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Abstract: Semantic segmentation of medical images holds significant potential for enhanc-
ing diagnostic and surgical procedures. Radiology specialists can benefit from automated
segmentation tools that facilitate identifying and isolating regions of interest in medical
scans. Nevertheless, to obtain precise results, sophisticated deep learning models tailored
to this specific task must be developed and trained, a capability not universally accessible.
Segment Anything Model (SAM) 2 is a foundational model designed for image and video
segmentation tasks, built on its predecessor, SAM. This paper introduces a novel approach
leveraging SAM 2’s video segmentation capabilities to reduce the prompts required to
segment an entire volume of medical images. The study first compares SAM and SAM 2’s
performance in medical image segmentation. Evaluation metrics such as the Jaccard index
and Dice score are used to measure precision and segmentation quality. Then, our novel
approach is introduced. Statistical tests include comparing precision gains and computa-
tional efficiency, focusing on the trade-off between resource use and segmentation time.
The results show that SAM 2 achieves an average improvement of 1.76% in the Jaccard
index and 1.49% in the Dice score compared to SAM, albeit with a ten-fold increase in
segmentation time. Our novel approach to segmentation reduces the number of prompts
needed to segment a volume of medical images by 99.95%. We demonstrate that it is
possible to segment all the slices of a volume and, even more, of a whole dataset, with a
single prompt, achieving results comparable to those obtained by state-of-the-art models
explicitly trained for this task. Our approach simplifies the segmentation process, allowing
specialists to devote more time to other tasks. The hardware and personnel requirements to
obtain these results are much lower than those needed to train a deep learning model from
scratch or to modify the behavior of an existing one using model modification techniques.

Keywords: image segmentation; deep learning; zero-shot learning; medical imaging;
foundation models

1. Introduction
Image segmentation is a crucial problem in the field of computer vision [1]. The

objective is to partition an image into meaningful segments, each corresponding to dif-
ferent objects or regions of interest within the image. This task involves classifying every
pixel in an image to its corresponding category, thus enabling more detailed analysis and
interpretation of visual data. Image segmentation is fundamental in various applications,
such as object detection, scene understanding, and automated image editing.
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The segmentation problem becomes even more critical in medical imaging due to
its potential impact on patient care. Medical image segmentation involves identifying
and isolating regions of interest in images obtained from medical scans, such as X-rays,
Magnetic Resonance Imaging (MRI), Computed Tomography (CT), or ultrasound. These
regions may correspond to anatomical structures, pathological areas, or other clinically
relevant features. Accurate segmentation in medical images is essential for tasks such as
tumor detection, organ delineation, and treatment planning. Advances in medical image
segmentation, often driven by deep learning techniques, are paving the way for more accu-
rate and efficient diagnostic tools, ultimately enhancing the quality of patient care [2–4].
While deep learning techniques are highly effective for various tasks, including image seg-
mentation, training, and fine-tuning, they require substantial computational and personnel
resources [5]. Furthermore, the time needed to achieve functional results is considerable.
However, medical cost prediction is essential in the current healthcare environment, where
resources are limited, and the demand for medical services is increasing [6].

In 2023, Meta (https://ai.facebook.com/, accessed on 6 March 2025) introduced SAM,
a foundational model designed for image segmentation tasks [7]. Since its release, SAM
has been the focus of multiple research efforts. In 2024, Meta took this breakthrough
model a step further with the release of SAM 2 [8]. Also, as a foundation model, SAM 2’s
main advantage over its predecessor is its ability to extend segmentation capabilities to
video. This is achieved through a memory module that enables the model to track objects
across frames, processing the individual images that make up a video. As with SAM, Meta
continues its commitment to the open-source community by publicly releasing both the
SAM 2 model and its corresponding dataset. They are distributed under the Apache License,
which permits users to freely use, modify, and share the software, even for commercial
purposes, provided that proper attribution is given and license notices are preserved.

In our previous work [9], we demonstrated that the results of a foundation model like
SAM can be substantially improved by applying techniques that do not require significant
computational power, dedicated teams of experts, or massive additional datasets. Combin-
ing the model’s capabilities with a novel prompting technique, we were able to segment
medical images with a minimum number of prompts, achieving results comparable to
those obtained by state-of-the-art models explicitly trained for this task. We had to provide
prompts for all the slices of a medical image volume. If the volume contained 250 slices,
SAM needed a prompt for each. Although prompts can be automatically generated, they
depend on the geometric characteristics of the object to be segmented, so the prompt
generation algorithm needs to be adapted to every segmentation target (organ or lesion).
This task has development and maintenance costs, as the results need to be monitored to
ensure the quality of the generated prompts, and the algorithm needs to be updated if the
results are not satisfactory. Specialists could manually provide prompts, but this also has
personnel costs. We intend to drastically reduce all those costs by providing a library of
prototypical prompts for every segmentation task so we can let the specialists devote their
time to other, more critical tasks since the segmentation process is considerably simplified.
In addition, the hardware and personnel requirements to obtain these results are much
lower than those needed to train a deep learning model from scratch or to modify the
behavior of an existing one using model modification techniques. These results would go
even further if, instead of segmenting all the slices of a volume, it was sufficient to segment
just one slice, and the model would propagate the segmentation to the rest of the slices.

In this paper, we try to answer two main research questions: (1) how much, if anything,
does SAM 2 improve the performance of SAM in the medical image segmentation tasks?
(2) Can we leverage SAM 2 video segmentation capabilities for medical image segmen-
tation to reduce further the number of prompts needed to segment a volume of medical

https://ai.facebook.com/
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images? Since the publication of SAM, the scientific community has been interested in
its performance in medical image segmentation tasks. Many papers have been published
investigating its performance in this field. Studying the differences between SAM and
SAM 2 when segmenting medical images can be a fundamental resource that other re-
searchers can use to determine whether or not to use this new version in their research,
given the vast amount of effort applied to build on SAM’s segmentation capabilities in
this direction. Before exploring whether we can leverage SAM 2’s video segmentation
capabilities to reduce the number of prompts needed to segment medical image volumes,
we must first determine whether SAM 2 performs at least as well as SAM in the medical
image segmentation task. If SAM 2 does not offer performance improvements, investi-
gating its video segmentation capabilities would be irrelevant. While a comprehensive,
modality-specific performance analysis of SAM 2 is beyond the scope of this study, we
also include an exploratory evaluation that offers initial insights into its applicability and
effectiveness across different imaging modalities and anatomical regions.

The structure of this paper is organized as follows. In Section 2, we review the
related works that have been published on the topic of medical image segmentation
using SAM and compare them with our approach. Section 3 details the methodology
behind our experiments, including the datasets utilized, the operation of segmentation with
SAM 2, the preprocessing steps applied to images and videos, the data inputs required by
SAM 2, and the metrics employed to evaluate segmentation quality. Section 4 compares the
experimental results obtained using SAM and SAM 2 and assesses the new segmentation
technique’s performance. These findings are further discussed in Section 5, where specific
aspects and nuances are explored in greater depth. Finally, Section 6 offers an in-depth
analysis of the results and proposes potential directions for future research.

2. Related Works
In [10], the authors presented MedSAM, a fine-tuned SAM model for medical image

segmentation that outperforms the default model in 3D and 2D. The Medical SAM Adapter
(Med-SA), introduced in [11], enhances SAM specifically for medical image segmentation
by incorporating domain-specific medical knowledge and a light adaptation technique.
Such is the interest in the application of SAM to the field of medical image segmentation
that [12] focuses on presenting a comprehensive overview of the efforts applied to improve
the efficacy of SAM in said task. This model was later extended in 2024 with the release of
SAM 2, an advanced version capable of segmenting images and videos [8].

Foundation models like SAM are trained on vast datasets. They are versatile tools
that can be integrated into various tasks across domains. A notable feature of this kind
of model is its zero-shot transfer capability, which allows it to perform segmentation in
domains for which it was not explicitly trained [13]. The strength of these models lies in
their ability to generalize across tasks, thanks to the extensive training data and the model’s
capacity to learn abstract features and latent representations, enabling the model to execute
tasks accurately, even when encountering previously unseen data. However, each time the
specialist needs to segment an image using these tools, there is an inherited cost associated
with prompting the same object every time. In the particular case of the medical image
segmentation task, this is a downside, as specialist time is a scarce and valuable resource in
this domain. This work aims to reduce specialist effort as much as possible.

Wu et al. [14] propose a “One-Prompt Segmentation” paradigm that bridges inter-
active and one-shot methods for medical image segmentation. Their approach utilizes a
single prompted image to generalize segmentation across unseen tasks without requiring
retraining. This is achieved through the integration of a “One-Prompt Former”, a module
designed to efficiently incorporate template features into the segmentation process. Trained
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on 64 medical datasets and evaluated on 14 unseen datasets, the method demonstrates
robust generalization capabilities. However, its reliance on four distinct prompt types
(clicks, bounding boxes, doodles, and segmentation masks) for different anatomical struc-
tures necessitates user interaction for each dataset, potentially increasing the complexity of
clinical deployment.

SAM 2 has attracted considerable interest in the field of medical image segmentation.
It has been applied to achieve remarkable results in the segmentation of complex anatomical
structures like ocular CT scans, as demonstrated by [15], and in liver CT images [16]. Both
studies utilized refined medical SAM 2 models to achieve these advancements. Medical
SAM 2 was introduced by Zhu et al. [17]. It leverages SAM 2’s video segmentation frame-
work to process medical imaging data, including unordered 2D slices and 3D volumes. The
key innovation lies in a self-sorting memory bank that dynamically selects and organizes
embeddings based on confidence scores and dissimilarity measures. This mechanism
enhances segmentation consistency and generalization by prioritizing the most informative
embeddings, irrespective of their temporal order. The framework achieves significant
performance gains across a wide range of benchmarks.

In contrast, our method avoids user-dependent prompt customization, as seen in [14],
and complex memory mechanisms, as in [17]. Instead, we employ a single, generalized
prompt per dataset, effectively minimizing user interaction while maintaining strong
segmentation performance across diverse datasets. By structuring medical volumes as
bidirectional, video-like sequences rather than ordering frames based on embedding scores
or dissimilarity measures, we leverage SAM 2’s capabilities without incurring excessive
computational demands. This approach strikes a pragmatic balance between segmentation
quality and generalization for clinical applications. Additionally, our automated prompt
generation is tailored to specific tasks using an example image frame and its associated
mask, further reducing the need for manual intervention.

3. Methods
3.1. Experimental Setup

In order to answer the research questions, a series of tests have to be carried out.
All the tests use the same setup to ensure a fair comparison between the models. The
experiments run on an Acer Predator Helios 300 laptop (Acer Inc., New Taipei City, Taiwan)
with a 12-core Intel Core i7-10750H 2.60 GHz CPU, 32 GB of RAM, and an NVIDIA GeForce
RTX 2070 GPU with 8 GB of GDDR6 memory. The laptop runs Windows 11 with Ubuntu
24.04 LTS via Windows Subsystem for Linux (WSL). It has Python 3.12.4, PyTorch 2.3.1,
and CUDA 12.1.0 installed. The experiments use the same configuration for both models to
maintain consistency and fairness in the comparison.

We intentionally chose a consumer laptop instead of a high-end computing system to
evaluate the models’ performance in a real-world scenario that is more accessible to general
users, particularly to medical professionals who work with systems featuring diverse
hardware configurations depending on the specific hospital or healthcare facility. This
decision allows us to assess whether these models can be efficiently deployed on consumer-
grade hardware, which is crucial for wider adoption in practical settings. Furthermore,
considering that medical images contain sensitive patient data, it is essential to ensure that
segmentation processes can be executed on dedicated medical hardware systems. By using
a typical consumer laptop, we aim to demonstrate the feasibility of running advanced
medical image segmentation models on affordable and widely available equipment rather
than on specialized servers that may not be as readily accessible.

Different pre-trained checkpoints are available for each model. Table 1 contains the
names of the models and their respective sizes for reference, with the chosen models’
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checkpoints in bold. The greater the size of the model, the better it performs. The choice to
test SAM is ViT-L, as the laptop’s GPU cannot load the ViT-H checkpoints due to its GPU
memory limitations. However, in the case of SAM 2, the large version of the model can run
without problems. Although the test machine cannot run the best version of SAM, it can
run the best version of SAM 2. Note that the best SAM 2 model size is 28.14% smaller than
the best SAM model and 64.99% smaller than the one used for the comparison.

Table 1. Model checkpoint sizes (chosen checkpoints in bold).

SAM SAM 2
Name Size Name Size
ViT-H 2.4 GB Large 856.4 MB
ViT-L 1.2 GB Base+ 308.5 MB
ViT-B 357.7 MB Small 175.8 MB

Tiny 148.7 MB

3.2. Datasets

To assess SAM 2’s performance in segmenting medical images, compare it with the
original SAM, and test our proposed approach to medical image segmentation, we selected
two widely recognized public lung datasets, one comprising axial lung scans and the
other containing frontal chest X-rays, ensuring representation of both image modalities
in our experiments. These datasets were chosen due to their accessibility, publication
status, and frequent use in previous scientific studies, underscoring their significance
in comparative research. Furthermore, they are the same datasets used in our previous
work [9], allowing for a direct comparison between the models. Image dimensions are
described in width × height.

Both datasets provide lung masks verified by radiology specialists, ensuring the
availability of well-labeled data for research. The first dataset (COVID-19) includes 20 axial
lung scans [18], divided into two subsets: Coronacases (see Figure 1a) and Radiopaedia
(see Figure 1b). The quality of the CT slices in the Coronacases subset is superior to
that of the Radiopaedia subset, the latter being composed of cone beam CTs with lower
resolution, hence the disparity in quality. Moreover, while the Coronacases subset consists
exclusively of 512 px × 512 px slices, the Radiopaedia subset is more varied, including
829,630 px × 630 px slices and 110,630 px × 401 px slices. Coronacase CT scans in this
dataset average 258.1 slices, while Radiopaedia averages 93.9, providing 3520 slices for
evaluating SAM 2’s performance. This dataset is also utilized to evaluate the performance
of DMDF-Net, as reported by Owais et al. [19]. The differences between these two kinds of
CT make them ideal for a separate study so that they will be treated as different datasets
during this work.

(a) Coronacases subset. (b) Radiopaedia subset. (c) Montgomery dataset.
Figure 1. Prediction examples (yellow box: target location; green circles: lung centers; red circle:
background).



Algorithms 2025, 18, 227 6 of 30

The second dataset (Montgomery) comprises 138 frontal chest X-rays [20], provided
in Portable Network Graphics (PNG) format, along with corresponding left and right lung
masks (see Figure 1c). Chen et al. [21] used this dataset, referred to as Montgomery after the
collection site in Montgomery County, MD, USA, to evaluate the performance of TransAt-
tUnet. This dataset contains 414,892 px × 4020 px slices and 4020 px × 4892 px slices.

Dataset Diversity

A well-defined evaluation dataset is essential for ensuring unbiased and generalizable
results. This section addresses potential concerns regarding dataset diversity by detailing
the representativeness of the test data, including variations in patient demographics and
disease types, while also providing a comprehensive description of the data sources.

The COVID-19 dataset [18] is derived from the volumes folder (https://academictorrents.
com/details/136ffddd0959108becb2b3a86630bec049fcb0ff, accessed on 6 March 2025) within
the COVID-19 image dataset collection [22]. Its primary contribution lies in providing high-
quality labels for objects of interest created by experienced radiologists. The data sources are
detailed in [22] and include reputable platforms such as Radiopaedia (https://radiopaedia.
org/, accessed on 6 March 2025) and Coronacases (https://coronacases.org/, accessed on
6 March 2025). As its name suggests, the dataset specifically includes COVID-19 cases.

The Montgomery dataset [20] was collected in collaboration with the Department of
Health and Human Services, Montgomery County, MD, USA. In addition to medical images,
the dataset authors provide manually segmented lung masks. These segmentations were
performed under the supervision of a radiologist, following anatomical landmarks. The dataset
includes tuberculosis cases from a screening program conducted in Montgomery County.

Although both datasets are anonymized to protect patient privacy, their curators have
provided certain demographic information. Figure 2 shows the sex and age distribution for
these datasets.
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(b) COVID-19 age distribution.
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(c) Montgomery sex distribution.
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(d) Montgomery age distribution.
Figure 2. Sex and age distribution in COVID-19 and Montgomery datasets.
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The sex distribution in the COVID-19 and Montgomery datasets is not perfectly
balanced but remains relatively close to an even split, according to the data provided in
their respective publications. Specifically, the COVID-19 dataset consists of 61.90% male
and 38.10% female cases, while the Montgomery dataset includes 45.99% male and 54.01%
female cases.

The age distribution in the COVID-19 dataset is skewed toward middle-aged and
older individuals, with samples between 25 and 80 years old and prominent peaks around
40, 50, and 70 years old. This suggests a focus on conditions prevalent in middle-aged
and elderly populations. In contrast, the Montgomery dataset exhibits a broader and more
evenly distributed age range, spanning from young (10s and 20s) to elderly individuals
(80s and 90s). The distribution shows noticeable peaks around 30 and 55 years old, indi-
cating a more balanced representation across different age groups. While the COVID-19
dataset is particularly suited for studying diseases that predominantly affect middle-aged
and older adults, the Montgomery dataset allows for broader generalization across diverse
age demographics.

3.3. Comparison Between SAM and SAM 2

SAM [7], a foundation model developed by Meta AI Research, is designed to segment
all distinct objects in an image without user interaction. Its architecture is depicted in
Figure 3a. The model employs an autonomous segmentation approach to generate masks
that delineate objects within the image. However, SAM also supports flexible prompts,
such as point coordinates or bounding boxes, to refine segmentation results. These prompts
do not crop the input image but rather guide the model’s attention to specific regions,
enabling iterative refinements based on user input.

SAM 2 [8] builds upon the success of its predecessor, SAM, by extending segmentation
capabilities to video. Its architecture is depicted in Figure 3b. The model initially identifies
and segments objects in the first frame of a video based on user-provided prompts, generating
a set of masks for each identifiable object. These prompts may include point coordinates
or bounding boxes that indicate where the target object is likely located (positive points
for the foreground) or where it is absent (negative points for the background). Notably, the
bounding box does not crop the input image but instead guides the model’s focus. This process
can be iteratively refined until the segmentation results are satisfactory. Once the desired
segmentation is achieved in the first frame, SAM 2 propagates these prompts across the video,
enabling object tracking in subsequent frames. The model retains the flexibility of various
prompt types, ensuring an interactive experience that enhances precision and adaptability.

,
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score
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,

valid masks

image

image

encoder

image

embedding mask points box text

prompt encoder

mask decoder
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(a) SAM architecture.
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 attention
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memory
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(b) SAM 2 architecture.
Figure 3. SAM [7] vs. SAM 2 [8] architecture.
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The primary architectural difference between SAM and SAM 2 stems from the distinct
tasks they are designed to address: SAM segments objects in static images, whereas
SAM 2 extends segmentation across video frames. While SAM focuses solely on image
segmentation, SAM 2 introduces a temporal component, allowing it to process a sequence
of images, effectively forming a video. To capture the relationships between frames, the
memory encoder’s output is stored in a memory bank. This memory bank, together with
a memory attention mechanism, maintains object segmentation continuity across frames.
In addition to generating segmentation masks, SAM estimates a confidence score for its
results based on the Jaccard index. When SAM 2 tracks objects across frames, it further
provides an estimated occlusion score for each detected object, enhancing its ability to
handle object persistence and visibility changes.

Given an input image, SAM 2 is capable of autonomously identifying and segmenting
the various elements it contains. This process produces a series of masks, each corre-
sponding to a potential object within the image. These masks may overlap when multiple
candidate regions are present. Alternatively, users can guide the segmentation using flexible
prompts, which help refine the results. These prompts can consist of point coordinates or
bounding boxes indicating where the target object is located (positive prompts or fore-
ground) or where it is not (negative prompts or background). Importantly, the bounding
box does not crop the image; it merely instructs SAM 2 where to focus its attention.

In this study, the selected prompting approach combines minimal point coordinates
within a bounding box. This method is intended to simulate an interactive tool where a
specialist might begin by drawing a bounding box around the lungs, then marking the
areas to be segmented (i.e., the lungs), and finally, indicating parts of the background to
be excluded. Figure 1 illustrates two examples of this approach using different CT slices:
one from each subset of the selected dataset (Coronacases and Radiopaedia) and a chest
X-ray. The orange box encompasses all the masks generated for the current slice. The green
circles denote a point near the center of each lung. In contrast, the red circle identifies the
background, indicating a region that should not be considered part of the lungs.

3.4. Image Processing

The datasets utilized in this study consist of medical images in various formats. Even
when the formats overlap, the characteristics of each sample differ. This section examines
the unique attributes of each dataset. It outlines the necessary steps to standardize them
into a standard format.

CT scans and corresponding masks in the CT dataset are stored in Neuroimaging
Informatics Technology Initiative (NIfTI) format (https://nifti.nimh.nih.gov/, accessed on
6 March 2025). Since SAM cannot process this format directly, it is first converted to a more
suitable format for this study.

Each CT scan comprises multiple slices representing axial samples taken from the
patient. Each slice consists of values arranged in a two-dimensional matrix of rows and
columns. These values, known as Hounsfield Units (HUs), indicate the attenuation of X-rays
as they pass through different materials, with distilled water serving as the reference [23].
The values typically range from [−1000,+1000]. Depending on the anatomical region under
study and the nature of the tissues involved, a contrast enhancement technique known as
windowing [24] may be beneficial. This process requires knowledge of the window’s width
and level. The window width determines which attenuation values are of interest, while the
window level specifies the center of the window. When windowing is applied, all values
below and above the specified width are disregarded. In the dataset used, the Coronacases
CT volumes have not been windowed, whereas the Radiopaedia volumes have already
undergone this process. Therefore, the Coronacases volumes are appropriately windowed

https://nifti.nimh.nih.gov/
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to ensure consistency across the dataset. Finally, all CT slices are converted to grayscale,
with each pixel assigned a value between 0 and 255.

In contrast, X-rays do not utilize HUs. Instead, they produce images in which the
brightness or darkness of the pixels reflects the degree of X-ray absorption by different
tissues. Consequently, no preprocessing steps are required for the chest X-ray dataset.

At this point, all images are in a standardized format and ready for further processing
by the original SAM but not yet by SAM 2.

3.5. Video Processing

Unlike the original SAM, which processed each image independently, SAM 2 can
process videos. However, video processing is carried out in a particular way. To allow
SAM 2 to process a video, it must first be converted into a sequence of independent
frames. This means the model operates on a series of individual images that happen to be
temporally ordered. The user is responsible for converting the video file into independent
frames in JPEG or PNG format. The key difference is that SAM 2, unlike the previous
version of the model, includes a memory module that keeps track of segmentations from
previous frames, allowing it to improve the segmentation of the current one. Ultimately,
this enables SAM 2 to track objects throughout a scene.

A video is a sequence of images, each representing a frame. The frames have a temporal
relation, as they are shown in succession. In the medical imaging domain, a volume is
a sequence of slices, each representing a frame. Although there is no temporal relation
between the slices, there is a spatial relation, as they are part of the same volume. This
spatial relation can be transformed into a temporal one if the initial slice is considered the
first frame of the video, the second slice the second frame, and so on. This transformation
allows us to take advantage of SAM 2’s memory and try to reduce the number of prompts
needed to segment a volume.

Figure 4a shows a summary of the proposed prompt reduction process. For reference,
Figure 4b shows a summary of the segmentation process proposed in our previous work [9],
using SAM instead of SAM 2. The first step is to convert the different frames of the video to
be segmented to the Joint Photographic Experts Group (JPEG) format. The second step is
dividing the video into two parts, using what we have called a seed frame. If given the chance
to choose a single slice as the best representation of a whole volume, the specialist would
likely select one of the central slices. The slices closer to the start and end of the volume are
less likely to contain the organ to be segmented in its entirety. For the tests performed in this
study, we are choosing the central slice of the volume as the seed frame. Given the dataset’s
characteristics, would this choice be the most appropriate? To answer this question, we
analyze the spatial distribution of the Jaccard Index and Dice Score for the Coronacases and
Radiopaedia datasets using SAM, as the outcomes of this analysis will be used to support
the selection of the middle slice as the seed for the SAM 2 video segmentation process. The
results can be seen in Figure 5. The X-axis represents the normalized slice position, as each
volume has a different number of slices. The Y-axis represents the metric value (Jaccard
Index or Dice Score) for the given dataset. The average metric value is marked with a red
dotted line, while the position of the central slice is marked with a vertical solid blue line.
The 1% percentile of the metric is marked with an orange range, while the 2% percentile is
marked with a yellow range. In the Coronacases dataset, any slice inside the 1% percentile
of the metric would be a good candidate, making it an appropriate choice for the seed frame.
In this case, the central slice is inside that range. On the other hand, the Radiopaedia dataset
shows different behavior. The 1% percentile of the metric is displaced to the right of the
center slice because of the dataset’s characteristics. However, the central slice is still inside
the 2% percentile of the metric, making it a good candidate for the seed frame.
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Figure 4. Proposed segmentation process. (a) Proposed segmentation process using SAM 2. (b) Previ-
ously proposed segmentation process using SAM [9].

We will make the central slice shared by both halves of the video, and it will be the
first frame. Using this seed frame and moving backward through the volume’s slices, we
create the first half of the video that SAM 2 will process. Similarly, by moving forward in
time, we create the second half of the video. In this way, SAM 2 can use the memory of the
segmentation of previous slices to improve the current slice segmentation.

Our prompting algorithm [9] selects the prompt to segment the seed frame. The
selection process for determining prompt points begins with identifying the contours
within the mask. Initially, a bounding box encompassing all mask contours for the seed
frame is established, followed by identifying the centroid of each mask contour. However,
due to the irregular shape of the lungs, the centroid may occasionally fall outside the
mask boundary. To address this, the centroid is adjusted by using it as a seed to find
intersections on the X and Y axes with the mask. The centroid is then repositioned to the
intersection’s midpoint, which contains the most points, ensuring it is placed within the
mask. This adjustment is applied even when the centroid is inside the mask to ensure it
is more accurately centered within the corresponding mask. A negative prompt is also
included, representing the center of the frame. Once segmented, SAM 2 can propagate the
segmentation to the rest of the frames of the two halves of the video.
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(a) Jaccard on Coronacases.
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(b) Dice on Coronacases.
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(c) Jaccard on Radiopaedia.
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(d) Dice on Radiopaedia.
Figure 5. Spatial distribution of segmentation metrics using SAM, with emphasis on the central slice.

In the case of the Montgomery dataset samples, there is no temporal relation between
the slices since they are independent chest radiographs belonging to different patients.
However, there is a spatial relation since the nature of these samples is similar. In this
case, we can also take advantage of SAM 2 memory to improve the segmentation of
the radiographs.

Assuming a folder with the slices in JPEG format exists, Algorithm 1 shows the
algorithm for dividing the slices into two parts, selecting the seed, adding the prompts
needed for the seed frame, propagating them to the rest of the slices, and combining
the results.

3.6. Metrics

The effectiveness of SAM 2’s segmentation results will be evaluated using the Jaccard
index (JCI) Equation (1) and the Dice score (DSC) Equation (2). These metrics are widely
employed to assess the similarity between A and B images.

JCI(A, B) =
|A ∩ B|
|A ∪ B| , (1)

DSC(A, B) =
2|A ∩ B|
|A|+ |B| . (2)

Müller et al. [25] argue that both the Jaccard index and the Dice score are reliable
and accurate metrics for evaluating the automatic segmentation of medical images. The
Dice score offers a balanced perspective by considering both recall and precision. At the
same time, the Jaccard index imposes a stricter penalty for under- or over-segmentation,
making it particularly valuable when a high level of segmentation accuracy is essential.
More information about these metrics can be found in [9].
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Algorithm 1 Video processing algorithm.

Require: video exists
Require: video f rames > 0

hal f1, hal f2 ← SplitVideo(video)
results1 ← ProcessVideo(hal f1)
results2 ← ProcessVideo(hal f2)
result← JoinResults(results1, results2)

function SPLITVIDEO(video)
f rames← length(video)
seed f rame← ⌊ f rames

2 ⌋
copy frames 0 to seed f rame to hal f1
reverse frame order in hal f1
copy frames seed f rame to end to hal f2

end function

function PROCESSVIDEO(video)
prompts← GetPrompts(seed f rame)
segment seed f rame with prompts
propagate segmentation through video
save results

end function

function JOINRESULTS(results1, results2)
reverse results order in results1
delete seed f rame results in results1
join results1 and results2

end function

4. Results
This section presents the results of the experiments conducted to answer the research

questions posed in this work: (1) how much, if anything, does SAM 2 improve the perfor-
mance of SAM in medical image segmentation tasks? (2) Can we leverage SAM 2 video
segmentation capabilities for medical image segmentation to reduce further the number of
prompts needed to segment a volume of medical images? Each of these research questions
is addressed in a separate subsection.

4.1. SAM vs. SAM 2

SAM 2 is a generalization of SAM to the video domain. It processes video frames one
at a time. It has a memory attention module that provides access to the previous memories
of the target object. When applied to images, the memory is empty, and the model behaves
like SAM. In another paper [8], the authors claim that SAM 2 delivers better performance
under said conditions than SAM on image segmentation benchmarks while being six times
faster. We want to test if SAM 2 can also improve the performance of SAM on medical
image segmentation tasks, comparing both models on the same datasets we used in our
previous work [9].

4.1.1. Segmentation Performance

A comparison across the three datasets used in our previous work is shown in Figure 6.
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Figure 6. Segmentation comparison (Owais et al. [19], Chen et al. [21]).

The results show that SAM 2 outperforms SAM in all cases. The improvement is
more significant in the Radiopaedia dataset, where the average Jaccard index increases by
1.76% and the average Dice score by 1.49%. In the Coronacases dataset, the improvement
is similar, with the Jaccard index increasing by 1.39% and the Dice score by 1.08%. The
Montgomery dataset shows a more modest improvement, at most half a percentage point
in both metrics.

However, the improvement is most notable in the results’ distribution. Figure 6 shows
that average values are closer to the median in each case, and the variance is lower, which
means that SAM 2 is more consistent in its performance than SAM. Table 2 confirms it,
showing that the standard deviation is lower for SAM 2 in all cases.

Table 2. SAM 2’s segmentation results (delta from SAM).

Coronacases Radiopaedia Montgomery
Jaccard Index Dice Score Jaccard Index Dice Score Jaccard Index Dice Score

Minimum 12.81% (+4.37) 22.71% (+7.15) 14.32% (+8.05) 25.05% (+13.26) 65.16% (+3.57) 78.91% (+2.67)
Maximum 99.05% (+0.21) 99.52% (+0.10) 98.52% (+0.19) 99.26% (+ 0.10) 94.07% (−1.87) 96.65% (−0.98)
Average 93.29% (+1.39) 96.35% (+1.08) 92.04% (+1.76) 95.57% (+ 1.49) 87.77% (+0.32) 93.40% (+0.21)
Std Dev 7.16% (−4.29) 4.81% (−3.75) 8.82% (−5.27) 6.18% (− 4.83) 5.21% (−0.88) 3.13% (−0.47)

In Table 3, the performance of various state-of-the-art Deep Learning (DL) models
in the lung segmentation task is compared with that of SAM 2. The results of SAM are
also included for reference. The performance reported by Owais et al. [19] was obtained
using the same CT dataset as in this study. Their DMDF-Net achieved a Jaccard index of
97.38% and a Dice score of 98.66%, whereas SAM 2 obtained a Jaccard index of 92.66%
and a Dice score of 95.96%. Similarly, Chen et al. [21] used the same X-ray dataset as this
work. Their TransAttUnet model achieved a Jaccard index of 97.82% and a Dice score of
98.88%, whereas SAM 2 obtained a Jaccard index of 87.77% and a Dice score of 93.40%. In
both cases, the custom models outperformed SAM 2. However, it is important to highlight
that, despite not being specifically trained on medical images, SAM 2 produced results that
were relatively close to those of domain-specific solutions. Notably, SAM 2 consistently
outperformed SAM across all instances.

Table 3. Segmentation performance of SAM 2 vs. state-of-the-art medical image segmentation models.

Jaccard Index SAM (Delta) SAM 2 (Delta) Dice Score SAM (Delta) SAM 2 (Delta)

Owais et al. [19] 97.38% 91.09% (−6.29) 92.66% (−4.72) 98.66% 94.68% (−3.98) 95.96% (−2.70)

Chen et al. [21] 97.82% 87.45% (−10.37) 87.77% (−10.05) 98.88% 93.19% (−5.69) 93.40% (−5.48)
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Although the Jaccard index and Dice score are suitable performance measures, com-
paring the execution time of SAM 2 with state-of-the-art models provides additional insight
into its overall efficiency. Table 4 presents a comparison of the execution times of SAM 2
and the model proposed by Owais et al., with SAM included for reference. In the row
corresponding to Owais et al., the execution times for SAM 2 and SAM represent the aver-
age time required to segment both the Coronacases and Radiopaedia samples. Execution
time data for the model by Chen et al. are not available. Hu et al. [26] are also included
in this comparison. In the row corresponding to Hu et al., the execution times for SAM 2
and SAM reflect the time required to segment samples from the Coronacases, Radiopaedia,
and Montgomery datasets. The model by Owais et al. is capable of processing a single
image in 0.039 s, while SAM 2 requires 0.0685 s. However, as discussed in Section 4.1.6, the
time required for an expert to manually segment a medical image is measured in minutes.
Hu et al. report a processing time of approximately 11.2 s per image, in which case SAM 2
demonstrates a significant advantage in execution speed.

Table 4. Execution time of SAM 2 vs. state-of-the-art medical image segmentation models.

Execution Time (s) SAM (Delta) SAM 2 (Delta)

Owais et al. [19] 0.039 0.876 (+0.837) 0.685 (+0.646)
Hu et al. [26] 11.2 0.96 (−10.24) 0.81 (−10.39)

4.1.2. Model Performance Deltas

Focusing on improvement differences, or deltas, instead of absolute values could shed
more light on this comparison. The distribution of these deltas for each dataset and metric
appears in Figure 7, without outliers. These deltas are shown in Table 2 in parentheses.
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Figure 7. SAM 2 vs. SAM segmentation delta comparison. (a) CoronacasesJaccard index. (b) Ra-
diopaedia Jaccard index. (c) Montgomery Jaccard index. (d) Coronacases Dice score. (e) Radiopaedia
Dice score. (f) Montgomery Dice score.

Coronacases and Radiopaedia deltas for both metrics are centered around zero, sug-
gesting that the central tendency of the delta values is neutral, with no significant overall
increase or decrease. However, the Montgomery dataset shows a slight negative skew
(around 1%), indicating that the improvement in this dataset is more extreme than in the
other two.

The Interquartile Range (IQR), represented by the box, is small for Coronacases and
Radiopaedia deltas for both metrics. It shows that the middle 50% of the data lies close
to ±1%. The whiskers extend close to ±3% except in the Jaccard index for Radiopedia,
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which is close to ±5%, suggesting that the changes are relatively small for better and worse
segmentation results. Again, Montgomery shows a more significant delta, with the IQR
extending close to ±5% and the whiskers close to ±15% Jaccard index, and close to ±3%
and the whiskers close to ±10% Dice score, reinforcing a more significant improvement in
this dataset.

The notch around the median suggests that we can be 95% confident that the actual
median lies within this notch. The notch does not overlap with the ends of the box,
suggesting that the median is distinct and significantly different from the IQR endpoints.

Overall, the Jaccard index changes for the Coronacases and Radiopaedia datasets
appear to be centered around zero, with a small degree of variability and no significant
outliers. The distribution is relatively symmetric and well-behaved.

In any case, the box plots appear symmetric around the median, indicating that the
distribution of the delta values is relatively balanced. A slightly more prolonged whisker
at the upper end might suggest a minor positive skew. This skew is reinforced by the
average value (represented by the discontinuous green line) being consistently higher than
the median (represented by the solid green line) in every instance.

4.1.3. Outliers Analysis

Leaving the outliers out of the plot maintains the focus on the main distribution of the
data. However, it is essential to note that the outliers are not necessarily errors or anomalies
in the data. They could be valid data points that are more extreme than the rest. In this
case, they represent the most significant improvements (and declines) in the segmentation
results. The last step in analyzing these data would be to investigate these outliers. Figure 8
shows the normalized deltas for each dataset and metric, sorted from best to worst values.
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Figure 8. SAM 2 vs. SAM deltas in descending order.

The Coronacases and Radiopaedia datasets show many extremely positive deltas for
the Jaccard index and Dice score. Although extreme negative deltas exist, they are less
frequent. Most deltas are close to zero, meaning the results will remain the same. However,
the odds of improvement are higher than the odds of decline. The Montgomery dataset,
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on the other hand, shows no outliers for both metrics because the improvements are less
infrequent than in the other two datasets. Most deltas are positive, meaning the odds of
performance improvement are higher than the odds of decline.

SAM 2 improves SAM performance because the model segments are better. There
is no correlation between the size of the masks and model performance. The Pearson
correlation coefficient is close to 0.20 for both the Jaccard index and Dice score when testing
the Coronacases and Radiopaedia datasets and around 0.07 when testing the Montgomery
dataset. These low values mean there is no linear correlation between the mask size and
the delta values.

4.1.4. Best and Worst Deltas

For illustrative purposes, Figure 9 shows samples of the best and worst deltas for
each dataset and metric. The improvement is quite notable in some cases, such as the
Coronacases or Radiopaedia examples. The Montgomery improvement is also significant.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 9. Best and worst delta examples (Jaccard index delta and Dice score delta). (a) Coro-
nacases (SAM). (b) Coronacases improvement (SAM 2) (67.12% and 60.44%). (c) Coronacases (SAM).
(d) Coronacases decline (SAM 2) (−32.58% and −26.08%). (e) Radiopaedia (SAM). (f) Radiopaedia
improvement (SAM 2) (62.72% and 54.81%). (g) Radiopaedia (SAM). (h) Radiopaedia decline (SAM 2)
(−08.80% and −04.81%). (i) Montgomery (SAM). (j) Montgomery improvement (SAM 2) (13.89%
and 08.47%). (k) Montgomery (SAM). (l) Montgomery decline (SAM 2) (−13.99% and −08.77%).

4.1.5. Execution Time

Lastly, we compare the execution time of the models. Figure 10a shows the execution
time comparison between SAM and SAM 2. The execution time is lower for SAM 2, as the
authors of the model claim. However, the most significant improvement occurs during
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the embedding generation phase, particularly in the image-loading process. Consequently,
SAM 2 achieves a lower segmentation time than SAM. When processing a single image
only once, SAM 2 is faster than SAM. However, when performing multiple segmenta-
tion operations over the same image, SAM 2 would take more time than SAM in each
iteration. These results make sense, as SAM 2 prediction architecture is more complex
than SAM’s, primarily due to its incorporation of a memory bank to enhance contextual
understanding across segmentations. This additional structure improves segmentation
consistency and adaptability across related images but also introduces additional computa-
tional overhead, particularly in data transfer and memory access times. Consequently, this
increased architectural complexity likely contributes to the higher input/output latency
and reduced overall throughput. Even when SAM 2 is operating in 2D segmentation mode,
tensor propagation through its architecture remains necessary, further impacting processing
efficiency. This suggests a trade-off between improved segmentation performance and
real-time execution speed.
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(a) Execution time comparison.
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Figure 10. SAM vs SAM 2 time analysis.

While evaluating SAM 2 performance, we found that SAM and SAM 2 behave differ-
ently depending on how they are executed. Figure 10b shows these differences.

The first two columns represent the time it takes to segment the Montgomery dataset
when model is loaded only once. In contrast, the second two columns correspond to the
scenario where the model is reloaded before processing each image, repeatedly segmenting
the same image instead of the entire dataset. These results show that, in order to get
the most out of SAM 2, the model should be loaded only once and then used to process
all images. Otherwise, SAM and SAM 2 will take the same time to segment the images.
Keeping this limitation in mind could speed the segmentation process up considerably
when trying different prompts over the same image.

4.1.6. Impact of SAM 2 on Clinical Workflows

Manual segmentation of medical images is a time-intensive process that requires the
intervention of highly experienced specialists. Recent studies have evaluated the time
required to segment anatomical structures in various types of medical images. For instance,
in the segmentation of 100 images from nine different modalities, three doctors with over
10 years of experience performed the annotation, requiring an average time of 4.27 min
per image [27]. Similarly, in another study in which they used COVID-19 images obtained
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via CT, the manual segmentation of a CT scan consisting of 250 slices took a total time
of 400 ± 45 min, which translates to an average of 1.6 min per slice [28]. This process was
conducted in three phases: preliminary annotations were performed by junior specialists,
then refined by more experienced radiologists, and finally, verified by a senior radiologist.

The integration of SAM in medical image segmentation has significantly reduced
annotation time without compromising segmentation quality. In the annotation of medical
images across various modalities, SAM decreased the average annotation time from 4.27 to
2.96 min per image while also improving annotation quality, as measured by the Human
Correction Effort (HCE) index [27], decreasing the HCE value from 5.07 to 4.80. Likewise, in
the study of COVID-19 images in CT, where manual segmentation of a single slice took an
average of 1.6 min [28], SAM reduced this time to ~1 s per slice, as illustrated in Figure 10,
representing a reduction of over 96%. These findings highlight that incorporating SAM
into medical image segmentation not only enhances process efficiency but also alleviates
the annotation workload for specialists.

Although the prediction time of SAM 2 is approximately ten times higher than that
of SAM, the total segmentation time in both cases is ~1 s. This implies that, within the
segmentation process carried out by the medical specialist, which may take several minutes,
the impact of SAM 2’s segmentation time is negligible. It is important to emphasize that
after SAM 2 automatically segments the image, the medical specialist must refine the
segmentation outcome obtained by the model based on their expert knowledge and the
specific clinical context. In this regard, SAM 2 cannot replace the experience of medical
professionals in annotation or diagnostic processes; rather, it serves as an assistive tool
that streamlines their workflow, reduces annotation time, and enhances the quality of
segmented images through its segmentation capabilities.

4.1.7. Hypothesis Test

A paired t-test was performed to determine if the differences between SAM and SAM 2
were statistically significant, as the segmentation results came from the same set of images
segmented by both systems. The results are shown in Table 5 and Figure 11.

Table 5. SAM vs SAM 2 paired t-tests.

Coronacases Radiopaedia Montgomery
Jaccard Dice Jaccard Dice Jaccard Dice

T-statistic −9.00 −8.70 −5.60 −5.58 −0.68 −0.76
p-value 4.72 × 10−19 6.38 × 10−18 2.97 × 10−8 3.36 × 10−8 0.498 0.447
Result Reject Reject Reject Reject Fail to reject Fail to reject

The analysis of the results reveals that SAM 2 consistently outperforms SAM in the
Coronacases and Radiopaedia datasets, as indicated by highly significant p-values across
both the Jaccard and Dice metrics. The t-statistics are strongly negative, confirming SAM 2’s
superior performance in these cases. However, in the Montgomery dataset, the results
show no significant difference between SAM and SAM 2, with p-values well above the
typical threshold for significance. This indicates that the two systems perform similarly
on this dataset, suggesting that SAM 2’s advantages may be less pronounced in specific
contexts. While SAM 2 shows robust improvements in most cases, its performance relative
to SAM may vary depending on the dataset.



Algorithms 2025, 18, 227 19 of 30

Coronacases Radiopaedia Montgomery
Jaccard IndexDice ScoreJaccard IndexDice ScoreJaccard IndexDice Score

8

6

4

2

0

T-
st

at
is

tic

T-statistics of Paired T-Tests

Coronacases Radiopaedia Montgomery
Jaccard IndexDice ScoreJaccard IndexDice ScoreJaccard IndexDice Score

10 17

10 14

10 11

10 8

10 5

10 2

P-
va

lu
e

P-values of Paired T-Tests

Significance Threshold (0.05)

Figure 11. Hypothesis tests.

With these results, we can conclude that SAM 2 improves SAM performance in medical
image segmentation tasks. Given these results, it is safe to test SAM 2 in a more challenging
scenario, such as video segmentation, knowing that it will not behave worse than SAM.

4.2. SAM 2 Video Segmentation for Image Volumes

Figure 12 shows the results of the video segmentation tests described in Section 3.5 in
a box plot format. Table 6 shows the exact values of the results. Only the Coronacases and
Radiopaedia datasets are shown, as the Montgomery dataset is not structured in volumes.
Each Montgomery’s sample is an independent X-ray, with no time relation between them.
The X-axis compares the results of SAM and SAM 2 for the Jaccard index and the Dice score.
While SAM needs one prompt for each slice to achieve these results, with our proposed
technique, SAM 2 only needs one prompt for the whole volume. The Coronacases dataset
has 10 volumes and 2156 slices with their corresponding mask. With SAM, we would
need 2156 prompts to segment the whole dataset. However, with SAM 2, we only need
10 prompts, one for each volume. The Y-axis shows the values of each metric. Each box
plot represents the distribution of the results for each dataset and metric. The boxes are
paired per metric. The outliers are not shown in the plot. The median value is shown as a
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solid green horizontal line inside the box, while the average is dashed. The notch around
the median represents the 95% confidence interval. The state-of-the-art results are shown
as a horizontal line atop each box. The delta between different model versions is shown
as a green vertical dashed line between the boxes. The delta between the model and the
state-of-the-art results is shown as a dashed red line at the right of each pair of boxes.
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Figure 12. Video results (Owais et al. [19], Chen et al. [21]).

Table 6. SAM 2 video’s segmentation results (delta from SAM).

Coronacases Radiopaedia

Jaccard Index Dice Score Jaccard Index Dice Score

Minimum 0.32% (−8.11%) 0.65% (−14.92%) 6.01% (−0.26%) 11.34% (−0.46%)

Maximum 98.63% (−0.21%) 99.31% (−0.11%) 98.56% (+0.23%) 99.28% (+0.12%)

Average 91.39% (−0.50%) 94.87% (−0.40%) 91.92% (+1.64%) 95.39% (+1.31%)

Std Dev 12.26% (+0.81%) 10.07% (+1.52%) 10.07% (−4.02%) 7.68% (−3.33%)

When comparing the results in the Coronacases dataset, SAM 2’s results are slightly
worse than SAM’s. The average Jaccard index is 0.50% lower, and the average Dice score
is 0.50% lower. In both cases, this decrease is below the 0.50% threshold. However, the
distribution of values with SAM 2 is more compact than with SAM.

On the other hand, the Radiopaedia dataset shows a different behavior. Results are
slightly better with SAM 2 than with SAM. The average Jaccard index is 1.64% higher, and
the average Dice score is 1.31% higher. Again, the distribution of values with SAM 2 is
more compact than with SAM.

Could we use a single prototypical seed prompt for the whole dataset, further reducing
the prompting effort and creating a library of prototypical prompts for the medical image
segmentation tasks? For this test, we used the seed prompt from the first volume of
each dataset to segment the rest of the volumes in that dataset. For illustrative purposes,
Figure 13 shows the seed prompt chosen for each dataset (Figure 13a,c) from the first
volume, side by side with the seed prompt they are replacing from the second volume
(Figure 13b,d). Although they are not identical, they share some fundamental characteristics
resembling the same anatomical structure, like the rough shape and location of the lungs
and the heart, the image’s appearance, and its dimensions.
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(a) (b) (c) (d)
Figure 13. Shared seed video results. (a) Coronacases shared seed. (b) Coronacases proper seed.
(c) Radiopaedia shared seed. (d) Radiopaedia proper seed.

The results are shown in Figure 14. When processing the Coroncases dataset, the
Jaccard index and the Dice score show an improvement of 0.60% and 0.40%, respectively.
The Radiopaedia datasets result in a decrease of 0.18% and 0.16% for the Jaccard index
and the Dice score, respectively. In both cases, the results are very similar to the ones
obtained when using the seed prompt from the same volume. For the 2156 masks in the
Coronacases dataset, using a single seed prompt would reduce the number of prompts
needed to segment the volume to one. That is a 99.95% reduction in prompts needed to
segment the volume. This previous test shows that the model can successfully segment all
the volumes in a dataset using a single, representative seed prompt taken from one of the
volumes, drastically reducing the number of prompts needed to segment the dataset (e.g.,
from 2156 to 10 in the Coronacases dataset).
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(a) Coronacases.
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(b) Radiopaedia.
Figure 14. Shared seed video results (Owais et al. [19], Chen et al. [21]).

4.3. Exploratory Analysis of Spleen MRI Segmentation

The primary objective of this study is to compare segmentation efficacy and prompting
strategies within lung CT and X-ray datasets. This focus is motivated by the fact that
CT and X-ray are among the most commonly used imaging modalities in radiological
workflows. Additionally, it enables direct benchmarking against previously published
studies, including our own prior work. Nevertheless, in this section, we briefly explore the
applicability of SAM-based models to other imaging modalities and anatomical regions.
This is not intended as an exhaustive evaluation across all modalities or organs but rather
as a preliminary step to inform future research directions. In particular, we analyze the
segmentation capabilities of SAM and SAM 2 on spleen MRI images.

For this exploratory analysis, we selected the clinical abdominal organ segmentation
dataset AMOS [29], which comprises 500 CT and 100 MRI volumes. Each of these volumes
includes multiple segmentation labels corresponding to various abdominal organs, such as
the spleen. We chose the spleen as the segmentation target to assess the performance of an
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organ different from the lungs and MRI to evaluate the models on a modality distinct from
the CT data used in the primary comparison. The spleen’s relatively simple morphology
and lack of pronounced concavities make it a suitable candidate for this exploratory seg-
mentation task. To evaluate the segmentation performance of SAM and SAM 2 specifically
on MRI data, we selected 14 volumes labeled as MRI. To ensure representativeness and re-
duce potential biases related to MRI acquisition devices, we further narrowed the selection
to a subset of 8 volumes acquired using a Siemens Ingenia scanner.

Figure 15 shows an example of an MRI slice from the AMOS dataset, illustrating the
spleen segmentation result produced by SAM 2.

(a) MRI slice. (b) Prompt and spleen segmentation.
Figure 15. MRI prediction example.

The segmentation methodology follows the approach described previously in
Sections 3.4 and 3.5. In this exploratory evaluation, we assessed four segmentation config-
urations. First, we applied SAM with individual prompts provided for every slice across
the eight selected MRI volumes. Second, we evaluated SAM 2 using the same per-slice
prompting strategy. Third, we tested a propagation-based approach with SAM 2, where
segmentation was initialized using a single prompt on the central slice of each volume.
Finally, we explored a variant of this propagation-based strategy in which the seed prompt
was shared across all volumes, aiming to further reduce the prompting effort by using a
single prompt for the entire dataset.

Figure 16 summarizes the MRI segmentation performance of SAM and SAM 2 on
the AMOS dataset. On the one hand, the X-axis in Figure 16a compares the performance
of SAM and SAM 2 in image processing mode using the Jaccard index and Dice score.
On the other hand, Figure 16b compares the performance of SAM 2 in video processing
mode, using either the middle slice of each volume as a seed prompt or a shared seed
prompt for the entire dataset. For this subset of the dataset, which includes eight volumes
and a total of 1633 slices, SAM requires 1633 prompts to achieve complete segmentation,
whereas SAM 2 in video processing mode reduces this requirement to only 8 prompts,
one per volume for the middle-slice seed and one for the entire dataset in the shared-
seed configuration. The Y-axis displays the corresponding metric values, with each box
representing the distribution per dataset and metric. Outliers are omitted for clarity. Solid
horizontal green lines denote median values, dashed horizontal lines indicate mean values,
and notches represent 95% confidence intervals. Horizontal reference lines correspond to
state-of-the-art performance: the blue line indicates the Jaccard index (0.94) achieved by a
multi-class, multi-modal nnU-Net on spleen MRI images [30], while the orange line marks
the Dice score (0.977) achieved by the TransDiffSeg model when segmenting spleen MRI
images [31]. It is worth noting that, while the Dice score benchmark is based on the AMOS
dataset, the Jaccard index reference is drawn from a different one. Vertical dashed green
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lines indicate performance differences between model versions, and vertical dashed red
lines highlight deviations from the state-of-the-art baselines.

Jaccard Index Dice Score
SAM SAM 2 SAM SAM 255%

60%

65%

70%

75%

80%

85%

90%

95%

100%

M
et

ri
c 

Va
lu

e +0.75 %

+0.79 %

−10.27 %

−7.24 %

94.00 % (He et al.)
97.70 % (Gu W et al.)

(a) SAM vs. SAM 2 image processing.
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Figure 16. Video results (He et al. [30], Gu W. et al. [31]).

In this exploratory evaluation on spleen MRI segmentation, the highest average
performance was achieved using the video processing mode of SAM 2, where the middle
slice of each volume was used as the seed frame. This configuration yielded a mean Dice
score of 0.9067, representing a decline of 7.03% compared to the state-of-the-art Dice value
of 0.977 reported by TransDiffSeg [31]. Similarly, the mean Jaccard index reached 0.8481,
corresponding to a decline of 9.18% relative to the benchmark Jaccard index of 0.94 obtained
by a multi-modal nnU-Net [30].

The same configuration used for lung segmentation was employed without modifi-
cation, and no preprocessing was performed on the MRI volumes, as this analysis was
intended to be exploratory. Because neither the prompt was tailored to MRI images nor
any additional preprocessing was applied, the gap between the Dice and Jaccard scores
obtained with this approach and those of the state-of-the-art increased from 3.27 and
5.39 percentage points, respectively, in the best-performing lung segmentation configura-
tion to 7.03 and 9.19 in the best-performing spleen segmentation configuration. These
findings suggest that the prompting strategy and segmentation approach proposed in this
study can be effectively transferred to different imaging modalities and anatomical targets,
delivering competitive results with minimal adaptation.

Despite these differences, the results are promising, especially considering that (1) the
models were not fine-tuned for this specific task, (2) unlike the lung CT images, no prepro-
cessing was applied to the MRI data, and (3) the prompting strategy was not adapted to
the target organ or imaging modality. Nevertheless, although a comprehensive, modality-
specific performance analysis of SAM 2 is beyond the scope of this work, this exploratory
section offers initial insights into its applicability and effectiveness for SAM-based segmen-
tation tasks beyond the lung CT and X-ray data analyzed in the primary comparative study.

5. Discussion
Medical image segmentation is critical in clinical applications, such as diagnosis and

treatment planning. Ever since computers have been able to work in image processing, this
task has been attempted to be automated. The application of artificial intelligence to this
task has been a priority since its resurgence at the turn of the century [32]. Recent advances
in deep learning have significantly improved the accuracy and efficiency of segmentation
methods, particularly those that require minimal user input.

Deep learning-based interactive segmentation methods, such as those incorporating
Convolutional Neural Network (CNN)s with user inputs like bounding boxes and scribbles
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like [33], have demonstrated increased accuracy and robustness, especially for previously
unseen objects. Due to their zero-shot learning features, these methods require fewer user
interactions and less time than traditional methods.

Techniques such as geodesic distance transforms and resolution-preserving networks
further improve the accuracy of interactive segmentation by refining the initial automatic
segmentations with minimal user intervention [34].

A deep learning-based interactive segmentation method that achieves accurate results
with fewer user interactions is proposed in [35]. The authors claim their method consumes
less time and generalizes well to previously unseen objects in medical images. In order
to do so, they first encode user-provided interior margin points via a CNN to achieve a
good initial segmentation result of both previously seen and unseen objects. Then, an
information fusion method combines the initial segmentation with a few additional user
clicks to refine the segmentation.

Knowledge distillation techniques have been employed to transfer knowledge from
large, well-trained networks for medical image segmentation to smaller, lightweight net-
works. This approach maintains high segmentation accuracy while significantly reducing
computational complexity and storage requirements. To cite just one example, [36] im-
proved a lightweight network’s segmentation capability by up to 32.6%.

The integration of SAM 2 into clinical workflows, particularly in radiotherapy, aligns
with the increasing demand for efficiency and precision in oncology. Radiotherapy is
a complex, multi-step process involving imaging acquisition, contouring of anatomical
structures, treatment planning, delivery, and follow-up, requiring significant expertise and
coordination among specialists [37]. In resource-constrained settings, many of these steps
remain highly manual and time-consuming. SAM 2 could support the automation and
standardization of critical stages such as segmentation and verification, thereby reduc-
ing clinicians’ workload and enhancing treatment consistency. By accelerating processes
like image acquisition and contouring, SAM 2 may also help minimize the time patients
spend undergoing imaging procedures, thus reducing discomfort and limiting unnecessary
exposure to ionizing radiation. This fits into a broader trend toward the adoption of AI-
based tools [38], such as those developed in initiatives like Medical Open Network for AI
(MONAI) [39] or Open Health Imaging Foundation Viewer (OHIF) [40], which are being
successfully integrated into image-based workflows to improve diagnostic accuracy and
therapeutic planning.

We aim to enable specialists to perform medical image segmentation with as little
interaction as possible at the lowest possible cost. All the work mentioned in this section
has one thing in common: the need for considerable resources to develop, reproduce,
or use it. In order to develop deep learning networks, it is necessary to have a team of
professionals dedicated exclusively to it, with access to first-rate data and computational
resources. Fine-tuning an existing neural network is less demanding than creating one
from scratch. However, it is still a process within the reach of a few.

For those who need these resources, the task of segmenting medical images becomes
a slow and tedious process, requiring the intervention of a medical imaging specialist
throughout the process. The proposal of this work is an evolution of our previous one [9].
The segmentation of each image was performed with a minimum number of prompts. Our
current proposal provides a single prompt to segment all images from the same source
with an accuracy close to that obtained by state-of-the-art models trained explicitly for this
task. The specialist’s task is reduced to monitoring the results to ensure the quality of the
results, being able to devote more time to other, more critical tasks.

The results of using SAM 2 to segment an entire volume, or a whole dataset, of medical
images using a single set of prompts and a reference frame that can then be propagated to
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the rest of the frames are very promising. Compared to SAM, SAM 2 yields very similar
results in quality. In the case of the Coronacases dataset, the decrease in the quality of
the results is minimal. In the case of the Radiopaedia dataset, the results improve. This
difference in results is consistent with those obtained in the first experiment (see Table 1).
The average results obtained with SAM 2 were better in both datasets. However, the
improvement was more significant in the Radiopaedia dataset. The nature of the data is
a key factor in the segmentation result if one wants to compare the results between SAM
and SAM 2.

The video processing algorithm proposed in this work has similarities with the
prompts selection algorithm presented in our previous work. Both proposals manage
to improve the results of the medical image segmentation task without altering the essence
of the segmentation, and they do so efficiently. In this case, if we ignore the segmentation
task handled by SAM 2, the computational complexity of the proposed algorithm would
be linear O(n), where n is the number of images in the volume. Therefore, no significant
computational burden is being added to the segmentation process.

The results shown in Figure 12 show that SAM 2 video segmentation results are similar
to SAM image segmentation results. To achieve these results in our experiments, SAM
needs one set of prompts for each slice (two positive, one negative, and a bounding box),
while SAM 2 needs only a single set of these prompts for the whole volume. Each volume
starts and ends with slices that have no corresponding mask, so the CT machine can capture
the whole organ (e.g., the lungs) in the image.

When using SAM 2’s prompt propagation features, its behavior in these start and end
extremes of the volume is worse than SAM’s. Notice how the metric minimum values are
far lower with SAM 2 than with SAM in Table 6. Even though the model is not able to
segment the frames closer to the extremes of the volumes, where the area to segment is
smaller, SAM 2 is still able to segment the rest of the volume with a single set of prompts
while maintaining very similar global results. In the Coronacases dataset, SAM 2 cannot
propagate the prompt only in three slices of the whole dataset. As a consequence, it loses
track of the object twice at the start and once at the end of a volume. In the Radiopaedia, it
happens four times: twice at the start and twice at the end of the volume.

Although there exists a slight decline in the Coronacases dataset results, it is greatly
compensated by the difference in the number of prompts needed to segment each volume.
Using SAM would require 2156 prompts, one for each slice. However, SAM 2 would
require only 10 prompts, one for each of the 10 volumes, as the model can propagate the
seed frame segmentation through the whole volume. That is a 99.54% reduction in prompts
needed to segment the volume. Moreover, when using a single seed prompt for the whole
dataset, the number of prompts needed to segment the volume is reduced to one. That
is a 99.95% reduction in prompts needed to segment the volume. In both instances, the
results are very similar to those obtained using one prompt for each slice. These results
justify the development of a system that allows radiology specialists to select a single
representative frame of a given machine to segment the rest of the frames of the same
machine. These results justify the development of a prototypical prompt library for medical
image segmentation that allows radiology specialists to select a single representative frame
of a given machine to segment the rest of the frames of the same machine.

5.1. Limitations

While this study compares SAM 2 and SAM’s performance when segmenting medical
images and introduces a novel approach to segmenting medical image volumes, several
limitations should be acknowledged. Firstly, although the study primarily focused on a
single medical image segmentation task, namely lung segmentation, we have included
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an exploratory analysis of spleen segmentation in MRI data. This preliminary evaluation
provides valuable initial insights into the applicability of the proposed methods beyond the
lung and across different imaging modalities. Although it does not constitute a comprehen-
sive assessment, it demonstrates that the results of SAM 2 improve upon those of SAM. The
generalizability of the findings to a broader range of organs and imaging modalities still
needs to be thoroughly tested. Future work should explore applying the proposed methods
to additional segmentation tasks to determine their broader applicability. Secondly, the
study employed only one prompt configuration, consisting of a bounding box with two
positive points and one negative point. This configuration was chosen for its simplicity
and effectiveness in lung segmentation, as demonstrated in our previous work [9], and was
retained unchanged in the exploratory spleen MRI analysis. However, the performance
and adaptability of other prompt configurations were not explored, potentially limiting
the method’s robustness and flexibility in more complex segmentation scenarios. Finally,
the datasets used in this study contained COVID-19 lesions, which introduces a degree of
specificity to the results. COVID-19 lesions may introduce unique challenges or biases that
do not occur in other lung pathologies. Future studies should validate the approach on a
broader range of lung conditions to ensure its applicability across diverse clinical scenarios.
These limitations suggest clear lines for future research to enhance the generalizability and
robustness of the findings presented in this study.

5.2. Requirements for Training Segmentation Models

As noted in Section 1, training segmentation models for medical imaging demands sub-
stantial computational resources, specialized expertise, and significant financial investment.
Recent studies have highlighted these challenges.

For instance, DMDF-Net [19], a dual multiscale dilated fusion network, was de-
signed for segmenting COVID-19 lesions in lung CT scans. The model was trained on the
MosMed [41] and COVID-19-CT-Seg [18] datasets (70 CT scans totaling 5569 images). Train-
ing was conducted over 15 epochs with a batch size of eight and a learning rate of 0.001,
utilizing an NVIDIA GTX 1070 GPU. The total estimated project cost, covering dataset cu-
ration, model architecture design, model training and evaluation, and personnel expenses,
including three engineers, amounted to EUR 61,500 over six months. This estimate is based
on the average annual salary of a Machine Learning Engineer in Spain, approximately
EUR 41,000 (https://www.glassdoor.es/Salaries/spain-machine-learning-engineer-salary-
SRCH_IL.0,5_IN219_KO6,31.htm?countryRedirect=true, accessed on 12 March 2025).

Similarly, TransAttUnet [21], a multi-level attention-guided U-Net incorporating
transformer-based mechanisms, was developed for medical image segmentation. The
model was trained on 4255 images from the ISIC-2018 [42], JSRT [43], Montgomery [20],
NIH [44], Clean-CC-CCII [45], Bowl [46], and GLaS [47] datasets. Training was conducted
over 100 epochs with a batch size of four and a learning rate of 0.0001, utilizing an NVIDIA
Titan XP GPU. Given that this project required a team of five engineers, the estimated cost
amounted to EUR 102,500 over six months, using the same salary reference.

Another example is a Mask R-CNN-based approach [26] for lung CT segmentation,
trained on a dataset of 1265 ground-truth images. The model was trained using an NVIDIA
GTX 1050 Ti GPU. The total expenditure for this project amounted to 101,600 e over
six months, underscoring the substantial costs associated with prolonged training and
hyperparameter optimization. Assuming a team of four engineers, personnel costs alone
would be approximately EUR 82,000, according to the previously cited salary benchmark.

Furthermore, DS-TransUNet [48], a Residual U-Net designed for medical image
segmentation, was trained on the LUNA, VESSEL12 [49], and HUG-ILD [50] datasets
(11,325 images). Training was conducted over 50 epochs with a batch size of eight and a

https://www.glassdoor.es/Salaries/spain-machine-learning-engineer-salary-SRCH_IL.0,5_IN219_KO6,31.htm?countryRedirect=true
https://www.glassdoor.es/Salaries/spain-machine-learning-engineer-salary-SRCH_IL.0,5_IN219_KO6,31.htm?countryRedirect=true
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learning rate of 0.0001, utilizing an NVIDIA GTX 1060 GPU. This project involved six engi-
neers, resulting in an estimated personnel cost of EUR 123,000 over six months, following
the salary estimate previously discussed.

Moreover, the time required to achieve functional results is considerable. Training
and refining foundational models, such as SAM2, demands a large number of GPUs and
extensive datasets to achieve optimal performance. For instance, MedSAM2, the SAM2
fine-tuned model for medical applications, utilized 64 NVIDIA A100 GPUs for distributed
training [17]. This setup highlights the challenges in resource allocation and underscores
the necessity of optimizing efficiency in segmentation models.

These studies highlight the substantial computational demands, dataset requirements,
and financial commitments associated with training segmentation models. In contrast,
our proposed approach leverages pretrained segmentation models alongside advanced
prompting strategies, significantly reducing both computational and development costs.
Rather than training complex architectures from scratch, we optimize segmentation tasks
through efficient model adaptation, minimizing GPU utilization and eliminating the need
for large-scale dataset curation. This strategy offers a cost-effective, scalable, and accessible
alternative for medical image segmentation.

6. Conclusions
In this paper, we compared SAM 2 with SAM in medical image segmentation tasks.

Regardless of our first impulses, new is not necessarily better. When deciding between
SAM or SAM 2, consider precision, responsiveness, and computing resources. In particular,
SAM 2 is the way to go if the best precision when segmenting medical images is required.
It usually provides the same results as SAM but is better on average. In our tests, SAM 2
results get up to an average 1.76% improvement in the Jaccard index, a 1.49% improvement
in the Dice Score, and a better standard deviation for both metrics, getting even closer to
the state-of-the-art solutions than SAM does. However, SAM is still the best choice in a
pipeline where responsiveness is critical. After processing the image to get its embeddings,
SAM can predict a mask in around 61 ms. In comparison, SAM 2 takes around 588 ms to
perform the same task, which is approximately ten times slower. The threshold for users to
feel that the system reacts instantaneously to their actions is 100 ms [51]. SAM is below this
threshold, while SAM 2 is above it. If computing resources are scarce, SAM 2 is the best
choice. The best SAM 2 model is smaller than the best SAM model. At the same time, the
computing time for a single prediction is faster on average.

Furthermore, we presented a new medical image segmentation technique that uses a
single seed prompt to segment a whole volume, further reducing the number of prompts
needed to perform the task in 99.54% of the Coronacases dataset. The results are very close
to the ones obtained when using one prompt for each slice, with practically no difference
in the metrics used to measure the differences. Besides, we have also shown that the model
is able to segment all the volumes in a dataset using a single, representative seed prompt
taken from one of the volumes. In this case, the reduction in the number of prompts needed
to segment the volume is 99.95% in the Coronacases dataset. This new technique could be
used to virtually reduce the number of prompts needed to segment a volume up to 100%,
allowing us to choose a representative seed prompt for images with similar characteristics,
thus achieving infinite segmentation results with a single prompt.

In future work, given the results obtained in this paper, we plan to test our segmenta-
tion technique in a case study in a hospital, integrating it into a segmentation tool. It would
be interesting to study whether we can automate the creation of the artificial seed iteratively
while the machine is working. Moreover, as part of this clinical implementation, future
research will involve evaluating how the segmentation results influence clinical decision-
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making and patient outcomes. This will include potential collaborations with radiology
experts to gain deeper insights into the practical utility of the developed techniques, thus
ensuring that the segmentation tool can be effectively integrated into real-world medical
workflows. These steps are crucial in translating the technical advancements of SAM 2 into
practical solutions that improve clinical practices and patient care.

We will also test the technique in other medical image segmentation tasks, such as
tumor segmentation, to see if the results are similar. The results obtained in this paper
suggest that SAM 2 can recognize objects in images, even if they are rudimentary, and
transfer that knowledge to other images. What are the characteristics of the images that
allow the model to do this? How far can we refine these seed frames to make them
more representative of the whole volume? Data augmentation techniques could be used
to generalize the seed prompt to meet certain desirable characteristics. We have also
evaluated our approach to medical imaging modalities beyond CT and X-rays, such as MRI,
with promising results. Extending this evaluation to other common modalities, such as
Ultrasound Sonography (USG), would further test the robustness of our method. Moreover,
given the growing importance of Hyperspectral Imaging (HSI) in medical diagnostics [52],
we plan to include this modality in our future benchmarking efforts. Lastly, it is essential to
consider the extent to which our improvements can enhance SAM 2 results. The existence
of a potential ceiling value beyond which further improvements may be unreachable
could be examined. This limit would likely be influenced by various factors that require
thorough investigation.
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