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Simple Summary: With the advent of artificial intelligence, the poultry sector is gearing up to adopt
and embrace sensor technologies to enhance the production and the welfare of birds. Automated
tracking and tracing of poultry birds has several advantages in poultry farms: overcoming the
subjectivity of human measurements, enhancing the ability to provide quality care for the birds
during their life on the farm, providing the ability to predict events and thereby enabling timely
interventions, and many more. However, the technologies behind automated tracking systems are
not ripe due to the lags in algorithms and practical implementation issues. This mini review provides
a brief critical assessment of the current and recent advancements of automated tracking systems in
the poultry industry and offers an outlook on future directions.

Abstract: The world’s growing population is highly dependent on animal agriculture. Animal
products provide nutrient-packed meals that help to sustain individuals of all ages in communities
across the globe. As the human demand for animal proteins grows, the agricultural industry must
continue to advance its efficiency and quality of production. One of the most commonly farmed
livestock is poultry and their significance is felt on a global scale. Current poultry farming practices
result in the premature death and rejection of billions of chickens on an annual basis before they are
processed for meat. This loss of life is concerning regarding animal welfare, agricultural efficiency,
and economic impacts. The best way to prevent these losses is through the individualistic and/or
group level assessment of animals on a continuous basis. On large-scale farms, such attention to
detail was generally considered to be inaccurate and inefficient, but with the integration of artificial
intelligence (AI)-assisted technology individualised, and per-herd assessments of livestock became
possible and accurate. Various studies have shown that cameras linked with specialised systems of
AI can properly analyse flocks for health concerns, thus improving the survival rate and product
quality of farmed poultry. Building on recent advancements, this review explores the aspects of AI in
the detection, counting, and tracking of poultry in commercial and research-based applications.

Keywords: poultry behaviour; target tracking; deep learning; precision livestock farming; poultry
production systems

1. Introduction

Today’s demands for increased livestock production result in various challenges for
the animals they pertain to. A balance is needed between the quantity and quality of
poultry production. However, farmers must worry about maximizing profits, a need that
has promoted a prioritization of production over aspects such as welfare. Flock size and
growth are commonly maximised in minimal spaces to offset low margins for farmers.
Societal pressures towards sustainability also influence minimal inputs for poultry farming
aspects such as land, labour, and natural resource usage. These efforts may lead to increased
poultry production with decreased production time and resource usage, but they have also
unintentionally led to the proliferation of harmful genetic alterations and the increase in
associated diseases. The solution to these complex agricultural needs is to assist farmers
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with automated surveillance of the animals. Through the continuous and automated
monitoring of animals, farmers are able to detect welfare and production concerns in a
manner that is both quick and reliable. With the integration of modern technological
advances, poultry farming has the opportunity to grow in terms of production quantity
and animal care quality with minimal added expense.

On a global scale, 69 billion chickens are raised for meat production every year [1], but
not all of them make it to people’s plates. In the UK alone, over a 3-year period between
2016 and 2019, about 61 million chickens were rejected for human consumption due to
defects and diseases in slaughterhouses [2]. The threshold set by the Spanish agency for
Food Safety and Nutrition on the rejection of chickens before processing in slaughterhouses,
is 2% per annum [3]. In a Turkish study [4], it was estimated that approximately 0.4% of
broiler chickens are dead-on-arrival before the process of slaughtering under commercial
conditions. Globally, several million chickens do not survive the rearing process, and
are possibly rejected at the slaughterhouse because of illnesses, scratches, bruises, and
other signs of welfare failures. Considering the difference between food accessibility and
hunger for some people, and for farmers, rejection of chickens at slaughterhouses can be
a great source of profit loss. This statistic also makes a huge difference for the animals,
as it suggests that millions of chickens bred for meat suffer from unmanaged, painful,
and possibly deadly medical (pathological) conditions each year. With better diagnostics
and agricultural management, fewer resources would be wasted, more chickens could be
produced, and less suffering would be faced by these animals.

There is a need to increase agricultural capabilities to detect anomalies in chicken
behaviour and health, and thereby welfare, without increasing a need for manual labour,
and for that, automated systems are needed. Automated systems have been studied and
proven to be capable of accurately collecting data related to the following needs:

• Individual tracking, even in large groups of animals that are condensed in a confined space.
• Phenotype assessment and analysis for the non-invasive understanding of genotypes,

which are important for resilient breeding methods.
• Identification of the needs of individual animals in relation to welfare.
• Continuous data-collecting capabilities that cannot be replicated by humans.
• Assessment of activity and changes on a flock level.
• Early direction of behavioural and physical shifts in comparison to past flocks.
• Analysis of nuances related to welfare-focused farming, such as the preferences in

light intensity for individuals or groups of agricultural birds.
• Long-range use for the non-disruptive observation of fearful and free-range livestock.
• Bone fracture assessment for immediate intervention.

2. Need for Automated Poultry Surveillance

Poultry and eggs are a major source of dietary protein for people across the globe [5].
As a result, these animal food sources must be produced in a way that minimises their cost
and maximises their availability if poultry is going to remain a major food source as the
human population continues to grow. The profitability and productivity of commercial
poultry farming depend on regular monitoring of the birds, and minimal human labour to
maintain its affordability [6]. Recently, in June 2021, the European Commission set a goal
to phase out the use of cages for farmed animals by the year 2027. This created a need for
redesigning the poultry housing systems using an enhanced understanding of the range of
behaviour and locomotion of laying hens and broilers. The modern solution to this issue
can be found in technological advances that are both growing in accuracy and decreasing
in price. Introducing artificial intelligence (AI) in poultry farming and management has the
potential to improve multiple aspects of the industry. With the ability to accumulate data
that triggers informed actions, this technology has the potential to improve animal welfare,
minimise the spread of disease, improve breeding standards, and reduce waste [7]. With so
many promising implications, it should be no surprise that automated poultry surveillance
is receiving plenty of attention in the realm of research.
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Many of the production economics of poultry farms depend upon visually accessible
aspects, such as the size, weight, and appearance of poultry eggs and meat. This is precisely
why computerised, video-based systems are becoming a popular real-time automated tool
for poultry processing. It is praised as a non-intrusive and non-invasive option for flock
assessment that seriously reduces, and even eliminates, events of unnecessary stress, which
are commonly caused by human observation. This aspect makes it a beneficial tool for
presenting a wide range of data on animals within a flock and for the sorting and grading
of poultry-related products [8].

The detection and prediction of abnormal behaviour and poultry diseases can be
accurately managed using automated tracking platforms [9]. These systems are capable of
recording data and analysing poultry farming focuses, including flock density, flock floor
distribution, heat stress, feeding and drinking behaviours, optical flow patterns, activity,
and the detection and counting of laying hens [10].

With the continuous focus on enhancing the welfare of chickens and mounting of
new evidence towards chicken cognition and emotions [11–14], there is a dire need for
considering the individual needs of chickens. This demands a change in poultry manage-
ment from a flock-level perspective to an individual bird’s needs. AI technologies enable
the identification of individual broilers [15], or laying hens, among hundreds of birds via
videos irrespective of similar sizes, shapes, and colours of the feathers. This unique ability
enables automated monitoring systems to offer welfare-centred intervention decisions. This
technology also permits the use of robust detection of eggs, which will make the tedious
and time-consuming task of floor egg collection easier for farmers [16]. Behavioural issues
in group-housed turkeys, such as cannibalism, can be rapidly detected and consequently
addressed through deep learning techniques [17]. Some systems are even developed to find
the location of chickens on a farm for simplified assessment and treatment by farmers [18].

3. Artificial Intelligence in Poultry Monitoring

Currently, the role of AI in various aspects of society is becoming increasingly obvious
to the public, so it is no surprise that this method of management is making its way into
food production systems. Computerised monitoring technology promises to fulfil the
growing criteria for improved poultry production management, including conversion of
the feed ratios and profitability [19].

3.1. Computer Vision Technology

Welfare factors related to farm management can be better understood by monitoring
poultries’ natural processes and responses. Computer video systems can assess and deter-
mine a wide range of data at a time, including housing management, weight measurement,
behaviour, detection of diseases, slaughtering processes, egg quality, and carcass quality
checking [6,19].

3.2. Components of Machine Vision for Poultry Tracking

A computer tracking and monitoring technology for various poultry processes con-
sists of two main parts [19]. The first of which is the hardware. Hardware is recognised
as the physical components of these systems, which include computing instrumentation,
data-acquisition hardware, lighting, wiring, and other tangible components. Advance-
ments in hardware are the primary reason for the development of vision technology in
poultry farming. There are three key components of functional hardware in computer
vision systems:

• Cameras and various lenses suited to the environment and assigned task.
• Lighting units.
• Mounts that allow for the full view of an observed farming space, without interrupting

normal poultry functions.

The second component is software. This includes the programs and other operating
information needed for the hardware to perform its specified function. Software is specially
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designed for data acquisition and data analysis, especially in the field of agriculture, where
it must be altered to suit the species of interest. A data-acquisition software system performs
its role in the storage and selection of good quality images (or videos) that are produced by
the cameras. Data-analysis platforms help in the processing of images using algorithms
suited to the data and research needs [19].

3.3. Types

Computerised, visual-analysis systems exist in two major forms, which are identified
as machine learning-based systems and deep learning-based systems.

3.3.1. Machine Learning-Based Systems

Machine learning-based computer vision systems follow specific image analysis proto-
cols and a specially designed algorithm. The basic workflow of a machine learning-based
system for poultry monitoring is as follows [6]:

• Acquisition of image: focused on depth or RGB images.
• Pre-processing of image: normalization, resizing, and colour-space transformation.
• Region of interest (ROI) segmentation: background removal or subtraction, ellipse

modelling, and other focus-enhancing alterations.
• Features extraction: optical flow meter, locomotor, and morphological features.
• Modelling: machine learning-based algorithms.
• Regression: monitoring of bioprocesses and bioresponses.

3.3.2. Deep Learning-Based Systems

Deep learning-based computer vision systems are a recent advancement in automatic
livestock observation, which simplify associated data processing. Various processes of
machine learning systems, such as segmentation, feature extraction, and selection, are
time consuming and subjective laborious tasks. It is also important to note that the per-
formance of these algorithms must change in relation to sensor sensitivity [6]. The most
important feature of a deep learning system is its ability to directly process the image, thus
eliminating older laborious processes by using a deep neural network (DNN). These deep
learning models generally provide higher accuracy than machine learning, making them
better suited to the observation of large flocks [6]. Deep learning systems also solve the
common complications with multiple object tracking when using a single camera. This is
a revolutionary advancement for researchers and farmers since it minimises equipment
costs [20].

3.4. Applications

Computer vision systems can be adapted to suit a variety of applications, including
the following, which are geared towards poultry farming [6]:

• Recognition and identification of images: checking for the presence of poultry in
every image.

• Detection of object: locating the exact position of poultry in every image.
• Classification of image: classifying the identified poultry as sick or absent.
• Segmentation: identifying the watering and feeding structures in every image.
• Recognition of specific objects: noting the behaviours exhibited by members of a flock.

4. Milestones in the Field of Automated Poultry Tracking

Different techniques and methods have been developed in the poultry industry to en-
sure improved production rates [21]. Among the poultry species farmed globally, chickens
are the most common and are produced in the largest quantities. Recent advancements of
automated poultry monitoring tools is shown in Table 1.
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4.1. Individual Chicken Identification in Crowded, Free-Ranging Spaces

Individual tracking of poultry has the benefit of evaluating abnormal behaviour and
predicting diseases for immediate treatment, but this can be a near-impossible task in
crowded housing situations [22]. For this purpose, scientists devised a system to individ-
ually track a bird by using image thresholding, feature engineering, and morphological
transformation [23].

The non-invasive integration of a deep regression network has the capacity to greatly
enhance the functionality of poultry farms down to the individual level. Various com-
parative research studies have proven that TBroiler, a poultry tracking algorithm, shows
superior results based on pixel error, failure rate, and overlap ratio when compared to
older algorithms [9]. Furthermore, researchers have made the system check the relationship
between spatial memory and the ranging behaviour of free-range broiler chickens for more
in-depth analysis [24]. This method of visual identification is also effective in locating
free-range egg layers with great accuracy, allowing robotic collection methods to function
efficiently [25].

4.2. Detection of Broiler Movements through Optical Flow Patterns

The technological advancement of poultry farms comes with extraordinary animal
welfare and productivity improvements on both the individual and flock scale [26]. These
advancements have also made it possible for researchers to conduct life-long monitoring of
individual birds or entire flocks as needed [27,28].

Gait variation between broiler chickens is a tell-tale sign of abnormalities in physical
conformation and developmental complications. Normally a human would be tasked with
observing and rating the gait of broiler chickens. However, that task consumes a great
amount of time and money despite its inaccuracies from human biases and unintentional
influences. Automated machine vision cameras can be specially programmed to detect
any variation in gait among individuals in a flock at speeds and consistencies that reach
far beyond those of a human. Through optical flow patterns, variations in the gait of
slow-moving birds are easily identifiable on an individual level, especially in comparison to
fast-moving birds that display a uniform motion of individuals [7]. This form of information
collection is crucial for the non-invasive analysis of bone strength, keel health, and bone
structure in poultry, since it does not require stressful human interactions.

This form of tracking also opens up the opportunity to include 3D camera technology.
These cameras use a depth sensor to identify the lameness of individual broiler chickens
through body positioning and inactivity that can only be assessed using depth percep-
tion [27]. Another technique for assessing lameness in broiler chickens includes the use of
an image analysis algorithm that detects motion variables, such as lateral body oscillation,
speed, step length, and step frequency [29].

4.3. Increasing Poultry Productivity through Time-Series Data Mining

Recent advancements in sensor technologies make it easy for farmers to record and
measure animal behaviour patterns and provide timely interventions or decision-making
capabilities. However, there still are challenges that must be faced in order to achieve a
booming poultry production rate [30].

Complications such as heat stress are unavoidable in some areas, and the increases
in temperatures can cause natural behavioural changes in poultry. Most commonly, heat
stress causes broiler chickens to reduce activity, which can skew typical observation results
towards inaccurate rates of lameness. Luckily, researchers have proposed a model for
recognizing heat stress by making use of the YOLOv3 algorithm. This algorithm increases
the accuracy of lameness assessments in flocks to a satisfactory rate of 83% [31].

4.4. Image Analysis of Broiler Chicken Behaviour at Different Feeders

The feeding patterns of poultry, such as broiler chickens, dictate the type of feeders
needed for proper nutrition and behavioural control [25]. In one study, three types of
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feeders were used. These feeders included automatic systems with a partition grid, tubing
systems, and tube systems without a barrier grid. Observations were then recorded
using computational image data analysis. The activity index was a variable that was
not influenced by the feeder type, but other behavioural variables showed some relation.
The conclusion of this study showed that the design of poultry feeders has significant
impacts and that feeding behaviours can be accurately monitored through automated
image analysis [32,33].

4.5. Detection of Poultry Diseases Using Deep Learning Systems and Image Analysis

Diseases in confined poultry farming operations spread quickly, leading to welfare
issues for the animals and significant financial losses for farmers [34]. In a majority of
situations, diseases are not detectable by manual observation. However, certain observable
factors signify a healthy flock, such as the spatial distribution of animals [35].

Flock attributes such as spatial distribution are best detected through visual obser-
vations. This leads to the use of digital image analysis and deep learning systems. In
one study of a modernised system, an Improved Feature Fusion Single Shot Multibox
Detector (IFSSD), along with the single shot multibox detector, was proposed as a method
of enhanced algorithmic assessment. The IFSSD can improve and enrich the image quality,
making it easy to detect sick broiler chickens amongst large flocks [34].

Through the usage of optical flow, one can easily detect visual ailments such as
dermatitis and hock burn in poultry [36]. Another milestone in modern poultry farming
was installing a system to detect Campylobacter-positive birds using cameras and analysing
optical flow patterns. The detection of high movement peaks and lower mean optical
flow patterns indicate that a flock could be carriers of Campylobacter—a major cause of
gastrointestinal infections in humans [37].

Zoonotic and highly contagious diseases, such as bird flu, cause economic losses to
farmers and threaten human health [38]. Historically, such diseases are not recognised
and treated until after they have caused significant damage, but the use of real-time
image monitoring provides a simple and effective solution [38]. Healthy and sick broiler
chickens can be easily differentiated through posture comparisons, allowing farmers to
take immediate outbreak-preventing actions.

4.6. Infrared Receiver Assessments of Keel Bone Fractures in Laying Hens

The keel is a crucial physiological structure in chickens that is closely related to
locomotion. It can be damaged in a number of ways, leading to lameness and even
premature death. To better assess the occurrences of keel bone fractures, researchers
created a real-time tool for the assessment of laying hens by using infrared receivers. Here,
they attached infrared receivers to the legs of the hens and monitored their behaviour
patterns [39]. This minimally invasive method of measuring lameness and keel health is
practical and effective for the assessment of small flocks, but it is less practical for use in
larger poultry farming operations. A per-animal approach in poultry is practically not
possible, unlike in the cattle and swine industries. Passive radio-frequency systems function
in a similar method to these infrared receivers and provide clear, individualised points of
information on the animals within a flock, but they face the same issue of impracticality on
large scales [40].

4.7. Evaluation of Laying Hens’ Light Preferences

Researchers developed a visually based light preference test system to detect and
count laying hens. Light may appear to be a minor aspect of farming, but it can have a
significant impact on the laying quantities and life quality of laying hens. In this study,
two algorithms were used, one for the analysis of images and the other for weight. The
accuracy of this test system was based on automatic visual observation, which made it
possible to detect the laying hens in each light compartment along with their number [41].
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An automated system was designed to detect the laying hens present in battery cages
by using cameras along with the tracking algorithms and automated video technology
for the detection of laying hens occupying multiple nests [10,42]. This technology has
also served to assess the range of individual layers for better production management. It
works by using radio-frequency technology that tags laying hens individually [43]. This
method is practical only in larger livestock or research animals, as poultry are generally
farmed in large quantities that would require time and large financial investments in order
to individually tag an entire flock.

4.8. Deep Learning System Detection of Pecking Activity in Grouped-Housed Turkeys

When turkeys are raised in artificially confined environments, they become more
prone to cannibalistic behaviours that can be distinguished through pecking and movement
patterns. These behaviours must be caught early and bred out of a gene pool to avoid
catastrophic financial losses and unnecessary animal suffering. In one study [17], two
metallic balls were used along with a microphone to record pecking audios that suggest
behavioural changes. Video data were also recorded by a camera, which was mounted
for a top view of the study subjects. Using the data from these two sources, cannibalistic
pecking activity measurement in turkeys was demonstrated with convolutional neural
network (CNN) models for a full assessment and intervention related to this destructive
behaviour [17].

4.9. Tracking and Stocking Density Estimation

The monitoring of individual (per animal) poultry birds is a difficult task, even with
the use of video-based monitoring applications. The similar appearances of individuals,
occlusions, and other technical complications motivated scientists to develop a robust
detection, counting, and tracking method that was capable of assessing multiple animals at
once. The primary feature of this observation method is its ability to monitor the animals
constantly. It can even collect data at night by using infrared cameras through heat map-
based classification and evaluation. This technological advancement allows farmers to
measure and estimate stock density and behavioural patterns on an individual basis [44].
Deep and shallow vision technologies could also be implemented in the near future to help
assess behavioural pattern changes, such as pecking, over time [45–47].

Table 1. An overview of current research advancements of automated poultry monitoring tools.

Applications Used Tools and Platforms Solved Poultry Problems References

Counting of individual broilers Camera, TBroiler Abnormal behaviour; patterns [9]
Broiler movement Camera Various among individuals [7]

Productivity in broilers Camera, sensors Advance treatments for
healthy growth [30]

Behaviour at different feeders Camera Choice of feeder design [32]

Detection of disease
Camera, Improved Feature

Fusion Single Shot Multibox
Detector (IFSSD)

Outbreak prevention [36]

Sick broiler assessment Camera Disease management [38]
Keel bone fracture Infrared receivers Timely treatments [39]

Laying hen light preference Camera, tracking algorithm Layer detection in cages [41]

Pecking in turkeys Camera, microphone, and
metallic balls Assessment of cannibalism [17]

Tracking in pigs Camera, sensors Individual behaviour [44]

Poultry movement and range
behaviour assessment

AI-based algorithms and cameras
(multi-object tracking algorithm

and single shot multibox detector
algorithm)

Group-level poultry movement [47]
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Table 1. Cont.

Applications Used Tools and Platforms Solved Poultry Problems References

Turkey behaviour identification Video analytics,
multi-object tracking

Turkey health status and behaviour
identification [48]

Thermal comfort of poultry birds Camera, computer vision Unrest index and locomotion [49]
Laying hen behaviour Camera, AI algorithms Cluster and unrest behaviour [50]

Adult free-range hen behaviour
investigation Camera, sensors, AI algorithms Range use and fearfulness behaviour [51]

Stocking density of broilers AI algorithms, machine
vision cameras

Relationship between stocking
density and feeding/drinking

of broilers
[52–54]

5. Challenges and Future Research Directions

In this paper, we present insightful discussions on the possibilities of AI and sensor
technologies for poultry industries and, more specifically, on the tracking of an individual
bird and flocks for real-time decision making based on animal measures. Discussions on
how leveraging the sensor technologies and machine vision-based methods can provide
data in a transparent, accessible, traceable, and decentralised manner have been included.
The convergence of AI, along with blockchain capabilities, can provide an efficient way
of tracking the birds through rapid data analytics. Being able to observe variations in the
data in a real-time fashion will enable farmers and poultry industry personnel to make on-
time, rapid decisions without human interventions via innovative analytics. Integration of
multimodal data and the quality of the data are the factors that can enable the AI platforms
to improve the accuracies of predictive analytics.

One of the challenges is the ability to integrate the existing sensing systems in the
barn-level poultry industry with automated artificial intelligence-enabled platforms. AI
algorithms, through automation, can transform routine data collection from being sensor
centric to being based on an individual animal’s needs. Automated poultry tracking sys-
tems, which are based on the Internet of Things, can offer a variety of benefits such as
real-time monitoring, remote tracking via smartphone or dashboard mobile applications,
and alerting in case of critical scenarios of welfare-impairment situations. Storage of all the
poultry-based data from the numerous machine vision camera systems and sensor tech-
nologies offer poultry management personnel easy management by avoiding subjectivity
and inaccuracies in the processes of decision making. Practical challenges during imple-
mentation include functional issues, readability for non-technical end users, throughput
and latency issues, dynamic data control flow, execution efficiency, and data security. In
addition to the technical challenges, along with access to a high-speed internet connection
for real-time upscaling and downscaling of multimodal data for medium and small-scale
farmers, meticulous validation of the tracking and measurement systems and narrower
profit margins continue to remain as bottlenecks in implementation. By overcoming the
above-mentioned challenges, the full potential of artificial intelligence-enabled tracking
systems can offer a new wave of innovations in the poultry sector.

6. Conclusions

Continuous real-time heterogeneous data streaming from multiplexed sensors in
the poultry barn for automated decision-making processes is still a challenge. Due to
advancements in the CNN, hardware manufacturers have introduced high throughput
internet data transfer capabilities of over 10 tera operations per second. However, currently,
most of the automated detection and tracking systems in the poultry industry are essentially
passive and cannot control or interface with changing the ventilation systems or feed inlet
controls or creating alarms or call-for-actions to veterinarians. Automated tracking of
poultry platforms requires the detection, selection, and tracking of activity of the poultry
without the birds having any prior stored trajectory (motion planning prediction). This
is a bottleneck in the image processing aspects, but AI-based prediction algorithms may
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be able to overcome this barrier. Further challenges in the practical realisation of the
automated systems involve multiplexing of sensor technologies, such as ultrasonic, LIDAR,
cameras and real-time data processing hardware in achieving the accuracy, and thereby
the prediction, of the poultry movement and behaviour. The use of AI-enabled technology
in poultry farming is essential for increasing the production rate and improving welfare-
based farming practices. Economic losses and suffering can be effectively prevented
through the automated visual detection of diseases. These advancements in individual and
flock behavioural evaluations will help the poultry agricultural sector grow in production
without the need for major sacrifices along the way.
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