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Simple Summary: Low fertility rates in high-yielding cows have been reported for many years. Due
to its impact on animal welfare, this topic is relevant to the dairy industry, veterinary medicine,
and consumers. This study was designed to apply a highly defined model to simulate complex
mechanisms that occur in the inner layer of the uterus (endometrium) during pregnancy recognition.
Samples were taken from animals with healthy uteri at the slaughterhouse and challenged in vitro.
The endometrial gene expression of selected target genes differed according to the differing concen-
trations of the challenging admixtures. The findings indicated that the bovine embryonic pregnancy
signal might compete with similar infection-associated signals for binding capacity at the receptor
level, which might be relevant to pregnancy outcomes. In conclusion, an endometrial explant model
was successfully applied to answer questions related to fertility in dairy cattle. According to the
3R principle (replacement, reduction, refinement), further studies could lead to new diagnostic and
therapeutic strategies for tackling subfertility in dairy cows without the need for animal experiments.

Abstract: The inadequate maternal recognition of embryonic interferon τ (IFNτ) might explain
subfertility in cattle. This study aimed at modeling the inducibility of type 1 interferon receptor
subunits 1/2 (IFNAR1/2), mimicking competition between IFNτ and infection-associated interferon
α (IFNα), and simulating type 1 interferon pathways in vitro. Endometrial explants (n = 728 from
n = 26 healthy uteri) were collected at the abattoir, challenged with IFNτ and/or IFNα in different
concentrations, and incubated for 24 h. Gene expression analysis confirmed the inducibility of
IFNAR1/2 within this model, it being most prominent in IFNAR2 with 10 ng/mL IFNα (p = 0.001).
The upregulation of interferon-induced GTP-binding protein (MX1, classical pathway) was higher in
explants treated with 300 ng/mL compared to 10 ng/mL IFNτ (p < 0.0001), whereas the non-classical
candidate fatty acid binding protein 3 (FABP3) exhibited significant downregulation comparing
300 ng/mL to 10 ng/mL IFNτ. The comparison of explants challenged with IFNτ + IFNα indicated
the competition of IFNτ and IFNα downstream of the regulatory factors. In conclusion, using
this well-defined explant model, interactions between infection-associated signals and IFNτ were
indicated. This model can be applied to verify these findings and to mimic and explore the embryo–
maternal contact zone in more detail.

Keywords: endometrial explant model; embryo–maternal communication; type 1 interferon signal-
ing; type 1 interferon receptor subunits 1/2 (IFNAR1/2); 3R principle; cattle; interferon τ; interferon
α; interferon stimulated gene (ISG); subfertility
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1. Introduction

Maintaining high fertility rates in dairy cowherds is a recurrent task for every farmer
and veterinarian. Inflammatory processes of the endometrium lead to subfertility in cows,
which might be due to inadequate maternal recognition of the embryonic signal, interferon
τ (IFNτ). The restocking rate because of fertility problems in cattle is currently 20% [1,2].
It has been reported in multiple studies that low fertility rates in cattle are associated
with classical postpartum diseases, such as mastitis [3], the retention of fetal membranes,
metritis, and endometritis typically caused by bacterial infections [4–7]. In the postpartum
period of 60–100 days, endometritis can still be present in a subclinical manner. As recently
reviewed by Wathes and coworkers [8], not only bacterial but also viral infections can
impact fertility parameters. Bovine herpes virus type-4 (BHV-4) and bovine viral diarrhea
virus (BVDV) have been associated with metritis and endometritis [9,10]. Schmallenberg
virus (SBV) and bluetongue virus (BTV) have been described to impact early embryonic
survival [11,12]. However, the mechanisms linking viral infections and bovine subfertility
remain to be investigated. It has been further reported that fertilization rates in dairy
cows are generally high, but the percentage of early pregnancy loss before implantation
is ~40% [13–15]. This could indicate the malfunctioning of embryo–maternal crosstalk.
Adequate maternal recognition, the transmission of early embryonic signals, and the
establishment of a suitable niche for the developing conceptus are indispensable [16,17].
IFNτ appears to be a key regulator of the fine-tuned maternal immunomodulation required
for pregnancy establishment. IFNτ and all other type 1 interferons bind to the type 1
interferon receptor, which is formed by two subunits [18]. After interferon binding, the
cell signal can be transmitted either via the classical pathway through the Janus-activated
kinase and signal transducer and activator of transcription (JAK-STAT), or via non-classical
pathways, such as phosphoinositide 3-kinase (PI3K) [19]. Both classical and non-classical
pathways are essential for a successful and specific tissue response to different interferon
stimuli, and this response is formed by classical and non-classical interferon-stimulated
genes (ISGs) [18].

In general, type 1 interferons, such as interferon α (IFNα), represent the first line
of defense against viral infections. Unlike the others, IFNτ is not upregulated by viral
infections [20], but has been described to have antibacterial activity in mice [21]. However,
the most important quality of IFNτ is its key role in maternal recognition of pregnancy. This
type 1 interferon inhibits pulsatile prostaglandin F-2 α release from the endometrium via
the downregulation of estrogen receptor 1 and the oxytocin receptor, thereby preventing
luteolysis of the corpus luteum and allowing pregnancy maintenance [22,23]. IFNτ further
induces the expression of ISGs within the reproductive tract [24–26]. The respective
proteins have immunomodulatory and metabolic functions and regulate growth and
angiogenesis [27]. Minor alterations in the secretome composition have been reported to
impair early pregnancy in cattle [28,29]. IFNτ is also known to have immunosuppressive
functions. Recent studies indicate that day-seven embryos secrete IFNτ and trigger an
anti-inflammatory response [30,31]. Exposure to paternal antigens occurs during embryo
implantation. The immunomodulation of the maternal contact zone is required to avoid
rejection, resorption, or expulsion of the conceptus [16,32]. Inflammatory processes can
disturb the direct and indirect immunomodulatory actions of IFNτ in the maternal system.
In the case of present viral infections, type 1 interferons other than IFNτ, such as IFNα,
might disturb embryo–maternal crosstalk via competitive signaling.

In this study, six target genes were selected to exemplarily simulate both the classical
and non-classical pathways of type 1 interferon signaling (Figure 1). In this regard, the
type 1 interferon receptor subunits 1 and 2 (IFNAR1 and IFNAR2) represent the top level
of the signaling pathways for type 1 interferons. The intermediate level is represented
by regulatory factors: the signal transducer and activator of transcription 1 (STAT1),
exemplarily for classical type 1 interferon signaling, and phosphoinositide 3-kinase (PI3K),
exemplarily for non-classical type 1 interferon signaling. At the basal level, interferon-
induced GTP-binding protein (MX1, earlier myxomatose resistance protein 1) was selected,
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as it is one of the most prominent classical ISGs [33–36]. Fatty acid-binding protein 3
(FABP3) was chosen as a promising candidate that represents the non-classical pathway in
bovine species in this study [37,38].
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Figure 1. Schematic illustration of selected target gene representatives. Type 1 interferon receptor subunit 1 (IFNAR1);
Type 1 interferon receptor subunit 2 (IFNAR2); signal transducer and activator of transcription 1 (STAT1); phosphoinositide
3-kinase (PI3K); interferon-stimulated gene (ISG); interferon-induced GTP-binding protein (MX1); fatty acid-binding protein
3 (FABP3).

Although many researchers have contributed work to this field, it remains unknown
why inflammatory conditions such as subclinical endometritis can lead to inadequate
embryo–maternal crosstalk. Therefore, the aim of this project was to apply a highly defined
endometrial explant model to achieve the following:

(a) Test the inducibility of type 1 interferon receptor subunits 1/2 (IFNAR1/2);
(b) Mimic a competitive situation between the embryonic signal IFNτ and other type 1

interferons (exemplarily IFNα) in the presence of progesterone (P4);
(c) Simulate exemplarily classical and non-classical type 1 interferon signaling pathways.

2. Materials and Methods
2.1. Donor Cows and Sample Criteria

Bovine uteri (n = 26) were collected at the local abattoir between May and October
2019. The breeds included Brown Swiss (n = 9), Simmental (n = 8), Holstein–Friesian (n = 6),
Red Holstein (n = 1), and unknown breed (n = 2). The age of the donor cows ranged from
2.6 to 13.3 years. A pre-selection of the uteri was made right after evisceration. The selected
organs were transferred to a separate room within the facility. A thorough adspectoral and
palpatory examination for pathological changes, such as increased fluctuation, hemorrhage,
mucosal lesions, and other anomalies, was then conducted. Only uteri that had not been
contaminated during the process of slaughter were used for sample collection. All uteri
that were selected for further sample collection were intact, symmetrical, and did not show
any obvious pathological alterations. Additionally, the attached ovaries had at least one
mature corpus luteum, indicating that the donor cow was in diestrus, and displayed no
signs of pathological alterations.

2.2. Sample Collection

All instruments and materials were sterile and for each uterus, a new set of instru-
ments and materials was applied. After cleaning and disinfecting the outer surface of the
uterus with water and 70% ethanol, the uterine lumen ipsilateral to the mature corpus
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luteum was opened via a 2–3 cm longitudinal incision with a scalpel and forceps. The
intercaruncular endometrial surface was first swabbed (UNI-TER sterile swab with Amies
medium, Vacutest Kima s.r.l., Arzergrande, Italy), and then cytobrushed (Celltip Cytobrush,
Servoprax GmbH, Wesel, Germany) for further bacteriological and cytological examination.
The cut was extended along the uterine body up to the horn tip and the tissue margins
were pinned to an underlying styrofoam plate covered with tinfoil (Carl Roth, Karlsruhe,
Germany). To ensure a continuative and reproducible size of endometrial explants, a dis-
posable 5 mm biopsy punch (kai medical, Seki, Japan), precision forceps, and scissors were
used, adapted from the method described by Borges et al. [39]. After gently pressing the
biopsy punch through the intercaruncular endometrial and myometrial tissue, the explant
was held in position with precision forceps and dissected with scissors (see Figure S1a). The
obtained explants were placed in 60 mL sample vials (Thermo Fisher Scientific, Waltham,
MA, USA) containing approximately 40 mL Dulbecco´s phosphate-buffered saline (PBS,
Merck, Darmstadt, Germany) and stored on ice until further processing. From each donor
cow, n = 28 (n = 728 in total) endometrial explants were obtained for the endometrial
explant model. After sample collection had been completed, the uterus was separated from
the ovaries, oviducts, and their mesentery, including the mesometrium, to measure the
weight of the uterus. The time between the slaughter of the cow and the completion of
sampling was <90 min.

2.3. Bacteriological Examination

Obtained bacteriological swabs of each sampled uterus were applied to non-selective
Columbia Sheep Blood Agar, Streptococcus selective Edwards Agar, and Enterobacteriaceae
selective Violet Red Bile Agar, and incubated for 48 h at 37 ◦C. The agar plates were checked
for bacterial growth at 24 h and 48 h of incubation.

2.4. Cytological Examination

Cytological examination of the endometrium was performed as previously described
by Helfrich et al. [40]. In short, the collected cytobrush samples were smeared onto two glass
slides and stained with Haema LT-SYS Quick-Stain (Labor + Technik Eberhard Lehmann
GmbH, Berlin, Germany) in the laboratory. Under a microscope (Leitz, Stuttgart, Germany)
using 100 × magnification and oil immersion, 300 nucleated cells were enumerated and
the proportion of polymorphonuclear cells (PMN) was evaluated by two independent
examiners [41]. A PMN proportion of ≥5% was classified as subclinical endometritis
(SE) [42].

2.5. Leukocyte Esterase Test

After the cytological smear, the endometrial cytobrush was rinsed with 2 mL H2O and
the fluid was probed with a Multistix® 10 SG urine stick (Siemens Healthineers, Erlangen,
Germany) to evaluate the leucocyte content after a 2 min incubation time, as previously
described in low-volume lavage samples of the uterus [43,44].

2.6. Endometrial Explant Culture

In the laboratory, each step of the endometrial explant handling was performed in a
class II biosafety cabinet (Biowizard Golden Line, Kojair, Vilppula, Finland). The uterus
medium contained 99% Dulbecco´s modified Eagle´s medium/Nutrient Mixture f-12 Ham
(Merck) supplemented with 1% 10,000 µg/mL Penicillin–Streptomycin (Merck). Cellstar®

24-well culture plates (Greiner Bio-One, Kremsmünster, Austria) containing 1 mL uterus
medium were pre-incubated (Heracell vios 160i, Thermo Fisher Scientific) at 37 ◦C, with
5% CO2 and 5.5% O2, for 1 h. Endometrial explants were placed in sterile glass Petri dishes
with PBS. Remaining myometrial tissue was removed with precision forceps and a scalpel
(see Figure S1b). After preparation, the explants were transferred into the pre-incubated
24-well culture plates, with one per well, and left to rest for 1 h at 4 ◦C. Meanwhile, IFNτ

and IFNα (Cloud Clone Corp., Houston, TX, USA) were prepared with uterus medium in
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dilutions of 10, 100, and 300 ng/mL each. Furthermore, the IFNτ + IFNα combinations of
10 + 100, 100 + 10, and 100 + 100 ng/mL were prepared with uterus medium and 20 ng/mL
P4 (pre-diluted with uterus medium) was thawed. Only uterus medium (“control uterus
medium”), uterus medium only with 100 ng/mL IFNτ (“control 100τ”), and uterus medium
only with 20 ng/mL P4 (“control P4”) served as controls. After resting, the uterus medium
was replaced by the prepared admixtures. The explants were challenged with IFNτ and/or
IFNα in different concentrations in the presence of P4, according to the above-mentioned
concentrations (see pipetting layout, Figure S2). The plate was incubated for 24 h at 37 ◦C,
with 5% CO2 and 5.5% O2. These conditions had been evaluated as suitable in previous
experiments [45]. After the completed incubation time, the endometrial explants were
preserved in 0.5 mL cryogenic tubes (Sarstedt, Nürnbrecht, Germany) containing 450 µL
RNA storage reagent RNAlater (Sigma-Aldrich, St. Louis, MO, USA) at −80 ◦C. The
supernatants were aspirated and preserved in 1.4 mL micronic tubes (Micronic, Lelystad,
The Netherland) at −20 ◦C.

2.7. Determination of Tissue Viability

The tissue viability of the endometrial explants of each donor cow was determined
with water-soluble tetrazolium salt-8 (WST-8; Merck). WST-8 is reduced to the orange–red
formazan by dehydrogenases that are only present in viable cells. The amount of the color
indicator formazan is thereby directly proportional to the metabolic cell activity of viable
cells, and can be photometrically measured as the optical density (OD).

Therefore, four endometrial explants of each donor cow were handled identically for
the challenge experiment until incubation. These explants were cultured in a separate
24-well culture plate with 1 mL uterus medium at 37 ◦C with 5% CO2 and 5.5% O2. Groups
of two explants were treated at either 0 h or 21 h with WST-8, and incubated for another
3 h. At the end of the respective incubation time (3 h/24 h), the supernatants of the
incubated explants were aspirated and photometrically measured at a wavelength of
460 nm (CLARIOstar®, BMG LABTECH, Ortenberg, Germany) to determine the OD at 3 h
and 24 h, as well as their percentage difference.

2.8. Gene Expression Analysis

For total RNA extraction, the explant duplicates of each animal were pooled in one
innuSPEED Lysis Tube P (Analytic Jena AG, Jena, Germany) containing 450 µL lysis buffer
for homogenization in a SpeedMill Plus device (Analytic Jena AG, Jena, Germany). The
lysis buffer was part of the Bio&Sell RNA Mini Kit (Bio&SELL GmbH, Nürnberg, Germany)
that was used according to the manufacturer´s instructions, with an additional DNase
I digestion reaction using 50 µL DNase I reaction buffer and 5 µL DNase I (Bio&SELL
GmbH). After RNA extraction, the approximately 80 µL eluate containing the purified RNA
was subdivided: 2 µL was used for further RNA quality analysis, 10 µL for cDNA synthesis,
and the residual volume for cryopreservation at −80 ◦C in a 0.2 mL reaction tube (Biozym
Scientific GmbH, Hessisch Oldendorf, Germany). Additionally, 10 µL of one sample from
each animal was used for minus-reverse transcriptase (−RT) control synthesis. RNA quality
analysis was performed with the automated Experion electrophoresis station with RNA
StdSens Chips (Bio-Rad Laboratories, Hercules, CA, USA), according to the manufacturer’s
instructions, to estimate the level of RNA degradation using the RNA Quality Indicator
(RQI). The RQI values range from 1 to 10, with the classifications “unacceptable quality”,
(1–3), “possibly acceptable quality”, (4–6), and “acceptable quality”, (7–10).

Through reverse transcriptase, cDNA synthesis was performed directly after RNA
extraction, according to the manufacturer’s 25 µL protocol, with 10 µL purified RNA and
the following Promega reagents: 1 µL Oligo(dT)15 Primer, 0.625 µL RNasin® Ribonuclease
Inhibitor, 5 µL M-MLV RT 5X Buffer, 1.25 µL dNTP Mix, 0.5 µL M-MLV Reverse Tran-
scriptase (Promega, Madison, WI, USA), and 6.625 µL PCR-grade water (Carl Roth). To
synthesize the –RT control, reverse transcriptase synthesis was carried out in the absence of
the reagent M-MLV Reverse Transcriptase. The cDNA products were photometrically mea-
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sured to determine their concentration and diluted to the end concentration of 200 ng/µL
with PCR-grade water (Carl Roth). The cDNA and –RT control products were then stored
in 0.2 mL reaction tubes (Biozym Scientific GmbH) at −20 ◦C until further use.

A quantitative real-time polymerase chain reaction (RT-qPCR) was executed with
the thermocycler qTOWER3 84 G (Analytic Jena AG) and 384-well skirted PCR plates
(FrameStar®, 4titude® Limited, Wotton, Surrey, UK). The mastermix used consisted of 5 µL
fluorescent dye (SensiFASTTM SYBR No-ROX Kit, Meridian Bioscience, Cincinnati, OH,
USA), 0.4 µL forward/reverse primer, and 3.2 µL PCR-grade water. The applied primers
for IFNAR1, IFNAR2, STAT1, PI3K, MX1, and FABP3 were designed with the Primer-
BLAST software (NCBI, Rockville Pike, MD, USA), purchased from Biomers (biomers.net
GmbH, Ulm, Germany), and diluted with PCR-grade water from a starting concentration
of 100 µM to an end concentration of 5 µM. Primer sequences are provided in Table 1.

Table 1. Oligonucleotide primer sequences used in the quantitative real-time polymerase chain reaction (RT-qPCR) with the
accession number and fragment size in base pairs (bp).

Gene Accession Number Forward (F) and Reverse (R) primer
(5´-3’) Fragment Size

IFNAR1 1 NM_174552.2 F: ACAGGCGGAATAAAGGGAGC
R: AAGGCAGGTCCAATGACAGG 683 bp

IFNAR2 2 NM_174553.2 F: GTGGGTAAACACGACGGACA
R: CTCGTCTGGGTCGAAAGAGG 419 bp

STAT1 3 NM_001077900.1 F: CGGTCCCAAAATGGAGGTGA
R: ACATGCCACTCTTCTGTGTTCA 308 bp

PI3K 4 NM_174575.1 F: CTGAAGCAGACAGTGAGCAA
R: CCAAGGAGGCGGTATCACAA 207 bp

MX1 5 NM_173940.2 F: TTGGGAATGAAGACGAGTGG
R: CCTCTGTGGTAGCGATGTCC 342 bp

FABP3 6 NM_174313.2 F: TCGGTGTCGGTTTTGCTACC
R: TCAACCATCTCCCGCACAAG 262 bp

1 Type 1 interferon receptor subunit 1; 2 type 1 interferon receptor subunit 2; 3 signal transducer and activator of transcription 1;
4 phosphoinositide 3-kinase; 5 interferon-induced GTP-binding protein; 6 fatty acid-binding protein.

Frozen cDNA samples, –RT controls, and primers were tempered for 5 min at 60 ◦C
(on the BioShake iQ (Quantifoil Instruments GmbH, Jena, Germany)). The mastermix was
prepared according to protocol in a class I biosafety cabinet (LTF Labortechnik, Wasserburg,
Germany) and pipetted in 9 µL portions, adding 1 µL of each standard, no template control
(NTC), sample cDNA, or –RT control. All measurements were performed in duplicates.
Amplification was executed at 95 ◦C for 2 min, 40 cycles at 95 ◦C for 5 s, and 15 s at 60 ◦C.
For each data point in every PCR run, a melting curve was conducted, starting from 60 ◦C
and heating up in 0.5 ◦C steps until 95 ◦C. Analyzing the melting curve derivations, a single
peak representing the calculated melting temperature of each target gene sequence was
identified. The standard curve method for the absolute quantification of gene expression
was carried out for each primer with the defined cDNA subclone concentrations of 102, 103,
104, 105, and 106 copies/µL. The cDNA subclones were produced with the Promega cloning
kit pGEM®-T Easy Vector System (Promega) and sequenced for product verification at the
Eurofins laboratory (Eurofins Genomics, Munich, Germany). PCR amplification efficiency
was recorded for each PCR run and ranged from 90% to 109%, except for the target gene
PI3K, with amplification efficiencies of 85%, and 87%.

2.9. Statistical Analysis and Graphical Illustration

Gene expression data were statistically analyzed with the R program for statistical
computing (Version 4.0.3, 2020-10-10). A simple linear mixed effects model was used to
study the IFNAR1, IFNAR2, STAT1, PI3K, MX1 and FABP3 parameters as fixed effects with
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a random effect of animal. The normality and homoscedasticity of residuals were assessed
via visual residual-diagnostics. Due to the not-normally distributed and heteroskedastic
residuals, data of all target genes in final models were log transformed (natural logarithm).
Because of the exploratory approach of the study, the correction of the p values for multiple
comparisons was not performed. Calculated differences with p < 0.1 were regarded as
statistical tendencies. Differences with p < 0.05 were regarded as statistically significant.
Data presented in the text are provided in the form of mean ± standard deviation (SD).

3. Results
3.1. Characterization of Sampled Uteri

The weights of the examined uteri were 630 g ± 149 g. Evaluation of the bacteriological
swabs did not show any kind of bacterial growth. Cytological evaluation revealed that
none of the uteri (n = 26) showed a PMN proportion ≥5%. The additional leukocyte
esterase test did not indicate any leukocyte positive results. Therefore, all sampled uteri
were classified as having bacteriologically and cytologically healthy endometria.

3.2. Successful Application of the Highly Defined Endometrial Explant Model

In this study, an endometrial explant model was successfully implemented in vitro. Af-
ter WST-8 incubation, the obtained OD of endometrial explant supernatants was 0.91 ± 0.22
(3 h) and 1.62 ± 0.36 (24 h). The measured OD proved the viability of the endometrial
explants. The percent increase from the OD at 3 h to the OD at 24 h was 78.45%. This
increase reflects the acclimatization to the new incubation environment. As additional
quality control, RQI values were measured. RNA quality analysis showed a mean RQI
value of 9.3 ± 0.4, and the RQI was ≥7.9 in all samples except for one, which had an
RQI value of 6.8. For the absolute quantification of gene expression, cDNA subclones
were generated and successfully applied to exemplarily demonstrate downstream type 1
interferon signaling via selected target genes.

To mimic the physiological cycle stage diestrus during the challenge experiment, all
endometrial explants were incubated in the presence of P4. Therefore, the expression of
target genes was calculated and illustrated in relation to the control, “control P4”. The data
concerning the controls “control uterus medium” and “control 100τ” served as internal
validation. The log-transformed (natural logarithm) gene expression of target genes in
relation to “control P4” is illustrated in Figure 2a–f. Each panel contains the following:
(1) the “control P4” and the three treatment group sets; (2) IFNτ at three concentrations (10,
100, and 300 ng/mL); (3) IFNα at three concentrations (10, 100, and 300 ng/mL); and (4) the
three combinations of IFNτ and IFNα (10 + 100, 100 + 10, and 100 + 100 ng/mL). Figure 2a–f
includes statistically significant differences within these treatment group sets, indicated by
asterisks. Significant differences between the treatment group sets and “control P4” are
shown in Table S1a–f.

3.2.1. Higher Expression of IFNAR1 and IFNAR2 After IFNα Challenge

Gene expression analysis confirmed the inducibility of IFNAR1/2 within the estab-
lished endometrial explant model. In comparison to “control P4”, IFNAR1 was upregulated
by trend in all explants challenged with IFNα (10, 100, and 300 ng/mL; p < 0.1) and in all
explants challenged with combinations containing IFNα (p < 0.04). In comparison, only
the gene expression after the challenge with 100 ng/mL IFNτ was upregulated (p = 0.066).
Comparisons of the treatment group sets (Table S1a), as well as within treatment group
sets (Figure 2a), did not show any significant differences concerning the gene expression
of IFNAR1.
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Figure 2. Illustration of the log-transformed gene expression of (a) type 1 interferon receptor subunit 1 (IFNAR1), (b) type 1
interferon receptor subunit 2 (IFNAR2), (c) signal transducer and activator of transcription 1 (STAT1), (d) phosphoinositide
3-kinase (PI3K), (e) interferon-induced GTP-binding protein (MX1), and (f) fatty acid-binding protein (FABP3) measured in
bovine endometrial explants via a quantitative real-time polymerase chain reaction (RT-qPCR). X-axis: explants were treated
with 20 ng/mL progesterone (control P4, displayed in red) or with 20 ng/mL P4 and interferon τ (τ) and/or interferon α

(α) at different concentrations (10, 100 and 300 ng/mL τ or α) and in different combinations (10τ + 100α, 100τ + 10α and
100τ + 100α). The Y-axis represents log-transformed data of linear mixed effect models (natural logarithm). Significance
codes: statistical tendencies p < 0.1 are marked with (*), statistical significances at p < 0.05, p < 0.01, and p < 0.001 are marked
with *, **, and ***, respectively. Only significant differences within the three subsets τ (displayed in green), α (displayed in
blue), and τ + α (displayed in purple) are marked with asterisks. Significant differences between the treatment group sets or
between treatment groups and the control P4 are not marked in this graph, but can be found in Table S1a–f.

The induction of IFNAR2 was visible, as the gene expression was upregulated in all
explants challenged with IFNα (p < 0.06) in comparison to “control P4”. Upregulation was
most prominent with 10 ng/mL IFNα (p = 0.001). Comparisons of the treatment group sets
showed a significantly higher gene expression in explants challenged with 10 ng/mL IFNα

compared to 10 ng/mL IFNτ (p = 0.040), 100 ng/mL IFNτ (p = 0.029), and the combination
of 100 ng/mL IFNτ + 100 ng/mL IFNα (p = 0.028) (Table S1b). There were no significant
changes in IFNAR2 gene expression within treatment group sets (Figure 2b).

3.2.2. IFNα Concentration-Dependent Gene Expression in STAT1

The target genes selected as representatives for regulatory factors concerning classi-
cal (exemplarily STAT1) and non-classical (exemplarily PI3K) interferon signaling were
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differentially regulated. Both target genes were upregulated in most treatment groups in
comparison to “control P4” (Table S1c,d).

STAT1 gene expression was comparable between the treatment groups with IFNτ (10,
100, and 300 ng/mL; p > 0.1). The gene expression decreased at higher IFNα concentrations,
with a significant difference between 10 and 300 ng/mL IFNα (p = 0.021) (Table S1c).
When comparing the combinations of IFNτ and IFNα, the highest gene expression was
detected in the treatment group with low IFNα (100 ng/mL IFNτ + 10 ng/mL IFNα versus
10 ng/mL IFNτ + 100 ng/mL IFNα (p = 0.016) and versus 100 ng/mL IFNτ + 100 ng/mL
IFNα (p = 0.022); Figure 2c). Downregulation was most prominent in the 300 ng/mL IFNα

group compared to the 100 ng/mL IFNτ + 10 ng/mL IFNα group (p < 0.001) (Table S1c).
Concerning PI3K gene expression, only the combination of 100 ng/mL IFNτ + 100 ng/mL

IFNα tended to be downregulated in comparison to 10 ng/mL IFNα (p = 0.096) and
300 ng/mL IFNα (p = 0.063) (Figure 2d, Table S1d). When comparing the combinations
of IFNτ and IFNα, the lowest gene expression was detected in the treatment group with
100 ng/mL IFNα + 100 ng/mL IFNτ, but this was not significantly different in comparison
to other combinations (p > 0.1) (Figure 2d).

3.2.3. Type 1 Interferon-Specific, Concentration-Dependent Regulation of MX1 and FABP3

In comparison to “control P4”, MX1 gene expression was upregulated in most treat-
ment groups, especially in those containing IFNτ (Table S1e). In contrast, FABP3 gene
expression was similar or decreased in all treatment groups compared to “control P4”
(Table S1f).

MX1 gene expression significantly increased along with rising IFNτ concentrations
(10 versus 100 ng/mL (p < 0.001), 10 versus 300 ng/mL (p < 0.0001), and 100 versus
300 ng/mL (p = 0.026)). In comparison, rising IFNα concentrations led to a significant de-
crease in MX1 gene expression (10 versus 300 ng/mL (p = 0.005) and 100 versus 300 ng/mL
(p = 0.052)) (Figure 2e). When comparing the combinations of IFNτ and IFNα, the high-
est gene expression was detected in the treatment group with low IFNα (100 ng/mL
IFNτ + 10 ng/mL IFNα versus 10 ng/mL IFNτ + 100 ng/mL IFNα (p < 0.0001) and versus
100 ng/mL IFNτ + 100 ng/mL IFNα (p = 0.006); Figure 2e). Comparisons of the treatment
group sets revealed the highest difference in gene expression between 300 ng/mL IFNτ

and 300 ng/mL IFNα (p < 0.0001) (Table S1e).
In contrast to MX1, the gene expression of FABP3 significantly decreased along with

rising IFNτ concentrations (10 versus 100 ng/mL (p = 0.029), and 10 versus 300 ng/mL
(p < 0.001)). Identically to MX1, rising IFNα concentrations led to a decrease in FABP3
gene expression (10 versus 100 ng/mL (p = 0.089), 10 versus 300 ng/mL (p < 0.001),
and 100 versus 300 ng/mL (p = 0.061)). When comparing the combinations of IFNτ and
IFNα, the lowest gene expression was detected in the treatment group with 100 ng/mL
IFNτ + 100 ng/mL IFNα (p < 0.06) (Figure 2f).

Comparisons of the treatment group sets revealed the highest difference in gene
expression between 10 ng/mL IFNτ and 300 ng/mL IFNα (p < 0.001) (Table S1f).

4. Discussion

The two adversaries IFNτ and IFNα were chosen to simulate the competitive situation
between embryo–maternal communication and infection-associated signaling, which might
impact subfertility in cattle. The applied concentrations of P4, IFNτ, and IFNα were chosen
in accordance with those mentioned in the literature [46,47]. The targets IFNAR1/2, STAT1,
PI3K, MX1, and FABP3 were selected and successfully applied to simulate exemplarily
classical and non-classical type 1 interferon signaling pathways. The gene expression of
these highly defined samples showed a significant upregulation of IFNAR1 and IFNAR2
after challenge with IFNτ and IFNα at differing concentrations and combinations, in
comparison to “control P4”. Concentration-dependent upregulation of the classical ISG
MX1 confirmed the validity of this model and its application for the simulation of the
embryo–maternal contact zone.
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In the literature, there is a limited number of studies focused on the establishment
of endometrial explant models. Borges and coworkers established a model with intact
endometrial tissue from bovine uteri [39], which focused on investigating the accumulation
of differing interleukins in response to a challenge with heat-killed bacteria. The same
explant-collecting technique was used by Mathew et al. to elucidate IFNτ-dependent and
-independent effects on bovine endometrial gene expression [48]. Schäfer et al. tested
human endometrial explants as suitable for analyzing the functional effects of chemicals
outside the human body, and aspiration curettage was used to assess the endometrial
tissue [49]. Bersinger and coworkers found that the cell morphology of human endometrial
explants started to disrupt after 12 h in culture [50]. However, they were also able to
show that this process was decelerated in the presence of P4. The advantage of explant
models in contrast to cell culture models or chopped tissue is the maintenance of the
integrity of the three-dimensional structure, which might reflect the tissue-specific reaction
in a more accurate way. It was recently shown that endometrial explants from non-
pregnant heifers collected on day 18 after insemination displayed a significantly higher
gene expression of ISG-15 (classical ISG) when challenged with pregnancy-associated
glycoproteins (PAG) after 24 h, in comparison to explants from non-pregnant heifers
without PAG exposure [51]. This finding reflects a tissue-specific reaction towards a signal
associated with early pregnancy. However, to the best of the authors’ knowledge, no
bovine endometrial explant model has been previously applied to test the inducibility
of type 1 interferon receptor subunits, and to mimic classical and non-classical type 1
interferon signaling pathways via exposure to IFNτ and IFNα at different concentrations
and combinations.

In the present study, the gene expression results indicate a competitive situation
between the two signals, IFNτ and IFNα, in the presence of P4. This effect was expected
to be visible at the receptor level. Instead of that, this was detected downstream of the
regulatory genes. The gene expression of IFNAR1 and IFNAR2 did not differ within the
three treatment group sets. However, all treatment group sets with the combinations of
IFNτ and IFNα exhibited significant differences downstream of the regulatory factor level,
and along the classical type 1 interferon signaling pathway side (exemplarily STAT1 and
MX1) and the non-classical type 1 interferon signaling pathway side (exemplarily PI3K
and FABP3).

When comparing MX1 and STAT1 gene expressions in treatment group sets with
combinations of IFNτ and IFNα, it was shown that higher IFNα concentrations led to
decreased gene expression. It seems that with rising IFNα concentrations, entire successful
IFNτ stimulation is prevented. These findings indicate that a competitive situation be-
tween IFNτ and IFNα can be simulated with this model on a regulatory factor level, and
further downstream. Additional stressors, such as viral infections, might also lead to the
parallel modulation of the type 1 interferon signaling cascade [10,52]. This might impede
the discrimination of the systemic effects of IFNτ from those of other type 1 interferons.
Bauersachs et al. [37] showed a wide overlap of endometrial gene expression in early preg-
nant heifers compared to heifers that underwent the intrauterine administration of IFNα.
Furthermore, dairy cows are in a high lactation phase during pregnancy establishment.
Metabolic challenges, in addition to immune-endocrine changes, affect the intrauterine
adaption capacity. This might affect important receptor expression and the complex in-
tracellular downstream signaling of IFNτ in the endometrium, and can negatively affect
embryo-maternal communication. In relation to MX1 and STAT1, FABP3 and PI3K also
showed similarities in their gene expression when comparing the treatment group sets
with combinations of IFNτ and IFNα. Although the detected differences in FABP3 and
PI3K are not as strong as in MX1 and STAT1, it can be noted that the treatment groups with
the highest type 1 interferon concentrations have the lowest gene expression. This could
also indicate a negative feedback response or dose effect due to excessive type 1 interferon
signaling, or a counteraction of IFNα versus IFNτ. It might be possible that the competitive
situation is also reflected by the gene expression data on the interferon receptor level,
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because both IFNAR1 and IFNAR2 gene expressions were higher after IFNα challenge,
and the smallest amount of IFNα (10 ng/mL) led to the most prominent upregulation
of IFNAR2. This could indicate regulative negative feedback or saturation mechanisms
that might finetune the response to type 1 interferons at the receptor level. However, the
evaluation of data in this direction is limited and highly interpretative, as only candidate
gene expression data were considered.

It has been reported in multiple studies that ISGs are upregulated by IFNτ [33,37,53,54].
Our results are in line with these observations, as MX1 was significantly upregulated by
IFNτ. Interestingly, MX1 was significantly downregulated by IFNα. In contrast, the
non-classical candidate FABP3 was downregulated by both type 1 interferons. These
findings could reflect the necessity of a more adjusted IFNτ concentration approach, as
only three concentrations were tested in this study. The physiological concentrations of
IFNτ in vivo still need to be determined. This is a major task, because IFNτ levels are
difficult to measure, as reviewed by Hansen et al. [55]. Concentrations of IFNτ applied in
other in vitro studies ranged from 0.025 ng/mL [56] to 10,000 ng/mL [57]. In addition, the
definition and described characteristics of non-classical ISGs vary between studies [58–60].
Predominantly non-classical ISGs are described to be induced via P4, and exhibit biological
functions associated with pregnancy establishment [55,61,62]. In the present study, FABP3
was selected as a promising candidate to represent non-classical ISGs, because it had
previously been described as P4-dependent and functionally involved in the modulation
of cell growth and proliferation [58]. It was also promising because Bauersachs et al. [37]
described FABP3 as being strongly upregulated on day 15 and 18 of pregnancy, but not
after a challenge with IFNα. This group even described a significant decrease in FABP3
between day 13 and 19 in the estrus cycle in the same study. Unexpectedly, FABP3 was
downregulated by differing concentrations of IFNτ and IFNα in our study, which has not
been described before. Whether FABP3 is a suitable candidate for non-classical ISGs needs
to be investigated. However, the model applied in this study could allow the evaluation
of typical characteristics and the identification of the differences between classical and
non-classical ISGs in future approaches.

Taken together, the present data generated with our highly defined endometrial
explant model, used to simulate the embryo–maternal contact zone, indicate a compet-
itive situation between IFNτ and IFNα. Of course, the interpretation of functionality is
limited. In vitro models only reflect a snapshot of a far more complex situation in vivo.
The implementation of data on the protein level would be a logical and desirable next
step, but was outside of the feasible scope of this study. Furthermore, type 1 interferon
signaling pathways are very complex, and no signaling pathway alone is considered suffi-
cient to generate a complete biological response. Further studies with holistic techniques,
such as transcriptomics and proteomics, are required to determine why different signal-
transmitting possibilities are chosen over others. The possible applications of this model
include simulations of inflammatory conditions, such as endometritis.

5. Conclusions

In conclusion, a highly defined endometrial explant model was successfully imple-
mented in vitro and applied to test the inducibility of type 1 interferon receptor subunits
(IFNAR1/2). Exemplarily, classical and non-classical type 1 interferon pathways were
simulated via selected target genes. Further in vitro studies with this model might mimic
and explore the embryo–maternal contact zone in more detail, to answer research questions
in this area. This might lead to new diagnostic and therapeutic strategies for tackling
subfertility in dairy cows without the need for animal experiments.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-2
615/11/2/262/s1: Figure S1 (a) and (b), graphical illustration of sampling procedure; Figure S2,
graphical illustration of pipetting layout for the 24-well culture plate; Table S1, (a) IFNAR1, (b)
IFNAR2, (c) STAT1, (d) PI3K, (e) MX1, and (f) FABP3: p values of gene expression comparisons of
treatment groups and the control (“control P4”).
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9. Gür, S.; Doğan, N. The possible role of bovine herpesvirus type-4 infection in cow infertility. Anim. Sci. J. 2010, 81, 304–308.

[CrossRef] [PubMed]
10. Cheng, Z.; Chauhan, L.; Barry, A.; Abudureyimu, A.; Oguejiofor, C.; Chen, X.; Wathes, D.C. Acute bovine viral diarrhoea

virus infection inhibits expression of interferon tau-stimulated genes in bovine endometrium. Biol. Reprod. 2017, 96,
1142–1153. [CrossRef]

11. Lechner, I.; Wüthrich, M.; Meylan, M.; Borne, B.H.P.V.D.; Schüpbach-Regula, G. Association of clinical signs after acute
Schmallenberg virus infection with milk production and fertility in Swiss dairy cows. Prev. Vet. Med. 2017, 146, 121–129.
[CrossRef] [PubMed]

12. Santman-Berends, I.; Hage, J.; Van Rijn, P.A.; Stegeman, J.; Van Schaik, G. Bluetongue virus serotype 8 (BTV-8) infection reduces
fertility of Dutch dairy cattle and is vertically transmitted to offspring. Theriogenology 2010, 74, 1377–1384. [CrossRef] [PubMed]

13. Sreenan, J.; Diskin, M.; Morris, D. Embryo survival rate in cattle: A major limitation to the achievement of high fertility. BSAP
Occas. Publ. 2001, 26, 93–104. [CrossRef]

14. Diskin, M.G.; Murphy, J.; Sreenan, J. Embryo survival in dairy cows managed under pastoral conditions. Anim. Reprod. Sci. 2006,
96, 297–311. [CrossRef] [PubMed]

15. Sreenan, J.M.; Diskin, M.G. Early embryonic mortality in the cow: Its relationship with progesterone concentration. Vet. Rec. 1983,
112, 517–521. [CrossRef]

http://doi.org/10.1017/S1751731118002896
http://doi.org/10.3168/jds.S0022-0302(98)75810-2
http://doi.org/10.1111/j.1600-0897.2004.00160.x
http://doi.org/10.1111/j.1751-0813.2008.00326.x
http://doi.org/10.1530/rep.0.1230837
http://doi.org/10.1016/j.theriogenology.2003.03.001
http://doi.org/10.1016/j.theriogenology.2005.08.021
http://www.ncbi.nlm.nih.gov/pubmed/16226305
http://doi.org/10.1016/j.eng.2019.07.020
http://www.ncbi.nlm.nih.gov/pubmed/32288965
http://doi.org/10.1111/j.1740-0929.2010.00743.x
http://www.ncbi.nlm.nih.gov/pubmed/20597886
http://doi.org/10.1093/biolre/iox056
http://doi.org/10.1016/j.prevetmed.2017.07.020
http://www.ncbi.nlm.nih.gov/pubmed/28992916
http://doi.org/10.1016/j.theriogenology.2010.06.008
http://www.ncbi.nlm.nih.gov/pubmed/20688368
http://doi.org/10.1017/S0263967X00033619
http://doi.org/10.1016/j.anireprosci.2006.08.008
http://www.ncbi.nlm.nih.gov/pubmed/16963203
http://doi.org/10.1136/vr.112.22.517


Animals 2021, 11, 262 13 of 14

16. Talukder, A.K.; Marey, M.A.; Shirasuna, K.; Kusama, K.; Shimada, M.; Imakawa, K.; Miyamoto, A. Roadmap to pregnancy in the
first 7 days post-insemination in the cow: Immune crosstalk in the corpus luteum, oviduct, and uterus. Theriogenology 2020, 150,
313–320. [CrossRef]

17. Fair, T. The Contribution of the Maternal Immune System to the Establishment of Pregnancy in Cattle. Front. Immunol. 2015, 6,
7. [CrossRef]

18. Platanias, L.C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 2005, 5, 375–386. [CrossRef]
19. Pestka, S.; Krause, C.D.; Walter, M.R. Interferons, interferon-like cytokines, and their receptors. Immunol. Rev. 2004, 202,

8–32. [CrossRef]
20. Roberts, R.; Ealy, A.; Alexenko, A.; Han, C.-S.; Ezashi, T. Trophoblast Interferons. Placenta 1999, 20, 259–264. [CrossRef]
21. Jiang, K.; Chen, X.; Zhao, G.; Wu, H.; Mi, J.; Qiu, C.; Peng, X.; Deng, G. IFN-τ Plays an Anti-Inflammatory Role in Staphylococcus

aureus-Induced Endometritis in Mice Through the Suppression of NF-κB Pathway and MMP9 Expression. J. Interf. Cytokine Res.
2017, 37, 81–89. [CrossRef] [PubMed]

22. Østrup, E.; Hyttel, P.; Østrup, O. Embryo-maternal communication: Signalling before and during placentation in cattle and pig.
Reprod. Fertil. Dev. 2011, 23, 964–975. [CrossRef] [PubMed]

23. Wu, G.; Spencer, T.E.; Ott, T.L. Placental Interferons. Am. J. Reprod. Immunol. 1996, 35, 297–308. [CrossRef]
24. Spencer, T.E.; Forde, N.; Dorniak, P.; Hansen, T.R.; Romero, J.J.; Lonergan, P. Conceptus-derived prostaglandins regulate gene

expression in the endometrium prior to pregnancy recognition in ruminants. Reproduction 2013, 146, 377–387. [CrossRef]
25. Oliveira, J.F.; Henkes, L.E.; Ashley, R.L.; Purcell, S.H.; Smirnova, N.P.; Veeramachaneni, D.N.R.; Anthony, R.V.; Hansen, T.R.

Expression of Interferon (IFN)-Stimulated Genes in Extrauterine Tissues during Early Pregnancy in Sheep Is the Consequence of
Endocrine IFN-τ Release from the Uterine Vein. Endocrinology 2008, 149, 1252–1259. [CrossRef]

26. Kunii, H.; Koyama, K.; Ito, T.; Suzuki, T.; Balboula, A.Z.; Shirozu, T.; Bai, H.; Nagano, M.; Kawahara, M.; Takahashi, M. Hot topic:
Pregnancy-induced expression of interferon-stimulated genes in the cervical and vaginal mucosal membranes. J. Dairy Sci. 2018,
101, 8396–8400. [CrossRef]

27. Spencer, T.E.; Johnson, G.A.; Bazer, F.W.; Burghardt, R.C.; Palmarini, M. Pregnancy recognition and conceptus implantation in do-
mestic ruminants: Roles of progesterone, interferons and endogenous retroviruses. Reprod. Fertil. Dev. 2007, 19, 65–78. [CrossRef]

28. Martins, T.; Pugliesi, G.; Sponchiado, M.; Gonella-Diaza, A.M.; Ojeda-Rojas, O.A.; Rodriguez, F.D.; Ramos, R.D.S.; Basso, A.C.;
Binelli, M. Perturbations in the uterine luminal fluid composition are detrimental to pregnancy establishment in cattle. J. Anim.
Sci. Biotechnol. 2018, 9, 70. [CrossRef]

29. Bauersachs, S.; Wolf, E. Uterine Responses to the Preattachment Embryo in Domestic Ungulates: Recognition of Pregnancy and
Preparation for Implantation. Annu. Rev. Anim. Biosci. 2015, 3, 489–511. [CrossRef]

30. Rashid, M.B.; Talukder, A.K.; Kusama, K.; Haneda, S.; Takedomi, T.; Yoshino, H.; Moriyasu, S.; Matsui, M.; Shimada, M.; Imakawa,
K.; et al. Evidence that interferon-tau secreted from Day-7 embryo in vivo generates anti-inflammatory immune response in the
bovine uterus. Biochem. Biophys. Res. Commun. 2018, 500, 879–884. [CrossRef]

31. Talukder, A.K.; Yousef, M.S.; Rashid, M.B.; Awai, K.; Acosta, T.J.; Shimizu, T.; Okuda, K.; Shimada, M.; Imakawa, K.; Miyamoto, A.
Bovine embryo induces an anti-inflammatory response in uterine epithelial cells and immune cells in vitro: Possible involvement
of interferon tau as an intermediator. J. Reprod. Dev. 2017, 63, 425–434. [CrossRef] [PubMed]

32. Ott, T.L. Immunological detection of pregnancy: Evidence for systemic immune modulation during early pregnancy in ruminants.
Theriogenology 2020, 150, 498–503. [CrossRef] [PubMed]

33. Kim, M.-S.; Min, K.-S.; Imakawa, K. Regulation of Interferon-stimulated Gene (ISG)12, ISG15, and MX1 and MX2 by Conceptus
Interferons (IFNTs) in Bovine Uterine Epithelial Cells. Asian-Australas. J. Anim. Sci. 2013, 26, 795–803. [CrossRef] [PubMed]

34. Toji, N.; Shigeno, S.; Kizaki, K.; Koshi, K.; Matsuda, H.; Hashiyada, Y.; Imai, K.; Takahashi, T.; Ishiguro-Oonuma, T.; Hashizume,
K. Evaluation of interferon-stimulated genes in peripheral blood granulocytes as sensitive responders to bovine early conceptus
signals. Vet. J. 2017, 229, 37–44. [CrossRef] [PubMed]

35. Bauersachs, S.; E Ulbrich, S.; Gross, K.; Schmidt, S.E.M.; Meyer, H.H.D.; Wenigerkind, H.; Vermehren, M.; Sinowatz, F.; Blum, H.;
Wolf, E. Embryo-induced transcriptome changes in bovine endometrium reveal species-specific and common molecular markers
of uterine receptivity. Reproduction 2006, 132, 319–331. [CrossRef] [PubMed]

36. Wu, G.; Burghardt, R.C.; Johnson, G.A.; Spencer, T.E.; Wu, G. Interferons and progesterone for establishment and maintenance of
pregnancy: Interactions among novel cell signaling pathways. Reprod. Biol. 2008, 8, 179–211. [CrossRef]

37. Bauersachs, S.; Ulbrich, S.E.; Reichenbach, H.-D.; Reichenbach, M.; Büttner, M.; Meyer, H.H.; Spencer, T.E.; Minten, M.; Sax, G.;
Winter, G.; et al. Comparison of the Effects of Early Pregnancy with Human Interferon, Alpha 2 (IFNA2), on Gene Expression in
Bovine Endometrium1. Biol. Reprod. 2012, 86, 46. [CrossRef]

38. Mansouri-Attia, N.; Sandra, O.; Aubert, J.; Degrelle, S.; Everts, R.E.; Giraud-Delville, C.; Heyman, Y.; Galio, L.; Hue, I.; Yang,
X.; et al. Endometrium as an early sensor of in vitro embryo manipulation technologies. Proc. Natl. Acad. Sci. USA 2009, 106,
5687–5692. [CrossRef]

39. Borges, Á.M.; Healey, G.D.; Sheldon, I.M. Explants of Intact Endometrium to Model Bovine Innate Immunity and Inflammation
Ex Vivo. Am. J. Reprod. Immunol. 2012, 67, 526–539. [CrossRef]

40. Helfrich, A.L.; Reichenbach, H.-D.; Meyerholz, M.M.; Schoon, H.-A.; Arnold, G.J.; Fröhlich, T.; Weber, F.; Zerbe, H. Novel
sampling procedure to characterize bovine subclinical endometritis by uterine secretions and tissue. Theriogenology 2020, 141,
186–196. [CrossRef]

http://doi.org/10.1016/j.theriogenology.2020.01.071
http://doi.org/10.3389/fimmu.2015.00007
http://doi.org/10.1038/nri1604
http://doi.org/10.1111/j.0105-2896.2004.00204.x
http://doi.org/10.1053/plac.1998.0381
http://doi.org/10.1089/jir.2016.0058
http://www.ncbi.nlm.nih.gov/pubmed/27845845
http://doi.org/10.1071/RD11140
http://www.ncbi.nlm.nih.gov/pubmed/22127002
http://doi.org/10.1111/j.1600-0897.1996.tb00485.x
http://doi.org/10.1530/REP-13-0165
http://doi.org/10.1210/en.2007-0863
http://doi.org/10.3168/jds.2017-14251
http://doi.org/10.1071/RD06102
http://doi.org/10.1186/s40104-018-0285-6
http://doi.org/10.1146/annurev-animal-022114-110639
http://doi.org/10.1016/j.bbrc.2018.04.178
http://doi.org/10.1262/jrd.2017-056
http://www.ncbi.nlm.nih.gov/pubmed/28603222
http://doi.org/10.1016/j.theriogenology.2020.04.010
http://www.ncbi.nlm.nih.gov/pubmed/32331860
http://doi.org/10.5713/ajas.2012.12529
http://www.ncbi.nlm.nih.gov/pubmed/25049852
http://doi.org/10.1016/j.tvjl.2017.10.007
http://www.ncbi.nlm.nih.gov/pubmed/29183572
http://doi.org/10.1530/rep.1.00996
http://www.ncbi.nlm.nih.gov/pubmed/16885540
http://doi.org/10.1016/s1642-431x(12)60012-6
http://doi.org/10.1095/biolreprod.111.094771
http://doi.org/10.1073/pnas.0812722106
http://doi.org/10.1111/j.1600-0897.2012.01106.x
http://doi.org/10.1016/j.theriogenology.2019.09.016


Animals 2021, 11, 262 14 of 14

41. Melcher, Y.; Prunner, I.; Drillich, M. Degree of variation and reproducibility of different methods for the diagnosis of subclinical
endometritis. Theriogenology 2014, 82, 57–63. [CrossRef] [PubMed]

42. Madoz, L.; Giuliodori, M.J.; Jaureguiberry, M.; Plöntzke, J.; Drillich, M.; De La Sota, R. The relationship between endometrial
cytology during estrous cycle and cutoff points for the diagnosis of subclinical endometritis in grazing dairy cows. J. Dairy Sci.
2013, 96, 4333–4339. [CrossRef] [PubMed]

43. Van Schyndel, S.J.; Pascottini, O.B.; Leblanc, S. Comparison of cow-side diagnostic techniques for subclinical endometritis in
dairy cows. Theriogenology 2018, 120, 117–122. [CrossRef] [PubMed]

44. Cheong, S.H.; Nydam, D.; Galvão, K.; Crosier, B.; Ricci, A.; Caixeta, L.; Sper, R.; Fraga, M.; Gilbert, R. Use of reagent test strips for
diagnosis of endometritis in dairy cows. Theriogenology 2012, 77, 858–864. [CrossRef] [PubMed]

45. Schabmeyer, S.; Kneidl, A.; Schneider, J.; Weber, F.; Kirsch, S.; Petzl, W.; Zerbe, H.; Schuberth, H.-J.; Meyerholz, M.M. Reduced
circumfluent oxygen concentration increases cell functionality of bovine endometrial tissue explants in vitro. Reprod. Domest.
Anim. 2020, 55, 26. [CrossRef]

46. Haeger, J.-D.; Loch, C.; Pfarrer, C. The newly established bovine endometrial gland cell line (BEGC) forms gland acini in vitro
and is only IFNτ-responsive (MAPK42/44 activation) after E 2 and P 4 -pre-incubation. Placenta 2018, 67, 61–69. [CrossRef]

47. Toji, N.; Koshi, K.; Furusawa, T.; Takahashi, T.; Ishiguro-Oonuma, T.; Kizaki, K.; Hashizume, K. A cell-based interferon-tau assay
with an interferon-stimulated gene 15 promoter. Biomed. Res. 2018, 39, 13–20. [CrossRef]

48. Mathew, D.J.; Sánchez, J.; Passaro, C.; Charpigny, G.; Behura, S.K.; Spencer, T.E.; Lonergan, P. Interferon tau-dependent and
independent effects of the bovine conceptus on the endometrial transcriptome†. Biol. Reprod. 2019, 100, 365–380. [CrossRef]

49. Schäfer, W.R.; Fischer, L.; Roth, K.; Jüllig, A.K.; Stuckenschneider, J.E.; Schwartz, P.; Weimer, M.; Orlowska-Volk, M.; Hanjalic-Beck,
A.; Kranz, I.; et al. Critical evaluation of human endometrial explants as an ex vivo model system: A molecular approach. Mol.
Hum. Reprod. 2010, 17, 255–265. [CrossRef]

50. A Bersinger, N.; Genewein, E.M.; Müller, O.; Altermatt, H.J.; McKinnon, B.; Mueller, M.D. Morphology of human endometrial
explants and secretion of stromal marker proteins in short- and long-term cultures. Gynecol. Surg. 2009, 7, 75–80. [CrossRef]

51. Wallace, R.M.; Hart, M.L.; Egen, T.E.; Schmelzle, A.; Smith, M.F.; Pohler, K.G.; Green, J.A. Bovine pregnancy associated glycopro-
teins can alter selected transcripts in bovine endometrial explants. Theriogenology 2019, 131, 123–132. [CrossRef] [PubMed]

52. Takino, T.; Okamura, T.; Ando, T.; Hagiwara, K. Change in the responsiveness of interferon-stimulated genes during early
pregnancy in cows with Borna virus-1 infection. BMC Vet. Res. 2016, 12, 1–4. [CrossRef]

53. Forde, N.; Duffy, G.B.; Mcgettigan, P.A.; Browne, J.A.; Mehta, J.P.; Kelly, A.K.; Mansouri-Attia, N.; Sandra, O.; Loftus, B.J.;
Crowe, M.A.; et al. Evidence for an early endometrial response to pregnancy in cattle: Both dependent upon and independent of
interferon tau. Physiol. Genom. 2012, 44, 799–810. [CrossRef] [PubMed]

54. Forde, N.; Carter, F.; Spencer, T.; Bazer, F.; Sandra, O.; Mansouri-Attia, N.; Okumu, L.; Mcgettigan, P.; Mehta, J.; McBride, R.; et al.
Conceptus-Induced Changes in the Endometrial Transcriptome: How Soon Does the Cow Know She Is Pregnant?1. Biol. Reprod.
2011, 85, 144–156. [CrossRef] [PubMed]

55. Hansen, T.R.; Sinedino, L.D.P.; E Spencer, T. Paracrine and endocrine actions of interferon tau (IFNT). Reproduction 2017, 154,
F45–F59. [CrossRef] [PubMed]

56. Talukder, A.K.; Rashid, M.B.; Yousef, M.S.; Kusama, K.; Shimizu, T.; Shimada, M.; Suarez, S.S.; Imakawa, K.; Miyamoto, A.
Oviduct epithelium induces interferon-tau in bovine Day-4 embryos, which generates an anti-inflammatory response in immune
cells. Sci. Rep. 2018, 8, 7850. [CrossRef] [PubMed]

57. Chethan, S.G.; Singh, S.K.; Nongsiej, J.; Rakesh, H.B.; Singh, R.P.; Kumar, N.; Agarwal, S.K. IFN-τActs in a Dose-Dependent
Manner on Prostaglandin Production by Buffalo Endometrial Stromal Cells Culturedin vitro. Reprod. Domest. Anim. 2014, 49,
403–408. [CrossRef] [PubMed]

58. Spencer, T.E.; Forde, N.; Lonergan, P. The role of progesterone and conceptus-derived factors in uterine biology during early
pregnancy in ruminants. J. Dairy Sci. 2016, 99, 5941–5950. [CrossRef]

59. Spencer, T.E.; Hansen, T.R. Implantation and Establishment of Pregnancy in Ruminants. In Transformations in the Facial Region of
the Human Embryo; Springer Nature: Berlin, Germany, 2015; Volume 216, pp. 105–135.

60. Spencer, T.E.; Sandra, O.; Wolf, E. Genes involved in conceptus–endometrial interactions in ruminants: Insights from reductionism
and thoughts on holistic approaches. Reproduction 2008, 135, 165–179. [CrossRef]

61. Brooks, K.; Burns, G.; Spencer, T.E. Conceptus elongation in ruminants: Roles of progesterone, prostaglandin, interferon tau and
cortisol. J. Anim. Sci. Biotechnol. 2014, 5, 53. [CrossRef]

62. Dorniak, P.; Bazer, F.W.; Spencer, T.E. Physiology and Endocrinology Symposium: Biological role of interferon tau in endometrial
function and conceptus elongation. J. Anim. Sci. 2013, 91, 1627–1638. [CrossRef] [PubMed]

http://doi.org/10.1016/j.theriogenology.2014.03.003
http://www.ncbi.nlm.nih.gov/pubmed/24703764
http://doi.org/10.3168/jds.2012-6269
http://www.ncbi.nlm.nih.gov/pubmed/23684026
http://doi.org/10.1016/j.theriogenology.2018.08.001
http://www.ncbi.nlm.nih.gov/pubmed/30114545
http://doi.org/10.1016/j.theriogenology.2011.09.009
http://www.ncbi.nlm.nih.gov/pubmed/22030034
http://doi.org/10.1111/rda.13591
http://doi.org/10.1016/j.placenta.2018.05.009
http://doi.org/10.2220/biomedres.39.13
http://doi.org/10.1093/biolre/ioy199
http://doi.org/10.1093/molehr/gaq095
http://doi.org/10.1007/s10397-009-0520-4
http://doi.org/10.1016/j.theriogenology.2019.03.026
http://www.ncbi.nlm.nih.gov/pubmed/30959438
http://doi.org/10.1186/s12917-016-0883-5
http://doi.org/10.1152/physiolgenomics.00067.2012
http://www.ncbi.nlm.nih.gov/pubmed/22759920
http://doi.org/10.1095/biolreprod.110.090019
http://www.ncbi.nlm.nih.gov/pubmed/21349821
http://doi.org/10.1530/REP-17-0315
http://www.ncbi.nlm.nih.gov/pubmed/28982937
http://doi.org/10.1038/s41598-018-26224-8
http://www.ncbi.nlm.nih.gov/pubmed/29777205
http://doi.org/10.1111/rda.12287
http://www.ncbi.nlm.nih.gov/pubmed/24612212
http://doi.org/10.3168/jds.2015-10070
http://doi.org/10.1530/REP-07-0327
http://doi.org/10.1186/2049-1891-5-53
http://doi.org/10.2527/jas.2012-5845
http://www.ncbi.nlm.nih.gov/pubmed/23097402

	Introduction 
	Materials and Methods 
	Donor Cows and Sample Criteria 
	Sample Collection 
	Bacteriological Examination 
	Cytological Examination 
	Leukocyte Esterase Test 
	Endometrial Explant Culture 
	Determination of Tissue Viability 
	Gene Expression Analysis 
	Statistical Analysis and Graphical Illustration 

	Results 
	Characterization of Sampled Uteri 
	Successful Application of the Highly Defined Endometrial Explant Model 
	Higher Expression of IFNAR1 and IFNAR2 After IFN Challenge 
	IFN Concentration-Dependent Gene Expression in STAT1 
	Type 1 Interferon-Specific, Concentration-Dependent Regulation of MX1 and FABP3 


	Discussion 
	Conclusions 
	References

