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Simple Summary: The use of surveillance videos of animals is an important method for monitoring
them, as animals often behave differently in the presence of humans. Moreover, the presence of
humans can be a source of stress for the animals and can lead to changes in behavior. Extensive video
material of red foxes has been recorded as part of a vaccine study. Since manual analysis of videos is
both time-consuming and costly, we performed an analysis using a computer vision application in the
present study. This made it possible to automatically analyze the videos and monitor animal activity
and residency patterns without human interference. In this study, we used the computer vision
architecture ‘you only look once’ version 4 (YOLOv4) to detect foxes and monitor their movement
and, thus, their activity. Computer vision thereby outperforms manual and sensor-based exhaustive
monitoring of the animals.

Abstract: Animal activity is an indicator for its welfare and manual observation is time and cost
intensive. To this end, automatic detection and monitoring of live captive animals is of major
importance for assessing animal activity, and, thereby, allowing for early recognition of changes
indicative for diseases and animal welfare issues. We demonstrate that machine learning methods can
provide a gap-less monitoring of red foxes in an experimental lab-setting, including a classification
into activity patterns. Therefore, bounding boxes are used to measure fox movements, and, thus,
the activity level of the animals. We use computer vision, being a non-invasive method for the
automatic monitoring of foxes. More specifically, we train the existing algorithm ‘you only look
once’ version 4 (YOLOv4) to detect foxes, and the trained classifier is applied to video data of
an experiment involving foxes. As we show, computer evaluation outperforms other evaluation
methods. Application of automatic detection of foxes can be used for detecting different movement
patterns. These, in turn, can be used for animal behavioral analysis and, thus, animal welfare
monitoring. Once established for a specific animal species, such systems could be used for animal
monitoring in real-time under experimental conditions, or other areas of animal husbandry.

Keywords: YOLOv4; red foxes; animal activity; computer vision; animal monitoring
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1. Introduction

Animal welfare plays an increasingly important role in areas of animal husbandry
and animal experimentation. Monitoring animal activity is one way to draw conclusions
about welfare [1]. A change in activity may be triggered by a variety of factors including
disease [2] or animal welfare issues. In particular, changes of behavioral activity can
give information about the welfare or a disease situation of an animal [3,4]. Observing,
measuring, and evaluating animal behavior are important indicators to determine the
welfare status of animals [5]. The fact that animals often behave differently in the presence
of humans may cause bias [4,6–8]. Moreover, humans are often not available all day for
observations, so that the time is limited, during which animals can be observed without
gaps. Therefore, monitoring methods that allow observing, measuring, and analyzing the
activity behavior of animals in absence of humans are needed.

Furthermore, an automated monitoring system can be useful for continuous mon-
itoring to detect specific or irregular events [9]. Radio-frequency identification (RFID)
technology can be used for automated animal monitoring [10,11] or specific space use [12].
To this end, an RFID tag is implanted or embedded in an ear tag, collar, or leg band [13].
Another method is the use of accelerometers. Dutta et al. [2] used collar sensors with 3-axis
accelerometer and magnetometer for cattle. Robert et al. [14] utilized accelerometer data
from leg sensors of cattle to classify activities like lying, standing, or walking. Yet, RFID sys-
tems and sensors, like accelerometers, require certain interventions, like the implantation
of a RFID chip or equipping the animal with a RFID tag or a sensor. These interventions
and wearing these devices may cause stress for the animals [15] and could have an effect
on their behavior.

For these reasons, the analysis of unmanipulated animals using video material or
images represents an effective tool to obtain information about health- or welfare-related
indicators, such as activity pattern changes [16]. However, visual inspection of videos is
time consuming, measuring may be difficult, and the interpretation of the observations is
prone to bias [3]. Hence, a combination of digital video and computer vision techniques
is a non-stressful, non-invasive, cost effective, and easy method for monitoring animal
behavior [15] that allows largely unbiased measurements and analyses of animal activities.
Object detection methods classify objects and determine their position in images or videos.
In the field of computer vision, many efficient algorithms have already been developed for
the detection of objects, such as the human face [17]. Deep learning models, and, in par-
ticular, the use of convolutional neural networks (CNN), becomes increasingly important.
Carl et al. [18] used a pre-trained FasterRCNN+InceptionResNetV2 network for automated
detection of European wild mammal species. Ratnayake et al. [19] applied background
subtraction and together with deep learning-based detection to detect and track honeybees.

Fernández-Carrión et al. [20] used a CNN to detect a collar of a wild boar to determine
its daily motion. This daily motion can be used to differentiate between sick and healthy
animals and may, thus, help to facilitate early detection of a disease.

A comprehensive animal detection without sensor equipment, in combination with ac-
tivity determination is missing so far. For complete monitoring, different camera recordings
need to be evaluated simultaneously.

Here, we demonstrate an application of deep learning for the detection and tracking of
red foxes (Vulpes vulpes) during an experimental study. The latter was originally conducted
to measure the long-time immunogenecity of a vaccine in red foxes being a reservoir for
rabies [21]. We focus on the video surveillance data being a byproduct of this study.

In order to monitor the behavior of the animals automatically, we trained a CNN
(YOLOv4) for fox detection. You only look once (YOLO) is a one-stage object detection
algorithm for real-time object detection using convolutional neural networks (CNN) [22,23].
YOLOv4 consists of a ‘backbone’, a ‘neck’ and a ‘head’ [24]. The backbone is a CSPDark-
net53, an open source neural network framework, to train and extract features [23,24]. The
neck is a path aggregation network (PAN) and spatial pyramid pooling (SPP) used to collect
feature maps from different stages [24]. The head, YOLOv3 [23], is used to implement
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object detection [24]. Bochkovskiy et al. [24] showed that YOLOv4 is a state-of-the-art
detector, which is faster and more accurate than other available detectors.

The results of this detection can be used to infer different movement patterns, which
can then be used to distinguish between different activity levels. The presented technique
can be applied to detect movement patterns of animals, including active and inactive
behavior. The generated daily, weekly, or monthly activity overviews can be used to
monitor the animal activity, and may, thus, represent potential indicators for animal welfare.

2. Materials and Methods
2.1. Experimental Setup

The data used in this paper are a subset of data generated in an experimental study
with foxes conducted over 450 days [21]. A total of 23 red foxes (Vulpes vulpes) of the fur
color variant ‘silver fox’ [25] were separately kept in cages, sized 318 cm× 140 cm× 175 cm
(length × width × height), equipped with a platform, 92 cm × 140 cm (length × width) at
height of 80 cm above the bottom of the cage (Figure 1).

Animal housing and maintenance were in accordance with national and European leg-
islation and followed the guidelines for the veterinary care of laboratory animals [26]. The
study was approved by the local authority in Mecklenburg-Western Pomerania (Landesamt
für Landwirtschaft, Lebensmittelsicherheit und Fischerei Mecklenburg-Vorpommern, #
FLI-7221.3-1-087/16). One of the requirements for approval was the availability of external
monitoring including recording using video cameras. To this end, all animals were moni-
tored by two cameras (ABUS IR HD TVIP61500, ABUS, Wetter, Germany). Additionally
one infra-red motion detector (LBM 926, GEV GmbH, Ahrensburg, Germany), which was
connected to a data logger (EL-USB-3, Lascar Electronics, Wiltshire, UK) and registered
motion in 10 s intervals in each cage, was installed. The experimental study was conducted
at the Friedrich-Loeffler-Institut (FLI), Greifswald-Insel Riems, Germany. Overall, 33 TB of
video material was recorded discontinuously, for a total of 73 days.

Figure 1. Illustration of the dimensions of the cage in which foxes were housed.

2.2. Manual Evaluation and Motion Detector Data

Initially, video material was evaluated only manually. To this end, one person watched
a short time period of 30 s before and after the sample point (of one or both cameras) every
15 min and entered the observed behavioral activity into a table. From this manually ex-
tracted data, the classification into ‘activity’, ‘no activity’, or ‘blind spot’ could be extracted.
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Additionally, for the motion detector data, every 10 s it was recorded whether the
motion detector detected a movement within the last 10 s or not. The motion detection
data were recorded live during the experiments.

2.3. Image and Video Data

The video material has a resolution of 1280 pixels (horizontal) × 720 pixels (vertical)
and of 15 frames per second (fps). An image set was extracted from the video material.
The image set consists of images of different foxes (all 23) and with different body postures.
Furthermore, images with different illumination conditions, like day and night, were
selected. The complete image set consists of 7363 images, 4467 day scenes and 2896 night
scenes. The software LabelImg [27] was used to manually label the foxes in each image of
the image set. The image set was split into a training (80%—5890 frames) and a test set
(20%—1473 frames), maintaining the relation of day and night scenes. The training set was
used to train a YOLOv4 object detection algorithm and the test set to evaluate the trained
fox detection.

2.4. Environment Configuration

Graphic card: NVIDIA K80 with 2 GPUs and 24 GB video RAM (nvidia, Santa Clara,
CA, USA)

Operating system: CentOS 8
Processor: Intel Xeon E5-2667 v4 with 3.20 GHz
RAM: 377 GB
The algorithm was developed by using a jupyter notebook [28] and Python 3.6.8 [29].

2.5. Automatic Evaluation of Video Data: Fox Detection

The detection of red foxes is performed by using the deep learning algorithm YOLOv4.
Pre-trained YOLOv4 weights for general-purpose object detection on photos were used to
initialize transfer learning using the training set for fox detection. In this paper, we restrict
the possible detected classes to foxes exclusively, and, therefore, train the network using a
single class output only.

The training was implemented following the instructions of the YOLOv4 Github
page [30] with pre-trained weights (that is, a pre-trained weights-file yolov4.conv.137,
downloaded from GitHub [30]) and the parameters shown in Table 1.

Table 1. Parameters of YOLOv4 fox detection model.

Parameter Value

input size 416× 416
classes 1
maxbatches 2000
filters 18
steps 1600, 1800
learning rate 0.001
batch size 64

In this part we give a detailed description on how to train the algorithm. Experienced
users of the software can skip this part and continue after step 8. The algorithm was trained
as follows:

1. Download and extract YOLOv4 from GitHub [30];
2. Copy the content of cfg/yolov4-custom.cfg to the new created file yolo-obj.cfg

and change the following lines:

line 3: batch=64
line 4: subdivisions=1
line 8: width=416
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line 9: height=416
line 20: max_batches=2000 (classes× 2000)
line 22: steps=1600,1800 (80 and 90% of maxbatches)
lines 603, 689, 776: filters=18 ((classes + 5)× 3)
lines 610, 696, 783: classes=1

3. Create a file obj.names with the name of each object in separate lines, here the file
has only one line:

fox

4. Label each image of the image set, such that for each image there exists a .txt file
with the following values for every labeled object:

<object-class> <BB x_center> <BB y_center> <BB width> <BB hight>

with <object-class> an integer between 0 and number of classes − 1, and
<BB x_center>, <BB y_center>, <BB width>, and <BB hight> are float values be-
tween (0, 1], relative to the image height and width. Thus, the directory with the
images contains a .txt file for each image with the same name.
Create the files train.txt and test.txt. Split the image set into a training and test
set and save the file names of the images, with respect to the full path relative to the
directory darknet, in the respective file (one file name per line).

5. Create a file obj.data containing the number of classes and paths to train.txt,
obj.names, and the backup folder:

classes = 1
train = data/train.txt
names = data/obj.names
backup = backup/

6. For starting the training run the code:

./darknet detector train obj.data yolo-obj.cfg yolov4.conv.137

The training can take several hours. During training the trained weights are saved in
the backup/ directory, yolo-obj_xxxx.weights every 1000 iterations and
yolo-obj_last.weights every 100 iterations. After training the final weight,
yolo-obj_final.weights is also stored there.

7. Evaluate the results for trained weights:
./darknet detector map obj.data yolo-obj.cfg backup/yolo-obj_final.weights

8. Using the trained detector:
./darknet detector test obj.data yolo-obj.cfg backup/yolo-obj_final.weights

For the evaluation of the model performance the following values were determined:
mean average precision (mAP), precision, recall (Equations (1)–(3), respectively), and de-
tection speed.

mAP =
∑C

c=1 AP(c)
C

(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

with AP: average precision, C: number of classes, TP: number of true positive, FP: number
of false positive, FN: number of false negative. The AP is determined using the interpolated
average precision as described in Everingham et al. [31]: First, the detected BBs of a class
are ranked according to their confidence and determined whether being true positive
(TP) or false positive (FP). The precision and recall values for a specific BB, say bi, are
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calculated using the accumulated TP and FP values of all BBs with higher rank than bi. The
precision-recall curves often show a non monotonous behavior, i.e., they go up and down.
This is caused by stochasticity in the ordering of the ranked BBs. To reduce the impact of
this effect, the interpolated AP is used to smoothen the shape of the precision-recall curve.
Using 10 interpolation points plus zero gives

AP =
1

11 ∑
r∈{0,0.1,...,1}

pinterp(r) (4)

with
pinterp(r) = max

r̂:r̂≥r
p(r̂). (5)

p(r̂) is the precision at recall r̂. Equation (5) results in the desired smoothening of the
precision-recall curve.

The mAP is the average value of AP of every detection class. Here, the detection
classes were only the class ‘fox’, and consequently, C = 1 and Equation (1) resulted in:

mAP = AP(c).

Intersection over Union (IoU) was used to determine the values TP and FP (see
Equation (6)). A detection is true positive if IoU ≥ 0.5 and false positive if IoU < 0.5. If an
image is labeled and the model does not detect anything, it is false negative.

IoU =
area(BBp) ∩ area(BBgt)

area(BBp) ∪ area(BBgt)
(6)

with IoU: Intersection over Union, BBp: predicted bounding box (BB) from the model,
BBgt: ground-truth bounding box (e.g., manually labeled).

The trained object detection algorithm delivered for each image, whether a fox is on
the image, and if so, the confidence of the detection and the position of the bounding box
(center x, center y, width, and height), standardized between 0 and 1.

2.6. Automatic Evaluation: Converting Bounding Box Values to Movement Patterns

We used the following methods to infer movement patterns from bounding box data:

1. center y versus center x plot over a time period;
2. vector norm over time.

The center y versus center x plot in the considered time period reveals places of
residence in the cage and was used to create a heat map with the likelihood of residence.

The movement vector of the fox was determined using the movement of the center
of the bounding box between two consecutive frames, with the coordinates (x f , y f ) and
(x f+1, y f+1). Hence, the distance covered by the fox between two frames corresponds to
the vector norm.

m f , f+1 =
√
(x f+1 − x f )2 + (y f+1 − y f )2 (7)

The mean vector norm over a time period shows the movement activity of a fox in
this period.

m̄t =
1
F

F−1

∑
f=1

m f , f+1 (8)

with mean vector norm m̄t, time period t, and number of frames F in t. The maximum
of the mean vector norm for different time periods and different movement behaviors
can be used to determine thresholds for different activity levels. We considered three
activity levels:

• high active: bounding box moves; change of location of the fox, e.g., walking, running
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• active: bounding box moves little; no change of location of the fox, such as rotation
inside the bounding box or minimal movements, e.g., scratching on the ground,
stretching

• inactive: bounding box not moving; no movement of the fox, e.g., lying, sitting, or
standing still

2.7. Automatic Evaluation of Video Data

We evaluated the videos using the trained fox detector as described above. The
following steps were implemented for video analysis:

1. frame extraction (5 frames per second);
2. fox detection on each frame;
3. convert detection data into movement data.

The evaluation process is depicted in Figure 2.

Figure 2. Fox detection and generation of movement patterns. White: evaluation of video data. Grey:
evaluation of bounding box (BB) coordination. Yellow: results.

For the joint evaluation of both cameras of the same animal, each video was evaluated
separately for the same time. The two vector norm values were compared for the common
evaluation and selected according to the decision tree shown in Figure 3. Note that, in the
case of a mismatch between the cameras, the larger vector norm is chosen.
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Figure 3. Decision tree to choose the common vector norm for the common evaluation of the two cameras, with nan: not a
number. White: properties of both vector norm values. Yellow: selected value.

3. Results
3.1. Model Training and Evaluation

The loss curve shows the error on the training set during training (Figure 4). As seen
in the Figure, the error decreases sharply during the first 1000 training iterations. Then,
the error fluctuates around 0.45.

Figure 4. Loss curve of the training of the fox detection model.

To verify the trained model, the algorithm was evaluated on the test set with 1473 im-
ages, and the results are shown in Table 2. The recall is 99.93%, the precision and mAP are
100%, respectively, the average IoU is 91.4, and the detection speed is 73.31 ms per image.
This demonstrates that the trained model achieves high precision. Moreover, the detection
speed is sufficient for a real-time detection with 5 fps, which was used in this work for the
generation of movement pattern.
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Table 2. Fox detection test results for the trained model.

Recall Precision Average IoU mAP Detection Speed
[%] [%] [%] [%] [ms]

test results 99.93 100 91.4 100 73.31

Figure 5 shows four examples of fox detection. The detection works for night and day
images, as shown in Figure 5a, 5c and 5b, 5d, respectively.

(a) Night scene. (b) Day scene.

(c) Night scene. (d) Day scene.
Figure 5. Detection of foxes in single frames.

3.2. Motion Monitoring

To detect motion patterns, we have analyzed video data of fox observations. In the
following, the evaluation is shown with two videos. Both videos have a run time of half
an hour.

Video 1 shows the following behavioral pattern: Until second 1394, the fox is in a very
active phase. Most of the time it is permanently walking, even partly running through the
cage. Only for a short period (between seconds 600 and 800) the behavioral pattern changes;
the animal scratches at the floor and moves only slightly. From second 1395 onward, the fox
is in the blind spot of the camera.

The behavioral pattern in video 2 is different: Here, the fox sleeps most of the time
during the observation period. Until second 400, the fox is active, walking through the
cage, this phase of activity is interrupted by short phases of sitting, followed by phase of
relative inactivity which lasts for 320 s. During this phase the animal is lying and awake
and finally changes into sleeping phase for the rest of the observation period with fox lying
on its side.

3.2.1. Residence Patterns

One way to study movement patterns of foxes during a given time period is the
analysis of places of residence. To this end, the places of residence of the two foxes from
videos 1 and 2 for the entire observation period were plotted at a two dimensional scale (y
versus x) without (Figure 6a,b) and with an image of the cage as background (Figure 6c,d).
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It can be seen that the fox in video 1 uses the majority of space in the cage, in contrast to the
fox in video 2. The latter remained solely on the platform for the entire observation period.

(a) Video 1: movement pattern y versus x for half
an hour.

(b) Video 2: movement pattern y versus x for half
an hour.

(c) Video 1: the movement pattern y versus x with an
image of the cage as background.

(d) Video 2: the movement pattern y versus x with an
image of the cage as background.

(e) Video 1: heatmap for the residence areas of the
fox, the darker blue an area is the longer the resi-
dence time.

(f) Video 2: heatmap for the residence areas of the
fox, the darker blue an area is the longer the resi-
dence time.

Figure 6. Movement patterns y versus x of video 1 and 2, respectively, with half an hour time period.

Subsequently, the x- and y-coordinates were used to generate heat maps for the
residence places of foxes (Figure 6e,f), whereby the intensity of the color depicts areas
with the higher residence periods. As seen in plot Figure 6e, the dark blue area at position
(0.55, 0.8) corresponds to the scratching-on-ground phase in video 1, during this phase the
foxes stayed at the same place for a long time. The dark blue area at position (0.4, 0.3) of
Plot Figure 6f corresponds to the sleeping place of the fox in video 2.



Animals 2021, 11, 1723 11 of 18

3.2.2. Activity Detection

The detection of ‘high active’, ‘active’, and ‘inactive’ phases of the foxes was achieved
by using the vector norm of the bounding box center between two sequential video frames.
The mean vector norm was calculated using a sliding window with a length of 30 s and a
step size of 1 s. Figure 7 illustrates the mean vector norm (in blue) for both videos.

The movement of the fox in video 1 is shown in Figure 7a. The fox moves for a long
time and even leaves the camera area for short periods, until it leaves the camera area
completely at second 1395. The time span between seconds 600 and 800 shows that the fox
moves only slightly. This range corresponds to the scratching-on-ground phase in video 1.

Figure 7b shows the movement of the fox in video 2. The plot shows that the fox
moves until second 400 and then stops. This corresponds to the lying and sleeping phase
in the video from second 400 onward.

(a) Video 1. (b) Video 2.
Figure 7. Movement pattern for videos 1 and 2: mean vector norm for 30 sliding window over time, with the thresholds for
activity level differentiation. Green: inactive↔ active. Red: active↔ high active.

In order to distinguish between the activity levels, characteristic (known) activities
were considered and the maximum of the mean value of the vector norm for a time window
of 30 s was determined. For this purpose, different video sequences were extracted for each
activity level. For classification we chose thresholds, each between the smallest value of
the respective higher activity level and the largest value of the respective lower activity
level. These thresholds are displayed in a decision tree (Figure 8).

Figure 8. Decision tree for the activity levels using thresholds for the mean norm value.

Figure 7 additionally shows the thresholds for high active↔ active in red and for
active↔ inactive in green.

As shown in Figure 7a, the mean vector norm is below the threshold active↔ inactive
for 102 s. The duration of the activity level ‘active’ is 205 s and of the activity level
‘high active’ 985 s. In addition, the fox is in the blind spot for 509 s. This corresponds
to the activity behavior of the fox in video 1. The phase between seconds 600 and 800,
during which the fox scratches the ground and stands partially still corresponds to the
activity levels ‘active’ and ‘inactive’, as can be clearly seen in the Figure 7a.
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Figure 7b shows that the fox moves on all three activity levels until second 450.
Between seconds 200 and 400, three phases can be recognized in which the value is below
the threshold active↔ inactive, these correspond to short phases in which the fox has been
sitting. From second 450 onward, the mean vector norm value is permanently below the
threshold active↔ inactive. Altogether, the plot reflects the activity behavior of the fox in
video 2.

In this way the duration of the different activity levels can be determined, the values
are shown in Table 3.

Table 3. Duration of activity levels in seconds for video 1 and video 2.

High Active Active Inactive Out

video 1 985 205 102 509
video 2 100 191 1509 0

We used the duration of the different activity levels to create a 24-h activity overview.
Figure 9 shows a 24-h activity overview of a fox in steps of 30 min for the two cameras
alone (Figure 9a,b) and for the joint evaluation (Figure 9c). The periods marked with ‘out’
stand for the time, during which the fox was not detected. These are, for example, phases
in which the fox is in its hut or in the blind spot. The evaluation of the individual cameras
alone leads to gaps, while an almost complete overview can be generated by the joint
evaluation of the two cameras.

Figure 10 shows the duration of the different activity levels and ‘out’ for the two
cameras alone and the joint evaluation. It becomes evident that the duration of ‘out’ can be
significantly reduced by the combined evaluation of both cameras.

(a) Camera 1. (b) Camera 2.

(c) Camera 1 and 2.
Figure 9. 24-h activity overviews of a fox depicted in 30 min time intervals.
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Figure 10. Condensed 24-h activity overview per camera and both cameras evaluated together.

3.3. Comparison of Different Activity Evaluation Methods

Computer evaluation: Five images per second were evaluated. From this, the mean
vector norm was calculated once per second. This resulted in 3600 measurements per hour.

The videos were also partially evaluated manually and activity has been captured in
the experiments by infra-red motion detectors.

Motion detector data: The motion detectors recorded in 10 s steps, if motion was
detected in the last 10 s. This resulted in 360 measurements per hour.

Manually evaluated data: In the manual evaluation, a short video time slice was
viewed every 15 min and the respective behavior was extrapolated to the entire 15 min in-
terval, which resulted in four measurements per hour. Figure 11 shows all three evaluation
methods for a 24-h activity overview of a fox.

(a) Manual Evaluation. (b) Motion detector evaluation.

(c) Computer evaluation in one hour steps. (d) Computer evaluation in half hour steps.
Figure 11. 24-h activity overview of a fox using different evaluation methods.
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4. Discussion

Computer evaluation has proven itself to be useful for fox detection and activity
level determination. In our setting, the results with YOLOv4 are very accurate and clearly
sufficient for the downstream movement analysis. Therefore, no other object detection
software needs to be considered. Furthermore, the animals do not need to be equipped
with a sensor or collar, as it was the case in other studies (e.g., [14,20]).

The creation of a residence pattern of the foxes could be used, for instance, to detect
preferred residences like the platform or the roof of the hut. This information could be used
in new studies to equip the experimental setup with these preferred residences, to improve
animal welfare by establishing proper indicators.

Changes in movement patterns can provide insights about animal welfare and
health [20,32]. We show that computer vision systems are useful to generate
movement patterns.

Our results demonstrate that a computer evaluation of the video data can achieve high
precision and can be performed in real-time. A problem is the detection of rarely occurring
fox positions that are not included in the training set. To overcome this, the training set
may be expanded with rare fox positions.

Another problem was that foxes manipulated the cameras, which were located inside
the cages, with the effect that the camera angle changed occasionally, which partially
increased the blind spot. The cameras were then re-positioned as soon and as possible. The
bias resulting from this situation cannot be eliminated from the current data. However, in
further video surveillance activities, one should take care that the camera is properly fixed,
maybe outside the cages, with a small hole for the lens in the grid of the cages.

The jointly evaluated video data from both cameras were used to determine the
activity levels of the foxes. This led to an almost complete monitoring of the foxes resulting
in full activity patterns for different foxes in different time periods (e.g., daily, weekly, day
versus night). The duration of motion activity of healthy, normally behaving animals can be
used to determine threshold values for normal activity patterns. Consequently, an activity
behavior outside these thresholds indicates unfavorable conditions and may, therefore, be
helpful to monitor animal welfare indicators.

In our setting, the results were comparable to those of manual video assessment
and automated motion detection (Figure 11). One challenge for all activity measurement
methods is that the fox can be located in a blind spot (Figure 12). This applies for the
motion detector in particular, because it covers, by default, only a defined area of the
cage. Additionally, each of the two cameras installed only covered a certain area of the
cage, but by combining both recordings, the blind spot can be significantly reduced (see
Figure 11a,c). Although the trend of activity was generally captured by all methods,
computer evaluation had the highest precision. The main reason for this higher accuracy
is the number of observations per hour, which is magnitudes higher than for the other
approaches (computer evaluation: 3600; motion detector: 360; manual evaluation: 4) and
the significantly smaller blind spot area of the cameras compared to the motion detector.
The motion detector correctly identified whether the fox is active, but not the complete
duration of activity is captured, and it is limited in detecting inactivity or non-detection.

In contrast, manual evaluation allows a precise analysis of activity and non-activity.
However, it is restricted due to the short time frame that is used to infer the activity pattern
for 15 min, and thus leads to over or under-representation. One example is shown in
Figure 11a,c at hours 19–20. Although the activity duration of the fox is 60 min according
to the manual evaluation, it is only 47 min after computer evaluation. A comparison of the
different methods is provided in Table 4.

Another advantage of both motion detectors and computer evaluation is the possibility
to modify the time windows for downstream analyses. These can be seen in Figure 11c,d,
where the 24-h overview is shown in hourly and half-hourly steps.

The motion detector detects the activity level ‘active’, whereas manual evaluation can
distinguish between ‘active’ and ‘inactive’, and if the fox is in the blind spot.
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Finally, most of the different activity levels can be determined using computer evalua-
tion. This method can even distinguish between ‘active’, ‘inactive’, and ‘high active’—and
not detectable.

In summary, computer evaluation is clearly the best option to evaluate the videos
completely, without the time, labor, and costs required for manual evaluation.

(a) Blind spot areas of the cameras without changed camera
angle due to the foxes. Red: Blind spot of the right camera.
Blue: Blind spot of the left camera.

(b) Blind spot area of the motion detector.
Green: Blind spot of the motion detector.

Figure 12. Estimated blind spot areas of the cameras and the infra-red motion detector.

Table 4. Potential benefits and disadvantageous of the three different evaluation methods.

Method + −
computer • complete (24/7) analysis of animal activity

• perceptively, behavioral detection based on
learning from manual data sets

• fast and not time-intensive for human re-
sources once established

• can be further expanded and algorithms
may be used for further studies

• independent of human-bias
• small amount of data for saving the x- and

y-coordinates of the bounding box

• only if evaluation is not in real time, or the
data has to be saved for further evaluation:
large amounts of video storing

• learning of pattern detection based on man-
ual assignment

• extensive IT resources required

motion detector • data collection live to the experiment
• produces relatively small amount of data

that needs to be stored
• independent of human-bias

• can only collect yes/no responses to activ-
ity, no further analysis possible

• affected by human-presence (e.g., animal
caretakers) as any motion is recorded

manual • detection of activity/inactivity
• diverse analysis of behavior based on an

ethogram

• slow and time-intensive for human re-
sources (sample intervals)

• huge amounts of video storing
• potential human-bias

5. Conclusions

This study shows an application of YOLOv4 for the automatic detection of foxes and
the creation of different movement patterns that can be used for animal behavioral analysis
and, thus, animal welfare monitoring.

Compared to other approaches, successfully established computer evaluation offers
the huge advantage of seamless data analyses from videos in real-time, without additional
cost or personnel effort. Besides the creation of activity level overviews, the detailed data
from computer evaluation allow for even more sophisticated analyses, e.g., movement and
residence patterns can be derived.
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Outlook and Future Research Possibilities

In this paper, we studied the movement pattern of two foxes exemplary for a certain
time span. In order to establish reference data on the behavior of foxes under captive
conditions, larger datasets would need to be analyzed.

In this paper, we have distinguished between the different activity levels using a
manual definition of thresholds. These thresholds could also be estimated automatically
using either unsupervised learning techniques (e.g., clustering) or supervised learning
(such as a decision tree based classifier). In a similar fashion, this approach could be
extended to detect anomalies in behavior, e.g., in case of disease. Once patterns of normal
behavior are established, thresholds could be set and detected, so that a change in behavior,
indicative of animal welfare issues, e.g., disease, is automatically detected. Additionally,
the interaction with specific objects, such as water and food bowls, or toys—and whether
this has any influence on activity patterns—could be included in the computer analysis. To
this end, the detector would have to be trained with these objects.

To improve behavioral analysis, the detector can be trained on different body postures
of the fox to classify these in addition to its position in the image.

Finally, the approach we demonstrated here could be transferred to other animal
species under various settings, e.g., livestock animals in larger barns or even the automated
detection of different animal species in wildlife monitoring cameras. Beyond the laboratory
environment considered here, the detector also works with images of silver foxes in natural
environments. In addition, the detector can easily detect multiple animals at the same time.
This feature could be used to study the social behavior and group dynamics of animals.
Depending on the considered species, it might even be possible to train the detector to
identify and track individual animals using unique features of their appearance.
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Abbreviations
The following abbreviations are used in this manuscript:

AP average precision
BB bounding box
CNN convolutional neural networks
FLI Friedrich-Loeffler-Institut
FP false positive
IoU intersection over union
IT information technology
mAP mean average precision
nan not a number
TP true positive
YOLO you only look once

References
1. Buller, H.; Blokhuis, H.; Lokhorst, K.; Silberberg, M.; Veissier, I. Animal Welfare Management in a Digital World. Animals 2020,

10, 1779. [CrossRef] [PubMed]
2. Dutta, R.; Smith, D.; Rawnsley, R.; Bishop-Hurley, G.; Hills, J.; Timms, G.; Henry, D. Dynamic cattle behavioural classification

using supervised ensemble classifiers. Comput. Electron. Agric. 2015, 111, 18–28. [CrossRef]
3. Müller, R.; Schrader, L. A new method to measure behavioural activity levels in dairy cows. Appl. Anim. Behav. Sci. 2003,

83, 247–258. [CrossRef]
4. White, B.J.; Coetzee, J.F.; Renter, D.G.; Babcock, A.H.; Thomson, D.U.; Andresen, D. Evaluation of two-dimensional accelerometers

to monitor behavior of beef calves after castration. Am. J. Vet. Res. 2008, 69, 1005–1012. [CrossRef]
5. Dawkins, M.S. Behaviour as a tool in the assessment of animal welfare. Zoology 2003, 106, 383–387. [CrossRef] [PubMed]
6. Hosey, G. Hediger revisited: How do zoo animals see us? J. Appl. Anim. Welf. Sci. JAAWS 2013, 16, 338–359. [CrossRef]
7. Hemsworth, P.H.; Barnett, J.L.; Coleman, G.J. The Human-Animal Relationship in Agriculture and its Consequences for the

Animal. Anim. Welf. 1993, 2, 33–51.
8. Sorge, R.E.; Martin, L.J.; Isbester, K.A.; Sotocinal, S.G.; Rosen, S.; Tuttle, A.H.; Wieskopf, J.S.; Acland, E.L.; Dokova, A.; Kadoura, B.;

et al. Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nat. Methods 2014, 11, 629–632.
[CrossRef] [PubMed]

9. Oh, J.; Fitch, W.T. CATOS (Computer Aided Training/Observing System): Automating animal observation and training. Behav.
Res. Methods 2017, 49, 13–23. [CrossRef] [PubMed]

10. Iserbyt, A.; Griffioen, M.; Borremans, B.; Eens, M.; Müller, W. How to quantify animal activity from radio-frequency identification
(RFID) recordings. Ecol. Evol. 2018, 8, 10166–10174. [CrossRef] [PubMed]

11. Will, M.K.; Büttner, K.; Kaufholz, T.; Müller-Graf, C.; Selhorst, T.; Krieter, J. Accuracy of a real-time location system in static
positions under practical conditions: Prospects to track group-housed sows. Comput. Electron. Agric. 2017, 142, 473–484. [CrossRef]

12. Kauselmann, K.; Krause, E.T.; Glitz, B.; Gallmann, E.; Schrade, H.; Schrader, L. Effect of plant-based enrichment materials on
exploration in rearing and fattening pigs (Sus scrofa domesticus). Appl. Anim. Behav. Sci. 2021, 236, 105261. [CrossRef]

13. Naguib, M.; Krause, E.T. Methoden der Verhaltensbiologie, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2020.
14. Robert, B.; White, B.J.; Renter, D.G.; Larson, R.L. Evaluation of three-dimensional accelerometers to monitor and classify behavior

patterns in cattle. Comput. Electron. Agric. 2009, 67, 80–84. [CrossRef]
15. Nasirahmadi, A.; Edwards, S.A.; Sturm, B. Implementation of machine vision for detecting behaviour of cattle and pigs. Livest.

Sci. 2017, 202, 25–38. [CrossRef]
16. Kaihilahti, J.; Suokannas, A.; Raussi, S. Observation of Cow Behaviour in an Automatic Milking System using Web-based Video

Recording Technology. Biosyst. Eng. 2007, 96, 91–97. [CrossRef]
17. Viola, P.; Jones, M.J. Robust Real-Time Face Detection. Int. J. Comput. Vis. 2004, 57, 137–154. [CrossRef]
18. Carl, C.; Schönfeld, F.; Profft, I.; Klamm, A.; Landgraf, D. Automated detection of European wild mammal species in camera trap

images with an existing and pre-trained computer vision model. Eur. J. Wildl. Res. 2020, 66, 1–7. [CrossRef]
19. Ratnayake, M.N.; Dyer, A.G.; Dorin, A. Tracking individual honeybees among wildflower clusters with computer vision-facilitated

pollinator monitoring. PLoS ONE 2021, 16, e0239504. [CrossRef] [PubMed]
20. Fernández-Carrión, E.; Barasona, J.Á.; Sánchez, Á.; Jurado, C.; Cadenas-Fernández, E.; Sánchez-Vizcaíno, J.M. Computer Vision

Applied to Detect Lethargy through Animal Motion Monitoring: A Trial on African Swine Fever in Wild Boar. Animals 2020,
10, 2241. [CrossRef] [PubMed]

21. Freuling, C.M.; Kamp, V.T.; Klein, A.; Günther, M.; Zaeck, L.; Potratz, M.; Eggerbauer, E.; Bobe, K.; Kaiser, C.; Kretzschmar, A.;
et al. Long-Term Immunogenicity and Efficacy of the Oral Rabies Virus Vaccine Strain SPBN GASGAS in Foxes. Viruses 2019, 11,
790. [CrossRef] [PubMed]

22. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection; Cornell University:
Ithaca, NY, USA, 2016. Available online: https://arxiv.org/abs/1506.02640 (accessed on 20 April 2021).

http://doi.org/10.3390/ani10101779
http://www.ncbi.nlm.nih.gov/pubmed/33019558
http://dx.doi.org/10.1016/j.compag.2014.12.002
http://dx.doi.org/10.1016/S0168-1591(03)00141-2
http://dx.doi.org/10.2460/ajvr.69.8.1005
http://dx.doi.org/10.1078/0944-2006-00122
http://www.ncbi.nlm.nih.gov/pubmed/16351922
http://dx.doi.org/10.1080/10888705.2013.827916
http://dx.doi.org/10.1038/nmeth.2935
http://www.ncbi.nlm.nih.gov/pubmed/24776635
http://dx.doi.org/10.3758/s13428-015-0694-9
http://www.ncbi.nlm.nih.gov/pubmed/26743195
http://dx.doi.org/10.1002/ece3.4491
http://www.ncbi.nlm.nih.gov/pubmed/30397456
http://dx.doi.org/10.1016/j.compag.2017.09.020
http://dx.doi.org/10.1016/j.applanim.2021.105261
http://dx.doi.org/10.1016/j.compag.2009.03.002
http://dx.doi.org/10.1016/j.livsci.2017.05.014
http://dx.doi.org/10.1016/j.biosystemseng.2006.10.001
http://dx.doi.org/10.1023/B:VISI.0000013087.49260.fb
http://dx.doi.org/10.1007/s10344-020-01404-y
http://dx.doi.org/10.1371/journal.pone.0239504
http://www.ncbi.nlm.nih.gov/pubmed/33571210
http://dx.doi.org/10.3390/ani10122241
http://www.ncbi.nlm.nih.gov/pubmed/33260362
http://dx.doi.org/10.3390/v11090790
http://www.ncbi.nlm.nih.gov/pubmed/31461981
https://arxiv.org/abs/1506.02640


Animals 2021, 11, 1723 18 of 18

23. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement; Cornell University: Ithaca, NY, USA, 2018. Available online:
https://arxiv.org/abs/1804.02767 (accessed on 20 April 2021).

24. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection; Cornell University: Ithaca, NY,
USA, 2020. Available online: https://arxiv.org/abs/2004.10934 (accessed on 22 April 2021).

25. Kukekova, A.V.; Trut, L.N.; Oskina, I.N.; Johnson, J.L.; Temnykh, S.V.; Kharlamova, A.V.; Shepeleva, D.V.; Gulievich, R.G.;
Shikhevich, S.G.; Graphodatsky, A.S.; et al. A meiotic linkage map of the silver fox, aligned and compared to the canine genome.
Genome Res. 2007, 17, 387–399. [CrossRef] [PubMed]

26. Voipio, H.M.; Baneux, P.; Gomez de Segura, I.A.; Hau, J.; Wolfensohn, S. Guidelines for the veterinary care of laboratory animals:
Report of the FELASA/ECLAM/ESLAV Joint Working Group on Veterinary Care. Lab. Anim. 2008, 42, 1–11. [CrossRef] [PubMed]

27. Tzutalin. LabelImg: Git Code (2015). 9 November 2020. Available online: https://github.com/tzutalin/labelImg (accessed on 20
April 2021).

28. Kluyver, T.; Ragan-Kelley, B.; Pérez, F.; Granger, B.; Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.; Grout, J.; Corlay, S.; et al.
Jupyter Notebooks—A publishing format for reproducible computational workflows. Stand Alone 2016, 87–90. [CrossRef]

29. van Rossum, G.; Drake, F.L. The Python Language Reference; Drake, F.L., Ed.; Release 3.0.1 [repr.] ed., Vol./Guido van Rossum;
Documentation for Python, Python Software Foundation and SoHo Books: Hampton, NH, USA; Redwood City, CA, USA, 2010.

30. GitHub. AlexeyAB/Darknet. 26 August 2020. Available online: https://github.com/AlexeyAB/darknet (accessed on 23 April 2021).
31. Everingham, M.; van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J.

Comput. Vis. 2010, 88, 303–338. [CrossRef]
32. Fernández-Carrión, E.; Martínez-Avilés, M.; Ivorra, B.; Martínez-López, B.; Ramos, Á.M.; Sánchez-Vizcaíno, J.M. Motion-based

video monitoring for early detection of livestock diseases: The case of African swine fever. PLoS ONE 2017, 12, e0183793.
[CrossRef] [PubMed]

https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/2004.10934
http://dx.doi.org/10.1101/gr.5893307
http://www.ncbi.nlm.nih.gov/pubmed/17284676
http://dx.doi.org/10.1258/la.2007.007027
http://www.ncbi.nlm.nih.gov/pubmed/18348761
https://github.com/tzutalin/labelImg
http://dx.doi.org/10.3233/978-1-61499-649-1-87
https://github.com/AlexeyAB/darknet
http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1371/journal.pone.0183793
http://www.ncbi.nlm.nih.gov/pubmed/28877181

	Introduction
	Materials and Methods
	Experimental Setup
	Manual Evaluation and Motion Detector Data
	Image and Video Data
	Environment Configuration
	Automatic Evaluation of Video Data: Fox Detection 
	Automatic Evaluation: Converting Bounding Box Values to Movement Patterns
	Automatic Evaluation of Video Data

	Results
	Model Training and Evaluation
	Motion Monitoring 
	Residence Patterns
	Activity Detection

	Comparison of Different Activity Evaluation Methods

	Discussion
	Conclusions
	References

