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Simple Summary: Chronic wasting in sheep is often related to parasitic infections, especially to
infections with several species of trematodes. Trematodes, or “flukes”, are endoparasites, which
infect different organs of their hosts (often sheep, goats and cattle, but other grazing animals as well
as carnivores and birds are also at risk of infection). The body of an adult fluke has two suckers
for adhesion to the host’s internal organ surface and for feeding purposes. Flukes cause harm to
the animals by subsisting on host body tissues or fluids such as blood, and by initiating mechanical
damage that leads to impaired vital organ functions. The development of these parasites is dependent
on the occurrence of intermediate hosts during the life cycle of the fluke species. These intermediate
hosts are often invertebrate species such as various snails and ants. This manuscript provides an
insight into the distribution, morphology, life cycle, pathology and clinical symptoms caused by
infections of liver and rumen flukes in sheep. Furthermore, we address the diagnosis, treatment and
prevention measures, as well as the current knowledge about genomic resources.

Abstract: Grazing sheep and goats are constantly exposed to helminth infections in many parts of
the world, including several trematode species that causes a range of clinical diseases. The clinical
picture of flukes is dependent upon the organs in which they develop and the tissues they damage
within the respective organs. Accordingly, infections with the common liver fluke Fasciola hepat-
ica, which, as juvenile worm migrates through the liver parenchyma for several weeks, may be
associated with hepatic disorders such as impairment of carbohydrate, protein and fat metabolism,
followed by chronic wasting. In contrast, the lancet fluke Dicrocoelium dendriticum, which does not
exhibit tissue migration and thus does not lead to major tissue damage and bleeding, also does not
lead to significant clinical symptoms. Rumen flukes such as Cotylophoron daubneyi cause catarrhal
inflammation during their migration through the intestinal and abomasal epithelium during its
juvenile stages. Depending on the infection intensity this may result in a range of clinical symptoms
including diarrhoea, inappetence or emaciation. In this review, we aim to provide an update on the
current knowledge on flukes particularly concerning the clinical relevance of the most important
fluke species in sheep.

Keywords: sheep; trematodes; flukes; infection; wasting; emaciation

1. Introduction

Digenea are platyhelminths of the class Trematoda and have at least two hosts where
the definitive host is a vertebrate while the first intermediate host is most often a mollusk
(frequently a gastropod) or rarely a polychaet. Various invertebrate and vertebrate species
may serve as intermediate and paratenic hosts [1]. Accordingly, fluke prevalence is highly
dependent on the macro- and microclimatic conditions that enable survival and interactions
with specific intermediate hosts [2,3]. Grazing animals, particularly sheep, are highly
susceptible to various fluke species. In Europe, these include the common liver fluke
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Fasciola hepatica, the lancet fluke Dicrocoelium dendriticum and various rumen fluke species
belonging to the genera Paramphistomum or Calicophoron. Fluke infections in sheep cause a
wide variety of clinical symptoms depending on the specific organs associated with their
development and manifestation [4]. While chronic wasting is not a key clinical sign for
all of the above-mentioned fluke infections, it is considered a condition that always arises
depending on the different factors within the parasite–host interaction. This paper aims at
providing an overview on the current knowledge of fluke infections for the development
of this often-occurring clinical picture.

2. Fasciolidae with Emphasis on the Common Liver Fluke

Members of the family Fasciolidae, also known as the common liver flukes, are trema-
todes that parasitize in the liver of particular herbivore mammals, especially in ruminants.
Infections of other species as definitive hosts (e.g., equines, pigs, hares, dogs and rats) [5]
are also possible but occur rarely. The highest pathogenic impact is in sheep, where fasci-
olosis may cause high morbidity and mortality leading to economic loss of EUR 635 million
per year just in Europe due to production losses and treatment costs [6].

Furthermore, not only animals but also humans are at risk of infection by consuming
contaminated freshwater plants carrying the infectious metacercariae of the parasite. Thus,
making fasciolosis a zoonotic disease. Human fasciolosis particularly occurs in developing
countries [7], but in animals, the disease is common in many parts of the world constituting
a serious animal health problem.

2.1. Distribution of and Anatomical Differences between Fasciola Species

There are two different species of the parasite that differ in their spatial distribu-
tion. Fasciola hepatica is distributed globally in temperate and subtropical areas in Europe,
America, Asia, Australia and some parts of Africa, whereas Fasciola gigantica exists only in
tropical areas of Africa and Asia [8].

Fasciola hepatica (Figure 1) is a grey-brownish, leaf-shaped fluke with an approximate size
of about 1.8–5.0 cm in length and 1.0 cm in width [9] (p.172). This species has a conical anterior
end, which is delimited by obvious shoulders [10] (p.78). The major parts of the fluke’s bodies
serve for reproduction, which results in an extremely high rate of egg production, so that
a single fluke may produce up to 25,000 eggs per day [11]. The oval, golden yellow eggs
measure 130–145 × 70–90 µm in size and have an operculum [9] (p. 172) (Figure 2).
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Fasciola gigantica is larger in size than F. hepatica, they measure up to 7.5 cm in length
and 1.2 cm in width [9] (p. 172). In contrast to F. hepatica, the shoulders are not as conspicu-
ous, and the body is more transparent [10] (p. 78). However, in recent publications hybrids
between both of these Fasciola species have been described as a local phenomenon which
most likely happens by interspecies mating in regions where the distribution areas of the
species overlap [12].

2.2. Life Cycle of Fasciola spp.

Both species have a diheteroxenic life cycle involving freshwater snails of the family
Lymnaeidae as intermediate hosts. For F. hepatica, the most common intermediate host in
Europe is Galba truncatula, whereas hosts of F. gigantica include Radix natalensis and Radix
auricularia during its life cycle [13].

Infected definitive hosts excrete Fasciola eggs with their faeces and thereby depositing
them in the environment. Outside of the mammalian host, the eggs finalize their development
to the larval stage miracidium. This process is highly dependent on mild temperatures and
humidity. The time needed for embryonation varies from six months at 10 ◦C to eight days
at 30 ◦C. Yet, eggs may maintain their viability at temperatures down to 0 ◦C for up to two
years [14]. After embryonation, the motile miracidium hatches (stimulated by daylight)
and swims actively for up to 24 h to find a mollusc as a suitable intermediate host [14].
It penetrates the intermediate host through its foot after locating the snail by chemotaxis.
Once inside the snail’s body cavity, the parasite then multiplies at different life cycle stages.
The miracidium becomes a sporocyst, which in turn gives rise to up to 200 rediae. Each
redia generates the emergence of about 20 cercariae [14]. After a 4–7 weeks infection, the
intramolluscan development is complete. A large amount of cercariae erupt from the snail,
encysting on vegetation or the surface of water and then enter the infective stage called
metacercaria, which may remain infectious for up to one year [14].

Sheep and other definitive hosts ingest the infectious metacercariae by grazing on
contaminated pastures or in some instances by drinking out of natural water sources or if
they feed on inadequately prepared silage and hay. Infection then initiates with excystation
in the rumen, where concentrations of carbon dioxide and warm temperatures stimulate
the disintegration of the cyst wall [15]. In the abomasum the enzyme pepsin weakens the
cyst wall along with the enzyme trypsin in the small intestine, after which the parasite may
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finally emerge from the cyst. The immature fluke is now able to penetrate the gut wall
and to move through the peritoneal cavity [16]. After reaching the liver and traversing its
capsule, the juvenile flukes migrate through the parenchyma for up to six weeks [14]. They
settle in the bile ducts as sexually mature adult flukes, where the reproduction cycle begins
again, and new eggs are shed via the bile into the faeces. In untreated sheep, the common
liver fluke may survive up to several years [15] (p. 78).

A schematic life cycle is depicted on the website of the Center for Disease Control
(USA), available online under the following link: www.cdc.gov/parasites/fasciola/biology.
html (accessed on 5 February 2021).

2.3. Clinical Features of Fasciolosis

The migration through the liver parenchyma of the juvenile flukes causes considerable
tissue damage followed by haemorrhage and fibrosis and immunological reactions [17].
According to a study by Rushton and Murray in Scotland in 1977 [18], the highest burden
of immature flukes was found in the ventral lobe, where they induced a substantial
system of haemorrhagic and necrotic tracks, which later formed conspicuous post-necrotic
scars. Furthermore, penetrating flukes provoke portal and hepatic vein stenosis as well
as pericellular fibrosis around the triads with hepatocytes either surrounded by collagen
fibres or degenerated [18]. The damage is shown in Figure 3.
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Adult flukes, which settle in the bile ducts, may cause mechanical obstruction of the
bile ducts [17]. As the adults have microscopic spines on their tegument, the movements of
the flukes harm the inside of the bile ducts resulting in thickened bile ducts and cholangitis
with hyperplasia of the epithelium [19]. The juvenile and the mature Fasciola-stages
feed by producing enzymes, particularly proteases, which degrade blood and the liver
parenchyma [19].

All aspects of liver damage induced by the parasite play a decisive role in the host’s
metabolism and impairs the organ’s vital functions. In 2019, a study from Pakistan investi-
gated the pathological impact of F. hepatica infections in sheep including measuring the
biochemical parameters in the blood [17]. The paper emphasizes the correlation between
the degree of pathological hepatic lesions and high activities of the liver enzymes aspartate
aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP)
in serum, which indicate the destruction of the hepatocellular integrity. In contrast to the

www.cdc.gov/parasites/fasciola/biology.html
www.cdc.gov/parasites/fasciola/biology.html


Animals 2021, 11, 549 5 of 20

increased activities of the liver enzymes, the levels of blood urea nitrogen (BUN) and total
protein in serum were reduced in Fasciola-infected sheep since the liver damage has a clear
impact on metabolic pathways such as the urea cycle and protein synthesis. In addition,
in this study, the activity of gamma-glutamyltransferase (GGT) was measured. As GGT
is a sensitive indicator for bile epithelium damage in sheep, the elevated level in this
study insinuated that the abnormal blood parameters resulted from liver degeneration.
Furthermore, the study showed that creatinine levels were decreased, which might be
associated with muscle loss due to reduced bioavailability of protein [17].

Kozat and Denizhan [20] compared the serum concentrations of total protein, albumin,
glucose, cholesterol, triglyceride, high density lipoproteins (HDL), low density lipoproteins
(LDL) and very low density lipoproteins (VLDL) values in Fasciola-infected sheep with the
values of healthy sheep. These parameters turned out to be particularly lower in infected
sheep whereas the serum activities of AST, ALT, GGT and lactate dehydrogenase (LDH)
were significantly higher compared to the uninfected sheep. The authors underline, that
the hepatic tissue damage caused by the parasites also influences the capacity of storing
glycogen as an energy reservoir [20]. Consequently, during periods of energy deficit, body
fat reserves have been catabolized to form non-esterified fatty acids (NEFAs) causing an
abnormal serum lipid pattern. According to Blood et al., Fasciola spp. infections reduce
fertility, growth rate, and wool production in sheep and the voluntary feed intake decreases,
what impairs the efficient use of energy resources [21].

Overall, the compromised liver function leads to disorders of carbohydrate, protein
and fat metabolism thereby impacting the health, welfare, and productivity of infected
sheep significantly. An older study from Australia by Hawkins and Morris [22] investigated
the influence of F. hepatica on the change of bodyweight, patch wool growth, fleece weights
and feed digestibility in Corriedale sheep. These sheep were artificially infected with
different numbers of metacercariae ranging from 50 to 5000. An uninfected control group
was used as a reference. The negative changes of these parameters in the sheep correlated
with the mean fluke burden. Sheep infected with 1100, 2300 and 5000 metacercariae lost
body weight after the initial infection. Between these three groups, there was no significant
difference, but these sheep were significantly different from all of the other groups that
received a lower infection dose. Groups that received 50, 110, 230 or 500 metacercariae did
not lose weight, but weight gain was significantly reduced compared to the uninfected
control group. Since the food intake in the groups with a lower infection dose (up to
230 metacercariae) did not decrease and the feed digestibility was constant, the reason for
that is most likely a depressed feed conversion efficiency [22]. Regarding the wool growth,
the control group showed a particularly higher growth rate than any of the infected groups.
That can be explained by the fact, that Fasciola spp. consume methionine, an amino acid
essential for protein synthesis and wool growth. In the groups of sheep, which received
up to 230 metacercariae, no deaths occurred whereas all sheep infected with 1100 or more
metacercariae died before the end of the trial after suffering from a chronic course of
fascioliasis [22]. Based on this study it can be stated that the impact of a Fasciola spp.
infection on the health of the animals is strongly dependent on the infection intensity, i.e.,
the number of flukes concurrently parasitizing in the liver.

An acute or subacute fasciolosis results from the intake of a high quantity of metac-
ercariae in a short time period followed by large numbers of young flukes migrating
through the liver parenchyma at the same time. Clinically, sudden deaths of previously
healthy animals may occur in serious cases as a consequence of hepatic haemorrhages.
Other symptoms are reduced food uptake, lethargy, pale or icteric mucous membranes,
abdominal pain and dyspnoea [23]. In acute cases the migrating young flukes induce a
severe peritonitis with ascites. According to own observations the ascites fluid contains
severe amounts of eosinophil granulocytes. Subacute fasciolosis was shown to be an im-
portant factor for reduced reproductive performance in sheep by means of high rates of
non-pregnancy, reduced twinning rates and protracted lambing periods [24]. The hepatic
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lesions cause high levels of toxic metabolites and inflammatory mediators that impede
embryonic implantation and maintenance of the early pregnancy.

Chronic fasciolosis develops more slowly after ingestion of lower numbers of metac-
ercariae over a longer range of time, for example, if sheep graze only on a pasture with
a little contamination. Mature flukes parasitize and reproduce in the bile ducts causing
cholangitis and bile duct obstruction resulting in the symptoms of chronic Fasciola spp.
infections. Clinically, sheep infected chronically demonstrate oedema (especially in the
region of the lower jaw, “bottle jaw”), weakness, diarrhoea, shedding of wool and pallor
due to anaemia [25]. The chronic stage of this disease is indicated by hepatomegaly and
in some cases posthepatic icterus. The infected animals often show a normochrome, nor-
mocytic anaemia, accompanied by eosinophily and granulocytosis in the differential cell
counts [26].

Fouda et al. [27] surveyed the influence of chronic fasciolosis on the body weight of
sheep and its implication on cellular and biochemical constituents of the blood. The ani-
mals in this study exhibited progressive weight loss in adult sheep, underweight lambs,
profuse diarrhoea and oedematous swelling of the intermandibular space. The blood
results showed a significant decrease in the total erythrocyte cell counts, haemoglobin
concentration, and packed cell volume in infected animals compared to healthy control ani-
mals. Leukocytosis and marked eosinophilia were also evident. The observed anaemia was
related to the blood feeding activity of both immature and adult flukes. Consequently, the
significant decrease in the levels of copper, iron, zinc, glucose, total protein and albumin in
Fasciola-infected sheep was observed as a result from the blood loss. Moreover, fasciolosis
is a predisposing factor for mastitis [28] and drops in coagulation parameters [29].

2.4. Diagnosis of Fasciola spp.

The classical method for the diagnosis of a Fasciola spp. infection is the coproscopic
detection of eggs in faecal material using a sedimentation method. Another method is
the use of a coproantigen ELISA, which detects Fasciola-antigens in the faeces up to three
weeks before egg shedding begins [30]. Further possibilities for diagnosing Fasciola spp.
infections are the detection of antibodies in serum as well as the use of molecular methods
such as the polymerase chain reaction (PCR) or loop-mediated isothermal amplification
(LAMP) [31]. However, each method has different advantages and disadvantages: The
classical sedimentation method is inexpensive and easy to perform, but it can only diagnose
patent infections and due to the intermittent egg shedding animals with low fluke burdens
might be diagnosed false negative [32,33]. The coproantigen ELISA is able to detect
fluke infection as early as 5–6 weeks p.i. [30], enabling a diagnosis during the prepatency.
However, the costs for performing the coproantigen ELISA are much higher than those for
the coproscopic method, which needs only basic laboratory equipment and tap water. The
detection of specific anti-F. hepatica-antibodies in serum samples with an ELISA technique
is a suitable method for early diagnosis of infection [34]. In experimentally infected sheep,
specific antibodies were detectable within two weeks p.i. [35]. The serious disadvantage
of the antibody test is the missing possibility to discriminate between active and past
infections as the antibodies persist for about 12 weeks after successful treatment [36].
A study from 2016 [31] performed a comparison between conventional methods (faecal egg
counting, coproantigen ELISA and serology) with molecular methods (PCR and LAMP)
for diagnosing F. hepatica in the field. The authors conclude from their study, that the
conventional methods are still more sensitive than the molecular methods for the diagnosis
using faecal samples [31].

2.5. Treatment of Fasciola spp. and Drug Resistance

The drug of choice for the treatment of fasciolosis is triclabendazole (TCBZ) at a dose
of 10 mg/kg bodyweight. TCBZ is a halogenated benzimidazole that is effective against all
fluke stages; however, its exact mode of action is still unclear. Noteworthy, the widespread
use of TCBZ for many years led to the development of resistant Fasciola populations (for
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review see: [11]). The first report of resistance was published in 1995 in Australia [37]. Since
then, TCBZ-resistance has been reported in several countries all over the world during the
last decades. Other drugs for treating Fasciola-infected livestock are albendazole, closantel,
nitroxynil and oxyclozanide. However, all of them are only effective against the mature
flukes and not against the juvenile stages.

2.6. Make Use of Genomic Resources to Unravel Resistance Mechanisms

Genome assemblies have been published for F. hepatica [38,39] and F. gigantica [40]
and analysis of such data will be very helpful for future screening of potential drug targets,
as e.g., shown by McVeigh et al. [41]. The two F. hepatica genome assemblies have an overall
size of 1.3 and 1.14 GB, respectively [38,39]. With N50 values of 161 and 205 kbp, the
quality of the assembly appears reasonably good and 90% of all core eukaryotic genes were
identified in both assemblies. In both genome assemblies, a high proportion of repetitive
sequences was identified, which explains the large genome size in comparison to other
digenean flukes [39]. For comparison, the genome assembly of F. gigantica had an overall
size of 1.04 GB and also has a high content of repetitive sequences. With an N50 value of
129 kbp, this genome assembly also appears to be more fragmented than the F. hepatica
assemblies [40]. The study by Cwiklinski et al. [39] revealed that haplotype diversity is
high within F. hepatica by resequencing individual flukes from five different UK isolates.
This suggests that fluke populations can react with considerable plasticity to changes
in the environment as caused by climate change and drug treatment. From a practical
perspective, such genome data also help us to understand the mechanisms of resistance
and in the long term helps to develop markers for rapid and cost-effective diagnosis
of resistance using molecular approaches [42]. Future studies combining approaches
such as clonal amplification of F. hepatica lines with known resistance status with whole
genome resequencing using genome-wide association analyses might provide clues to how
selection of resistance against flukicides such as TCBZ can be decelerated. Furthermore,
this could help to develop tools for the early detection of multi-drug resistant populations
and consequently optimize treatment advice. Lastly, this genome data will be valuable to
guide research towards the development of effective vaccine candidates.

2.7. Strategies towards a Fasciola Vaccince

Apart from management changes such as fencing out water trenches and other snail
habitats, vaccination would be an attractive way to control infections of Fasciola spp.;
thereby reducing the need for treatments as well as production loss caused by the parasite.
The development of vaccines has been a researched for the last decades [43,44]. However,
the identification of potential vaccine antigens is a challenge due to the intricacy of the
parasite’s molecules to modulate the response of the host’s immune system towards a
non-protective reaction [45,46]. During an active infection, the host protective Th1 response
is suppressed by a dominant, non-protective Th2 immune response [13]. This phenomenon
is also observed in other chronic helminth infections, promoting the survival and the
longevity of the parasites in their definitive hosts [47].

The current state of research regarding vaccinations against Fasciola spp. has recently
been reviewed by McManus [48]. The most promising vaccine candidates so far have been
various cathepsin L proteases, leucine aminopectidase, haemoglobin and peroxiredoxin.
Although efficacies as high as 75–90% were observed in some trials particularly using
the leucine aminopeptidase antigen [49–51], there was a high variability between trials.
However, that might be due to the use of different adjuvants and a lower efficacy of
recombinant antigens compared to that of native antigens purified from somatic fluke
proteins or excretory/secretory material [48]. Current data also suggest that a combination
of several antigens does not lead to a higher level of protection compared to the efficacy of
a single antigen in a vaccine [48]. Despite the high variability of genomes between different
Fasciola isolates, the variability of antigens used in vaccines was low suggesting that this
does not contribute to variability in vaccination efficacy [52].
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The choice of the adjuvant is highly relevant as emphasized in another very recent pub-
lication [44]. In this study, a vaccination trial using two vaccine candidates in Merino sheep
was performed. The two candidates consisted of four F. hepatica recombinant molecules
formulated in two different adjuvants (Montanide ISA 61 VG in group 1 and Alhydrogel®

in group 2). Although the antigen mixture was exactly the same in both vaccines, the sheep
in group 1 showed a significantly lower fluke burden and a significant decrease of hep-
atic lesions compared to the untreated infected control group. In contrast, this was not
observed in the group 2 which was immunised with the same antigens in a formulation
with the aluminium-based adjuvant (Alhydrogel®). This points out, that the selection of
the adjuvant does play a major role in terms of inducing protection against F. hepatica [44].

Thus, although there are promising activities regarding vaccine development against
Fasciola spp., practical availability of such a vaccine presumably cannot be expected in a
short or even medium future.

In summary, Fasciola spp. cause general emaciation and lower productivity in sheep
due to hepatic and biliary damage and impaired metabolic pathways following from
compromised liver function. The degree of severity and the clinical course is mostly
dependent on the number of ingested metacercariae, which initially determines the fluke
burden. Reduced appetite, decreased feed conversion efficacy, nutritional deficiency and
hypoproteinaemia are the main reasons for wasting and weakness in chronically Fasciola-
infected sheep.

3. Dicrocoelium spp. (Lancet Flukes)

Similar to the Fasciola spp., the lancet fluke parasitises the liver of mammalian defini-
tive hosts, especially in grazing wild and domestic ruminants. Infections of rabbits, pigs,
dogs and horses do also occur sporadically [53] and the disease has zoonotic potential as
well.

3.1. Dicrocoelium Species and Their Global Distribution

Dicrocoeliosis, caused by Dicrocoelium dendriticum, the lancet fluke, is also a globally
distributed parasitic disease. It was first described in 1803 in Europe and due to the
movement of infected animals [54] an endemic situation is now seen in numerous countries
of Europe, Asia, America and North Africa. The distribution of the other Dicrocoelium
species, Dicrocoelium hospes is limited to some regions in Africa [55] and Dicrocoelium
chinesis occurs in many regions of Asia in ruminants but has also been found in Sika deer in
Europe [56]. However, other details about these trematode species are substantially similar
to D. dendriticum.

Dicrocoelium dendriticum (Figure 4) is 6–12 mm in length and 1.5–2.5 mm in width
presenting in a lanceolate form with a smaller oral sucker and a larger ventral sucker, which
are located in close proximity. The body of the fluke is semi-transparent, so that the internal
organs are visible through the external surface. In contrast to Fasciola spp., D. dendriticum
does not have external spikes on its tegument [10] (p. 85). The dark-brown, thick-shelled
eggs are small, measuring 35–45 µm in length and 22–30 µm in width and the operculum
is often inconspicuous [10] (p. 387).

3.2. Life Cycle of Dicrocoelium Dendriticum

The parasite has a complex triheteroxenic life cycle with terrestrial molluscs and ants
as first and second intermediate hosts. That is why D. dendriticum is relatively independent
of moist habitats compared to Fasciola spp. Over 100 land snail species have been found to
serve as natural and/or experimental intermediate hosts of D. dendriticum [57].
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The adult trematodes live in the gall bladder and the bile ducts of the mammalian
definitive hosts and shed their embryonated eggs via the bile to the intestine and from
there mix with the faeces into the environment [56]. Snails ingest the eggs when feeding on
mammalian faeces and inside the digestive tract of the mollusc, the miracidium hatches
subsequently out of the eggshell (most likely due to physical-chemical stimuli [58,59]).
After invading the intestinal wall of the snail, it settles in the hepatopancreas [57,60]. Two
generations of sporocysts develop from the miracidia before cercariae are generated, a
process that takes approximately 3–4 months [60]. This episode of the fluke’s life cycle
is dependent on a temperature higher than 4 ◦C and the outside temperature correlates
positively with the rate of development inside the snail [61]. The cercariae migrate to the
respiratory tract of the snail, where they are coated with slime before being eliminated
through respiratory movements [57]. Various species of ants of the family Formicidae
ingest these cercariae-containing slime balls [56]. Inside the ant, the cercariae lose their tails
and at least one of them reaches the suboesophageal ganglion. The remaining cercariae
develop into infective metacercariae in the abdomen of the ant. The first cercaria (called
“brainworm”) in the ganglion impacts the behaviour of the infected ant, manipulating
the ant to cling on vegetation during the nights, which raises the chance significantly
for the ant including the infectious metacercariae in the abdomen to be ingested by the
grazing definitive host [62]. The number of metacercariae per ant varies. In the study from
Manga-González et al. in 2001, the authors observed numbers of 2 to 240 metacercariae
per ant; however, they mentioned further studies with even higher counts [57]. Inside
the gut of the mammalian host, metacercariae emerge out of its cyst walls. Subsequent
to the excystation, the juvenile flukes follow the route through the common bile duct to
reach the liver [57]. After reaching maturity, the adult flukes start a new reproduction cycle
by shedding new eggs [57]. Experimentally infected lambs showed a prepatent period of
49–79 days post infection [62].

A schematic life cycle is depicted on the website of the Center for Disease Control
(USA), available online under the following link: www.cdc.gov/dpdx/dicrocoeliasis/
index.html (accessed on 5 February 2021).

www.cdc.gov/dpdx/dicrocoeliasis/index.html
www.cdc.gov/dpdx/dicrocoeliasis/index.html
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3.3. Clinical Features of Dicrocoeliosis

Due to the complexity of the life cycle of the fluke, artificial experimental infections
for scientific research are difficult to implement. Therefore, published data about the
pathogenic effects of D. dendriticum on animals are sparse.

Theodoridis et al. [63] investigated the pathophysiological implications that Dicro-
coelium-infections had on twenty adult sheep with fluke burdens ranging from less than
100 to more than 4000 flukes by monitoring body weights, packed cell volumes, serum
albumin, and serum total protein. The authors concluded that there was no significant loss
of red blood cells or plasma albumin at the different levels of infection [63].

Manga-Gonzalez et al. [64] quantified the hepatic marker enzymes (ALT, AST, GGT,
ALP and LDH) and other biochemical values in relation to infection doses of 1000 and
3000 Dicrocoelium metacercariae using twelve lambs per infection group. They also com-
pared the body weight of the infected lambs with the weight of an uninfected control group.
The authors documented a slight increase in the serum levels of albumin and bilirubin in
the infected animals as well a rise in the mean activities of the liver enzymes, especially
regarding ALT and AST during the early stage of infection until 60 days p.i. However,
no clear correlations between the fluke burden and the alterations in biochemical parame-
ters or in the hepatic marker enzymes were observed. During the post-mortem examination,
hepatic induration, whitish dilated intrahepatic bile ducts and enlarged gall bladders were
diagnosed. Concerning the body weight, D. dendriticum infections impacted the animal
weight negatively particularly until 60 days p.i. (the estimated period until young flukes
have reached maturity). In this study, the decrease in weight gain in comparison to the
control group was the only clinical symptom the authors detected. The lowest weight
increase was recorded 60 days p.i. (−15% in the group infected with 3000 metacercariae
and −12% in the group infected with 1000 metacercariae) [64].

Other authors state that a lancet fluke burden of less than 1000 worms does not
have clinical significance or economic repercussions [65–67]. Wolff et al. [68] found that
infected sheep with 3000 metacercariae resulted in a fluke burden of up to 1946, never-
theless the infected animals did not show any clinical signs. In contrast, lambs infected
with 3000 metacercariae had diarrhoea and a reduced growth rate [69]. Furthermore,
Sargison et al. identified dicrocoeliosis as a probable predisposing cause of weight loss
and hepatogenous photosensitisation in Scottish sheep [70]. Naturally infected animals
were found to occasionally show anaemia, oedema, emaciation, and in advanced cases
cirrhosis and scarring on the liver surface [53], as well as proliferation and alterations in
the septal bile ducts of the lobular hepatic edges [69,71]. The lack of considerable clinical
symptoms observed in patho-physiological studies was considered to be the consequence
of the behaviour of the immature flukes, which migrate directly through the bile ducts
without invading the intestinal wall or liver tissue of the definitive host [63]. In addition,
the authors did not observe any significant loss in blood and plasma proteins under natural
infections with a fluke burden of up to 4000 adult flukes.

3.4. Diagnosis of Dicrocoelium Infections

Unlike the eggs of the common liver fluke, the smaller eggs of Dicrocoelium spp.
in faecal samples cannot reliably be detected using a sedimentation method [53]. In a
study from 1999, a modified McMaster method using a HgI2 /KI solution (specific gravity
1.44) for flotation showed significantly better results than the sedimentation technique
or a flotation using ZnSO4 solutions (specific gravity 1.3 and 1.45) or K2CO3 (specific
gravity 1.45) [72]. Similar to Fasciola spp., serum samples can be examined for antibodies
against Dircocoelium spp. with an ELISA as an alternative to coprological methods [73].
The presence of antibodies in serum can first be detected four weeks p.i. [74]. However, due
to the lack of clinical symptoms at low fluke burdens, dicrocoeliosis often stay undiagnosed
during the animal’s lifespan and the diagnosis is made post-mortem at the abattoir [53].
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3.5. Treatment and Prevention of Dicrocoeliosis

Regarding the treatment of dicrocoeliosis, benzimidazoles and pro-benzimidazole
derivates such as albendazole and thiophanate at higher doses than used against nema-
todes were shown to be effective [53,75], whereas treatment with triclabendazole did not
show efficacy against D. dendriticum [76]. To our knowledge, there are no published reports
of anthelmintic resistance for D. dendriticum to date. Due to the fact that many Formica
spp. second intermediate host ant species are protected, at least in Europe [77], prevention
due to management measures is particularly difficult in extensive breeding systems and
land preservation projects involving extensive grazing by ruminants. An attempt to reduce
the number of intermediate hosts might be by the placing of entomophagous and mollus-
cophagous poultry such as turkeys, chickens and ducks to the grazing areas [53]. However,
that method will work on small pastures only. As combating the intermediate hosts is not
a reliable prophylactic strategy, an effective drug treatment of livestock is the most useful
control method of dicrocoeliosis [78].

To the knowledge of the authors, there are no published data on approaches to develop
vaccines against D. dendriticum. Due its low pathogenicity, this parasite is obviously not of
high priority for such efforts.

3.6. Genomic Resources and Their Potential Use for Control of Dicrocoelium spp. Infections
in Livestock

Data from a genome assembly of D. dendriticum are available in GenBank since 2014
(BioProject accession no: PRJEB3954), but they are not associated with any publication.
The overall sequence length of about 550 MB is in the same range as for many foodborne
trematodes [39]. However, with an N50 value of only 403 bp, the assembly appears to be
highly fragmented and probably of low value in its current stage.

In conclusion, the pathogenic effects of D. dendrititum-infections on sheep are difficult
to quantify, as sheep in regions where D. dendriticum is prevalent may additionally be
infected with more pathogenic flukes (e.g., F. hepatica) or gastrointestinal nematodes or
lungworms, which cause symptoms quite similar to dicrocoeliosis [63]. Artificial infection
experiments are challenging to conduct due to the complexity of the life cycle of the parasite.
According to existing literature it can be summarised, that D. dendriticum infections do
not appear to be an as remarkable risk factor for chronic wasting in sheep compared to
Fasciola spp., even at high fluke burdens. However, the infection can cause weight loss or a
decreased weight gain in infected sheep [64,69,70].

4. Paramphistomidae as Rumen and Liver Flukes

Rumen flukes infecting ruminants belong to the family Paramphistomidae and sev-
eral species within this family infect sheep, including Calicophoron daubneyi, Cotylophoron
cotylophorum, Paramphistomum leydeni, Paramphistomum ichikawai, Paramphistomum microboth-
rium, Gigantocotyle explanatum and Gastrothylax crumenifer.

4.1. Species and Distribution of Paramphistomidae

The infestation of sheep with rumen flukes (Paramphistomidae) is widespread world-
wide. In Europe, local occurrences have been reported for decades. They have been
recorded in many countries and regions, such as Bulgaria, France, Poland, Hungary, Italy,
India, Russia and Sardinia, and were also recorded in Yugoslavia [79]. In the last few years,
it has become evident that paramphistomosis is gaining more importance in northern and
central Europe, because of the high prevalence rates reported in the United Kingdom,
Ireland, France, Spain, Belgium and the Netherlands. In these European countries, almost
exclusively, Calicophoron daubneyi was diagnosed [80–89]. Only sporadically was Param-
phistomum leydeni identified [86]. Since 2016, diagnosis of paramphistomosis have also
been found to be increased in northern Germany in sheep [90]. Paramphistomum ichikawai is
mainly found in Africa, Asia and Australia [91,92].
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Worldwide, a large number of other species belonging to the genera Gastrothylax,
Fischoederius, and Calicophoron were also recorded [93]. Their host range are domestic
ruminants such as cattle, water buffalos, sheep and goats as well as wild ruminants such
as deer, buffalos, etc. All these trematodes have a similar indirect life cycle. The ontogeny
proceeds as a two-host cycle, similar to that of F. hepatica. Small terrestrial snails (Planorbis
planorbis, Anisus vortex, Bathyomphalus contortus, etc.) serve as intermediate hosts. Like
F. hepatica, C. daubneyi uses G. truncatula gastropods as intermediate host. The infection
of sheep is oral-alimentary by ingesting the metacercariae with the grass on wet pastures
or in standing or slow-floating waters in the shore zone. Under central European condi-
tions, the main periods of infection are in late summer and autumn. After oral uptake
the metacercariae leave the cyst shell in the small intestine, juvenile flukes penetrate the
mucous membrane. After several days in the intestine, they migrate within the mucosa to
the abomasum and duodenum and finally into the rumen. In acute paramphistomosis, the
juvenile rumen flukes can remain in the duodenum for up to four weeks. Adult paramphis-
tomes inhabit the rumen and lay clear, operculated eggs that are passed into the faeces. In
sheep, the prepatency is up to 115 days [94]. After experimental infection of goat kids with
C. dabneyi, the prepatency was estimated to be 12–13 weeks. For C. calicophoron a much
shorter prepatency period of seven weeks was observed [95].

One paramphistome species of Asia, Gigantocotyle explanatum, migrates to and matures
in the bile ducts [96]. This fluke is a very common amphistome in bile ducts and gall
bladders of cattle and buffaloes in numerous countries, and the parasite has also been
found in sheep [96]. Although it induces hyperplasia of bile duct epithelium with marked
proliferation of mucosal glands and mononuclear cell infiltration, clinical symptoms are
lacking [96,97].

Adult C. daubneyi rumen flukes are glassy-pink to flesh-coloured and have a conical,
rounded shape (Figure 5). They have a size of 6–12 mm, making them visible to the unaided
eye. The larger belly sucker is at the rear end.
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4.2. Life Cycle of Paramphistomidae

The life expectancy of the flukes is considered to be several years. When faeces are
excreted into water, miracidia develop from these eggs over a period of 12 to 21 days
depending on temperature. Swimming miracidia enter water snails of various genera
including Planorbis, Bulinus, Lymnaea, Galba, Gyraulus and others. Mature sporocysts
containing rediae develop in snails over a period of 11 days. Rediae are released within
the snail and after an additional maturation of 10 days, contain multiple cercariae. In turn,
cercariae are released from rediae and mature within the snails for approximately 13 more
days [94]. Mature cercariae are released from snails into water under a stimulation of strong
sunlight. Liberated cercariae attach to herbage and encyst as metacercariae, remaining
viable for three months. When ruminants ingest contaminated herbage, metacercariae
excyst in the small intestine where they feed aggressively and mature for a period of
6–8 weeks [94]. Young flukes migrate anteriorly within the mucosa of the gastrointestinal
tract to the rumen, where they undergo additional maturation after attachment to the
rumen mucous, begin laying eggs, and complete its life cycle. Migration to the rumen and
its subsequent development can be delayed or prolonged up to several additional months
when fluke infestations are heavy [26,94].

According to experimental infections of cattle, sheep, and goats with Paramphistomum
microbothrium, maturation of flukes from the intestine to the rumen is completed in sheep
and cattle within 34 days, but just begins in goats for that time frame. Further, the subse-
quent egg laying begins two weeks later in goats than in cattle or sheep. The prolonged
residence of maturing paramphistomes in the small intestine may contribute to increased
pathogenicity of the fluke in goats [94].

4.3. Epidemiology and Clinical Features of Infections with Paramphistomidae

Studies on the presence of paramphistomosis in goats at different slaughterhouses in
Bangladesh revealed a high prevalence of 73%, within the three species of amphistomes:
Paramphistomum cervi, Cotylophoron cotylophorum and Gastrothylax crumenifer. Mixed in-
fections with two or more species of amphistomes were found in 60% of the goats [98].
Abattoir examinations in Jammu, India, revealed that 36.2% of sheep and 30.9% of goats
were positive for paramphistomosis. The season of the year had a significant influence
on the prevalence. A higher percentage of positive animals were found in the rainy and
post-rainy season as compared to the summer and winter seasons [99].

In Europe epidemiological studies on amphistomes have been carried out in Italy,
where in two regions (southern Apennines and Campania), about 16% and 14% of the
sheep holdings were infected and a high positive correlation with the presence of F. hepatica
was observed [100,101]. In Wales, flock level prevalence of C. daubneyi for sheep (42%) was
significantly lower than for cattle (59%). Co-infection with C. daubneyi and F. hepatica was
observed on 46% of the farms. The presence of streams and bog habitats, and Ollerenshaw
index values (an index increasing with rainfall and decreasing with extraterrestrial radia-
tion) were significant positive predictors for the presence of C. daubneyi [87]. In Ireland,
the rumen fluke prevalence increased in cattle in the time between 2010 to 2013 from 36.4
to 42.5%, and in sheep from 12.4 to 22%. Within the same time period, the prevalence of
the liver fluke fluctuated in cattle and sheep year by year but remained always below the
prevalence of the rumen flukes. In sheep, the prevalence of liver flukes was higher than in
cattle [102]. A national prevalence study of rumen fluke infections was completed from
November 2014 to January 2015 in Ireland. An apparent herd prevalence of 77.3% was
determined. Several risk factors were identified: flocks predominantly grazing lowland
pastures were more than twice as likely to be positive compared to those grazing in moun-
tain pastures. Sharing the paddocks with other livestock species, especially cattle included
an increased risk for sheep. There was also a higher susceptibility of the Irish Suffolk sheep
breed to infection with rumen flukes [86]. In the Netherlands, the average flock prevalence
in the years 2009–2014 was 8%. The epidemiological studies raise intriguing questions
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regarding a competition of C. daubneyi with F. hepatica and effects of climate change on
C. daubneyi establishment [87].

Concerning infestation of rumen flukes, a basic distinction is made between intestinal
or abomasal and ruminal paramphistomosis. The ruminal form is subclinical. In the adult
stage the trematodes are relatively harmless inhabitants of the rumen (Figure 6).
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However, acute and subacute paramphistomosis are observed during migration of
the rumen flukes in the duodenum and abomasum and might be connected with clinical
symptoms. The clinical course depends on the age of the sheep, intensity of infestation,
and type of pathogen. The symptoms of paramphistomosis appear 16–32 days post
infection: initially reduced appetite, apathy, later diarrhoea, mild fever, oedema, anaemia,
recumbency and emaciation. After uptake of up to 50,000 metacercariae under experimental
conditions, the intestinal paramphistomosis can cause a severe catarrhal enteritis [103,104].

In sheep, it was reported that the intestinal paramphistomosis can also occur in naive
adults. In a small hobby flock, several adult ewes became sick and in two of them numerous
young flukes were found in the small intestine at post-mortem examinations [105]. Once
the infection has been overcome, an immunity is induced that largely prevents the re-
colonisation and migration of rumen flukes in the intestinal mucous membrane.

Pathological-anatomical changes are to be found in the migration pathways of the
trematodes in the small intestine and abomasum, as well as in the attachment sites in
the rumen. The intestinal mucosa is reddened, swollen and sections of petechial haemor-
rhages occur. Young flukes can be found deep between the villi. The abomasal mucosa is
catarrhally inflamed in the area of the pylorus [26,92].

Button-like protrusions of the rumen mucosa and villi atrophies develop at the attach-
ment points of the abdominal suction cup. Damage to the papillary body at the attachment
points can lead to atrophy and necrosis or growths of the papillary body and cellular
infiltration of the submucosa [26,91].

4.4. Diagnosis of Rumen Flukes

Patent rumen fluke infections can be detected by means of a sedimentation method.
The eggs of Paramphistomidae are similar to those of F. hepatica, but they are slightly larger,
coarser structured and light grey, clear and operculated. In case of a suspected intestinal
paramphistomosis, the faeces are washed through a fine sieve and the residue in the sieve
is investigated for young flukes under the microscope [91,106]. Commercial serological
tests for the detection of paramphistomid infections are not available. In rumen dissection,
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the conspicuous flesh-coloured trematodes are found between the rumen villi in the area of
the anterior and posterior rumen pillars and at the rumen reticulum border [26]. Previously,
the most common diagnostic method for differentiation of rumen fluke species was the mi-
croscopical examination. Increasingly, genome determination, sequencing, and polymerase
chain reactions have become widely used methods for species identification [86,107,108].

4.5. Treatment and Prevention of Rumen Fluke Infections

Elimination of the immature flukes with appropriate anthelmintic therapy is the major
objective and in severe cases may be lifesaving, if treatment is started early in the course of
the disease.

Morantel citrate at a dose of 6 mg of morantel base/kg bodyweight (b.w.) has been
shown to be 99.5% effective against immature paramphistomes. In addition, Bithionol
(25–100 mg/kg b.w.), Niclofolan (6 mg/kg b.w.), Niclosamide (50–100 mg/kg b.w.), and
Resorantel (65 mg/kg b.w.) are reported to be 95% effective against immature flukes in
sheep and goats. Bithional may be toxic to goats at the increased effective dose ranges.
Oxyclozanide (15 mg/kg b.w.) has a slightly less consistent efficacy range of 85% to 100%
against immature flukes but is also 100% effective against mature stages [94]. In goats,
an increased dose of 22.5 mg/kg b.w. has not a better treatment effect against juvenile
flukes [109]. There are contradictory reports on the efficacy of albendazole in sheep.
Sey [110] regarded albendazole at a dose of 20 mg/kg b.w. as highly effective, whereas
Rolfe and Boray [92] saw nearly no effect. In dairy cattle, albendazole and netobimin had
an effect of 0 to 26% in the faecal egg count reduction test. Better results were achieved
with closantel and oxyclozanide with FECR values of 97–99%, so that Arias et al. [111]
recommended the administration of closantel in those countries where oxyclozanide is
not available.

Prophylactic measures (pasture hygiene, amelioration) are aimed at ditches and ponds,
which are located on the pasture and are suitable biotopes for amphibic snails.

Since diagnosis of rumen flukes is difficult during the phase when severe symptoms
can occur, vaccination would be a valuable approach to avoid such severe cases. However,
little has been done in this direction except for a single study in which a recombinant Param-
phistomum epiclitum haemoglobin has been used to vaccinate calves, however, no protective
effect was observed [112].

4.6. Available Omics Data on Rumen Fluke

While no genome data are available, there are two publications describing transcrip-
tome data for Paramphistomum cervi [113] and Calicophoron daubneyi [114]. Since the latter
also provides data on differential gene expression between freshly excysted juveniles and
adult flukes and proteomic data on the secretome using mass spectrometry, this data set
will be very valuable in the future to identify candidate antigens for systematic vaccine
development projects.

5. Conclusions

Although liver and rumen flukes can cause considerable clinical disease, the current
options for control are limited, e.g., due to drug resistance (Fasciola) or poor diagnostic
options in the phase of the most severe clinical burden (Paramphistomidae). Since the
diseases often take a chronic course, wasting is a frequently observed outcome, particular
if animals face high infection pressure, additional infections, or if stress factors aggravate
the problem. A better understanding of the biology of these parasites will help to improve
intervention strategies and sheep health.

Author Contributions: Conceptualization: A.K., G.v.S.-H., M.G.; Writing—Original draft prepara-
tion: A.K., G.v.S.-H., M.G.; Writing—Review and editing: A.K., G.v.S.-H., M.G. and J.K.; visualiza-
tion: A.K., G.v.S.-H., M.G. and J.K. All authors have read and agreed to the published version of
the manuscript.



Animals 2021, 11, 549 16 of 20

Funding: Alexandra Kahl is employed on a project funded by the Federal Office of Consumer
Protection and Food Safety, Germany (contract number: 2019000389).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: The publication of this article was funded by Freie Universität Berlin.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cribb, T.H.; Bray, R.A.; Olson, P.D.; Littlewood, D.T. Life cycle evolution in the digenea: A new perspective from phylogeny.

Adv. Parasitol. 2003, 54, 197–254. [PubMed]
2. Mas-Coma, S.; Valero, M.A.; Bargues, M.D. Effects of climate change on animal and zoonotic helminthiases. Rev. Sci. Tech. 2008,

27, 443–457. [CrossRef]
3. Morley, N.J.; Lewis, J.W. Thermodynamics of cercarial development and emergence in trematodes. Parasitology 2013, 140,

1211–1224. [CrossRef]
4. Rojo-Vázquez, F.A.; Meana, A.; Valcárcel, F.; Martínez-Valladares, M. Update on trematode infections in sheep. Vet. Parasitol.

2012, 189, 15–38. [CrossRef]
5. Walker, S.M.; Johnston, C.; Hoey, E.M.; Fairweather, I.; Borgsteede, F.H.; Gaasenbeek, C.P.; Prodohl, P.A.; Trudgett, A. Potential

role of hares in the spread of liver fluke in the Netherlands. Vet. Parasitol. 2011, 177, 179–181. [CrossRef]
6. Charlier, J.; Rinaldi, L.; Musella, V.; Ploeger, H.W.; Chartier, C.; Vineer, H.R.; Hinney, B.; von Samson-Himmelstjerna, G.;

Băcescu, B.; Mickiewicz, M.; et al. Initial assessment of the economic burden of major parasitic helminth infections to the
ruminant livestock industry in Europe. Prev. Vet. Med. 2020, 182, 105103. [CrossRef] [PubMed]

7. Mas-Coma, S.; Bargues, M.D.; Valero, M.A. Diagnosis of human fascioliasis by stool and blood techniques: Update for the present
global scenario. Parasitology 2014, 141, 1918–1946. [CrossRef]

8. Mas-Coma, S.; Valero, M.A.; Bargues, M.D. Fasciola, lymnaeids and human fascioliasis, with a global overview on disease
transmission, epidemiology, evolutionary genetics, molecular epidemiology and control. Adv. Parasitol. 2009, 69, 41–146.

9. Deplazes, P.; Eckert, J.; von Samson-Himmelstjerna, G.; Zahner, H.; Joachim, A.; Mathis, A.; Taubert, A.; Strube, C. Parasitologie für
die Tiermedizin, 4th ed.; Thieme-Verlag: Stuttgart, Germany, 2020; p. 172ff.

10. Taylor, M.A.; Coop, R.L.; Wall, R.L. Veterinary Parasitology, 4th ed.; Wiley-Blackwell: Chichester, UK, 2016; pp. 74–80, 84–85,
383–387.

11. Fairweather, I.; Brennan, G.P.; Hanna, R.E.B.; Robinson, M.W.; Skuce, P.J. Drug resistance in liver flukes. Int. J. Parasitol. Drugs
Drug Resist. 2020, 12, 39–59. [CrossRef]

12. Calvani, N.E.D. and J. Šlapeta. Fasciola Species Introgression: Just a Fluke or Something More? Trends Parasitol. 2020, 37, 25–34.
13. Cwiklinski, K.; O’Neill, S.M.; Donnelly, S.; Dalton, J.P. A prospective view of animal and human Fasciolosis. Parasite Immunol.

2016, 38, 558–568. [CrossRef]
14. Howell, A.K.; Williams, D.J.L. The Epidemiology and Control of Liver Flukes in Cattle and Sheep. Vet. Clin. N. Am Food Anim.

Pract. 2020, 36, 109–123. [CrossRef]
15. Dixon, K.E. The physiology of excystment of the metacercaria of Fasciola hepatica L. Parasitology 1966, 56, 431–456. [CrossRef]
16. Forbes, A. Liver fluke infections in cattle and sheep. Livestock 2017, 22, 250–256. [CrossRef]
17. Naveed, A.; Shahzad, A.K.; Tunio, M.T. Incidence of liver fluke infestation and pathological examination in sheep (Ovis aries) in

Mirpur Azad Jammu and Kashmir. PAB 2019, 8, 750–761.
18. Rushton, B.; Murray, M. Hepatic pathology of a primary experimental infection of Fasciola hepatica in sheep. J. Comp. Pathol. 1977,

87, 459–470. [CrossRef]
19. Williams, D. Update on liver fluke in sheep. Practice 2020, 42, 341–347. [CrossRef]
20. Kozat, S.; Denizhan, V. Glucose, lipid, and lipoprotein levels in sheep naturally infected with Fasciola hepatica. J. Parasitol. 2010, 96,

657–659. [CrossRef]
21. Blood, D.C.; Radostits, O.M.; Arundel, J.H.; Gay, C.C. Diseases caused by helminth parasites. In Veterinary Medicine: A Textbook of

the Diseases of Cattle, Sheep, Pigs, Goats and Horses, 7th ed.; Bailliere Tindall: London, UK, 1989; pp. 1016–1028.
22. Hawkins, C.D.; Morris, R.S. Depression of productivity in sheep infected with Fasciola hepatica. Vet. Parasitol. 1978, 4, 341–351.

[CrossRef]
23. Sargison, N.D.; Scott, P.R. Diagnosis and economic consequences of triclabendazole resistance in Fasciola hepatica in a sheep flock

in south-east Scotland. Vet. Record. 2011, 168, 159. [CrossRef]
24. Sargison, N.D. Fluke diseases of UK ruminant livestock Part 1: Life cycles, economic consequences and diagnosis. UK Vet. Livest.

2008, 13, 59–67. [CrossRef]
25. Al-Saffar, T.M. Some haematological changes in sheep with chronic fascioliasis in Mosul. AL-Qadisiyah J. Vet. Med. Sci. 2008, 7,

6–9.

http://www.ncbi.nlm.nih.gov/pubmed/14711086
http://doi.org/10.20506/rst.27.2.1822
http://doi.org/10.1017/S0031182012001783
http://doi.org/10.1016/j.vetpar.2012.03.029
http://doi.org/10.1016/j.vetpar.2010.11.043
http://doi.org/10.1016/j.prevetmed.2020.105103
http://www.ncbi.nlm.nih.gov/pubmed/32750638
http://doi.org/10.1017/S0031182014000869
http://doi.org/10.1016/j.ijpddr.2019.11.003
http://doi.org/10.1111/pim.12343
http://doi.org/10.1016/j.cvfa.2019.12.002
http://doi.org/10.1017/S0031182000068931
http://doi.org/10.12968/live.2017.22.5.250
http://doi.org/10.1016/0021-9975(77)90035-4
http://doi.org/10.1136/inp.m2398
http://doi.org/10.1645/GE-2104.1
http://doi.org/10.1016/0304-4017(78)90020-1
http://doi.org/10.1136/vr.c5332
http://doi.org/10.1111/j.2044-3870.2008.tb00185.x


Animals 2021, 11, 549 17 of 20

26. Von Samson-Himmelstjerna, G.; Hiepe, T. Paramphistomose. In Klinik der Schaf-und Ziegenkrankheiten, 1st ed.; Bostedt, H.,
Ganter, M., Hiepe, T., Eds.; Georg Thieme Verlag: Stuttgart, Germany, 2018.

27. Fouda, T.; Youssef Mohammed, A.; Al-Ashkar, M.R. Chronic Fascioliasis as Cause of Unthriftiness in Sheep with Reference to its
Impacts on Blood Constituents. J. Anim. Res. 2013, 3, 209–221.

28. Mavrogianni, V.S.; Papadopoulos, E.; Spanos, S.A.; Mitsoura, A.; Ptochos, S.; Gougoulis, D.A.; Barbagianni, M.S.; Kyriazakis, I.;
Fthenakis, G.C. Trematode infections in pregnant ewes can predispose to mastitis during the subsequent lactation period. Res.
Vet. Sci. 2014, 96, 171–179. [CrossRef]

29. Joachim, A.; Ali, S.F.; Daugschies, A. Fasciola hepatica alters coagulation parameters in sheep plasma in vivo and in vitro. Parasitol.
Res. 2003, 89, 53–58.

30. Flanagan, A.M.; Edgar, H.W.; Forster, F.; Gordon, A.; Hanna, R.E.; McCoy, M.; Brennan, G.P.; Fairweather, I. Standardisation of a
coproantigen reduction test (CRT) protocol for the diagnosis of resistance to triclabendazole in Fasciola hepatica. Vet. Parasitol.
2011, 176, 34–42. [CrossRef]

31. Arifin, M.I.; Höglund, J.; Novobilský, A. Comparison of molecular and conventional methods for the diagnosis of Fasciola hepatica
infection in the field. Vet. Parasitol. 2016, 232, 8–11. [CrossRef] [PubMed]

32. Gordon, D.K.; Zadoks, R.N.; Stevenson, H.; Sargison, N.D.; Skuce, P.J. On farm evaluation of the coproantigen ELISA and
coproantigen reduction test in Scottish sheep naturally infected with Fasciola hepatica. Vet. Parasitol. 2012, 187, 436–444. [CrossRef]

33. Hanna, R.E.; McMahon, C.; Ellison, S.; Edgar, H.W.; Kajugu, P.E.; Gordon, A.; Irwin, D.; Barley, J.P.; Malone, F.E.;
Brennan, G.P.; et al. Fasciola hepatica: A comparative survey of adult fluke resistance to triclabendazole, nitroxynil and
closantel on selected upland and lowland sheep farms in Northern Ireland using faecal egg counting, coproantigen ELISA testing
and fluke histology. Vet. Parasitol. 2015, 207, 34–43. [CrossRef] [PubMed]

34. Afshan, K.; Qayyum, M.; Rizvi, S.S.R.; Mukhtar, M.; Mushtaq, M.; Miller, J.E. Serological and coprological comparison for rapid
diagnosis of Fasciola hepatica infection in small ruminants from sub-tropical area of Pakistan. Small Ruminant Res. 2013, 113,
267–272. [CrossRef]

35. Reichel, M.P. Performance characteristics of an enzyme-linked immunosorbent assay for the detection of liver fluke (Fasciola
hepatica) infection in sheep and cattle. Vet. Parasitol. 2002, 107, 65–72. [CrossRef]

36. Molloy, J.B.; Anderson, G.R.; Fletcher, T.I.; Landmann, J.; Knight, B.C. Evaluation of a commercially available enzyme-linked
immunosorbent assay for detecting antibodies to Fasciola hepatica and Fasciola gigantica in cattle, sheep and buffaloes in Australia.
Vet. Parasitol. 2005, 130, 207–212. [CrossRef]

37. Overend, D.J.; Bowen, F.L. Resistance of Fasciola hepatica to triclabendazole. Aust. Vet. J. 1995, 72, 275–276. [CrossRef] [PubMed]
38. McNulty, S.N.; Tort, J.F.; Rinaldi, G.; Fischer, K.; Rosa, B.A.; Smircich, P.; Fontenla, S.; Choi, Y.J.; Tyagi, R.; Hallsworth-Pepin, K.; et al.

Genomes of Fasciola hepatica from the Americas Reveal Colonization with Neorickettsia Endobacteria Related to the Agents of
Potomac Horse and Human Sennetsu Fevers. PLoS Genet. 2017, 13, e1006537. [CrossRef]

39. Cwiklinski, K.; Dalton, J.P.; Dufresne, P.J.; La Course, J.; Williams, D.J.; Hodgkinson, J.; Paterson, S. The Fasciola hepatica genome:
Gene duplication and polymorphism reveals adaptation to the host environment and the capacity for rapid evolution. Genome
Biol. 2015, 16, 71. [CrossRef]

40. Pandey, T.; Ghosh, A.; Todur, V.N.; Rajendran, V.; Kalita, P.; Kalita, J.; Shukla, R.; Chetri, P.B.; Shukla, H.; Sonkar, A.; et al. Draft
Genome of the Liver Fluke Fasciola gigantica. ACS Omega 2020, 5, 11084–11091. [CrossRef] [PubMed]

41. McVeigh, P.; McCammick, E.; McCusker, P.; Wells, D.; Hodgkinson, J.; Paterson, S.; Mousley, A.; Marks, N.J.; Maule, A.G. Profiling
G protein-coupled receptors of Fasciola hepatica identifies orphan rhodopsins unique to phylum Platyhelminthes. Int. J. Parasitol.
Drugs Drug Resist. 2018, 8, 87–103. [CrossRef] [PubMed]

42. Kotze, A.C.; Hunt, P.W.; Skuce, P.; von Samson-Himmelstjerna, G.; Martin, R.J.; Sager, H.; Krücken, J.; Hodgkinson, J.; Lespine, A.;
Jex, A.R.; et al. Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance
markers and the description of drug/receptor interactions. Int. J. Parasitol. Drugs Drug Resist. 2014, 4, 164–184. [CrossRef]

43. Beesley, N.J.; Caminade, C.; Charlier, J.; Flynn, R.J.; Hodgkinson, J.E.; Martinez-Moreno, A.; Martinez-Valladares, M.; Perez, J.;
Rinaldi, L.; Williams, D.J.L. Fasciola and fasciolosis in ruminants in Europe: Identifying research needs. Transbound. Emerg. Dis.
2018, 65, 199–216. [CrossRef]

44. Zafra, R.; Buffoni, L.; Pérez-Caballero, R.; Molina-Hernández, V.; Ruiz-Campillo, M.T.; Pérez, J.; Martínez-Moreno, Á.;
Martínez Moreno, F.J. Efficacy of a multivalent vaccine against Fasciola hepatica infection in sheep. Vet. Res. 2021, 52, 13.
[CrossRef]

45. Flynn, R.J.; Mulcahy, G.; Elsheikha, H.M. Coordinating innate and adaptive immunity in Fasciola hepatica infection: Implications
for control. Vet. Parasitol. 2010, 169, 235–240. [CrossRef]

46. Toet, H.; Piedrafita, D.M.; Spithill, T.W. Liver fluke vaccines in ruminants: Strategies, progress and future opportunities. Int. J.
Parasitol. 2014, 44, 915–927. [CrossRef]

47. van Riet, E.; Hartgers, F.C.; Yazdanbakhsh, M. Chronic helminth infections induce immunomodulation: Consequences and
mechanisms. Immunobiology 2007, 21, 475–490. [CrossRef]

48. McManus, D.P. Recent Progress in the Development of Liver Fluke and Blood Fluke Vaccines. Vaccines 2020, 8, 553. [CrossRef]
49. Piacenza, L.; Acosta, D.; Basmadjian, I.; Dalton, J.P.; Carmona, C. Vaccination with cathepsin L proteinases and with leucine

aminopeptidase induces high levels of protection against fascioliasis in sheep. Infect. Immun. 1999, 67, 1954–1961. [CrossRef]
[PubMed]

http://doi.org/10.1016/j.rvsc.2013.11.009
http://doi.org/10.1016/j.vetpar.2010.10.037
http://doi.org/10.1016/j.vetpar.2016.11.003
http://www.ncbi.nlm.nih.gov/pubmed/27890084
http://doi.org/10.1016/j.vetpar.2012.02.009
http://doi.org/10.1016/j.vetpar.2014.11.016
http://www.ncbi.nlm.nih.gov/pubmed/25529143
http://doi.org/10.1016/j.smallrumres.2013.01.020
http://doi.org/10.1016/S0304-4017(02)00095-X
http://doi.org/10.1016/j.vetpar.2005.02.010
http://doi.org/10.1111/j.1751-0813.1995.tb03546.x
http://www.ncbi.nlm.nih.gov/pubmed/8534235
http://doi.org/10.1371/journal.pgen.1006537
http://doi.org/10.1186/s13059-015-0632-2
http://doi.org/10.1021/acsomega.0c00980
http://www.ncbi.nlm.nih.gov/pubmed/32455229
http://doi.org/10.1016/j.ijpddr.2018.01.001
http://www.ncbi.nlm.nih.gov/pubmed/29474932
http://doi.org/10.1016/j.ijpddr.2014.07.007
http://doi.org/10.1111/tbed.12682
http://doi.org/10.1186/s13567-021-00895-0
http://doi.org/10.1016/j.vetpar.2010.02.015
http://doi.org/10.1016/j.ijpara.2014.07.011
http://doi.org/10.1016/j.imbio.2007.03.009
http://doi.org/10.3390/vaccines8030553
http://doi.org/10.1128/IAI.67.4.1954-1961.1999
http://www.ncbi.nlm.nih.gov/pubmed/10085042


Animals 2021, 11, 549 18 of 20

50. Maggioli, G.; Acosta, D.; Silveira, F.; Rossi, S.; Giacaman, S.; Basika, T.; Gayo, V.; Rosadilla, D.; Roche, L.; Tort, J.; et al. The
recombinant gut-associated M17 leucine aminopeptidase in combination with different adjuvants confers a high level of protection
against Fasciola hepatica infection in sheep. Vaccine. 2011, 29, 9057–9063. [CrossRef]

51. Acosta, D.; Cancela, M.; Piacenza, L.; Roche, L.; Carmona, C.; Tort, J.F. Fasciola hepatica leucine aminopeptidase, a promising
candidate for vaccination against ruminant fasciolosis. Mol. Biochem. Parasitol. 2008, 158, 52–64. [CrossRef]

52. Dominguez, M.F.; González-Miguel, J.; Carmona, C.; Dalton, J.P.; Cwiklinski, K.; Tort, J.; Siles-Lucas, M. Low allelic diversity in
vaccine candidate genes from different locations sustain hope for Fasciola hepatica immunization. Vet. Parasitol. 2018, 258, 46–52.
[CrossRef]

53. Otranto, D.; Traversa, D. A review of dicrocoeliosis of ruminants including recent advances in the diagnosis and treatment.
Vet. Parasitol. 2002, 107, 317–335. [CrossRef]

54. Beck, M.; Goater, C.; Colwell, D. Comparative recruitment, morphology and reproduction of a generalist trematode, Dicrocoelium
dendriticum, in three species of host. Parasitology 2015, 142, 1297–1305. [CrossRef]

55. Malek, E.A. Occurrence of Dicrocoelium hospes in Mali and Senegal, West Africa. J. Helminthol. 1980, 54, 45–46. [CrossRef]
[PubMed]

56. Manga-González, M.; Ferreras, M. Dicrocoeliidae Family: Major Species Causing Veterinary Diseases. In Digenetic Trematodes,
2nd ed.; Toledo, R., Fried, B., Eds.; Springer: Cham, Switzerland, 2019; pp. 279–319. ISBN 978-3-030-18615-9.

57. Manga-González, M.Y.; González-Lanza, C.; Cabanas, E.; Campo, R. Contributions to and review of dicrocoeliosis, with special
reference to the intermediate hosts of Dicrocoelium dendriticum. Parasitology 2001, 123, 91–114. [CrossRef]

58. Mitterer, K.E. Untersuchungen zum Schlüpfen der Miracidien des Kleinen Leberegels Dicrocoelium dendriticum. Z. Parasitenkd.
1975, 48, 35–45. [CrossRef]

59. Ractliffe, L.H. Hatching of Dicrocoelium lanceolatum eggs. Exp. Parasitol. 1968, 23, 67–78. [CrossRef]
60. Köse, M.; Eser, M.; Kartal, K.; Bozkurt, M.F. Infections of Larval Stages of Dicrocoelium dendriticum and Brachylaima sp. in Brown

Garden Snail, Helix aspersa, in Turkey. Korean J. Parasitol. 2015, 53, 647–651. [CrossRef]
61. Tverdokhlebov, P.T. Significance of different types of pastures in the infection of animals by Dicrocoelium. Byulleten’ Vsesoyuznogo

Instituta Gel’ mintologii im. K. I. Skryabina 1970, 4, 147–149.
62. Manga-González, M.Y.; González-Lanza, C. Field and experimental studies on Dicrocoelium dendriticum and dicrocoeliasis in

northern Spain. J. Helminthol. 2005, 79, 291–302. [CrossRef]
63. Theodoridis, Y.; Duncan, J.L.; MacLean, J.M.; Himonas, C.A. Pathophysiological studies on Dicrocoelium dendriticum infection in

sheep. Vet. Parasitol. 1991, 39, 61–66. [CrossRef]
64. Manga-González, M.Y.; Ferreras, M.C.; Campo, R.; González-Lanza, C.; Pérez, V.; García-Marín, J.F. Hepatic marker enzymes,

biochemical parameters and pathological effects in lambs experimentally infected with Dicrocoelium dendriticum (Digenea).
Parasitol. Res. 2004, 93, 344–355. [CrossRef] [PubMed]

65. Calamel, M.; Giauffret, A. Interprétation des résultats dans le diagnostic coproscopique de la dicrocoliose. Rec. Méd. Vét. 1976,
152, 99–104.

66. Rojo-Vázquez, F.A.; Cordero-del-Campillo, M.; Diez Baños, P.; Chaton-Schaffner, M. Relation existant entre le nombre d’oeufs
dans les feces et la charge parasitaire lors des infestations naturelles a Dicrocoelium dendriticum chez les ovins. Rev. Méd. Vét. 1981,
132, 601–607.

67. Ambrosi, M. La diagnostica coprologica nelle elmintiasi di allevamento: Caso delle distomatosi dei ruminanti. Praxis Vet. 1991,
12, 17–20.

68. Wolff, K.; Hauser, B.; Wild, P. Dicrocoeliose des Schafes: Untersuchungen zur Pathogenese und zur Regeneration der Leber nach
Therapie. Berl. Münch. Tierärztl. Wochenschr. 1984, 97, 378–387.

69. Hohorst, W.; Lämmler, G. Experimentelle Dicrocoeliose-Studien. Z. Tropenmed. Parasitol. 1962, 13, 377–397. [PubMed]
70. Sargison, N.D.; Baird, G.J.; Sotiraki, S.; Gilleard, J.S.; Busin, V. Hepatogenous photosensitisation in Scottish sheep casued by

Dicrocoelium dendriticum, Vet. Parasitol. 2012, 189, 233–237.
71. Camara, L.; Pfister, K.; Aeschlimann, A. Analyse histopathologique de foie de bovin infesté par Dicrocoelium dendriticum. Vet. Res.

1996, 27, 87–92. [PubMed]
72. Rehbein, S.; Kokott, S.; Lindner, T. Evaluation of techniques for the enumeration of Dicrocoelium eggs in sheep faeces. Zent. Vet. A

1999, 46, 133–139. [CrossRef]
73. Naeemipour, M.; Hashemitabar, G.R.; Dastjerdi, K.; Mojaver, M.J.; Mohammadi, H.R. Comparison of Fecal Egg Counts and ELISA

for the diagnosis of Dicrocoelium dendriticum Infection. Pol. J. Vet. Sci. 2016, 19, 573–580. [CrossRef]
74. González-Lanza, C.; Manga-González, M.Y.; Campo, R.; Del-Pozo, P.; Sandoval, H.; Oleaga, A.; Ramajo, V. IgG antibody response

to ES or somatic antigens of Dicrocoelium dendriticum (Trematoda) in experimentally infected sheep. Parasitol. Res. 2000, 86,
472–479. [CrossRef]

75. Onar, E. Efficacy of thiophanate and albendazole against natural infections of Dicrocoelium dendriticum, Fasciola hepatica, and
gastrointestinal nematodes and cestodes in sheep, and gastrointestinal nematodes and cestodes in sheep. Vet. Parasitol. 1990, 35,
139–145. [CrossRef]

76. Güralp, N.; Tinar, R. Trematodiasis in Turkey: Comparative efficacy of triclabendazole and niclofolan against natural infections of
Fasciola hepatica and F. gigantica in sheep. J. Helminthol. 1984, 58, 113–116. [CrossRef] [PubMed]

http://doi.org/10.1016/j.vaccine.2011.09.020
http://doi.org/10.1016/j.molbiopara.2007.11.011
http://doi.org/10.1016/j.vetpar.2018.06.011
http://doi.org/10.1016/S0304-4017(02)00121-8
http://doi.org/10.1017/S0031182015000621
http://doi.org/10.1017/S0022149X00006325
http://www.ncbi.nlm.nih.gov/pubmed/7373023
http://doi.org/10.1017/S0031182001008204
http://doi.org/10.1007/BF00389827
http://doi.org/10.1016/0014-4894(68)90043-X
http://doi.org/10.3347/kjp.2015.53.5.647
http://doi.org/10.1079/JOH2005323
http://doi.org/10.1016/0304-4017(91)90062-Z
http://doi.org/10.1007/s00436-004-1128-2
http://www.ncbi.nlm.nih.gov/pubmed/15197580
http://www.ncbi.nlm.nih.gov/pubmed/13961237
http://www.ncbi.nlm.nih.gov/pubmed/8620193
http://doi.org/10.1046/j.1439-0442.1999.00188.x
http://doi.org/10.1515/pjvs-2016-0072
http://doi.org/10.1007/s004360050696
http://doi.org/10.1016/0304-4017(90)90123-S
http://doi.org/10.1017/S0022149X00028595
http://www.ncbi.nlm.nih.gov/pubmed/6747253


Animals 2021, 11, 549 19 of 20

77. Camlitepe, Y.; Aksoy, V. Distribution and Conservation Status of the European Red Wood Ant Species Formica pratensis Retzius,
1783 (Hymenoptera, Formicidae) in (European) Turkey. J. Entomol. Res. Soc. 2019, 21, 199–211.

78. Manga-González, M.; Quiroz-Romero, H.; Gonzalez-Lanza, C.; Minambres, B.; Ochoa, P. Strategic control of Dicrocoelium
dendriticum (Digenea) egg excretion by naturally infected sheep. Vet. Med. 2010, 55, 19–29. [CrossRef]

79. Horak, I.G. Paramphistomiasis of domestic ruminants. Adv. Parasitol. 1971, 9, 33–72. [PubMed]
80. Silvestre, A.; Sauvè, C.; Cabaret, J. Caprine Paramphistomum daubneyi (Trematoda) infection in Europe. Vet. Rec. 2000, 146, 674–675.

[CrossRef] [PubMed]
81. Gordon, D.K.; Roberts, L.C.P.; Lean, N. Identification of the rumen fluke, Calicophoron daubneyi, in GB livestock: Possible

implications for liver fluke diagnosis. Vet. Parasitol. 2013, 195, 65–71. [CrossRef]
82. Ferreras, M.C.; Gonzalez-Lanza, C.; Perez, V. Clicophoron daubneyi (Paramphistomidae) in slaughtered cattle in Castilla Y León

(Spain). Vet. Parasitol. 2014, 199, 268–271. [CrossRef] [PubMed]
83. Gonzalez-Warleta, M.; Lladosa, S.; Castro-Hermida, J.A. Bovine paramphistomosis in Galicia (Spain): Prevalence, intensity,

aetiology and geospatioal distribution of the infection. Vet. Parasitol. 2014, 191, 252–263. [CrossRef]
84. Zintl, A.; Carcia-Campos, A.; Trudgett, A. Bovine paramphistomes in Ireland. Vet. Parasitol. 2014, 204, 199–208. [CrossRef]
85. Malrait, K.; Verschave, S.; Skuce, P. Novel insights into the pathogenic importance, diagnosis and treatment of the rumen fluke

(Caliphoron daubneyi) in cattle. Vet. Parasitol. 2015, 207, 134–139. [CrossRef]
86. Martinez-Ibeas, A.M.; Munita, M.P.; Lawlor, K.D.; Sekiya, M.; Mulcahy, G.; Sayers, R. Rumen fluke in Irish sheep: Prevalence, risk

factors and molecular identification of two paramphistome species. BMC Vet. Res. 2016, 12, 1–11. [CrossRef]
87. Jones, R.A.; Brophy, P.M.; Mitchell, E.S.; Williams, H.W. Rumen fluke (Calicophoron daubneyi) on Welsh farms: Prevalence, risk

factors and observations on co-infection with Fasciola hepatica. Parasitology 2017, 144, 237–247. [CrossRef] [PubMed]
88. Ploeger, H.W.; Ankum, L.; Moll, L. Presence and species identity of rumen flukes in cattle and sheep in the Netherlands.

Vet. Parasitol. 2017, 243, 42–46. [CrossRef]
89. Wenzel, C.; Küchler, A.; Strube, C.; Knubben-Scheizer, G. Paramphistomidosis—An overview on epidemiology and clinical signs.

Tierarztl. Prax. Ausg. G. Grosstiere Nutztiere 2019, 47, 184–191.
90. Roden, E.; Großmann, T.; Ganter, M. Endoparasitosen bei kleinen Wiederkäuern und Alpakas in Norddeutschland. In Proceedings

of the Tagung der DVG-Fachgruppe “Parasitologie und parasitäre Krankheiten”, Hannover, Germany, 12–14 June 2017; ISBN
978-3-86345-372-5.

91. Deplazes, P.; Eckert, J.; von Samson-Himmelstjerna, G.; Zahner, H. Lehrbuch der Parasitologie für die Tiermedizin, 3rd ed.; Enke-Verlag:
Stuttgart, Germany, 2013; p. 152ff.

92. Rolfe, P.F.; Boray, J.C.; Collins, G.H. Pathology of infection with Paramphistomum ichikawai in sheep. Int. J. Parasitol. 1994, 24,
995–1004. [CrossRef]

93. Lotfy, W.M.; Brant, S.V.; Ashmawy, K.I.; Devkota, R.; Mkoji, G.M.; Loker, E.S. A molecular approach for identification of
paramphistomes from Africa and Asia. Vet. Parasitol. 2010, 174, 234–240. [CrossRef]

94. Vihan, V.S. Diseases of Small Ruminant, 1st ed.; Satish Serial Publishing House: Delhi, India, 2010; pp. 255–259.
95. Durie, P.H. The paramphistomes (Trematoda) of Australian ruminants. Aust. J. Zool. 1953, 1, 193–222. [CrossRef]
96. Wiedosari, E.; Graydon, R.; Copeman, D.B. Comaprative Pathological Study of Hepatic Changes Induced by Fasciola gigantica and

Gigantocotyle explanatum in Javanese Thin-tailed Sheep. J. Comp. Path. 1991, 105, 147–155. [CrossRef]
97. Sreedevi, C.; Devi, V.R.; Annapurna, P.; Malkondaiah, P. Incidence and pathological study of Explanatum explanatum (Creplin,

1847) Fukui, 1929 in goats in Andhra Pradesh, India. J. Parasit. Dis. 2017, 41, 750–753. [CrossRef]
98. Uddin, M.Z.; Farjana, T.; Begum, N.; Mondal, M.M.H. Prevalence of amphistomes in black Bengal goats in Mymensingh district.

Bangl. J. Vet. Med. 2006, 4, 103–106. [CrossRef]
99. Godara, R.; Katoch, R.; Yadav, A.; Rastogi, A. Epidemiology of paramphistomosis in sheep and goats in Jammu, India. J. Parasit.

Dis. 2014, 38, 423–428. [CrossRef]
100. Biggeri, A.; Catelan, D.; Dreassi, E.; Rinaldi, L.; Musella, V.; Veneziano, V.; Cringoli, G. Multivariate spatially-structured variability

of ovine helminth infections. Geospat. Health 2007, 2, 97–104. [CrossRef]
101. Cringoli, G.; Taddei, R.; Rinaldi, L.; Veneziano, V.; Musella, V.; Cascone, C.; Sibilio, G.; Malone, J.B. Use of remote sensing and

geographical information systems to identify environmental features that influence the distribution of paramphistomosis in
sheep from the southern Italian Apennines. Vet. Parasitol. 2004, 122, 15–26. [CrossRef]

102. Toolan, D.P.; Mitchell, G.; Searle, K.; Sheehan, M.; Skuce, P.J.; Zadoks, R.N. Bovine and ovine rumen fluke in Ireland—Prevalence,
risk factors and species identity based on passive veterinary surveillance and abattoir findings. Vet. Parasitol. 2015, 212, 168–174.
[CrossRef]

103. Boray, J.C. Studies on intestinal amphistomosis in cattle. Aust. Vet. J. 1959, 35, 282–287. [CrossRef]
104. Millar, M.; Colloff, A.; Scholes, S. Disease associated with immature paramphistome infection. Vet. Rec. 2012, 171, 509–510.
105. Mason, C.; Stevenson, H.; Cox, A.; Dick, I. Disease associated with immature paramphistome infection in sheep. Vet. Rec. 2013,

170, 343–344. [CrossRef]
106. Duignan, G.; Fagan, J.; Joyce, C.; Casey, M. Diagnosing acute larval paramphistomosis in ruminants. Vet. Rec. 2017, 180, 618.
107. Ghatani, S.; Shylla, J.A.; Roy, B.; Tandon, V. Multilocus sequence evaluation for differentiation species of the trematode Family

Gastrothylacidae, with a note on the utility of mitochondrial COI motifs in species identification. Gene 2014, 548, 277–284.
[CrossRef] [PubMed]

http://doi.org/10.17221/63/2009-VETMED
http://www.ncbi.nlm.nih.gov/pubmed/4927976
http://doi.org/10.1136/vr.146.23.674
http://www.ncbi.nlm.nih.gov/pubmed/10883858
http://doi.org/10.1016/j.vetpar.2013.01.014
http://doi.org/10.1016/j.vetpar.2013.10.019
http://www.ncbi.nlm.nih.gov/pubmed/24295956
http://doi.org/10.1016/j.vetpar.2012.09.006
http://doi.org/10.1016/j.vetpar.2014.05.024
http://doi.org/10.1016/j.vetpar.2014.10.033
http://doi.org/10.1186/s12917-016-0770-0
http://doi.org/10.1017/S0031182016001797
http://www.ncbi.nlm.nih.gov/pubmed/28145217
http://doi.org/10.1016/j.vetpar.2017.06.009
http://doi.org/10.1016/0020-7519(94)90165-1
http://doi.org/10.1016/j.vetpar.2010.08.027
http://doi.org/10.1071/ZO9530193
http://doi.org/10.1016/S0021-9975(08)80070-9
http://doi.org/10.1007/s12639-017-0883-9
http://doi.org/10.3329/bjvm.v4i2.1292
http://doi.org/10.1007/s12639-013-0264-y
http://doi.org/10.4081/gh.2007.258
http://doi.org/10.1016/j.vetpar.2004.03.011
http://doi.org/10.1016/j.vetpar.2015.07.040
http://doi.org/10.1111/j.1751-0813.1959.tb08480.x
http://doi.org/10.1136/vr.e2368
http://doi.org/10.1016/j.gene.2014.07.046
http://www.ncbi.nlm.nih.gov/pubmed/25042163


Animals 2021, 11, 549 20 of 20

108. Yang, X.; Zhao, Y.; Wang, L.; Feng, H.; Tan, L.; Lei, W.; Zhao, P.; Hu, M.; Fang, R. Analysis of the complete Fischoederius elongatus
(Paramphistomidae, Trematoda) mitochondrial genome. Parasites Vectors 2015, 8, 279. [CrossRef]

109. Paraud, C.; Gaudin, C.; Pors, I.; Chartier, C. Efficacy of oxyclozanide against the rumen fluke Calicophoron daubneyi in experimen-
tally infected goats. Vet. J. 2009, 180, 265–276. [CrossRef] [PubMed]

110. Sey, O. A review of chemotherapy of paramphistomosi of domestic ruminants in Europe. Parasites Hung. 1989, 22, 51–55.
111. Arias, M.S.; Sanchis, J.; Francisco, I.; Francisco, R.; Pineiro, P.; Cazapal-Monteiro, C.; Cortinas, F.J.; Suárez, J.L.; Sánchez-Andrade, R.;

Paz-Silva, A. The efficacy of four anthelmintics against Calicophoron daubneyi in naturally infected dairy cattle. Vet. Parasitol. 2013,
197, 126–129. [CrossRef]

112. Dewilde, S.; Ioanitescu, A.I.; Kiger, L.; Gilany, K.; Marden, M.C.; Van Doorslaer, S.; Vercruysse, J.; Pesce, A.; Nardini, M.;
Bolognesi, M.; et al. The hemoglobins of the trematodes Fasciola hepatica and Paramphistomum epiclitum: A molecular biological,
physico-chemical, kinetic, and vaccination study. Protein Sci. 2008, 17, 1653–1662. [CrossRef]

113. Choudhary, V.; Garg, S.; Chourasia, R.; Hasnani, J.J.; Patel, P.V.; Shah, T.M.; Bhatt, V.D.; Mohapatra, A.; Blake, D.P.; Joshi, C.G.
Transcriptome analysis of the adult rumen fluke Paramphistomum cervi following next generation sequencing. Gene 2015, 570,
64–70. [CrossRef]

114. Huson, K.M.; Atcheson, E.; Oliver, N.A.M.; Best, P.; Barley, J.P.; Hanna, R.E.B.; McNeilly, T.N.; Fang, Y.; Haldenby, S.;
Paterson, S.; et al. Transcriptome and secretome analysis of intra-mammalian life-stages of the emerging helminth pathogen,
Calicophoron daubneyi reveals adaptation to a unique host environment. Mol. Cell. Proteom. 2020, in press.

http://doi.org/10.1186/s13071-015-0893-3
http://doi.org/10.1016/j.tvjl.2008.01.002
http://www.ncbi.nlm.nih.gov/pubmed/18314360
http://doi.org/10.1016/j.vetpar.2013.06.011
http://doi.org/10.1110/ps.036558.108
http://doi.org/10.1016/j.gene.2015.06.002

	Introduction 
	Fasciolidae with Emphasis on the Common Liver Fluke 
	Distribution of and Anatomical Differences between Fasciola Species 
	Life Cycle of Fasciola spp. 
	Clinical Features of Fasciolosis 
	Diagnosis of Fasciola spp. 
	Treatment of Fasciola spp. and Drug Resistance 
	Make Use of Genomic Resources to Unravel Resistance Mechanisms 
	Strategies towards a Fasciola Vaccince 

	Dicrocoelium spp. (Lancet Flukes) 
	Dicrocoelium Species and Their Global Distribution 
	Life Cycle of Dicrocoelium Dendriticum 
	Clinical Features of Dicrocoeliosis 
	Diagnosis of Dicrocoelium Infections 
	Treatment and Prevention of Dicrocoeliosis 
	Genomic Resources and Their Potential Use for Control of Dicrocoelium spp. Infections in Livestock 

	Paramphistomidae as Rumen and Liver Flukes 
	Species and Distribution of Paramphistomidae 
	Life Cycle of Paramphistomidae 
	Epidemiology and Clinical Features of Infections with Paramphistomidae 
	Diagnosis of Rumen Flukes 
	Treatment and Prevention of Rumen Fluke Infections 
	Available Omics Data on Rumen Fluke 

	Conclusions 
	References

