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Simple Summary: The wearable wireless sensor system plays a crucial role in providing behavioral
and physiological data for each individual in precision livestock farming. This article reviewed
the most types of sensor systems available in the market and summarized detailed information on
these systems. Additionally, through meta-analysis, the accuracy of the parameters generated by
the sensor system was verified. As a result, it has been shown that there are more than 60 sensor
systems of various types have been developed and sold. Most of them generate behavioral and
physiological parameters of cattle with excellent performance (e.g., eating time, ruminating time,
lying time, standing time, etc.), with the exception of a few parameters (e.g., drinking time and
walking time). In this review, it was also investigated that the same parameters predicted by sensor
systems of the same brand showed different accuracies, but it was not possible to confirm where
this difference originated because the additional experimental conditions presented in the literature
were not detailed. Therefore, this review suggested that guidelines for evaluation criteria for research
evaluating sensor performance are needed.

Abstract: The review aimed to collect information about the wearable wireless sensor system (WWSS)
for cattle and to conduct a systematic literature review on the accuracy of predicting the physiological
parameters of these systems. The WWSS was categorized as an ear tag, halter, neck collar, rumen
bolus, leg tag, tail-mounted, and vaginal mounted types. Information was collected from a web-
based search on Google, then manually curated. We found about 60 WWSSs available in the market;
most sensors included an accelerometer. The literature evaluating the WWSS performance was
collected through a keyword search in Scopus. Among the 1875 articles identified, 46 documents
that met our criteria were selected for further meta-analysis. Meta-analysis was conducted on the
performance values (e.g., correlation, sensitivity, and specificity) for physiological parameters (e.g.,
feeding, activity, and rumen conditions). The WWSS showed high performance in most parameters,
although some parameters (e.g., drinking time) need to be improved, and considerable heterogeneity
of performance levels was observed under various conditions (average I2 = 76%). Nevertheless, some
of the literature provided insufficient information on evaluation criteria, including experimental
conditions and gold standards, to confirm the reliability of the reported performance. Therefore,
guidelines for the evaluation criteria for studies evaluating WWSS performance should be drawn up.

Keywords: wearable wireless biosensor systems; physiological parameters; sensor performance;
meta-analysis; cattle

1. Introduction

To increase the sustainability of the dairy industry, there has been an increased need
for replacing traditional group-level management with precision dairy farming, which
continuously monitors and manages individual productivity and health issues [1]. How-
ever, individual monitoring through direct observation of farm staff or video recordings is
time-consuming, labor-intensive, difficult to detect accurately, and practically impossible
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on large-sized farms. Therefore, wearable wireless biosensor systems have been introduced
for individual cow monitoring, and research on these systems has been actively conducted
in the last 40 years [2].

The wearable wireless biosensor system is composed of a battery, a data transmitter,
and one or more sensors (tri-axis accelerometer, thermometer, pH electrode, microphone,
etc.), which are mounted on the cow’s body to measure and collect biometric data. These
sensors can be divided into eight types (ear tags, halters, neck collars, reticulo-rumen bolus
sensors, leg tags, tail tags, tail head tags, and vaginal tags) according to their location
on the dairy cow’s body [3]. They are used to collect and transmit biometric data, such
as acceleration, temperature, pH, and pressure at specified time intervals. These raw
data from the sensors are then computed into physiological and behavioral parameters
(such as the number of steps, activity level, time spent for eating, ruminating, or lying) by
algorithms in the sensor, by the PC software, or through clouding computing. Additionally,
these parameters are used as the predictor variables for the diagnosis model for detecting
physiological and health status (e.g., estrus events, calving, and illness).

The literature reviews about cattle biosensor systems have primarily focused on the
performance of diagnostic models and detection alarms [2,4]. However, the parameters
generated from the sensors are important, not only for ensuring high performance of the
detection alarms of their diagnostic models, but also for obtaining ‘big data’ of physiological
status and behavior of individual cattle. Therefore, it is important to investigate how
accurately the parameters generated from the sensors can represent animal physiological
and behavioral parameters. Thus, the purposes of this review paper were to (1) collate
commercially available wearable wireless biosensor systems for cattle farms and (2) review
the literature focused on evaluating the accuracy of the parameters obtained from these
biosensor systems in predicting the actual condition of animals.

2. Currently Available Wearable Wireless Biosensor Systems
2.1. Search Strategy and Quality Evaluation of the Constructed Database

In this review, we collected all the information about the currently available wearable
wireless biosensors for cattle, summarizing the basic features of these sensors. Our com-
prehensive search was performed through a web-based search on Google, and the search
terms were as follows:

cattle AND sensor AND (ear OR halter OR neck OR rumen OR leg OR tail OR vagina)
The inclusion criterion was that the product must be currently commercially available.

The availability of the sensors was confirmed based on the information obtained from
the respective web pages. The products marked as ‘in development’ or ‘to be released
soon (concept solutions and prototypes)’ were excluded from this study, i.e., only the
products currently available in the market were included in the study. The initial search
lasted for three months (August 2019~October 2019). It was conducted extensively and
meticulously to obtain a comprehensive market inventory and minimize the risk of missing
any relevant products. While writing this review, the search process was re-conducted
to prevent the omission of newly released products (~April 2020). During this iterative
process, we double-checked if there were any missing products in the existing database.

Technical specifications and information on vendor websites were our primary sources
of information, and business reports and research papers were additional sources for this
review. If we found any further information about a product in scientific articles, we
used this information to update our product information. For an objective evaluation of
database quality, our database was compared with another independent database, the
sensor product database for dairy cattle provided by the Data Driven Dairy Decision for
Farmers (4D4F) project (https://www.4d4f.eu/, last updated on 23 August 2019) funded
from the European Union’s Horizon 2020 research and innovation program.

https://www.4d4f.eu/
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2.2. Wearable Wireless Biosensor Systems by Type and Mounting Location
2.2.1. Ear Tag and Halter Type

Several wearable wireless biosensors that can be mounted externally on the animal
body, such as on ears, necks, legs, and tails, have been developed. Among these, ear-
mounted sensors are mainly equipped with sensors that measure temperature and activity.
They are mostly mounted in the middle of the ear and used to check the animals’ health
status using temperature data. Most ear tag products equipped with three-axis accelerom-
eter sensors can additionally check the animal’s ruminating, eating, resting, and activity.
The management system connected to the sensor uses these data to diagnose an animal’s
estrous cycle and health issues.

Halter type sensors are attached to the cow’s head, and they measure the cow’s
eating and ruminating behavior through a noseband pressure sensor and a three-axis
accelerometer sensor. The currently available ear tag and halter type sensors are listed in
Tables 1 and 2.

2.2.2. Neck Collars

The neck collar sensor system consists of a device with sensors attached to the strap
hanging on a cow’s neck. This type of sensor is the most commonly used in dairy farms;
many companies manufacture it. Generally, neck collars have been widely used to control
the amount of feed or measure individual feed intake through radio-frequency identifica-
tion technology. Recently, accelerometer and microphone sensors have been added to neck
collars to measure eating time, rumination time, and activity level. Some are equipped
with temperature sensors to measure an animal’s body temperature. These sensors provide
farm managers with a cow’s health and estrus information. Some neck collar sensors are
used in combination with automatic milking systems. The currently available commercial
neck collar tag sensors are listed in Tables 3 and 4.

2.2.3. Reticulo-Rumen Bolus Sensors

A rumen bolus system is inserted orally and placed in the reticulum, where it will
remain throughout the animal’s life. It is designed to continuously monitor a few rumen
parameters (temperature and pH) and an animal’s activity throughout the day. The bolus
is equipped with an internal battery, a temperature sensor/pH sensor/accelerometer, and a
transmitter for data transmission. Its battery can last for months to years and can transmit
the data wirelessly at adjustable time intervals.

Bolus sensors are primarily designed to sense ruminal temperature changes, which
can signal a shift in animal physiological states. A decrease in ruminal temperature reflects
drinking and eating events, and its increase coincides with increased body temperature [5–7].
Monitoring changes in the ruminal temperature and activity can facilitate early detection
of abnormal behavior, estrous cycle, and illnesses. Unfortunately, the pH sensor is mostly
unequipped due to its relatively short lifespan. The currently available commercial bolus
sensor systems with a pH sensor have an operational lifetime of no more than a few months
since the stability of the pH probe is limited. Thus, rumen bolus systems with a pH sensor
are mainly considered as research tools. The currently available commercial bolus products
are presented in Tables 5 and 6.
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2.2.4. Leg Tags

Along with neck collar sensors, leg tag sensors are a popular sensor technology used
in farms. Leg tag sensors are mainly equipped with three-axis accelerometers, which can
measure animal activity, walking time, lying time, standing time, and the number of steps.
They also provide farm managers with a cow’s health and estrus information. Similar
to the neck collar system, some leg tag sensors are used in combination with automatic
milking systems. The currently available commercial leg tag products are presented in
Tables 7 and 8.

2.2.5. Tail and Vagina Mounted Types

Both dystocia and stillbirth significantly impact on animal productivity and farm
profitability, often requiring a skilled assistant and immediate intervention at the moment
of delivery [8]. In order to reduce the reliance on labor and aid animal management,
sensors detecting the calving time without physical observation have been developed.
These sensors are attached to the tail (or tail head), and they measure tail movement
patterns triggered by labor contractions.

Among the sensors used to detect calving, some sensors are inserted directly into
a cow’s vagina. Using the principle that a cow’s body temperature decreases before
calving [9–11], vaginally inserted sensors detect a reduction in a cow’s vaginal temperature
and provide a calving alarm to farm managers. Another type of vaginally inserted sensor
detects light. When the device is pushed out of the vagina by a cow’s water break, it is
recognized that the device is out of the cow’s body through detecting light. At this time,
the device sends a text message to the farm manager to notify the start of calving. The
currently available commercial products of the abovementioned types are presented in
Table 9.
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Table 1. Information about currently available ear-tag and halter type sensor.

Product Company
(Parent Company) Country Management

Software
Mobile

Application

Dimensions
(mm × mm ×

mm)
Weight (g) Battery Life Range

(m) Built-in Sensors

Ear tag

Smartbow Smartbow GmbH
(Zoetis Services LLC.) AT Herd Monitoring

Software # 52 × 36 × 17 34 2 years 300 Accelerometer
Temperature sensor

eSense Flex tag SCR Engineers Ltd.
(Allflex Europe SA) IL SenseHub™/

Heatime® Pro+ # 68 × 38 × 15 25 3 years 200 × 500 * Accelerometer

CowManager SensOor Agis Automatisering BV NL CowManager System # 60 × 50 × 22 32 5 years - Accelerometer
Temperature sensor

TekSensor tag TekVet Technologies Co. NL TekAccess™ × - - - - Temperature sensor
Calf Tag FeverTags LLC US TempVerified × - 14 2 years - Temperature sensor

Data Collection Tag FeverTags LLC US - × - - - - Temperature sensor

Halter

RumiWatch Noseband
Sensor ITIN + HOCH GmbH CH

RumiWatch
Manager/RumiWatch

Converter
× - - 2 years -

Accelerometer
Temperature

sensorPressure sensor

* Area coverage.

Table 2. Output data and detection items of the wearable wireless biosensor systems (ear tag and halter type).

Product (Module) Output Data Data Reporting Frequency Detection

Ear tag

Smartbow High activity/Activity/Inactivity/Ruminating
time/Location Every hour Heat/Health disorder

eSense™ Flex tag Activity/Ruminating time/Heat index Every 2 h Heat/Health disorder
CowManager SensOor

(Find my cow)
High activity/Activity/Inactivity/Ruminating

time/Eating time/Temperature/(Location) Every hour Heat/Health disorder

TekSensor tag Temperature Every hour Health disorder
Calf Tag Temperature Every 15 min Health disorder

Data Collection Tag Temperature Every 15 min Research purpose
(Data acquisition only)

Halter

RumiWatch
Noseband Sensor

Raw activity/Other chewing activity/Ruminating
time/Regurgitated boli counts/Ruminating chew

counts/Chews per bolus/Chews per minute/Eating
time/Eating chew counts/Drinking time/Drinking gulp

count/Temperature (ambient)

Every minute
/Every hour

Research purpose
(Data acquisition only)
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Table 3. Information about currently available neck collar type sensor.

Product Company
(Parent Company) Country Management Software Mobile

Application
Dimensions

(mm × mm × mm)
Weight

(g)
Battery

Life
Range

(m) Built-In Sensors

CowScout Neck GEA Farm
Technologies, Inc. DE CowScout Activity monitoring system # - - 5 years 100–1000 Accelerometer

Rescounter III Neck GEA Farm
Technologies, Inc. DE DairyPlan C21 × - - - - Accelerometer

Axel Collar Medria Inc. FR Farm’Life® # 100 × 48 × 30 160 - 1000 Accelerometer
Smart Collar HerdInsights IE HerdInsights Software # - - 5 years - Accelerometer
Moocall Heat Moocall Ltd. IE Moocall Breedmanager # - - 60 days 3G coverage -
MooMonitor+ Dairy Master IE Dairymaster MooMonitor # - - 10 years 1000 Accelerometer

SmartTag Neck Pearson International LLC IE Pearson Heat Detection with Health
Monitoring system # - - 10 years - Accelerometer

cSense Flex tag SCR Engineers Ltd.
(Allflex Europe SA) IL

SenseHub™ Dairy/SenseHub™ Beef/
Heatime® Pro+ System

# 84 × 64 98 7 years 200 × 500 * Accelerometer

SCR H-LD SCR Engineers Ltd.
(Allflex Europe SA) IL

Heatime® HR System
(Independent device)/

Heatime® Pro+ System (PC)
# 84.1 × 64.5 98 7 years 200 × 500 * Accelerometer

SCR HR-LD/SCR
HR-LDn

SCR Engineers Ltd.(Allflex
Europe SA) IL Heatime® HR System(Independent

device)/Heatime® Pro+ System (PC)
# 84.1 × 64.5 98 7 years 200 × 500 * Accelerometer/Microphone

Qwes ISO LD/LD
Smarttag Lely IL Lely T4C management system # - - - 75 Accelerometer

Qwes H-LD Lely IL Lely T4C management system # - - - 500 Accelerometer
Qwes HR-LDn Lely IL Lely T4C management system # - - - 500 Accelerometer/Microphone

AfiCollar Afimilk Agricultural
Cooperative Ltd. IL AfiFarm Software/Afi2Go Pro Mobile

App # - - - 200–800 Accelerometer

Milkrite|InterPuls
Neck Tag milkrite | InterPuls IT MyFarm # - - - 75–500 Accelerometer

Smarttag Neck Nedap livestock
management NL Nedap CowControl # - - 10 years 75 Accelerometer

Smarttag Neck/All
in One CRV international B.V. NL Ovalert # - - - - Accelerometer

Activity meter
system

DeLaval International AB
Inc. SE AlPro/DelPro Farm Management

systems # - 170 10 years 200 Accelerometer

Cowlar Cowlar US Cowlar × 110 × 62 × 33 242 6 months >3000 Accelerometer/Temperature
sensor

HeatSeeker II Neck BouMatic LLC US HerdMetrix™ # - 135 7 years 100–750 Accelerometer
RealTime SmartTag BouMatic LLC US HerdMetrix™ # - - - - Accelerometer

* Area coverage.
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Table 4. Output data and detection items of the wearable wireless biosensor systems (neck collar type).

Product (Module) Output Data Data Reporting Frequency Detection

CowScout Neck Activity/Inactivity/Ruminating time/Eating time Every 2 h Heat/Health disorder
Rescounter III Neck Activity Every 2 h Heat

Axel Collar
(Feed’Live/Heat’Live/Time’Live)

High activity/Inactivity/Ruminating time/Eating time/Lying
time/Standing time - Heat/Health disorder

Smart Collar Activity/Inactivity/Ruminating time/Eating time/Heat index Every hour Heat/Health disorder
Moocall Heat - - Heat

MooMonitor+ High activity/Activity/Low activity/Inactivity/Ruminating
time/Eating time Every hour Heat/Health disorder

SmartTag Neck Eating time/Not eating time - Heat/Health disorder
cSense Flex tag Activity/Ruminating time/Heat index Every 2 h Heat/Health disorder

SCR H-LD Activity/Heat index Every 2 h Heat/Health disorder
SCR HR-LD

/SCR HR-LDn Activity/Ruminating time/Heat index Every 2 h Heat/Health disorder

Qwes ISO LD Activity Every 2 h Heat
Qwes ISO LD Smarttag

(CowLocator) Activity/Ruminating time/(Location) Every 2 h Heat/Health disorder

Qwes H-LD Activity Every 2 h Heat
Qwes HR-LDn Activity/Ruminating time Every 2 h Heat/Health disorder

AfiCollar Activity/Ruminating time/Eating time - Heat/Health disorder
Milkrite|InterPuls

Neck Tag Activity/Ruminating time/Eating time/Location - Heat/Health disorder

Smarttag Neck
(Cow positioning)

Activity/Inactivity/Ruminating time/Eating time/Eating
bouts/(Location) Continuously Heat/Health disorder

Smarttag Neck Eating time/Not eating time Continuously Heat/Health disorder
Smarttag All in One
(Cow positioning)

Inactivity/Ruminating time/Eating time/Not eating
time/(Location) Continuously Heat/Health disorder

Activity meter system Activity/Heat index Every hour Heat/Health disorder
Cowlar Activity/Ruminating time/Eating time/Step counts - Heat/Health disorder

HeatSeeker II Neck Activity Every 2 h Heat
RealTime SmartTag

(Activity/Rumination
& Localization)

Activity/Inactivity/Ruminating time/Eating time/(Location) Every 2 h Heat/Health disorder
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Table 5. Information about currently available rumen bolus type sensors.

Product Company
(Parent Company) Country Management Software Mobile

Application
Dimensions

(mm × mm × mm)
Weight

(g)
Battery

Life
Range

(m) Built-In Sensors

smaXtec classic/
pH Plus Bolus smaXtec Animal Care Inc. AT smaXtec Messenger 4.0 # 105 × 35

132 × 35 - 4 years 10–30
Accelerometer/Temperature

sensor/
(pH sensor)

San’Phone Medria Inc. FR Farm’Life® # - - - 1000 Temperature sensor

Moow Rumen Bolus Moow Farm Ltd. HU Moow system # - - 3 years - Temperature sensor/
pH sensor

Smart Rumen Bolus
(Temp/

Temp + Activity/
Temp + Activity +pH)

Moonsyst Industrial
Technologies Ltd. HU Moonsyst system # - - 6 years -

Temperature
sensor/(Accelerometer)/

(pH sensor)

LiveCare uLikeKorea Co., Inc. KR Livestock HealthCare Services # 110 × 25 - 6 years -
Accelerometer/Temperature

sensor/
(pH sensor)

eBolus eCow Ltd. UK eCow Software × 135 × 27 150 5 months Handheld antenna Temperature sensor/
pH sensor

HerdStrong DVM Systems Co. US HerdStrong® Tru-Core system # 114 × 33 × 31 - 5 years 137 Temperature sensor
SmartStock Smart Stock Ltd. US Healthy Cow Dairy × 85 × 30 120 5 years 91–182 Temperature sensor

Table 6. Output data and detection items of the wearable wireless biosensor systems (rumen bolus type).

Product (Module) Output Data Data Reporting Frequency Detection

smaXtec classic/pH Plus Bolus Activity/Temperature/(pH) Every 10 min Heat/Health disorder/Calving

San’Phone Temperature - Research purpose
(Data acquisition only)

Moow Rumen Bolus Temperature/pH - Health disorder
Smart Rumen Bolus

(Temp/Temp + Activity/Temp + Activity +pH) Activity/Temperature/(pH) - Heat/Health disorder

LiveCare Activity/Drinking bouts/Temperature/(pH) Every hour Heat/Health disorder/Calving

eBolus Temperature/(pH) Every 15 min Research purpose
(Data acquisition only)

HerdStrong Temperature Every 15 min Heat/Health disorder/Calving
SmartStock Temperature Customizable Health disorder
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Table 7. Information about currently available leg-tag type sensor.

Product Company
(Parent Company) Country Management

Software
Mobile

Application
Dimensions

(mm × mm × mm)
Weight

(g)
Battery

Life
Range

(m) Built-In Sensors

Rumiwatch pedometer ITIN + HOCH GmbH CH RumiWatch Manager/RumiWatch
Converter # - 2 years - Accelerometer/Temperature

sensor

CowScout Leg GEA Farm
Technologies, Inc. DE CowScout Activity monitoring system # - - 5 years 100–1000 Accelerometer

Rescounter III Leg GEA Farm
Technologies, Inc. DE DairyPlan C21 × - - - - Accelerometer

IceTag/IceQube
(for research) IceRobotics Ltd. UK IceReader & IceManager × 65 × 60 × 30

96 × 81 × 31 130 2 years - Accelerometer

IceQube IceRobotics Ltd. UK CowAlert # 96 × 81 × 31 130 2 years - Accelerometer
Breeder Tag Genus Breeding Ltd. UK Breeder Tag System # - - 5 years 700 Accelerometer

SmartTag Leg Pearson International LLC IE Pearson Heat Detection with Health
Monitoring system # - - 10 years - Accelerometer

AfiAct II Afimilk Agricultural
Cooperative Ltd. IL AfiFarm Software/Afi2Go Pro Mobile

App # - 5 years 200–800 Accelerometer

Track A Cow ENGS Systems IL EcoHerd Software × 68 × 50 × 26 124 6 years 700–2000 Accelerometer
milkrite|InterPuls

Pedometer milkrite | InterPuls IT MyFarm # - - - 75–1000 Accelerometer

Gyuho (cow step) SaaS Fujitsu JP Gyuho SaaS system × - - - - Accelerometer

Smarttag Leg Nedap livestock
management NL Nedap CowControl # - - 10 years 75 Accelerometer

Smarttag Leg CRV international B.V. NL Ovalert # - - - - Accelerometer
HeatSeeker II Leg BouMatic LLC US HerdMetrix™ # - 135 7 years 50 Accelerometer
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Table 8. Output data and detection items of the wearable wireless biosensor systems (leg-tag type).

Product (Module) Output Data Data Reporting
Frequency Detection

Rumiwatch pedometer

Raw activity/Lying time/Standing
time/Walking time/Stand up bouts/Lie
down bouts/Step counts/Temperature

(ambient)

Every minute/Every hour Research purpose
(Data acquisition only)

CowScout Leg Activity/Lying time/Standing time/Walking
time/Stand up bouts/Step counts Every 2 h Heat/Health disorder

Rescounter III Leg Activity Every 2 h Heat

IceTag/IceQube (for research) Activity/Lying time/Standing time/Stand up
bouts/Lie down bouts/Step counts Customizable Research purpose

(Data acquisition only)

IceQube Activity/Lying time/Standing time/Stand up
bouts/Lie down bouts/Step counts Every 15 min Heat/Health disorder

Breeder Tag Activity/Lying time/Step counts Every 15 min Heat/Health disorder

SmartTag Leg Inactivity/Lying time/Standing time/Step
counts - Heat/Health disorder

AfiAct II Lying time/Lie down bouts/Step counts Every hour Heat/Health disorder/Calving
Track A Cow Lying time/Standing time/Step counts Every 6 min Heat/Health disorder

milkrite|InterPuls Pedometer Activity/Lying time/Standing time/Walking
time/Stand up bouts/Step counts NA Heat/Health disorder

Gyuho (cow step) SaaS Step counts Every hour Heat

Smarttag Leg Activity/Lying time/Standing time/Walking
time/Stand up bouts/Step counts Continuously Heat/Health disorder

Smarttag Leg Lying time/Stand up bouts/Step counts Continuously Heat/Health disorder
HeatSeeker II Leg Activity Every 2 h Heat



Animals 2021, 11, 2779 11 of 31

Table 9. Information about currently available tail- and vaginal-mounted type sensor.

Product
Company

(Parent
Company)

Country Management
Software

Mobile
Application

Dimensions
(mm × mm)

Weight
(g)

Battery
Life

Range
(m) Built-In Sensors Detection

Tail

Smart’Vel Evolution
international FR × × - 75 5 years - Accelerometer Calving

Alert’Vel ALB Innovation FR × × - - - 2000 Accelerometer Calving
Moocall Calving

Sensor Moocall Ltd. IE Moocall
Breedmanager # - - 60 days - Accelerometer Calving

Vagina

Vel’Phone Medria Inc. FR Farm’Life®

(Vel’Live®)
# 116 × 26 87 - 1000 Temperature sensor Health disor-

der/Calving

Cow Call Cow Call IE × × - - 2 years - Temperature sensor
Light sensor Calving
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3. Literature Review on the Evaluation of Parameters Generated by Wearable Wireless
Biosensor Systems

Wearable wireless wearable biosensors provide farm managers with physiological
and behavioral data, such as eating, rumination, walking, and lying time. These data
are generated by computing raw data measured by the sensor using a specific algorithm.
The units of the generated values depend on the sensor type and the algorithm used. As
the computed physiological and behavioral parameters are used as predictor variables
in health and estrus diagnostic models, they should accurately represent the actual state
of individual animals. Several studies have been conducted to verify the performance of
different sensors. The majority of these studies conducted correlation analyses between
the sensor data and the gold standard (actual observations) and performance analyses
(i.e., sensitivity, specificity, accuracy, and precision). We reviewed the literature on the
evaluation of physiological and behavioral data generated by wearable wireless biosensors.

3.1. Search Strategy, Study Selection, and Quality Assessment

A literature search was conducted by a keyword search in Scopus. To avoid an
excessive number of search results, we used specific keywords. The final query used to
search for articles in the databases was (TITLE-ABS-KEY (correlation OR correlated OR
regression OR sensitivity OR specificity OR precision OR accuracy)) AND (TITLE-ABS-
KEY (cow OR cattle OR calf OR heifer OR buffalo)) AND ((TITLE-ABS-KEY (sensor* AND
NOT sensory)) OR (TITLE-ABS-KEY (automat* OR *meter OR device OR tag))) AND
(TITLE-ABS-KEY (detect* OR monitor* OR record*)) AND NOT (TITLE-ABS-KEY (genetic*
OR chromatography OR follicle OR muscle OR meat OR DNA OR antibody OR serum
OR patient OR assay OR spectro*)) AND (LIMIT-TO (DOCTYPE, ‘ar’)) AND (LIMIT-TO
(LANGUAGE, ‘English’)). A total of 1875 articles were retrieved using this query (search
date: 26 April 2020).

After the initial database search was completed, we screened the title and abstract of
each selected article and made decisions on the suitability of each study for inclusion in this
review. Articles were included in the final database if they (i) investigated the performance
of wearable wireless biosensors for beef or dairy cattle, (ii) evaluated variables related to
feeding behavior, moving behavior, or rumen status generated by the sensors, (iii) tested
the performance of the sensors with other independent reference measurements (a.k.a.
the gold standard), such as real-time or recorded visual observations for the behavioral
activities and manual pH or temperature measurements, and (iv) presented at least one
or more quantitative evaluation measures, such as correlation, accuracy, precision, sensi-
tivity, and specificity. A total of 46 articles met the above criteria and were selected for
our systematic review. These studies evaluated the sensor’s performance in monitoring
the following three parameters: feeding behavior, activity behavior, and rumen status.
The following information was extracted from the selected papers: target behavioral and
physiological parameter (i.e., feeding behavior: eating time, ruminating time, drinking
time; activity behavior: lying time, standing time, walking time, step count, active time,
inactive time; rumen statue: rumen pH and rumen temperature), sensor information (i.e.,
mounting position, product name, company, country), animal information (i.e., breed,
gender, physiological stage), housing information (i.e., barn type, feeding method), gold
standard information (i.e., method, number of observers, reliability between observers),
data quantity (i.e., number of animals, total collection time, mean collection time per ani-
mal), and evaluation results (i.e., correlation coefficient: Pearson, Spearman, Concordance;
diagnostic accuracy: sensitivity, specificity, precision, accuracy).

3.2. Evaluation of Wearable Wireless Biosensor Systems

In this study, feeding behavior was classified as eating, ruminating, or drinking.
Feeding behavior is usually measured by a sensor located on the head of the cow, such
as an ear tag, halter, or neck collar. Activity behavior was classified as lying, standing,
walking, active, or inactive (resting). These activities are usually measured by leg tag
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sensors; however, there are other types of sensors (e.g., ear tags and neck collars) capable
of recording daily active and inactive time. As the gold standard for evaluating the
sensor, the total duration of the target behavior quantified through visual observation of
an observer is used for the behavioral activities, while independent measurements are
used for physiological parameters (rumen pH and temperature). During observation, the
trained observer records the start time and end time of the target behavior and calculates
the duration of target behavior based on this record. The target behavior is defined through
an ethogram, and the observer is trained to identify the animal’s behavior based on this
definition before observation. Visual observation of an observer includes both real-time
(live observation) and non-real-time (video recordings) observations. The case where
values derived from other wearable wireless sensors were used as the gold standard were
excluded from this study.

The correlation results, i.e., the values of Pearson’s correlation coefficient (PCC),
Spearman’s rank correlation coefficient (SCC), and Lin’s concordance correlation coefficient
(CCC) were graded using the criteria of Hinkle et al. [12]. The grades were negligible
(0.00–0.30), low (0.30–0.50), moderate (0.50–0.70), high (0.70–0.90), and very high (0.90–
1.00). PCC and SCC can describe a linear relationship between a measured value and a
value to be compared, and CCC can additionally explain the degree of agreement with the
measured value as well as the linear relationship. In this review, along with correlation
and CCC, the results of binary classification tests based on 2 × 2 contingency tables (true
positives, false negatives, false positives, and true negatives) of the sensors presented in the
articles are also discussed. The following performance results were considered: sensitivity
(Se; true positives out of the sum of true positives and false negatives), specificity (Sp; true
negatives out of the sum of true negatives and false positives), accuracy (Acc; true positives
and true negatives out of the total number of tests), and precision (Pre; true positives out of
the sum of true positives and false positives; positive predictive value).

3.3. Statistical Analysis

A meta-analysis was performed for the reported correlation coefficients (PCC, SCC,
and CCC) and diagnostic accuracy (i.e., Se and Sp). The mean and 95% confidence intervals
of the statistics were estimated through a random-effects model based on the DerSimonian–
Laird estimator [13], which was generally considered as the standard procedure in the
meta-analysis. Since the animal types, physiological stages of animals, feeding and housing
conditions, and sensor products were varied among the studies included in the meta-
analysis, the random-effects model was selected instead of a fixed-effects model. Given the
non-normality of correlation coefficients, point estimates were variance-stabilized using
Fisher’s z-transform [14]. The mean value from each study was weighted based on the
inverse variance method using the study sample size (number of animals). We treated
evaluations conducted under different conditions within the same article as separate
individual studies. The analysis was not performed if there were no more than two
independent study samples for one behavior. Heterogeneity was examined using τ2,
I2, and Cochran’s Q statistic, where τ2 = 0 suggests no heterogeneity, and I2 values of
25, 50, and 75% correspond to cut-off points for low, moderate, and high heterogeneity,
respectively [15]. The differences in the correlation between sensor types were analyzed
using analysis of variance. All the procedures of the meta-analysis were performed using
the ‘metacor’ function in the ‘meta’ package of R version 4.0.3 [16]. Statistical significance
was set at p < 0.05, and the results characterized by 0.05 ≤ p < 0.1 were considered trends.

3.3.1. Feeding Behavior
Eating Time

Eating time refers to the amount of time that an animal spends consuming feed per
day. This variable was evaluated in both indoor intensive farming systems (such as free-
stall barns or tie-stall barns) and pasture systems (Supplementary Tables S1 and S2). In
intensive farming, eating behavior is defined as the chewing or licking movement occurring
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when the animal’s muzzle is located in or above the feed bunk [17–28]. In pasture systems,
eating behavior is defined as the process of biting or chewing grass when the cow’s muzzle
is located near or above the grass [29–34]. PCC and SCC values based on 18 independent
study samples from 15 articles (12 for PCC and seven for SCC) showed that the correlation
between the eating time recorded by sensors and actual observations was very high,
regardless of the sensor type (PCC = 0.90, n = 263, I2 = 51%; SCC = 0.92, n = 178, I2 = 61%;
Figure 1 and Supplementary Table S1) [17–19,21,22,24,25,27–34]. Moreover, the CCC value
based on 12 independent study samples from 10 articles was high (0.88, n = 271, I2 = 67%;
Figure 2 and Supplementary Table S1) [17–19,22,26,29–32,34]. The sensor products used
between the studies were the same except for the neck collar type (Supplementary Table S1),
and the animal type and feeding method were different but showed moderate heterogeneity
overall (I2 = 60% and τ2 = 0.25). Among the different types of sensors, on average, the
eating time measured by the halters and neck collar tags showed higher correlation with
the visual observations (halters, PCC = 0.91 and CCC = 0.96 [24–26,31,33]; and the neck
collars, PCC = 0.96 and CCC = 0.95 [18,28,31,33]) than that measured by the ear tag sensors
(PCC = 0.86, p = 0.07; and CCC = 0.79, p < 0.01) [17,18,21,22,26,27,30]. The results of a
binary classification test for the performance of sensors for eating time obtained from 10
independent study samples from seven articles (10 for Se, nine for Sp, seven for Acc, and
nine for Pre; Table 10 and Supplementary Table S2) showed an Se of 85% (n = 220), an Sp of
96% (n = 210), an Acc of 91% (n = 184), and a Pre of 87% (n = 210) [20,23,25,26,28,29,32].

Rumination Time

Rumination time is a variable that represents the amount of time a cow spends
ruminating per day. In the literature, ruminating behavior is defined as a behavior that
includes regurgitation, rhythmic chewing, and swallowing of the bolus [17–43]. PCC and
SCC values based on 33 independent study samples from 25 articles (26 for PCC and eight
for SCC; Supplementary Table S3) showed that the rumination time recorded by sensors
was highly correlated with visual observations regardless of the sensor type (PCC = 0.88,
n = 400, I2 = 82%; SCC = 0.93, n = 210, I2 = 78%; Figure 3) [17–19,21,22,24,25,27–43]. The
CCC value based on 15 independent study samples from 12 articles was also high (0.88,
n = 297, I2 = 89%; Figure 4) [17–19,22,26,29–32,34,39,40]. The sensor products, animal
types, and feeding methods used were all varied between studies included in the meta-
analysis (Supplementary Table S3), and as a result, overall high heterogeneity was observed
(I2 = 83% and τ2 = 0.36). The data recorded by the halter sensors showed a very high
correlation with the actual observed durations of rumination time (PCC = 0.94, SCC = 0.94,
and CCC = 0.97) [20,24,25,28,31,33,38,40]; similarly, the data from the ear tag and neck collar
sensors showed a high correlation with the actual observed durations of rumination time
(ear tag, PCC = 0.89 and CCC = 0.78 [17,18,21,22,26,27,30,41]; and neck collar, PCC = 0.83,
SCC = 0.91, and CCC = 0.91 [19,29,32,34–37,39,42,43]) (Supplementary Table S3). However,
there was no significant difference in the correlation between the sensor data and the
visual observation data of rumination time among the different sensor types (p > 0.05). The
mean diagnostic accuracy of wearable biosensors based on 10 independent study samples
from seven articles (nine for Se, eight for Sp, six for Acc, and eight for Pre; Table 10 and
Supplementary Table S4) showed an Se of 92% (n = 205), an Sp of 95% (n = 195), an Acc of
94% (n = 169), and a Pre of 87% (n = 195) [20,23,25,26,28,29,32].
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Figure 1. Forest plots of the correlation coefficient of eating time between wearable sensors and 
visual observation. (A,B) show Pearson’s correlation coefficient and Spearman’s correlation coeffi-
cient, respectively. Numbers in parentheses indicate individual studies applying different evalua-
tion conditions within the same article. ‘Total’ means the sample size of each study and ‘Weight’ 
means the weight for the mean based on the sample size. 

Figure 1. Forest plots of the correlation coefficient of eating time between wearable sensors and visual
observation. (A,B) show Pearson’s correlation coefficient and Spearman’s correlation coefficient,
respectively. Numbers in parentheses indicate individual studies applying different evaluation
conditions within the same article. ‘Total’ means the sample size of each study and ‘Weight’ means
the weight for the mean based on the sample size.
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Animals 2021, 11, 2779 17 of 31

Animals 2021, 11, x 17 of 32 
 

diagnostic accuracy of wearable biosensors based on 10 independent study samples from 
seven articles (nine for Se, eight for Sp, six for Acc, and eight for Pre; Table 10 and Supple-
mentary Table S4) showed an Se of 92% (n = 205), an Sp of 95% (n = 195), an Acc of 94% (n 
= 169), and a Pre of 87% (n = 195) [20,23,25,26,28,29,32]. 

 
Figure 3. Forest plot of the correlation coefficient of rumination time between wearable sensors 
and visual observation. (A,B) show Pearson’s correlation coefficient and Spearman’s correlation 
coefficient, respectively. Numbers in parentheses indicate individual studies applying different 
evaluation conditions within the same article. ‘Total’ means the sample size of each study and 
‘Weight’ means the weight for the mean based on the sample size. 

Figure 3. Forest plot of the correlation coefficient of rumination time between wearable sensors
and visual observation. (A,B) show Pearson’s correlation coefficient and Spearman’s correlation
coefficient, respectively. Numbers in parentheses indicate individual studies applying different
evaluation conditions within the same article. ‘Total’ means the sample size of each study and
‘Weight’ means the weight for the mean based on the sample size.
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Drinking Time

Drinking time is a variable that represents the amount of time a cow spends drinking
water per day. In the literature, drinking behavior is defined as the behavior that cows
exhibit when they put their muzzles into water bowls and swallow water [23–25,28,33]. The
SCC value based on four independent study samples from three articles showed that the
drinking time recorded by the sensors was poorly correlated with the actual observations
(0.50, n = 142; Figure 5 and Supplementary Table S5) [24,25,28,33]. The same sensor product
was used for the analysis of drinking time, but there were some differences in the animal
type and feeding method (Supplementary Table S5), which showed high heterogeneity
(I2 = 79% and τ2 = 0.14). The mean diagnostic accuracy of the wearable biosensors based on
four independent study samples from three articles (four for Se, Sp, Acc, and Pre; Table 10
and Supplementary Table S6) showed an Se of 21.9%, an Sp of 99.9%, an Acc of 98.8%, and
a Pre of 30.8% (n = 149); notably, Se and Pre were lower than those relative to other feeding
behavior variables [23,25,28].
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3.3.2. Activity Behavior
Lying Time

Lying time is a variable that indicates how long an animal is lying on the ground
per day. In the literature, lying time is defined as the time during which the body is not
supported by the legs and is in contact with the ground [18,31–33,37,44–50]. The PCC and
SCC values based on 10 independent study samples from eight articles (six for PCC and
four for SCC; Supplementary Table S7) showed that the lying time recorded by the leg
tag sensors was very highly correlated with the actual observations (PCC = 0.99, n = 180,
I2 = 0%; SCC = 1.00, n = 53, I2 = 97%; Figure 6) [18,31,33,37,44–46,49]. The CCC value based
on six independent study samples from three articles was also very high (1.00, n = 168,
I2 = 90%; Figure 6) [18,31,48]. Both the sensor product and the animal housing condition
were different among the studies included in the meta-analysis (Supplementary Table S7),
and very high heterogeneity was observed (I2 = 94% and τ2 = 1.69), with the exception
of the analysis for PCC. The mean diagnostic accuracy of the wearable biosensors based
on five independent study samples from three articles (five for Se and Sp and four for
Pre; Table 10 and Supplementary Table S8) showed an Se of 99.8% (n = 53), an Sp of 99.9%
(n = 53), and a Pre of 99.9% (n = 44) [32,47,50].

Standing Time

Standing time is a variable that represents the amount of time an animal spends stand-
ing per day. In the literature, standing behavior is defined as an animal’s behavior when it is
in an upright position with support from the legs but is not walking [31,33,44,45,47,48,50,51].
The SCC value based on four independent study samples from four articles showed that
the standing time recorded by the leg tag sensors was very highly correlated with the actual
observations (0.93, n = 56, I2 = 57%; Figure 7 and Supplementary Table S9) [31,33,44,45]. In
addition, the CCC value based on three independent study samples from two articles was
1.0 (n = 28, I2 = 87%; Figure 7 and Supplementary Table S9) [31,48]. The sensor products
and animal housing conditions used were different between the studies included in the
meta-analysis of standing time (Supplementary Table S9), and moderate heterogeneity was
observed (I2 = 72% and τ2 = 0.63). The mean diagnostic accuracy of wearable biosensors
based on four independent study samples from three articles (four for Se and Sp and three
for Pre; Table 10 and Supplementary Table S10) showed an Se of 95% (n = 53), an Sp of 98%
(n = 53), and a Pre of 98% (n = 44) [47,50,51]. Only one study tested the performance of a
neck sensor in estimating the standing time. The reported sensitivity of a neck sensor was
approximately 30% lower than that of a leg sensor (Se = 63% and Sp = 98%) [51].
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Walking Time

Walking time is a variable that represents the amount of time in which the animal
walks per day. Walking time is typically defined as a period characterized by at least three
consecutive strides in the forward or backward direction [31–33,44,45,47,48,50,51]. The
SCC value based on four independent study samples from four articles showed that the
walking time recorded by the sensors was highly correlated with the actual observations
(0.83, n = 56, I2 = 75%; Figure 8 and Supplementary Table S11) [31,33,44,45]. The CCC value
based on three independent study samples from three articles was also high (0.80, n = 28,
I2 = 49%; Figure 8 and Supplementary Table S11) [31–33,44,45,48]. There were differences
in the sensor products and the housing conditions used among the studies included in
the analysis of the walking time (Supplementary Table S11), but the heterogeneity was
moderate (I2 = 62% and τ2 = 0.21). The mean diagnostic accuracy of the wearable biosensors
based on five independent study samples from four articles (five for Se and Sp and four for
Pre; Table 10 and Supplementary Table S12) showed an Se of 34% (n = 53), an Sp of 98%
(n = 53), and a Pre of 27% (n = 44); the Se and Pre were lower than those relative to other
activity behavior variables [32,47,50,51].

Animals 2021, 11, x 22 of 32 
 

 

Figure 8. Forest plot of the correlation coefficient of walking time between wearable sensors and 
visual observation. (A,B) show Spearman’s correlation coefficient and concordance correlation co-
efficient, respectively. ‘Total’ means the sample size of each study and ‘Weight’ means the weight 
for the mean based on the sample size. 

Step Count 
Step count is a variable that represents the number of steps a cow makes per day. A 

step is defined as the phenomenon occurring when the rear foot is lifted completely off 
the ground and returned to the ground in any location with or without the movement of 
the entire body [45,48,52–54]. The CCC value based on three independent study samples 
from two articles showed that the step count measured by the sensors was moderately 
correlated with the actual observations (0.69, n = 22, I2 = 0%; Figure 9 and Supplementary 
Table S13) [48,54]. Although there were differences in the sensor product, animal type, 
and housing condition among the studies included in the analysis of the step counts (Sup-
plementary Table S13), no heterogeneity was observed (I2 = 0% and τ2 = 0). 
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for the mean based on the sample size.

Step Count

Step count is a variable that represents the number of steps a cow makes per day. A
step is defined as the phenomenon occurring when the rear foot is lifted completely off the
ground and returned to the ground in any location with or without the movement of the en-
tire body [45,48,52–54]. The CCC value based on three independent study samples from two
articles showed that the step count measured by the sensors was moderately correlated with
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the actual observations (0.69, n = 22, I2 = 0%; Figure 9 and Supplementary Table S13) [48,54].
Although there were differences in the sensor product, animal type, and housing condition
among the studies included in the analysis of the step counts (Supplementary Table S13),
no heterogeneity was observed (I2 = 0% and τ2 = 0).
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Active Time

Active time is a variable that represents the total active time of a cow per day. It should
be noted that the definition of active behavior varies in the literature. Bikker et al. [17]
and Pereira et al. [30] defined active behavior as the process of moving the head or body
and walking. Elischer et al. [37] defined active behavior as standing or walking behav-
ior. Zambelis et al. [27] defined active behavior in detail as follows: exploring, drinking,
urination, defecation, rising, lying down, head swinging, self-grooming, and social inter-
action. Swartz et al. [49] defined active behavior as a step activity in which the right rear
leg is lifted off the floor while standing. The PCC and SCC values based on 10 indepen-
dent study samples from eight articles (seven for PCC and four for SCC; Supplementary
Table S14) showed that the active time recorded by the sensors was highly correlated
with the actual observations (PCC = 0.80, n = 98, I2 = 77%; SCC = 0.92, n = 146, I2 = 0%;
Figure 10) [17,25,27,28,30,31,37,49]. However, the CCC value based on three independent
study samples from three articles showed that such correlation was moderate (0.57, n = 51,
I2 = 81%; Figure 10 and Supplementary Table S14) [17,30,31]. There were differences in
the sensor products and the housing conditions used between the studies included in the
analysis of active time (Supplementary Table S14), and high heterogeneity was observed
(I2 = 79% and τ2 = 0.33), with the exception of SCC analysis. Unlike the other sensor types,
the halter sensors (RumiWatch Noseband sensors) record active time in terms of movement
of the muzzle that is not related to ingestion and drinking [25,28,31]. The active time
variables evaluated in these studies showed a high correlation with the actual observed
values (PCC = 0.87, SCC = 0.92, and CCC = 0.90) [25,28,31]. The diagnostic accuracy of the
halter sensors based on three independent study samples from two articles (three for Se,
Sp, Acc, and Pre; Table 10 and Supplementary Table S15) showed an Se of 93.1%, an Sp of
93.4%, an Acc of 93.4%, and a Pre of 89.9% (n = 134) [25,28].
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Inactive Time (Resting Time)

Inactive or idle time is a variable that represents the amount of time in which cows are
not active per day. Inactive time is defined as the time of lying or standing while resting
without performing any action, that is, rumination, eating, or drinking [17,19,21,27,29,30,32].
The PCC value based on seven independent study samples from seven articles was very
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high (0.94, n = 107, I2 = 84%; Figure 11 and Supplementary Table S16) [17,19,21,27,29,30,32].
Although slightly lower than that of the PCC, the CCC value calculated from five indepen-
dent study samples from five articles was also high (0.85, n = 81, I2 = 83%; Figure 11 and
Supplementary Table S16) [17,19,29,30,32]. There were differences in the sensor products
used and the animal housing conditions between the studies included in the analysis
(Supplementary Table S16), and high heterogeneity was observed (I2 = 84% and τ2 = 0.42).
The mean diagnostic accuracy of the wearable biosensors based on three independent study
samples from two articles (three for Se, Sp, and Pre; Table 10 and Supplementary Table S17)
showed an Se of 59% (n = 53), an Sp of 98% (n = 53), and a Pre of 89% (n = 44) [29,32].
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Figure 11. Forest plot of the correlation coefficient of inactive time between wearable sensors
and visual observation. (A,B) show Pearson’s correlation coefficient and concordance correlation
coefficient, respectively. Numbers in parentheses indicate individual studies applying different
evaluation conditions within the same article. ‘Total’ means the sample size of each study and
‘Weight’ means the weight for the mean based on the sample size.

3.3.3. Rumen Status

Rumen pH and rumen temperature are variables measured using reticulo-rumen
bolus sensors. In the case of rumen pH measured by the bolus sensors, the pH of the
rumen fluid measured by a pH meter is used as the gold standard [55–58]. The PCC value
of the correlation between the pH measured by these sensors and actual observations,
based on six studies from four articles, was high (0.79, n = 40, I2 = 0%; Figure 12) [55–58].
However, the CCC value based on two articles (four independent studies) indicated an



Animals 2021, 11, 2779 25 of 31

only moderate correlation (0.62, n = 32, I2 = 0%; Figure 12) [55,57]. There were differences
in the sensor product and gold standard used between the studies included in the analysis
(Supplementary Table S18), but heterogeneity was not observed (I2 = 0% and τ2 = 0). In
the literature, the rumen temperature measured by the bolus sensors was compared with
the rectal temperature measured using digital thermometers [56,59–62]. The PCC value
from five articles (contributing to five independent study samples) showed that the rumen
temperature measured by the bolus sensors was moderately correlated with the actual
observations (PCC = 0.67, n = 456; Figure 12) [56,59–62]. There were differences in the
sensor products between studies included in the analysis (Supplementary Table S18), but
low heterogeneity was observed (I2 = 42% and τ2 = 0.01).
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Figure 12. Forest plot of the correlation coefficient of rumen status (pH and temperature) between
wearable sensors and visual observation. (A,B) show Pearson’s correlation coefficient and con-
cordance correlation coefficient of rumen pH, respectively. (C) shows the Pearson’s correlation
coefficient of rumen temperature. Numbers in parentheses indicate individual studies applying
different evaluation conditions within the same article. ‘Total’ means the sample size of each study
and ‘Weight’ means the weight for the mean based on the sample size.
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Table 10. Meta-analysis results of diagnostic accuracy of feeding and activity behavior variables from wearable sensors.

Diagnostic Accuracy 1,2

Sensitivity Specificity Accuracy Precision

Variable Study No. n % (95% CI) Study No. n % (95% CI) Study No. n %(95% CI) Study No. n % (95% CI)

Feeding
behavior

Eating time 10 220 84.9
(70.0–92.7) 9 210 96.3

(91.7–98.4) 7 184 90.8
(86.3–93.9) 9 210 87.3

(72.9–94.3)
Ruminating

time 9 205 92.2
(85.6–95.9) 8 195 95.4

(91.0–97.7) 6 169 93.9
(91.0–95.1) 8 195 87.0

(77.7–92.5)
Drinking

time 4 149 21.9
(5.5–37.1) 4 149 99.9

(99.7–100) 4 149 98.8
(98.0–99.3) 4 149 30.8

(15.0–45.1)
Activity
behavior

Lying time 5 53 99.8
(98.2–100) 5 53 99.9

(99.6–100) - - - 4 44 99.9
(96.6–100)

Standing
time 4 38 95.3

(87.9–98.2) 4 38 98.3
(94.7–99.4) - - - 3 29 97.9

(86.7–99.7)
Walking

time 5 48 33.8
(1.1–60.0) 5 48 98.0

(96.0–99.0) - - - 4 39 26.6
(10.5–57.1)

Active time 3 134 93.1
(90.3–95.1) 3 134 93.4

(90.8–95.3) 3 134 93.4
(90.7–95.3) 3 134 89.9

(85.7–92.9)
Inactive

time 3 28 59.2
(22.7–81.1) 3 28 98.2

(95.6–99.3) - - - 3 28 89.3
(75.7–95.5)

1 Study No.: number of studies; evaluation results analyzed under different conditions within the same article are counted as individual studies. 2 n, sample size; number of animals.
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4. Summary and Implications

A wide variety of wearable wireless biosensor systems for health or estrus detection
are currently available in the market. Most of these sensor systems measure acceleration
using a three-axis accelerometer and convert this into a numeric value to quantify specific
physiological parameters, such as eating time, rumination time, and resting time, using
a customized algorithm. The reporting methods (reporting frequency, data units, etc.) of
the information generated by the sensors are also diverse. Important basic information
on the sensors, such as the frequency of data measurement and the algorithm used for
calculating the value of a specific variable from acceleration, was largely undisclosed
because of company confidentiality.

To date, several studies have evaluated different parameters related to feeding behav-
ior, moving behavior, and rumen status that were measured and calculated using sensor
systems. These sensor systems showed a high performance in measuring most of the physi-
ological parameters. However, the sensor performance for some parameters (e.g., drinking
time and walking time) needs to be improved [23–25,28,32,47,50,51], and a specific sensor
showed low performance for a particular behavior (i.e., walking time measured with a
neck sensor) [32,51]. Moreover, it seems that the mounting position of a sensor using an
accelerometer is critical to detect a cow’s specific behavior of interest, which is consistent
with a previous report [63]. In particular, feeding behavior was classified more accurately
by a neck-mounted than a leg-mounted accelerometer (Se 96 versus 80% and Pre 88 versus
79%, respectively), but the opposite was true for lying behavior (Se 95 versus 96% and Pre
82 versus 97%, respectively) [63].

A standardized guideline for reporting sensor evaluation is required. Different per-
formance levels were reported under different conditions, which was reflected in the
considerable heterogeneity of the meta-analysis (average I2 = 76%). In some cases, the
same brand of sensor was evaluated very differently in the literature, even under the same
feeding and housing conditions [18,22,27,32,36]. Unfortunately, a number of literature
sources provided insufficient evaluation criteria, which makes it impossible to ascertain
which evaluation factor caused such differences in performance between the sensors. In
order to clarify the factors affecting the difference in the accuracy of these sensors, more
detailed information is required as follows: animal information (species, gender, phys-
iological status, etc.), housing information (stall type, pen size, stocking density, etc.),
data information (observation time per animal, number of observation points per day,
total collection days, etc.), and gold-standard information (method, reliability within and
between observers, etc.). In the medical field, there is a guideline for writing papers that
report the accuracy of a diagnostic method called a Standards for Reporting of Diagnostic
Accuracy (STARD) statement [64]. This guideline contains a list of essential reporting
items that can be used as a checklist to ensure that a report of a diagnostic accuracy study
contains the necessary information. Performing a meta-analysis using articles written using
this guideline enables a detailed discussion of bias and heterogeneity among the studies.
Therefore, it is necessary to establish reporting guidelines including the above-mentioned
factors (i.e., animal, housing, gold standard, etc.), such as the STARD statement, for papers
reporting the accuracy of wearable wireless biosensors.

5. Conclusions

In conclusion, the present study showed that the wearable biosensors tested in the
literature predict targeted behavioral information with high accuracy. However, the algo-
rithms used to generate some types of information, such as drinking time and walking time,
need to be improved. Furthermore, since the accuracy of behavioral information changes
sensitively depending on the evaluation conditions, it is recommended to evaluate each
sensor using adequate and validated criteria and report the evaluation criteria in detail.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ani11102779/s1, Table S1: Evaluation results (correlation coefficient) for eating time (time
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spent eating) among feeding behavior variables generated by the sensors, Table S2: Evaluation
results (diagnostic accuracy) for eating time (time spent eating) among feeding behavior variables
generated by the sensors, Table S3: Evaluation results (correlation coefficient) for rumination time
(time spent ruminating) among feeding behavior variables generated by the sensors, Table S4: Evalu-
ation results (performance) for rumination time (time spent ruminating) among feeding behavior
variables generated by the sensors, Table S5: Evaluation results (correlation) for drinking time (time
spent for drinking) among feeding behavior variables generated by the sensors, Table S6: Evalu-
ation results (performance) for drinking time (time spent for drinking) among feeding behavior
variables generated by the sensors, Table S7: Evaluation results (correlation) for lying time (time
spent lying) among activity behavior variables generated by the sensors, Table S8: Evaluation results
(performance) for lying time (time spent lying) among activity behavior variables generated by the
sensors, Table S9: Evaluation results (correlation) for standing time (time spent standing) among
activity behavior variables generated by the sensors, Table S10: Evaluation results (performance)
for standing time (time spent standing) among activity behavior variables generated by the sensors,
Table S11: Evaluation results (correlation) for walking time (time spent walking) among activity
behavior variables generated by the sensors, Table S12: Evaluation results (performance) for walking
time (time spent walking) among activity behavior variables generated by the sensors, Table S13:
Evaluation results (correlation) for step counts (the number of steps) among activity behavior vari-
ables generated by the sensors, Table S14: Evaluation results (correlation) for active time (time spent
activity) among activity behavior variables generated by the sensors, Table S15: Evaluation results
(performance) for active time (time spent activity) among activity behavior variables generated by
the sensors, Table S16: Evaluation results (correlation) for inactive time (time spent inactivity) among
activity behavior variables generated by the sensors, Table S17: Evaluation results (performance)
for inactive time (time spent inactivity) among activity behavior variables generated by the sensors,
Table S18: Evaluation results (correlation) for rumen pH and rumen temperature generated by the
reticulo-rumen bolus sensors.
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