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Abstract: Stroke is a major cause of death worldwide, resulting from a blockage in the flow of
blood to different parts of the brain. Many studies have proposed a stroke disease prediction model
using medical features applied to deep learning (DL) algorithms to reduce its occurrence. However,
these studies pay less attention to the predictors (both demographic and behavioural). Our study
considers interpretability, robustness, and generalisation as key themes for deploying algorithms
in the medical domain. Based on this background, we propose the use of random forest for stroke
incidence prediction. Results from our experiment showed that random forest (RF) outperformed
decision tree (DT) and logistic regression (LR) with a macro F1 score of 94%. Our findings indicated
age and body mass index (BMI) as the most significant predictors of stroke disease incidence.

Keywords: stroke; data mining; machine learning; random forest; logistic regression; decision tree;
classification algorithm

1. Introduction

Cardiovascular disease (CD) is a leading cause of mortality worldwide. In 2019, the
World Health Organisation (WHO) reported that CD is responsible for 17.9 million deaths
annually, accounting for 32% of all global deaths. Stroke is a significant contributor to
cardiovascular disease-related mortality worldwide. Stroke disease accounts for 11% of
recorded deaths globally and is the second leading cause of death [1]. Approximately one
out of every 20 adults aged 14 and above may be affected by stroke disease [2]. However, the
death rate due to stroke varies significantly between countries, with low-income countries
experiencing a higher death rate [3]. Stroke disease is a major chronic disability that mainly
affects the elderly population of 50 years and older. It is also one of the leading causes of
dementia and can result in death if not properly handled [4].

Stroke disease has been extensively studied over time, and its impact has been doc-
umented in various studies across the globe. The authors in [5] performed an epidemio-
logical study of stroke disease, mortality, incidence, prevalence, long-term outcome, and
cost, which were identified as the different dimensions of stroke burden. Stroke treatment
accounts for 2–4% of healthcare expenditure, and this proportion rises to 4% in developed
countries. Stroke is the second-most common cause of death worldwide, resulting in the
loss of five million lives annually. The death rate due to stroke ranges from 10–12% in
western countries, with the average age of victims being around 65 years. Stroke is a critical
medical condition that demands immediate medical attention. Thus, early detection and
proper management are crucial to minimising stroke deaths. This has spurred researchers
in the medical and IT fields to develop sophisticated stroke prediction models to prevent
their prevalence and reduce their occurrence.

Recently, deep learning algorithms have shown good performances [6–9]. However,
in the clinical and medical domains, the significance of predictors is vital for medical
practitioners to understand how the predictors have contributed to the stroke disease
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prediction model. This is difficult to achieve with deep learning algorithms as they are
black-box models that are complex to interpret by humans. To this end, we propose the
use of random forest for stroke disease prediction. The random forest algorithm has been
known for its high accuracy in predicting diseases in medical research [10]. Random
forest is easy to interpret, fast to train and scale, performs well in complex datasets, and
is robust to irrelevant features [11–13]. Thus, our main aim is to conduct an experimental
comparison of interpretable and robust models for stroke disease prediction. In addition,
we will explore the demographic attributes of stroke disease patients to gain in-depth
insight. Ultimately, we will make recommendations for stroke disease prevention. The
rest of the paper is organised as follows: Section 2 will discuss the literature reviewed
to provide background knowledge for this study. Section 3 will formulate the research
methodology. Section 4 will present and discuss the results, and Section 5 will present our
recommendations and conclusion.

2. Related Work

Amini et al. [14] collected 807 records of healthy and unhealthy subjects with fifty
stroke risk factors, such as hyperlipidemia, alcohol intake, and diabetic status, to predict
stroke incidence. Their results showed k-nearest neighbour (KNN) and decision tree (DT)
performed well with 94% and 95% accuracy, respectively. The authors in [15] compared
machine learning approaches, including artificial neural networks (ANN), boosting and
bagging, support vector machines (SVM), and random forest (RF), using a dataset of
507 patient records. Similarly, Ref. [16] employed ANN to predict ischemic stroke prognosis.
They used 82 diagnosed ischemic stroke patients’ records and achieved an accuracy of 95%.
An automated system that could detect ischemic stroke in the early stages was developed
in the study of Chin et al. [17] using convolutional neural networks (CNN). The system
processed CT images of the brain by removing regions that were not related to the stroke
area, then selected patch images and increased them using data augmentation methods.
CNN was chosen because of its proven ability to recognise ischemic stroke, and it was
trained and tested on 256 patched images. They showed that their model achieved an
accuracy of 90%.

In Korea, Cheon et al. [18] used principal component analysis (PCA) to extract per-
tinent features and employed deep neural networks (DNN) as their classification algo-
rithm. They used medical service utilisation and health behaviour data (which consists of
15,099 observations). They showed that their approach achieved an area under the curve
(AUC) value of 83%. Singh et al. [19] utilised 3,577 acute ischemic stroke patients’ records
to develop a stroke severity index with a linear regression model and achieved an accuracy
of 95%. Kansadub et al. [20] compared Naïve Bayes (NB), DT, and neural networks (NN).
Their result showed that DT achieved the highest accuracy of 75%. However, NN was
deemed the most effective approach due to its high false positive rate (FP) and low false neg-
ative rate (FN). A predictive model for mortality in stroke patients was developed in [21],
using a multilayer perceptron (MLP) with six layers. The authors analysed 584 stroke
patient records and used MLP to train six neural networks with different prognostic factors
such as sex, age, and hypertension. They employed the receiver operating characteristic
curve (ROC) to evaluate the performance of MLP and found that quick propagation was the
best algorithm with 80.7% accuracy. The ischemic stroke prediction model was developed
by [22]. They compared nine classification methods, including random forest, Generalised
Linear Model, and CNN. They used a dataset of 37 multiparametric ischemic stroke patients
to compare the accuracy of the nine classification methods and found that random forest
and CNN had the highest accuracy. Adam et al. [23] applied DT and KNN to 400 ischemic
stroke patient records from different Sudanese hospitals. They showed that DT performed
significantly better than KNN.

The effectiveness of long-short-term memory (LSTM) for pattern recognition in the
multi-label classification of cerebrovascular (stroke) disease was presented in [24]. They
obtained a dataset (326,152 observations) from the Department of Medical Service in
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Thailand. In their study, they compared back propagation neural networks, recurrent
neural networks (RNN), and long-short-term recurrent neural networks (LSTM-RNN).
The LSTM-RNN model achieved the highest accuracy of 92.79%, while Back Propagation
and RNN achieved accuracy rates of 89.12% and 88.28%, respectively. In summary, many
studies have deployed several approaches, including deep learning and hybrid algorithms.
The approaches have shown good performances [6–8]. However, the majority of studies
focused on achieving great performances. We argue that interpretability, generalisation, and
robustness are important factors in deploying algorithms in clinical and medical domains.
This is because practitioners want adequate knowledge and understanding of the predictors
that contribute to the stroke disease prediction model. A model that performs well yet
can be easily interpreted is considered. Based on this background, our literature review
findings suggest three ML algorithms: logistic regression, decision tree, and random forest.
In the next section, these algorithms will be discussed further.

3. Methodology

We propose the use of random forest for stroke disease prediction. We performed an
experimental comparison of three machine learning algorithms, namely, logistic regression,
decision tree, and random forest. We chose the decision tree (DT) as our baseline model.
This is because DT has shown great performance in previous studies. Subsequent sections
will therefore provide details of the algorithms.

3.1. Machine Learning Algorithms

Machine learning algorithms fall into two main categories: supervised learning and
unsupervised learning methods [25]. Supervised learning involves training the model
with a subset of the data and testing it on the remaining data to make predictions for new
datasets. While unsupervised learning does not require supervision (no labelled dataset is
required), For this task, we will focus on supervised machine learning algorithms.

3.2. Logistic Regression

Logistic regression is a technique that builds on the foundation of linear regression.
Linear regression is a statistical tool that establishes a relationship between a dependent
variable (Y) and one or more independent variables (Xi). This relationship is represented
by an equation in the form of

Y = β0 + ∑k
i βiXi+ε (1)

where β0 is the intercept, βi are the slopes, Xi are the independent variables, and ε is the
error term.

Therefore, the equation for logistic regression, represented as

log
p

1− p
= β0 + ∑k

i βiXi (2)

where p is given as:

p =
e∝+βiXi

1 + e∝+βiXi
(3)

allows for the measurement of the probability (p) that the dependent variable (Y) is
independent of the predictor variable (X), with coefficients β0, β1, β2, . . . βi reflecting the
influence of X. Unlike linear regression, logistic regression accommodates both linear
and nonlinear relationships between variables, whether categorical or continuous, and
produces binary results. Figure 1 below shows the sigmoid function in logistic regression.
The sigmoid shape of its graph can capture linearity, near linearity, and non-linearity.
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3.3. Decision Tree Algorithm

DT is a type of supervised machine learning algorithm that is widely used for analysing
multiple variables. It is characterised by its ability to split data into segments or branches.
The branches of the decision tree are organised in an upward direction, with the topmost
branch representing the outcome. DT has several variants, which include ID3, CART, and
CHAID [26]. To obtain DT, Set S is selected as the root node. With each iteration, the
unused attributes of S, entropy (H), and Information Gain (IG) are calculated to determine
the branches. The Entropy of the set S is given by

Entropy(S) = ∑c
i=1 Pilog2pi (4)

where Pi is the sample number of the subset and the ith attribute value.
The IG is represented by the function Gain(S,A) with respect to the Entropy and is

defines as

Gain(S, A) = ∑V∈V(A)

|SV |
|S| Entropy(SV) (5)

where the range of attribute A is V(A), and SV is the subset of set S, equal to the attribute value
of attribute v [26]. An illustration of the decision tree algorithm is shown in Figure 2 below.
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3.4. Random Forest

RF is a classification model that integrates multiple tree classifiers. Each tree classifier
is created by independently sampling a random vector from the input vector. The classi-
fication of an input vector is determined by the collective vote of each tree, selecting the
class that receives the highest number of votes [27–30].

The random forest predictor comprises M randomised regression tree.
Considering the jth tree in a cluster of trees, the predicted value at every query point

x is denoted by mn(x;∅j, ∂n), where ∅1 . . . . . . ,∅m are the independent random variables
and ∂n is the training variable [29].

The jth tree estimate is given by

mn
(
x;∅j, ∂n

)
= ∑i∈∂n(∅j)

1Xi∈An(x;∅j ,∂n)
Y1

Nn(x;∅j, ∂n)
(6)

where ∂∗n(∅j) is the set of selected data points before tree construction.
An(x;∅j, ∂n)

Y1 is the cell containing x and Nn(x;∅j, ∂n) is the number of points se-
lected before tree construction that fall into An(x;∅j, ∂n)

Y1 . The finite forest estimate as a
result of the combination of trees is then represented as

mM,n(x;∅1 . . . . . .∅m, ∂n) =
1
M∑m

j=1 mn(x;∅j, ∂n) (7)

where M can be any size but is limited to computing resources. Figure 3 below provides a
representation of the random forest classification, showing the training and classification
phases, respectively.
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3.5. Dataset

Our study utilised a dataset obtained from the Kaggle repository consisting of health
records collected from various hospitals in Bangladesh by a team of researchers for aca-
demic purposes. The data is publicly accessible via https://www.kaggle.com/datasets/
fedesoriano/stroke-prediction-dataset (accessed on 15 April 2022). The dataset consists
of data from 5110 patients, encompassing ten key attributes that will play a crucial role
in the analysis and prediction within this project. These attributes encompass age, sex,
hypertension, work type, heart disease, average glucose level, body mass index (BMI),

https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset
https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset
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marital status, smoking status, and the occurrence of a previous stroke for each patient.
The variables of the dataset and their coding scheme are shown below:

• Sex: This is the sex of the patient: “Male”, “Female” or “Other”.
• Age: age of the patient.
• Hypertension: 0 if the patient doesn’t have hypertension; 1 if the patient has hypertension.
• Heart_Disease: 0 if the patient doesn’t have any heart diseases, 1 if the patient has a

heart disease.
• Ever_Married: “No” or “Yes”.
• Work_Type: “children”, “Govt_jov”, “Never_worked”, “Private” or “Self-employed”.
• Residence_Type: “Rural” or “Urban”
• Avg_Glucose_Level: average glucose level in blood
• BMI: body mass index of the patients
• Smoking_Status: The smoking status of the patients: “formerly smoked”, “never

smoked”, “smokes” or “Unknown”.

The dataset was pre-processed before training ML algorithms. The wrangled data can be
accessed via: https://github.com/fmspecial/Stroke_Prediction/blob/master/Stroke_dataset.csv.

3.6. Evaluation Metrics

To evaluate the prediction results of the random forest model with other models used in
this work, such as Logistic regression and DT, different measures such as Accuracy, Precision,
Recall, and F1-score were used. The formulas to calculate the values are shown below:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

F1-score =
2TP

2TP + FP + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

where TP = True positive, TN = True Negative, FP = False Positive, and FN = False
Negative [25,32,33].

4. Result

This section presents our results from the exploratory data analysis and the experi-
mental comparison of the classification algorithms.

4.1. Exploratory Data Analysis (EDA)

The data description shows that the proportion of stroke incidence classes is clearly
underrepresented, resulting in an imbalance in the dataset, with 95% of the dataset showing
no stroke incidence. This can pose a challenge for machine learning algorithms when
managing this kind of data [25,34]. As seen in Figure 4 below, a large portion of the “no
stroke” data points are not situated near the boundary line.

To address this issue, we oversampled the minority class (i.e., the stroke class). We em-
ployed the synthetic minority oversampling technique (SMOTE) for this purpose. SMOTE
has been shown to be a reliable rebalancing technique [25,34]. The approach increased
the sample size from 5110 to 9722, with the “stroke” class accounting for nearly 50% of
the target class. We investigated variables such as age, BMI, and average glucose level for
correlation, as shown in Figure 5 below. The correlation matrix reveals a low correlation of
0.17 between average glucose level and BMI. Similarly, age and average glucose level have
a slightly low correlation coefficient of 0.24, while age and BMI have the highest correlation

https://github.com/fmspecial/Stroke_Prediction/blob/master/Stroke_dataset.csv
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coefficient of 0.33. However, the strength-of-association of features is significantly low;
hence, it does not impact the prediction, as demonstrated by the correlation matrix.
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The likelihood of stroke disease, based on the 10 attributes used in the study and the
results, is discussed in the sections below.

The result from Table 1 shows a slightly higher chance of stroke disease in men com-
pared with women. Patients with hypertension and heart disease also stand a significantly
higher chance of stroke compared with patients without the underlying condition.

Table 1. Stroke disease based on sex and underlying conditions.

Attribute Category Chance of Stroke Pr(s)

Sex
Male 0.052

Female 0.048

Hypertension
Non-Hypertensive Patients 0.04

Hypertensive Patients 0.18

Heart Disease
Yes 0.18

No 0.04



Analytics 2023, 2 611

From Table 2 above, we deduce that the chance of stroke is significantly higher with
the older population, not really affected by BMI values but the chances are highest with
BMI > 40. It is significant with the glucose level as it shows a 100% chance with AGL
between 270–230.

Table 2. Likelihood of stroke vs. age and lifestyle.

Attribute Category Chance of Stroke Pr(s)

Age

25 0.0025

25–50 0.005

50–75 0.075

75–100 0.2

BMI

<20 0.032

20–25 0.072

25–30 0.056

30–35 0.046

>40 0.08

Average Glucose level

30–90 0.20

90–150 0.20

150–210 0.60

210–270 0.80

270–230 1.00

The results in Table 3 above show that marriage is not significant in predicting stroke;
however, married people are at a higher risk. Work type, resident type, and smoking
status also have less significance, but having formerly smoked can increase your chances of
developing the disease.

Table 3. Chances of stroke vs. social status.

Attribute Category Chance of Stroke Pr(s)

Marriage
Ever Married 0.07

Never married 0.018

Work Type

Private 0.05

Self-Employed 0.08

Govt Job 0.05

Children 0.005

Resident Type
Urban 0.052

Rural 0.046

Smoking Status

Formerly Smoked 0.078

Never smoked 0.046

Smokes 0.052

Unknown 0.03

4.2. Classification Results

We split the dataset into a 70% training set, a 15% testing set, and a 15% validation set. The
performance of the models was evaluated based on their ability to accurately identify stroke
patients. The false-positive group includes patients who were incorrectly classified as stroke
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patients, while the false-negative group includes patients who were incorrectly classified
as non-stroke patients. The true positive group comprises patients who were accurately
identified as stroke patients, while the true negative group encompasses patients who were
correctly identified as non-stroke patients. A confusion matrix is typically used to display
these four groups and assess the classification accuracy of the different algorithms, with the
size of each group compared with the overall dataset. This section will discuss the findings of
the research using both the confusion matrix and the ROC curve. In the figures below, the
class “true” represents stroke patients, while “false” represents non-stroke patients.

4.2.1. Logistic Regression

Figure 6 below shows the logistic regression classifier was able to correctly identify
692 (47.43%) of the dataset as non-stroke patients and 642 (44%) as stroke patients. The
false-positive group only accounted for 2.6% (38) of the dataset, while the false-negative
group accounted for 5.96% (87).
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4.2.2. Decision Tree

Figure 7 shows the performance of the decision tree classifier in identifying stroke
patients. The results show that 44% (642) of the dataset were accurately identified as stroke
patients, while 44.83% (654) were identified as non-stroke patients. The false positive group
constitutes 5.12% (76), and the false negative group constitutes 5.96%.
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4.2.3. Random Forest

Figure 8 below indicates that the random forest classifier achieved precise classification
results, accurately identifying 46.61% (680) of patients as non-stroke and 47.50% (693) as stroke
patients. Nonetheless, there were instances where misclassification occurred, with 3.43% (50)
of non-stroke patients and 2.47% (36) of stroke patients being classified incorrectly.
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4.3. Model Accuracy

The results displayed in Figure 9 below indicate that among the three algorithms,
random forest has the highest level of accuracy, followed by logistic regression. It is worth
stating that in terms of accuracy, DT showed the lowest performance.
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4.4. Predictor Importance

We further explore the importance of the predictors in the random forest classifier.
From Figure 10 below, we deduce that the importance plot evidences that all variables
used in our model are of great importance to having a good prediction model in terms of
performance. However, it is worth stating that the plot indicated age and body mass index
(BMI) as the two most important predictors in our stroke incidence prediction model.
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Figure 10. Chart showing feature importance.

The ROC curves displayed in Figure 11 indicate a smooth plot for all three algorithms,
with a sharp increase in the TPR/FPR ratio, which relates to a good predictive outcome.
The line of discrimination above the straight line suggests a high level of predictability for
all the algorithms, with random forest providing the highest predictive accuracy with a
value close to 1(0.979). This is also evidenced in Table 4 below.
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Table 4. Evaluation report of the ML algorithms.

Machine Learning
Algorithms

Accuracy
(%)

Precision
(%)

Recall
(%)

Macro F1-Score
(%)

Random Forest 94.11 93.27 95.06 94.16
Logistic Regression 91.43 94.41 88.06 91.12

Decision Tree 88.83 89.41 88.07 88.73

These AUC values indicate that all three classifiers have a high probability of distin-
guishing between negative and positive [32].
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4.5. Model Classification Result

As depicted in Table 4 above, the random forest algorithm achieved the highest accuracy
of 94.11%, followed by logistic regression with an accuracy rate of 91.43%. On the other hand,
decision tree had the lowest accuracy rate of 88.83%. It is noteworthy that while logistic
regression exhibited superior precision strength compared with both random forest and
decision tree, random forest outperformed both algorithms in terms of recall and sensitivity.
Therefore, random forest was ultimately chosen as the most effective machine learning
algorithm among the three utilised in this study. Evaluation of the algorithm’s effectiveness
revealed that the random forest algorithm surpassed the other two algorithms, attaining an
impressive accuracy of 94.11%, compared with decision tree and logistic regression, which had
an accuracy of 91.43% and 88.83%, respectively. Most importantly, the F1 score demonstrates
a balance between precision and recall. Again, random forest achieved the best macro F1-
score of 94%. Thus, our result is consistent with the study [26,28–31] that showed RF as an
off-the-shelf model specifically in the medical domain, where feature importance is significant
in terms of interoperability (to patients). Thus, the random forest algorithm was deemed the
best predictor for the incidence of stroke.

5. Conclusions

In this paper, we aim to develop a stroke disease prediction model and examine the
risk factors for stroke disease. To this end, we compared three ML algorithms (LR, DT, and
RF) applied to the Bangladesh health dataset (5110 observations). The dataset used for the
analysis was imbalanced, and thus, we used the synthetic minority over-sampling technique
(SMOTE) to rebalance the dataset to obtain a result that is generalizable. Our results showed
random forest outperformed other models with a macro F1 score of 94%. Furthermore,
our findings suggest age and body mass index (BMI) are the leading significant predictors
of stroke incidence. Thus, our main contributions can be summarised as follows: We
demonstrated the use of random forest (RF) as a SOTA method to predict stroke incidence.
We conducted an experimental comparison of interpretable and robust ML algorithms. We
provided a comprehensive methodology that is generalizable and robust for stroke disease
prediction. In practise, our study is useful to medical practitioners for predicting stroke
incidence at an early stage. Also, we demonstrated a workflow that is useful for hospitals
to implement as an automated system for early-stage stroke incidence prediction.

In theory, we argued that models that are less complex and precise are beneficial in the
medical domain. This is because it provides better results in terms of interpretability. We
discussed why techniques that detect the coefficients of predictors are also important in this
context. This is because it helps provide background knowledge to improve the predictive
power of stroke incidence prediction models. For future work, it is advisable to explore
supplementary machine learning algorithms in conjunction with deep learning-based
imaging techniques like magnetic resonance imaging (MRI) and computerised tomography
(CT) scans. Furthermore, future work can also explore the use of hybrid approaches. For
example, the use of XGBoost as an optimised model by assembling learning algorithms
such as decision tree and random forest. It is worth stating that our study is limited to
Bangladeshi health records. Thus, future work can reproduce our approach and compare it
to datasets from different countries.

Author Contributions: Conceptualization, O.Z., O.S. and B.O.; methodology, software, valida-
tion, formal analysis, investigation, resources data curation, writing—original draft preparation,
writing—review and editing, O.S., O.Z., B.O. and M.O.O.; visualization, supervision, O.S. and B.O.;
project administration, B.O., M.O.O. and O.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Analytics 2023, 2 616

Data Availability Statement: The dataset used in this work is available on Kaggle and GitHub
repository https://github.com/fmspecial/Stroke_Prediction/blob/master/Stroke_dataset.csv and
the code https://github.com/fmspecial/Stroke_Prediction.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. WHO. World Health Organisation. 9 December 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/

the-top-10-causes-of-death (accessed on 4 June 2023).
2. Mathers, C.D.; Lopez, A.D.; Murray, C.J. The burden of disease and mortality by condition: Data, methods, and results for 2001.

In Global Burden of Disease and Risk Factors; Oxford University Press: New York, NY, USA; The World Bank: Washington, DC, USA,
2006; Volume 45.

3. Rothwell, P.M.; Coull, A.J.; Silver, L.E.; Fairhead, J.F.; Giles, M.F.; Lovelock, C.E.; Redgrave, J.N.E.; Bull, L.M.; Welch, S.J.V.;
Cuthbertson, F.C.; et al. Population-based study of event-rate, incidence, case fatality, and mortality for all acute vascular events
in all arterial territories (Oxford Vascular Study). Lancet 2005, 366, 1773–1783. [CrossRef] [PubMed]

4. Roger, V.L.; Go, A.S.; Lloyd-Jones, D.M.; Adams, R.J.; Berry, J.D.; Brown, T.M.; Carnethon, M.R.; Dai, S.; De Simone, G.; Ford, E.S.; et al.
Heart disease and stroke statistics—2011 update: A report from the American Heart Association. Circulation 2011, 123, e18–e209.
[CrossRef] [PubMed]

5. Warlow, C.P. Epidemiology of stroke. Lancet 1998, 352, S1–S4. [CrossRef]
6. Dev, S.; Wang, H.; Nwosu, C.S.; Jain, N.; Veeravalli, B.; John, D. A predictive analytics approach for stroke prediction using

machine learning and neural networks. Healthc. Anal. 2022, 2, 100032. [CrossRef]
7. Elbagoury, B.M.; Vladareanu, L.; Vlădăreanu, V.; Salem, A.B.; Travediu, A.M.; Roushdy, M.I.A. Hybrid Stacked CNN and Residual

Feedback GMDH-LSTM Deep Learning Model for Stroke Prediction Applied on Mobile AI Smart Hospital Platform. Sensors
2023, 23, 3500. [CrossRef]

8. Kaur, M.; Sakhare, S.R.; Wanjale, K.; Akter, F. Early stroke prediction methods for prevention of strokes. Behav. Neurol. 2022, 2022,
7725597. [CrossRef] [PubMed]

9. Thanka, M.R.; Ram, K.S.; Gandu, S.P.; Edwin, E.B.; Ebenezer, V.; Joy, P. Comparing Resampling Techniques in Stroke Prediction
with Machine and Deep Learning. In Proceedings of the 2023 International Conference on Sustainable Computing and Smart
Systems (ICSCSS), Coimbatore, India, 14–16 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1415–1420.

10. Huang, R.; Liu, J.; Wan, T.K.; Siriwanna, D.; Woo, Y.M.P.; Vodencarevic, A.; Chan, K.H.K. Stroke mortality prediction based on
ensemble learning and the combination of structured and textual data. Comput. Biol. Med. 2023, 155, 106176. [CrossRef]

11. Cao, M.; Yin, D.; Zhong, Y.; Lv, Y.; Lu, L. Detection of geochemical anomalies related to mineralization using the Random Forest
model optimized by the Competitive Mechanism and Beetle Antennae Search. J. Geochem. Explor. 2023, 249, 107195. [CrossRef]

12. Dinh, T.P.; Pham-Quoc, C.; Thinh, T.N.; Do Nguyen, B.K.; Kha, P.C. A flexible and efficient FPGA-based random forest architecture
for IoT applications. Internet Things 2023, 22, 100813. [CrossRef]

13. Koohmishi, M.; Azarhoosh, A.; Naderpour, H. Assessing the key factors affecting the substructure of ballast-less railway track
under moving load using a double-beam model and random forest method. Structures 2023, 55, 1388–1405. [CrossRef]

14. Amini, L.; Azarpazhouh, R.; Farzadfar, M.T.; Mousavi, S.A.; Jazaieri, F.; Khorvash, F.; Norouzi, R.; Toghianfar, N. Prediction and
control of stroke by data mining. Int. J. Prev. Med. 2013, 4 (Suppl. S2), S245.

15. Govindarajan, P.; Soundarapandian, R.K.; Gandomi, A.H.; Patan, R.; Jayaraman, P.; Manikandan, R. Classification of stroke
disease using machine learning algorithms. Neural Comput. Appl. 2020, 32, 817–828. [CrossRef]

16. Zhang, S.; Li, X.; Zong, M.; Zhu, X.; Cheng, D. Learning k for knn classification. ACM Trans. Intell. Syst. Technol. 2017, 8, 1–19.
[CrossRef]

17. Chin, C.L.; Lin, B.J.; Wu, G.R.; Weng, T.C.; Yang, C.S.; Su, R.C.; Pan, Y.J. An automated early ischemic stroke detection system
using CNN deep learning algorithm. In Proceedings of the 2017 IEEE 8th International Conference on Awareness Science and
Technology (iCAST), Taichung, Taiwan, 8–10 November 2017.

18. Cheon, S.; Kim, J.; Lim, J. The use of deep learning to predict stroke patient mortality. Int. J. Environ. Res. Public Health 2019, 16, 1876.
[CrossRef]

19. Singh, M.S.; Choudhary, P.; Thongam, K. A comparative analysis for various stroke prediction techniques. In Proceedings of the
Computer Vision and Image Processing: 4th International Conference, CVIP 2019, Jaipur, India, 27–29 September 2019; Revised
Selected Papers, Part II. 2020.

20. Kansadub, T.; Thammaboosadee, S.; Kiattisin, S.; Jalayondeja, C. Stroke risk prediction model based on demographic data.
In Proceedings of the 2015 IEEE 8th Biomedical Engineering International Conference (BMEiCON), Pattaya, Thailand, 25–27
November 2015.

21. Süt, N.; Çelik, Y. Prediction of mortality in stroke patients using multilayer perceptron neural networks. Turk. J. Med. Sci. 2012, 42,
886–893. [CrossRef]

22. Maier, O.; Schröder, C.; Forkert, N.D.; Martinetz, T.; Handels, H. Classifiers for ischemic stroke lesion segmentation: A comparison
study. PLoS ONE 2015, 10, e0145118. [CrossRef] [PubMed]

https://github.com/fmspecial/Stroke_Prediction/blob/master/Stroke_dataset.csv
https://github.com/fmspecial/Stroke_Prediction
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://doi.org/10.1016/S0140-6736(05)67702-1
https://www.ncbi.nlm.nih.gov/pubmed/16298214
https://doi.org/10.1161/CIR.0b013e3182009701
https://www.ncbi.nlm.nih.gov/pubmed/21160056
https://doi.org/10.1016/S0140-6736(98)90086-1
https://doi.org/10.1016/j.health.2022.100032
https://doi.org/10.3390/s23073500
https://doi.org/10.1155/2022/7725597
https://www.ncbi.nlm.nih.gov/pubmed/35449792
https://doi.org/10.1016/j.compbiomed.2022.106176
https://doi.org/10.1016/j.gexplo.2023.107195
https://doi.org/10.1016/j.iot.2023.100813
https://doi.org/10.1016/j.istruc.2023.06.027
https://doi.org/10.1007/s00521-019-04041-y
https://doi.org/10.1145/2990508
https://doi.org/10.3390/ijerph16111876
https://doi.org/10.3906/sag-1105-20
https://doi.org/10.1371/journal.pone.0145118
https://www.ncbi.nlm.nih.gov/pubmed/26672989


Analytics 2023, 2 617

23. Adam, S.Y.; Yousif, A.; Bashir, M.B. Classification of ischemic stroke using machine learning algorithms. Int. J. Comput. Appl.
2016, 149, 26–31.

24. Chantamit-O.-Pas, P.; Goyal, M. Long short-term memory recurrent neural network for stroke prediction. In Proceedings of the
Machine Learning and Data Mining in Pattern Recognition: 14th International Conference, MLDM 2018, New York, NY, USA,
15–19 July 2018; Proceedings, Part I. 2018.

25. Ogunleye, B.O. Statistical Learning Approaches to Sentiment Analysis in the Nigerian Banking Context. Ph.D. Thesis, Sheffield
Hallam University, Sheffield, UK, 2021.

26. Charbuty, B.; Abdulazeez, A. Classification based on decision tree algorithm for machine learning. J. Appl. Sci. Technol. Trends
2021, 2, 20–28. [CrossRef]

27. Akbar, W.; Wu, W.P.; Faheem, M.; Saleem, S.; Javed, A.; Saleem, M.A. Predictive analytics model based on multiclass classification
for asthma severity by using random forest algorithm. In Proceedings of the 2020 International Conference on Electrical,
Communication, and Computer Engineering (ICECCE), Istanbul, Turkey, 12–13 June 2020.

28. Biau, G.; Scornet, E. A random forest guided tour. TEST 2016, 25, 197–227. [CrossRef]
29. Sarica, A.; Cerasa, A.; Quattrone, A. Random Forest Algorithm for the Classification of Neuroimaging Data in Alzheimer’s

Disease: A Systematic Review. Front. Aging Neurosci. 2017, 9, 329. [CrossRef]
30. Shanthakumari, R.; Nalini, C.; Vinothkumar, S.; Roopadevi, E.M.; Govindaraj, B. Multi Disease Prediction System using Random

Forest Algorithm in Healthcare System. In Proceedings of the 2022 International Mobile and Embedded Technology Conference
(MECON), Noida, India, 10–11 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 242–247.
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