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Abstract: Acoustic perception of the automotive environment has the potential to advance driving
potentials with enhanced safety. The challenge arises when these acoustic perception systems need
to perform under resource and power constraints on edge devices. Neuromorphic computing
has introduced spiking neural networks in the context of ultra-low power sensory edge devices.
Spiking architectures leverage biological plausibility to achieve computational capabilities, accurate
performance, and great compatibility with neuromorphic hardware. In this work, we explore the
depths of spiking neurons and feature components with the acoustic scene analysis task for siren
sounds. This research work aims to address the qualitative analysis of sliding windows’ variation on
the feature extraction front of the preprocessing pipeline. Optimization of the parameters to exploit
the feature extraction stage facilitates the advancement of the performance of the acoustics anomaly
detection task. We exploit the parameters for mel spectrogram features and FFT calculations, prone
to be suitable for computations in hardware. We conduct experiments with different window sizes
and the overlapping ratio within the windows. We present our results for performance measures like
accuracy and onset latency to provide an insight on the choice of optimal window. The non-trivial
motivation of this research is to understand the effect of encoding behavior of spiking neurons with
different windows. We further investigate the heterogeneous nature of membrane and synaptic time
constants and their impact on the accuracy of anomaly detection. On a large scale audio dataset
comprising of siren sounds and road traffic noises, we obtain accurate predictions of siren sounds
using a recurrent spiking neural network. The baseline dataset comprising siren and noise sequences
is enriched with a bird dataset to evaluate the model with unseen samples.

Keywords: sliding window; window sizes; spiking leakages; neuronal time scales; spiking neural networks;
acoustic perception; anomaly detection; siren sounds; neuromorphic computing; time-series prediction

1. Introduction

AI applications on edge devices need to perform efficiently with resource and power
constraints. If applications need to be deployed at the sensory edge, these constrains could
be hard to satisfy. Therefore, a trade-off between performance and resource demands
needs to be made. Neuromorphic computing is a fairly new research field whose focus
is to bring ultra low-power solutions without any compromise in efficiency to the future
resource constrained edge devices. This field introduces biologically inspired neural
networks, which have found recent applications in robotics [1], gesture recognition [2],
constraint satisfaction problems [3], image classification through temporal coding [4],
predictive medical systems [5], keyword spotting [6] and audio applications like scene
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classification [7], speech recognition [8] etc. End-to-end neuromorphic keyword spotting
has been demonstrated on neuromorphic hardware processors like Loihi [9] and large scale
systems like SpiNNaker [10], showing benefits over conventional hardware accelerators.
Spiking neural networks closely mimic sparse and asynchronous biological information
processing. The models in SNNs are naturally operated in terms of time and are based
on the principles of brain-inspired computing. Temporal perception of complex auditory
scenes like speech signals is processed within the range of tens of hundreds of milliseconds
(ms) [11], contributing to our investigation on temporal processing of siren audio sequences
of approaching emergency vehicles with naturally adept, spiking neural networks.

Well-known approaches look at the problem of siren sound detection using deep learning
methods [12–16]. The authors of [14], extensively explore 2D CNNs to detect siren signals
based on the spectrum that is generated by combining multiple windowed FFTs to generate an
image used as an input to the network, this subsequently leads to a higher computational effort.
SNNs, on the other hand, exhibit temporal processing directly in their neurons, this motivates
us to exploit time series tasks efficiently. Furthermore, with the advent of neuromorphic
hardware [9,17], these small-scale networks with sparsity introduced through the optimal choice
of time constants could potentially save orders of magnitude of energy as shown in [9]. This
motivated us to take a closer look at the pre-processing stage and the way of optimizing anomaly
detection task even further. The right level of biological abstraction of neuronal time constants
could complement the performance of the audio scene classification tasks and give directions to
build suitable neuromorphic hardware with informed parameterization.

This research work attempts to understand the intricacies of variation in sliding
windows on the performance of the temporal detection of siren sounds in order to trade off
the accuracy against the onset latency of the prediction. We model spiking neurons for real-
time applications by inferring the impact of windowing in terms of encoding information.
Through this empirical study, we aim to investigate the optimal window size with and
without overlapping windows and encapsulate its impact on the task performance. A lack
of understanding of the relation between neuronal decays and sliding windows in the
literature for spiking architectures for the emergency vehicle detection task motivates us
to answer a relevant research question that could help shape the hardware aspects of the
processing pipeline for better performance. In an effort to validate the robustness of the
proposed spiking architecture to solve this task, we augment a large scale audio dataset [18]
with environmental actors that cover various noises, road backgrounds, human speech,
bird songs, insect calls, rain, wind etc., from the bird [19] dataset. This helps us understand
how the proposed model generalizes to new and unseen samples.

The remainder of this paper is organized as follows: Section 2 presents literature
review on temporal detection of siren sounds and sliding windows employed in different
tasks in detail. We present the method employed using sliding windows and SNN training
approach in Section 3. We detail the experimental setup for an empirical study and
subsequently present the results in Section 4. Finally, in Section 5 we present an outlook of
the work, discussion and conclusion.

2. Related Work

Deep learning models namely—DNN (deep neural networks), CNN (convolutional
neural networks), LSTM (long short-term memory) and hybrid CNN-LSTM are employed
to solve human activity recognition (HAR) in [20]. The authors study the effect of sliding
windows for preprocessing time-series data using four models and show improvement in
accuracy, latency, and processing costs. Furthermore, the authors in [21] provide an exten-
sive characterization of windowing technique. They show the impact of diverse window
sizes for HAR task. Other interesting techniques like adaptive sliding windows are studied
in [22] for assisted living application. The authors of [23], explore pose pattern recognition
for sensors and extend the study to evaluate the impact on sliding windows. Their study is
in alignment with the prior research that shows the introduction of overlapping windows
increases the accuracy of pattern recognition.
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Overall, through a literature study, we garner results on the significance of the choice
of the optimal window size and sliding windows. To the best of authors’ knowledge, there
is scarce research on sliding window variation for anomaly detection task using SNNs.
Through this empirical study, we attempt to understand the impact of sliding windows on
the performance for anomaly detection task incorporated into bio-inspired networks like
SNNs. We evaluate the relation between spiking neurons and sliding windows in terms of
accuracy and onset latency. We further expand and elaborate the results on mel channel
variation to investigate the intricate parameterization on the feature extraction front that
impacts the performance of the siren sound detection task.

In parallel with preprocessing the data, SNNs inherit other properties which are
engraved in neuroscientific studies. Prior research works have shown that leak channels
exist in various synaptic transmissions in the visual cortex [24] and in sodium ion leak
channels [25]. On neuromorphic datasets NMNIST and SHD, for different spiking neurons,
leakages are studied for spatio-temporal pattern recognition in [26]. Authors in [26] explore
the impact of synaptic and membrane time constants for three different spiking neuron
models on pattern recognition and conclude the significance of neuronal leakage for both
temporal features and the explicit presence of recurrent connections. Authors in [27]
showed the importance of leak for LIF neurons in terms of robustness to noise by acting
as high frequency filter. In parallel, authors also comment on the statistical relationship
of sparsity introduced through leaky models and hardware efficiency through synaptic
operations. In this paper, our aim is to understand if there is a relation between sliding
windows and neuronal decays. This work attempts to partially answer this question by
conducting an empirical evaluation of neuronal time constants in recurrent SNNs for
acoustic anomaly detection.

3. Materials and Methods

We introduce the concept of overlaps in sliding windows for the acoustic anomaly
detection task. The parameterization and tuning of the preprocessing stage leads to an
impact on the performance of the acoustic event detection system. The goal of this research
work was to improve the network parameters to further expand on the relation between
the tweaking of the specific neuronal parameters and that of sliding windows.

We used artificial siren sequences generated from the publicly available siren dataset [18]
to train our models. The artificial audio sequences were sampled at a sampling frequency
of 48 kHz. We employed a small FFT window to minimize the hardware effort. Taking
into account that our signal of interest, i.e., siren sounds, had a fundamental frequency
between 400 Hz to 600 Hz, we started with a window size of 4096 which corresponds to
85.33 ms and we reduced the window size further further to 2048, . . ., 512 for this empirical
evaluation. Windowing was applied on the audio sequences of 30s before FFT calculation
as shown in Figure 1. Feature extraction was carried out using a mel spectrogram. The
input to the hidden layer of the SNN was varied as 32, 64 and 128 mel channels. The SNN
had a topology of 100 neurons with recurrent connections in the hidden layer. We kept
constant parameters (structural/topological) throughout the experiments for homogeneity.

3.1. Dataset

thw dataset in [18] is comprised of siren sounds and road noises. The dataset consists of
different types of siren sounds, namely, wail, yelp, hi-lo. We modified the publicly available
dataset to perform temporal predictions using artificially generated audio sequences. More
specifically, we utilized single channel siren and traffic noise recordings from the dataset
presented in [18] and split the samples of each class (siren and noise) with a 80/20 ratio
into train and test samples. All samples were resampled to a shared sample rate of 48 kHz.
Based on the noise samples, a continuous sequence was generated. To each of these
sequences of 30s duration, a random single siren sound of random length was added at a
random time. To ensure accurate measurement of onset latency and network stability we
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enforced the first 1s of the artificial sequences to exclude siren signals. This formed our
baseline dataset with siren and noise sounds in the audio clips.

Figure 1. Sliding window method in the processing pipeline. Block diagram highlights the sliding
windows on acoustic anomaly sequences used as input features in the spiking architecture. Different
window sizes (with and without overlaps) are provided in the form of time slices as an input to FFT;
mel features are extracted to inject as current input to the recurrent SNN.

Augmentation Dataset

Bird dataset [19]—We further included bird audio in combination with the baseline
siren data [18]. The Bird dataset is considered as evaluation dataset that consists of three
different sub-datasets. The Chernobyl dataset has 6620 audio clips collected from unat-
tended remote monitoring equipment in the Chernobyl Exclusion Zone (CEZ). Poland NFC
has 4000 recordings with different weather conditions and background noise comprising of
wind, rain, sea noise, insect calls, human voice and deer calls. The Crowdsourced dataset
is a held-out of 2000 recordings from the Warblr bird recognition app. The analysis of
the proposed method on evaluation dataset aided in the further understanding of the
robustness of the spiking architecture. Since the commonly known types of siren sounds
were already included in the baseline dataset, our idea was to enrich the noise samples
with other environmental actors to provide a qualitative outlook on the robustness of SNNs
towards various actors.

3.2. Feature Extraction

We used windowing technique to deconstruct temporal features into spatial features
to analyze different frequencies. A Hann window was used for smoothening of edges in
FFT calculations. In this work, since our focus was on understanding the performance of
windowing for the anomaly detection task, we used sliding windows with and without
overlap. We used log-scaled mel spectrograms as input features to our SNN model (referred
to as SpikeSireNet henceforth in this article). The window length and hop length were
varied in the order of 2x to obtain optimal design choices for better performance. For the
mel transformation, we imposed a lower frequency limit of 50 Hz to cover the noise signals
so that the network could easily differentiate between noise characteristics. The upper
limit was set according to respective window size. For example, when w = 512 signals
were extracted, the frequency was only within 0–513 Hz. We considered a total of 64 mel
channels to constrain the feature range in most of our experiments, and we also varied
the mel channels in a range between 32 to 128 channels. Furthermore, the features were
converted to dB scale and a min-max normalization was applied to each time slice.

3.3. Network Architecture

We adopted the model architecture from our previous work in [7,28] to achieve predic-
tions using a recurrent spiking neural network, as shown in Figure 2. Recurrent networks
were chosen as they exhibit excellent ability to handle time-series data much better than
feed-forward networks. Recurrences aid to excelling in tasks that need to uncover the
realms of contextual understanding such as audio processing. The SpikeSireNet model
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comprised a hidden layer with 100 spiking leaky-integrate-and-fire (LIF) neurons with
recurrent connections. For our experiments with sliding-window variation and time con-
stants, we adopted a homogeneous network structure with parameters specifically from
our research work on designing a model to detect siren sounds in [7]. With the aim to
understand the impact of dataset augmentation, we further slightly modified the design of
the SNNs in terms of input features and neuronal time constants of the hidden layer. The
network in Figure 2 comprises a hidden spiking layer and a single readout for predicting
siren or not. The information processing in the hidden layer of SpikeSireNet is in terms
of spikes. LIF neurons are analogous to biological neuronal processing. When the input
stimulus crosses the threshold voltage, neuronal firing occurs. We aimed to understand
the effect of sliding windows and neuronal processing on network predictions with a great
focus on the spectral feature components. Therefore, we conducted experiments with
various membrane (τmem) and synaptic (τsyn) time constants of the neurons to evaluate the
impact of different windows on the task performance.

1

2

3

100

Readout

Siren  
Predictions

Hidden Spiking Layer

M Input  
Channels

Recurrent connections

Feed-Forward connections

LIF neurons

LI Cell

Figure 2. SpikeSireNet: Overview of the recurrent SNN used in this work is highlighted. The
features extracted are given as M input channels (where M = number of mel bins) to the SNN. The
spiking architecture comprises 100 hidden neurons with recurrent connections and a single readout
neuron for siren predictions.

The design parameters and the hyper parameters set for the evaluation of the anomaly
detection task are described in Table 1. A surrogate gradient based method was used to
approximate the derivative of the LIF recurrent cell [29]. We employed a Leaky-integrator
(LI) cell as a readout neuron, which had a continuous-valued output. The SNNs used
in this work were built using the Norse [30] framework, an extension of PyTorch [31].
The differential equations and dynamics of the current-based LIF neuron are extensively
discussed and presented in Equations (1)–(3) in [26]. Neurons have a membrane potential
that decays with a membrane time constant τmem. Synaptic currents follow specific temporal
dynamics. The exponentially decaying current triggered by the pre-synaptic input leads
to the second dynamics of LIF neurons. This exponential decay of synapses is termed as
synaptic time constant τsyn. The specific dynamics of CUrrent BAsed (CUBA)- LIF neurons
for the exponential decay of synaptic currents and membrane potential are presented in [26]
in Equations (3) and (4).

Table 1. Design parameters of SNN architecture and hyperparameters.

Design Parameters Values Hyper Parameters Values

Network structure M 1-100-1 Learning rate 1 × 10−3

Threshold voltage 1 V Batch size 16
Reset potential 0 mV Optimizer Adamax

Membrane time constant 2 s
Synaptic time constant 2 s

1 M indicates mel channels.
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4. Results
4.1. Experimental Setup

We employed the surrogate gradient method [29] to train our recurrent SNN model.
In this work, we trained the models for 100 epochs, with a batch size of 16 on Nvidia V100.
We performed the experiments on the modified audio dataset in [18]. Henceforth, we refer
to the modified audio dataset as the Siren dataset. We obtained the results in terms of
accuracy and onset latency. The LI cell outputted predictions based on the threshold value.
Accuracy was based on total correct predictions vs total predictions at every time step.
Onset latency was calculated as the time to obtain the detection of the siren onset event if a
siren prediction was expected.

First experiment setup: In order to evaluate the sliding windows with different sample
sizes, we set constant parameters for LIF neurons in the hidden layer of the SNN. The
threshold voltage of neuron was set to 1 V, both the time constants (membrane and synaptic)
were set to 2 ms. We designed experiments with variation in window length (w = 2x, i.e.,
4096, 2048, . . ., 512) and hop lengths (h). We chose three setups for our evaluation, h = w
(no overlap), h = 0.5 w (50% overlap) and h = 0.25 w (75% overlap) with three different mel
channels.

4.2. Feature Resolution for Sliding Windows

We demonstrated feature resolution using different sliding windows on the log-scaled
mel spectrogram as depicted in Figure 3. From the experimental setup detailed in Section 4,
the window and hop sizes were varied to understand the behavior of the network and
obtain first impressions on spike activity in the hidden layer. LIF parameters and time
constants were set according to Table 1.

Figure 3. Feature resolution and their effect on performance. Demonstration of feature resolution
on mel channels for sliding window variation on the anomaly detection task (presence of siren in
each panel is highlighted in red). (a) First two rows: w = 4096 (h = w); (b) Next two rows: w = 2048
(h = 0.5 w); (c) Last two rows: w = 1024 (h = 0.25 w). The panels in each row showcase stages of
information processing in the network pipeline of the proposed method. SpikeSireNet was trained
on [18] for this set of experiments.

With w = 4096 and h = w, in the first row, the features of interest were in a lower
frequency range due to higher energy concentration. With smaller window sizes and
smaller overlaps (w = 2048, h = 0.5 w), the prediction strength became stronger due to the
finer resolution in data points. It is interesting to note the increased spike activity in the
hidden layer of SNN. For w = 1024 (h = 0.25 w), we saw a noticeable difference in feature
resolution due to the increased granularity with distinguishable noise and siren sounds.
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Overlap ratios lead to finer resolution and this was reflected in terms of spike activity which
was observed to slightly increase. However, the focus of this work was not to examine
the spike activity with different feature resolutions. Deduction of the spike activity for
sliding windows in terms of spike sparsity could be part of the future work. This sort of
analysis will be beneficial in terms of further compression of the network, without loss in
performance quantifiers.

4.3. Effect of Overlapping Windows

The focus of this work was to analyze and demonstrate the effect of sliding windows
with and without overlaps on accuracy and onset latency for siren predictions. We further
elaborated the results in terms of mel channel variations as depicted in different sub-figures
in Figure 4.

We expected that having more samples would increase the frequency density of the
processed signal which allow us to have higher accuracy. Likewise, the introduction of
overlaps should allow us to reduce the onset latency as the network would see new data
more often. In alignment with our expectations and as evident from Figure 4, incorporating
overlapping windows for the same window size helped to improve the training accuracy
and our results showcased an increase in performance for overlaps within sliding windows.
A slight drop in accuracy with smaller windows, and for their respective overlapping hop
lengths was observed. This effect was observed in the window with sample size of 512 for
hop length h = 0.5 w, which corresponded to a frequency range of 255 Hz. Siren sounds
have a typical characteristic frequency of 400–600 Hz. The covered frequencies were below
the signal of interest for window sizes below 256, thus explaining the slight drop. However,
we need to keep in mind that we need to feed the input more frequently to the network,
e.g., for h = 0.5w, the network needs to process the input twice as fast.

This paper strengthens the idea of diversifying input features to obtain a range of
performance variations for an acoustic scene analysis. The feature component was restricted
to different bin sizes i.e., 32, 64 and 128 mel channels. The subplots in Figure 4 have
mel channel variation indicated as the title of the plot. Smaller bin sizes indicate higher
accuracy values albeit with a slight increase in onset latency to detect the siren sounds
within the sound sample. This is intuitive and due to the fact that the feature set provided
to the input of the SpikeSireNet has improved feature granularity, thus making details of
spectral components prominent. Maintaining overlaps further emphasizes that there is
little compromise oin feature integrity; therefore, this explains the higher accuracy values
for h = 0.5 w and h = 0.25 w than with no overlaps (h = w).

We investigated the time to detect siren sounds using the onset of events by predicting
the neuronal state change. This gave us an intuition of how the fine temporal resolution
of the spiking neurons influenced latency. Hence, we designed experiments to vary the
sliding window with overlap and fixed windows to measure the time to first event, given
an audio sequence being processed and knowing the ground truth (label). We observed
the latency values of validation samples in the last epoch and averaged them over the
batch size.

As observed in Figure 4b,d,e, the introduction of overlapping windows had a modest
influence on latency within each window. It is our understanding that the hop length
introduces faster processing, through a reduction in latency. Based on processing time alone,
we expected 2× reduction in latency h = 0.5 w, 4× for h = 0.25 w. A latency improvement of
5× was achieved for window size of 4096, this is explainable from the neuronal sensitivity
to detect siren sound events in windows with increased information granularity.
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Figure 4. Sliding windows with different sample size impacts performance. Evaluation of Spike-
SireNet for sliding window with mel channel variation on the anomaly detection task with membrane
and synaptic time constants set to 2 s. (a) Introduction of hop length improves the prediction accuracy
(b) Onset latency reduces for overlapping windows. From (a–f), the mel channel variation is seen
from M = 32, 64 and 128 respectively. SpikeSireNet is trained on [18] for this set of experiments.

4.4. Relation between Sliding Windows and Time Constants

Second experiment setup: We performed experiments to understand the correlation
between sliding windows and neuronal processing speed. The membrane time constant
τmem and synaptic time constant τsyn were varied with different window sizes and hop
sizes to obtain results for the accuracy and onset latency for the siren prediction task.
We further investigated the impact of windowing without any overlap for different time
constants to obtain an optimal window size and to understand the impact of individual
neuronal leakages.
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We explored the relation between neuronal time constants of charge-based LIF and
their impact on the performance with sliding windows. To garner results in this direction,
we performed experiments with a variation in the overlap ratios for a window size of 4096
with different τmem and τsyn ranging from 1 s to 100 s. From Figure 5, a clear trend indicates
the accuracy was best for neuronal time constants ranging between 2–4 s. With larger
time constants, the neurons decayed at a much slower rate, and this effect led to a slight
degradation in accuracy for overlapping windows. An accuracy drop of nearly 5% occurred
for higher time constants because fast responses or the high sensitivity of neurons with a
slower membrane decay led to missing crucial information within overlapping windows.

However, for smaller time constants, this was reflected as a benefit in terms of modest
deviation in accuracy. The results from the onset latency plots in Figure 5 suggest that there
is a linear trend with time constants. Smaller time constants led to higher accuracy and a
nearly 4× processing speed with the addition of overlapping windows for a fixed window
size of 4096. In order to understand the impact of neuronal time constants on the spiking
activity of the neurons and extrapolate these results for acoustic siren sounds, we performed
a grid search method on Siren dataset [18] on SpikeSireNet for tuning of different time
constant values and quantify in terms of performance metrics like accuracy. We expanded
our experiments to accommodate individual variables for each set of membrane and
synaptic time constants as shown in Table 2.
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Figure 5. Smaller time constants result in higher performance. Neuronal time constants τmem and
τsyn are varied to evaluate anomaly detection task with w = 4096 and no overlaps (h = w). From (a),
best accuracy values are obtained for time constants 2–4 s. From (b), τ = τmem = τsyn. Onset latency
reduces for smaller time constants. Best performing mel channel variants are in the order as follows:
64, 32 and 128 for τ = 2 s, whereas mel channels reorder as 32, 64 and 128 for τ = 4 s. SpikeSireNet is
trained on [18] for this set of experiments.

We varied time constants with a variable window size of 4096, . . ., 512 and without
overlap to analyze the correlation between neuronal decays for windowing. The case of no
overlaps was considered to constrain the experiment space and direct the focus towards
understanding the statistical relation between the time constants for this particular task.
The accuracy was higher for window sizes ranging between 85–50 ms with time constants
in the range of 2–4 s. Smaller windows meant coarse features, and with no overlap, there
was a chance of spectral leakage. In the window size range of 5–10 ms, having a time
membrane and synaptic time constants in the range of 10–100 s, meant the decay was faster
for both the time constants. This implied a higher firing rate and missing of information,
leading to a slight degradation in performance. With both time constants in the higher
bracket, the spikes retained were constrained to the specific window, which may have been
the reason for the slight performance reduction. From Table 2, it is evident that the best
performance was achieved for smaller neuronal time constants with an optimal window
between 85.33–42.66 ms.
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For higher time constants, the performance was slightly poor, emphasizing the im-
portance of right parameterization of the spiking CuBA-LIF neurons in SpikeSireNet to
achieve performance quantifiers. This provides further insights about the right biological
modelling required to create efficient models on neuromorphic hardware. The neuronal
leakages could impact data with a rich temporal structure; therefore, the results might
completely vary with another dataset for SpikeSireNet. The best performing accuracy was
obtained for τmem = 4 s and τsyn = 2 s, i.e., 91.2% for a window size of 1024.

Table 2. Accuracy values for time constant heterogeneity. τsyn is varied for different τ = τmem values
across variation in window sizes 4096, 2048, . . ., 512 with no overlap and with nmel = 64. Smaller time
constants and larger windows tend to achieve accurate siren predictions. All experiments performed
in this table are trained and validated on Siren dataset [18].

τsyn h = w τ = 1 s τ = 2 s τ = 4 s τ = 10 s τ = 100 s

1 s

4096 87.1% 87.8% 87.4% 85.2% 77.2%
2048 89.2% 89.6% 89.3% 86.6% 77.5%
1024 90.0% 90.5% 85.1% 87.6% 77.9%
512 88.2% 85.4% 85.2% 82.9% 77.5%

2 s

4096 89.6% 90.9% 87.8% 87.0% 77.7%
2048 89.6% 88.9% 90.3% 88.7% 79.5%
1024 90.6% 88.7% 91.2% 90.0% 81.1%
512 84.3% 87.3% 87.0% 85.2% 77.1%

4 s

4096 86.7% 88.0% 86.4% 87.5% 80.0%
2048 83.2% 89.5% 88.1% 89.4% 82.0%
1024 82.6% 90.4% 89.4% 90.9% 83.0%
512 82.4% 85.8% 86.1% 86.3% 81.3%

10 s

4096 85.1% 85.8% 85.9% 85.6% 80.2%
2048 87.5% 88.1% 88.2% 87.4% 83.3%
1024 89.4% 89.6% 89.7% 86.0% 85.6%
512 84.0% 82.9% 83.1% 86.0% 83.6%

100 s

4096 78.3% 77.7% 78.2% 78.8% 80.8%
2048 80.3% 82.4% 82.5% 82.5% 83.2%
1024 84.3% 84.5% 85.3% 86.3% 81.7%
512 77.8% 77.3% 80.9% 80.3% 82.6%

Best accuracy is highlighted in bold.

4.5. Data Enrichment

In this set of experiments, we focued on understanding the robustness of SpikeSireNet
and evaluating on cross-data. Data augmentation techniques were proven to be beneficial
in terms of providing robustness and generalization to new data and larger data samples.
We evaluated the performance of the SpikeSireNet architecture in a cross-augmented
dataset setting. The baseline model was trained on Siren dataset as in [18]. We explored
further data enhancement by introducing noise signals with other environmental actors.
Furthermore, SpikeSireNet was pre-trained on Siren dataset and validated on the Bird
dataset [19] to understand how the proposed model generalizes to new data. In this case
the bird songs were quite similar to the siren sounds but had a low frequency range. We
further evaluated this sort of data augmentation on SpikeSireNet using three settings by
varying the mel channels of the input features; however, to understand the effect of the
spectral components, we used constant network hyperparameters. The dataset attributes
are mentioned in Table 3.

Figure 6 explains the accuracy obtained for each of the settings. Enriching data with
various data augmentation techniques represents a true real-world scenario. This helps in
real-time acoustic emergency detection task, and contributes towards model robustness
to unknown environmental actors. The baseline dataset with siren + noise samples was
trained, and the test accuracy was marked as purple circles (see Figure 6). The pre-trained
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model was presented with the evaluation dataset consisting of samples from the Bird
dataset introduced as a noise class (see Figure 6 marked by yellow triangles) alongside the
siren dataset. With increasing mel bins, the performance improved. As the augmented
dataset for evaluation was challenging because of the various noises and sounds like bird
chirps, insect calls, rain, wind, etc., the performance increased only slightly. The distribution
of noise and siren samples was uneven, and this might have impacted the performance.
Given the challenges in the evaluation dataset and the fact that the model was not trained
on the bird data, SpikeSireNet performed well towards the new unseen samples, therefore
explaining the better accuracy values than for the bird augmented dataset. From the small
variation between accuracy values, it was inferred that the model stabilized to siren and
non-siren signals well and cross-data generalization was achieved.

Table 3. Dataset Attributes.

Siren Dataset [18] Bird Dataset [19]

Class Siren sounds (wail, yelp,
hi-lo), traffic noise

Bird audio, noise, insect calls,
white noise, wind, human

speech, rain

Average Clip Duration ≈3 to 15 s 3 to 30 s

Total Duration ≈7 h 50 h

Sampling Rate 48 kHz 44.1 kHz

Version September 15, 2024 submitted to Journal Not Specified 11 of 14

Figure 6. Validation on data induced with various environmental actors. Purple circles indicates
accuracy obtained for testing on Siren dataset [27] and yellow triangles indicate evaluation accuracy
on augmented siren data with bird dataset [28]. SpikeSireNet shows a similar performance with
data augmentation and new unseen samples in the audio sequences. Mean accuracy and standard
deviation over 10 random seeds is reported.
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Figure 6. Validation on data induced with various environmental actors. Purple circles indicates
accuracy obtained for testing on Siren dataset [18] and yellow triangles indicate evaluation accuracy
on augmented siren data with bird dataset [19]. SpikeSireNet shows a similar performance with
data augmentation and new unseen samples in the audio sequences. Mean accuracy and standard
deviation over 10 random seeds is reported.

4.6. Discussion

We trained a recurrent SNN in different experimental setups to detect siren sounds on
a modified public dataset from [18] to firstly understand the impact of sliding windows on
the task performance and secondly, to provide a basis for the correlation between sliding
windows and the leaky behavior of spiking neurons employed in SpikeSireNet. Our results
indicated a performance boost in terms of accuracy using sliding windows with overlaps.
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This was intuitive as with the enlarged features (high data points) that bacame available
with the overlaps, the features were also retained, hence the accuracy was higher. With
overlaps, the feature retention was increased and translated to less probability of missing
information. Interestingly, a higher overlap ratio for hopping windows in smaller window
regimes showed the best performance with 92.4 ± 0.8% accuracy for M = 32 and 64, closely
matching the performance for larger window sizes. We particularly noted slight drop in
accuracy with smaller windows below our signal of interest (siren sounds). We conducted
experiments with different mel channels keeping the network parameters like hidden
size and readout constant. The overall performance was better for 128 mel channels in
terms of accuracy, also reaching the best onset latency. From our experimental results, a
trade-off was achieved with 64 mel channels sufficing to predict accurate siren sounds
for the proposed SpikeSireNet. Therefore, we conclude that sliding windows with an
overlapping windows translate into improved task performance. Collectively, our results
appear consistent with the body of literature that show the impact of sliding windows for
various detection tasks like HAR [20], and pose pattern recognition task [23]. We further
believe this is one of the first works to demonstrate a sliding window variation for an
acoustic anomaly task, specifically using a spiking architecture.

Some authors have shown the significance of time constants of spiking neuron models
to help improvise the performance of spatio-temporal pattern recognition task [26]. Neu-
rons tend to show the behavior which confirms that leakages exist in neuronal models as
underpinned by biology and by authors in [24,25]. The relation between the leaky behavior
of spiking neurons in terms of exponential decay as time constants and that of the sliding
windows was understood step-by-step through experiments in this work. At a higher level
of abstraction we understood the variation of sliding windows and the impact on onset
latency and accuracy for various time constants (in this case, keeping τmem = τsyn). With
smaller neuronal time constants, the response time of neurons was faster. The obtained
prediction accuracy was highest for overlapping windows and thus led to faster processing
speed. It is noteworthy, as the time constants fell in the range of audio sequences, this
adversely impacted the accuracy by nearly 10%. We also noted that for smaller time con-
stants and smaller windows, accuracy and onset latency were 5.5% higher and 2.4× lower,
respectively, in contrast to higher time constants.

The evaluation dataset included the siren data [18] augmented with Bird dataset [19].
This cross-data validation gave us insights into the variation of performance; however, it
is important to note the size of the data, split size and randomness can all contribute to
masking the results. From Figure 6, we can confirm the variation within the performance
values across datasets was heavily constrained in 2% range. This showcases the ability of
SpikeSireNet to generalize to new unseen samples of environmental noise like the ones in
Bird data and predict siren signals accurately.

5. Conclusions

In this work, we trained recurrent SNNs for an auditory anomaly detection task in
an automotive environment. We conducted an empirical study on the impact of sliding
windows and neuronal time constants on accuracy and onset latency. Intuitive selection
of window length could lead to biased results. Through this study we showcased that
right selection of sliding windows, and the expansion of window lengths significantly
improved the accuracy and performance for acoustic anomaly detection task. Our study
substantiated that the detection of acoustic cues, such as siren sounds, is influenced by
window sizes. By fine-tuning the knob of overlap length, we achieved performance gains.
We investigated sliding windows on different mel channels to provide an informative
parameterization for designing architectures. This could lead to computational efficiency
for pre-processing pipelines in the AI workflows. SpikeSireNet uses leaky neuronal models
represented by membrane and synaptic time constants. We explored the landscape of
neuronal time constant parameterization to reflect on the relation between spiking neurons
and sliding windows. Our study showed that neuronal time constants had a great impact
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on the acoustic anomaly detection task. For 4× processing speed and with smaller time
constants, we observed gains in accuracy. The best performing accuracies were in the range
of 1 s – 4 s for membrane and synaptic time constants. Prior studies have shown the effect
of leakages on hardware compatible with the neuronal time constants. Our comprehensive
results on neuronal leakages for an application like anomaly detection task could facilitate
compute-efficient bio-inspired hardware with minimal effort and faster design time. It
would be interesting to further evaluate our findings to understand the effect of time
constants on spike sparsity to potentially build resource-constrained edge applications. We
carried out a cross-data validation on the proposed SpikeSireNet for robustness against
different real world environmental actors like human speech, bird chirp, rain, insect calls
etc., by enriching the baseline data with different audio clips from the Bird dataset. The
results obtained in this paper confirm that SpikeSireNet can generalize to new, unseen data
samples, thus being robust to environmental noise and accurately predicting sirens.
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