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Abstract: Varronia curassavica Jacq. is an aromatic species appertaining to the Boraginaceae family
and has been mentioned for its numerous traditional uses and pharmacological properties, especially
its antimicrobial and anti-inflammatory effects. The aim of the present study was to investigate the
phytochemical profile and antifungal activities of the essential oils of V. curassavica, in addition to
analyzing the ADMET properties of the majority components. The GC-MS analysis of V. curassavica
essential oil (EOVC) comprised 97.36% of total composition, with α-pinene, β-caryophyllene, and
bicyclogermacrene (44.46%, 22.87%, and 13.05%, respectively) as the main constituents among other
minor/trace constituents. The antifungal activity of EOVC was evaluated against three Candida
species and was observed with IC50 > 200 µg/mL. Remarkably, the combination of EOVC with
fluconazole significantly reduced the IC50 required for the drug to inhibit C. tropicalis (0.003 µg/mL),
C. albicans (0.7996 µg/mL), and C. krusei (17.73 µg/mL). In addition, ADME/Tox studies using
α-pinene revealed that the compound poses no toxicity threats but requires caution due to its high
permeability to the blood–brain barrier (BBB). Overall, the obtained results suggest that Varronia
curassavica essential oil is a potentially good antifungal agent for combating fungal resistance.

Keywords: Cordia verbenacea; fungal resistance; α-pinene; antifungal; ethnopharmacology

1. Introduction

Invasive fungal diseases caused by opportunistic pathogenic fungi represent a sig-
nificant public health concern due to the high mortality rate among individuals with
compromised immune systems [1]. The most common organisms that cause clinical mani-
festations, such as cutaneous, mucosal, or organ-disseminated candidiasis, belong to the
Candida genus, especially C. albicans (responsible for more than 50% of cases), C. glabrata, C.
parapsilosis, and C. tropicalis [2,3]. The main challenges are related to the resistance of these
organisms to conventional therapy. Fungal resistance can be influenced by factors such as
repetitive therapy and the limited availability of antifungal drugs [4,5].

In recent years, alternative treatment approaches have been investigated based on the
therapeutic use of medicinal plants, searching for new bioactive agents with antifungal
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action. The use of products of natural origin is considered effective in maintaining health,
as well as being easily accessible to the population and having mild adverse effects [6,7].
Antioxidant and antimicrobial activities have clinical relevance and can be attributed to the
bioactive compounds present in medicinal plants [8], in addition to medicinal plants being
seen as a promising solution for treating conditions such as fungal infections [9].

Medicinal plants are widely used to extract secondary metabolites with pharmacologi-
cal applications, such as essential oils. Essential oils are volatile and lipophilic components
that have been the subject of research due to their promising antimicrobial action, which
acts through different mechanisms [10]. In addition, they have diverse biological activities,
including antioxidant, antiparasitic, antibacterial, and antifungal properties. These prop-
erties represent effective alternatives against microbial resistance, including an efficient
action against biofilms [11–13].

The medicinal species Varronia curassavica Jacq. (Synonyms Cordia verbenacea A. DC. and
C. curassavica (Jacq) Roemer & Schultes) stands out widely in the field of natural medicine
due to its use as an anti-inflammatory, anti-rheumatic, and analgesic agent [14,15]. Current
research underscores the therapeutic value of the essential oil, whose chemical composition
has been extensively investigated due to the presence of relevant phytochemicals, such as ter-
penes previously reported as α-pinene and β-caryophyllene, which exhibit diverse activities,
including anti-inflammatory, analgesic, antimicrobial, larvicidal, and antiparasitic proper-
ties [16–19]. The presence of compounds such as flavonoids contributes to its antibacterial
properties, which can influence the biological activity of antibiotics belonging to the class of
aminoglycosides, with the absence of substances such as alkaloids [20,21].

Therefore, research into the ethnopharmacological application of V. curassavica highlights
its antimicrobial action and shows that this plant is effective in combating pathogenic microor-
ganisms, particularly fungal strains. The efficacy of this species and the use of its essential oil
do not show any possible toxic effects. The present study reports the phytochemical profile
and in vitro antifungal and fluconazole modulatory activity of the essential oil from leaves of
V. curassavica, in addition to the ADME/Tox studies of its major compound.

2. Materials and Methods
2.1. Plant Material

The leaves of V. curassavica (Figure 1) were collected in the municipality of Jardim,
Ceará, Brazil, at coordinates: −7.554917 W and −39.306611 S, in the period of January
(2022). The sample collected was stored in the Herbário Caririense Dárdano de Andrade-
Lima (HCDAL) of the Universidade Regional do Cariri (URCA) under voucher number
15.291. The research was registered in the National System for the Management of Genetic
Heritage and Associated Traditional Knowledge (SisGen) under the code AEFC723 and in
the Biodiversity Authorization and Information System (SisBio) under the number 82789-1.
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2.2. Essential Oil Extraction

To extract the essential oil of V. curassavica (EOVC), the collected leaves were dried,
crushed, and added to a 5 L volumetric flask with 2 L of distilled water and subjected
to constant boiling for 2 h using a Clevenger-type system. Each extraction used 200 g of
leaves, obtaining a yield of 0.83%. After extraction, the oil obtained was stored in amber
bottles and refrigerated at 4 ◦C.

2.3. Gas Chromatography-Mass Spectrometry Analysis

Gas chromatography-mass spectrometry (GC-MS) was used for the phytochemical
analysis of EOVC. The analysis was carried out using an Agilent Technologies AutoSystem
XL GC-MS system, operating in EI mode at 70 eV. Two capillary columns were used: an
HP 5MS (30 m × 0.35 mm; film thickness 0.50 µm) and an HP Innowax (30 m × 0.32 mm;
film thickness 0.50 µm). The system was equipped with a split/splitless injector (220 ◦C)
and coupled to an FID detector. The thermal programmer was set from 60 ◦C (1 min) to
180 ◦C at a rate of 3 ◦C/min; the detector temperature was 220 ◦C. Helium was used as
the carrier gas with a flow rate of 1.0 mL/min. The injected volume of EOVC was 1 µL,
diluted in chloroform (1:10). Two replicate samples were processed in the same way, and
the relative concentrations of the components were calculated based on the GC peak areas,
without the use of correction factors.

2.4. Antifungal Activity

The antifungal activity of EOVC was tested against Candida albicans INCQS 40006, Can-
dida krusei INCQS 40095, and Candida tropicalis INCQS 40042 obtained from the Collection
of Reference Microorganisms in Health Surveillance (CMRVS) of the National Institute for
Quality Control in Health (FIOCRUZ-INCQS). The Candida strains were grown in Petri
dishes containing Sabouraud Dextrose Agar (SDA, Kasvi) and incubated at 37 ◦C for 24 h.
Aliquots were then transferred to test tubes containing 4 mL of saline solution (0.9%) and
adjusted to a turbidity of 0.5 McFarland (1.5 × 108 CFU/mL). The EOVC (0.0191 g) was
diluted in 0.5% DMSO. It was then diluted in Sabouraud Dextrose Broth (SDB) until it
reached the stock concentration (1.024 µg/mL) [22]. Fluconazole (capsule—FLUCOMED)
was used as a positive control.

The broth microdilution technique with 96-well plates was used to determine the IC50.
EOVC and fluconazole were diluted in SDB (90 µL) (1:1 v/v) at concentrations ranging from
2 to 1.024 µg/mL, each in quadruplicate. Then, 10 µL of the fungal inoculum was added.
Fungal growth and sterility controls were included. The plates were incubated at 37 ◦C
for 24 h, and absorbance was measured at 630 nm using an ELISA reader (Termoplate®

Kasuaki, Beijing, China) [23].

2.5. Fluconazole Potentiating Action

In the fluconazole potentiating evaluation, OEVC was tested using the Sub-inhibitory
Matrix Concentration (CM/8). Flat-bottomed 96-well plates containing SDB medium with
OEVC at its sub-inhibitory concentrations were used. Fluconazole was used in a range of
concentrations between 2 and 1.024 µg/mL, following the method described by Coutinho
et al. [24] with modifications. The plates prepared for the broth microdilution and serial
dilution technique were incubated at 37 ◦C for 24 h, and the analysis was carried out using
an ELISA spectrophotometer (Termoplate® Kasuaki, China) [23].

2.6. In Silico Prediction

The in silico prediction of the major compound (α-pinene, >30%) was evaluated using
the ADMETlab 2.0 platform. This platform, recognized for its enhanced functionalities for
the analysis of ADME (absorption, distribution, metabolism, excretion), toxicity, physic-
ochemical properties, and medicinal chemistry, is based on more accurate and efficient
predictions, relying on general analysis tools such as the toxicological interaction radar [25].



Analytica 2024, 5 443

2.7. Statistical Analysis

The means of the data and their respective standard errors of the mean (SEM) were
calculated and subjected to a one-way Analysis of Variance (ANOVA). Subsequently, the
data were subjected to a reliability test using the Tukey test at 95% reliability. The results
were considered statistically significant when p < 0.05. The data were analyzed using
GraphPad Prism software version 6 (GraphPad Software Inc., San Diego, CA, USA).

3. Results
3.1. Phytochemical Composition

The phytochemical analysis of EOVC using GC-MS identified 11 chemical components
which represent 97.36% of the oil’s total composition. The EOVC is mainly composed of
hydrocarbon monoterpenes (47.25%), followed by hydrocarbon sesquiterpenes (43.72%).
The major compounds identified were α-pinene (44.46%), β-caryophyllene (22.87%), and
bicyclogermacrene (13.05%). As shown in Table 1, α-pinene was identified as the major
constituent (>30%) and was therefore selected for the in silico prediction analysis.

Table 1. Chemical composition (%) of the essential oil of Varronia curassavica.

Components RI (%)

α-pinene 976 44.46
β-Pinene 980 2.79
β-Elemene 1375 1.14

β-Caryophyllene 1428 22.87
α-humulene 1460 2.91
Zingiberene 1492 1.01

Bicyclogermacrene 1496 13.05
cis-α-Bisabolene 1778 2.74

Nerolidol 1961 3.32
Caryophyllene oxide 2023 1.89

Juniper camphor 2205 1.18
Hydrocarbon Monoterpene 47.25
Oxygenated Monoterpene 1.18

Hydrocarbon Sesquiterpene 43.72
Oxygenated Sesquiterpene 5.21

Total 97.36
RI: Retention index.

3.2. Antifungal Activity and Fluconazole Potentiating Effect

The results of EOVC antifungal activity are shown in Table 2. Different Candida strains
exhibited varying levels of susceptibility to EOVC. Candida albicans showed the greatest
sensitivity to the essential oil, as demonstrated by IC50 values reaching concentrations of
254.3 µg/mL, considered clinically relevant. Candida tropicalis (IC50 = 649.2 µg/mL) showed
the second lowest inhibition value, suggesting the potential use of EOVC in antifungal
applications against C. albicans strains according to their susceptibility.

Table 2. Half-maximal inhibitory concentration (IC50) of Varronia curassavica essential oil (EOVC)
tested against Candida strains and fluconazole (FCZ) potentiating action.

IC50
µg/mL

C. albicans C. krusei C. tropicalis

EOVC 254.3 >1024 649.2
FCZ 16.14 52.41 4.775

FCZ + EOVC 0.7996 17.73 0.003

Regarding C. krusei, no significant inhibitory action was observed. However, when
combined with the drug fluconazole, there was a significant reduction in IC50 values
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to 17.73 µg/mL, representing a decrease of approximately 65% in the concentration of
fluconazole required to inhibit fungal growth. The synergistic activity of EOVC with
fluconazole was also noted against strains of C. albicans and C. tropicalis (Figure 2), with
concentration reductions of ~95% and 98%, respectively. These results suggest the potential
use of EOVC as a complementary agent in antifungal therapies.
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3.3. ADME/Tox Prediction with α-Pinene

According to the in silico analysis, the radar of the physicochemical properties of the
α-pinene (Figure 3) indicates divergences regarding its application as a drug, since the
aqueous partitioning capacity (logP < 3) and the influence on physiological pH (logD < 3)
are above the maximum desired limit, for which reason the Pfizer, GSK, and Golden
Triangle drug-like rules do not apply (Table 3). However, positive aspects are observed in
the solubility (logS) and flexibility (Flexibility = nRot/nRig) parameters.
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Table 3. Performance of physicochemical properties and similarity to drugs using α-pinene as a
model.

Category Property Value

Physicochemical Property

MF C10H16
MW 136.13 g/mol
NHA 0
NHD 0
NRB 0
TPSA 0.0
logS −4.662

Medicinal Chemistry

Lipinski Rule Accepted
Pfizer Rule Rejected
GSK Rule Rejected

Golden Triangle Rejected
MF: molecular formula; MW: molecular weight; NRB: number of rotatable bonds; NHA: number of hydrogen
acceptors; NHD: number of hydrogen donors; TPSA: Topological Polar Surface Area; LogS: Log of the aqueous
solubility.

The ADME/Tox properties of α-pinene are summarized in Table 4, highlighting
important data of pharmacological relevance. Absorption is considered promising, since
human intestinal absorption activity (HIA) does not present problems, and the compound
does not inhibit the permeability glycoprotein (Pgp) responsible for active efflux. However,
the distribution of α-pinene and its permeability to the blood–brain barrier (BBB) warns of
possible toxic activity. As for the metabolization and toxicity of the compound, there are
no significant concerns, except for ophthalmic and pulmonary applications. In addition,
Table 5 shows possible routes of toxicity for α-pinene, indicating promising safe aspects.
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Table 4. ADME/Tox performance (absorption, distribution, metabolism, excretion, and toxicity) of
α-pinene.

Category Property Value Decision

Absorption

Caco-2 Permeability −4.303 •
MDCK Permeability 1.8 × 10−5 •

Pgp-inhibitor --- •
Pgp-substrate --- •

HIA --- •
Distribution BBB Penetration ++ •

Metabolism

CYP1A2 inhibitor - •
CYP2C19 inhibitor -- •
CYP2C9 inhibitor - •
CYP2D6 inhibitor --- •
CYP3A4 inhibitor --- •

Excretion
CL 15.022 •

T1/2 0.114 -

Toxicity

Human Hepatotoxicity -- •
Drug-Induced Liver Injury --- •

AMES Toxicity --- •
Rat Oral Acute Toxicity --- •

Skin Sensitization -- •
Carcinogenicity --- •
Eye Corrosion +++ •
Eye Irritation +++ •

Respiratory Toxicity ++ •
P-gp; p glycoprotein; HIA: Human intestinal absorption; BBB: Blood–Brain Barrier; CYP: Cytochrome-P; CL:
Clearance; T1/2: Half-life time. Symbols means 0–0.1 (---), 0.1–0.3 (--), 0.3–0.5 (-),0.7–0.9 (++) e 0.9–1.0 (+++); •:
Non-toxic; •: high possibility of toxic activity.

Table 5. Possible routes of α-pinene toxicity.

Property Value Decision

Androgen receptor --- •
Androgen receptor ligand-binding domain --- •

Aryl hydrocarbon receptor --- •
NR-Aromatase --- •

Estrogen receptor --- •
Estrogen receptor ligand-binding domain + •

Peroxisome proliferator-activated receptor gamma --- •
Antioxidant response element --- •

ATPase family AAA domain-containing protein 5 --- •
Heat shock factor response element 0.032 •
Mitochondrial membrane potential 0.082 •

• and (---): Non-toxic feature; • and (+): Not very relevant value.

4. Discussion

The chemical composition results are supported by several scientific studies that ana-
lyzed the essential oil of V. curassavica. It was identified that α-pinene and β-caryophyllene
are the major phytochemicals in this oil, with percentages ranging from 56.69–25.32% and
21.78–12.52%, respectively [16,19,26–28]. However, different results were observed in which
sesquiterpenes are predominant, with β-caryophyllene comprising 25.4–23.26% [29,30] and
shyobunol with 27.46–24.24% of the total oil percentage [31].

Variations in the quantity and volatile components of essential oils can be explained
by multiple biotic and abiotic factors, such as plant age [28], season and location [27],
herbivory [32], and collection during different seasons [14]. Additionally, alterations in
phytochemicals may occur due to different essential oil extraction techniques, as observed in
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hydrodistillation and microwave extraction methods [31,33]. Changes in phytoconstituents
can directly influence the biological activity of the essential oil.

Previous studies indicate that EOVC exhibits antimicrobial activity against parasites
that cause human diseases, with the potential to disrupt cell membrane integrity [16,19].
The antifungal activity of EOVC against C. albicans can be partially confirmed, since Farias
et al. [28] demonstrated an MIC of 1000 µg/mL. Rodrigues et al. [29] also identified the
MIC of 512 µg/mL for standard strains of C. albicans 40006 and C. krusei 653, concluding
that EOVC exhibits fungistatic activity.

Terpenoid compounds such as α-pinene have been shown to possess antibacterial,
antifungal, anti-Leishmania, anti-inflammatory, antioxidant, neuroprotective, and antitu-
mor properties [34–37]. In tests against fungi, α-pinene has been demonstrated to cause
organelle damage, induce oxidative stress [38], interrupt enzyme production and biofilm
formation, and interfere with fungal membranes [39], specifically by disrupting permeabil-
ity through binding to ergosterol [40].

Multiple studies demonstrate the anti-Candida potential of α-pinene. The Minimum
Fungicidal Concentration (MFC) values range from 2 to 4 mg/mL for different strains of
C. albicans [41], and the MIC ranges from 64 to 128 µg/mL. Additionally, α-pinene can be
combined with other antifungal agents, such as boric acid and polyene compounds [42,43].
When tested on 15 strains of C. albicans, the MIC values reach 268.13 mg/L [44].

β-caryophyllene is another interesting compound due to its biological activities, in-
cluding antimicrobial action and the ability to disrupt biofilms by penetrating this protective
resistance mechanism [3,45]. Its potential as an antifungal agent has also been evaluated,
showing low MIC values [46,47]. When tested against Candida strains, β-caryophyllene
affects fungal virulence mechanisms [48]. It can be suggested that β-caryophyllene might
contribute to synergism with fluconazole, like the synergism observed with other drugs
such as ketoconazole [49].

Considering the biological activities of α-pinene, it is also important to investigate
its toxic potential. Cytotoxic analyses of α-pinene in fibroblasts [50] and human ker-
atinocytes [42] did not identify any toxic effects. Similarly, toxicity studies using the
Zebrafish (Danio rerio, Hamilton) model indicated a median lethal concentration (LC50) of
441.360 mg/L [51], which is considered non-toxic as high concentrations are required to
achieve toxicity. These results corroborate previous in silico analyses of α-pinene, which
indicated milder toxicological effects allowing safer applications [52].

Furthermore, in silico predictions indicate that α-pinene exhibits high rates of BBB
penetration. In vivo assays in mice show that inhalation of α-pinene results in significant
transport to the brain [53]. Conversely, it has been demonstrated to have a neuroprotective
effect by modulating the expression of anti-inflammatory genes, thereby attenuating neu-
roinflammation, and potentially restoring BBB function in rats [54,55]. Additionally, in vivo
models reveal that α-pinene is not a substrate for permeability glycoprotein (Pgp) [56].

5. Conclusions

The essential oil of Varronia curassavica leaves is mainly composed of monoterpene and
sesquiterpene hydrocarbons, mainly α-pinene and β-caryophyllene. Assays carried out
with the essential oil showed the presence of significant antifungal activity against strains
of Candida albicans and Candida tropicalis, revealing potential for possible applications. In
addition, a remarkably potentiation of the antifungal action of fluconazole against different
strains of Candida was observed, indicating possible use as an adjuvant in the treatment
of fungal infections. The in silico prediction shows that α-pinene has safe characteristics
for relevant clinical applications as an anti-Candida agent. However, further research is
needed to evaluate the synergistic antifungal action of the major constituents, α-pinene
and β-caryophyllene, as well as in vivo toxicity evaluation, in order to establish the safety
of using this natural product.
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