. 

The implications of these findings are substantial, suggesting that the approach can 
overcome common challenges such as data scarcity and overfitting, thereby improving 
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the reliability of defect detection in critical infrastructure. However, this study has limita-
tions, including the dependency on the accuracy of synthetic data and the potential vari-
ations in real-world conditions that were not fully replicated in the simulations. Future 
work should focus on validating these findings with a broader range of materials and 
conditions, as well as exploring other machine learning architectures and augmentation 
techniques to further refine defect detection capabilities. 

The contribution of this work to the field is significant, providing a robust framework 
for enhancing thermographic inspections using advanced data augmentation techniques. 
This methodology not only addresses current limitations in data availability but also of-
fers practical applications in various industries where early and accurate defect detection 
is crucial for maintaining safety and performance. By integrating synthetic datasets, this 
approach sets a precedent for future research and development in non-destructive testing 
and condition monitoring, ultimately leading to more reliable and efficient maintenance 
strategies for critical infrastructure. 
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