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Simple Summary: The mechanism of follicular cyst formation is largely unknown but changes in
follicular composition are known to be involved. In particular, there is abnormal hormone secretion
in cystic follicles. Here, we found there was disruption of hormone secretion in the fluid of cystic
follicles in sows. The glucocorticoid receptor was highly expressed, and the melatonin receptor
was weakly expressed in cystic follicles compared with control follicles. Thus, secretion of steroid
hormones in cystic follicles is disrupted and disturbances in signaling via cortisol and melatonin are
involved in the development of follicular cysts in sows.

Abstract: (1) Background: Cortisol and melatonin (MT) act in regulating follicular development.
We hypothesized that abnormal levels of cortisol, MT, and steroids in theca interna cells might be
involved in the development of follicular cysts in sows. (2) Methods: To test this hypothesis, we
measured the mRNA levels of enzymes involved in steroid hormone synthesis, the glucocorticoid
receptor (GR), and melatonin receptors (MTRs) in theca interna cells of cystic and normal porcine
follicles. (3) Results: The concentrations of estradiol, progesterone, and cortisol were greater in
cystic follicles than in control ones (p = 0.034, p = 0.020, p = 0.000), but the concentration of MT
was significantly lower (p = 0.045). The levels of GR, 11β-HSD1, and 11β-HSD2 were higher in
cystic follicles than in control l follicles. MT types 1 and 2 were significantly lower in cystic follicles
(p < 0.05). The mRNA expression levels of genes encoding the steroid hormone synthesis enzymes,
steroidogenic acute regulatory protein (StAR), recombinant cytochrome P45011A1 (CYP11A1), and
3β-hydroxysteroid dehydrogenase (3β-HSD) in theca interna cells of cystic follicles were significantly
higher than in control follicles. Thus, there was disruption of hormone secretion in the fluid of cystic
follicles in sows. (4) Conclusions: The levels of steroid hormones, cortisol and MT are disrupted in
porcine cystic follicles.

Keywords: pig; follicular cyst; cortisol; melatonin; steroid hormones

1. Introduction

A follicular cyst is a kind of ovarian cyst [1] and is a major factor causing infertility in
sows, goats, and cattle [2–4]. Follicular cysts are associated with 10% of cases of reproduc-
tive failure in sows [2,5]. This disease impairs their reproductive performance and causes
serious economic losses to pig breeding farms [6]. It is generally believed that animal stress,
mismanagement, infectious diseases, and other factors that lead to an abnormal cortisol
increase and endocrine disorders are major factors in follicular cyst formation [4,7,8]. The
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mechanisms are largely unknown, but changes in follicular composition are known to be
involved [9–11].

The adrenal cortex is the only organ involved in glucocorticoid synthesis, and cortisol
is the major glucocorticoid product [12]. This hormone is distributed throughout the body
via the bloodstream and enters cells to play its physiological role. Melatonin (MT) is an
indoleamine hormone mainly produced by the pineal gland of mammals and is distributed
in the pineal gland and in several other organs, such as the ovary and testes [13,14].
The biological functions of MT are mediated by its two high-affinity G-protein-coupled
receptors, MT1 and MT2 [15]. MT can act on the hypothalamic–pituitary–ovarian axis
(HPO) by regulating the secretion of hypothalamic gonadotropins, which can also directly
bind to the ovarian granulosa cells [16,17]. MT in the ovary can be derived from the
systemic blood circulation, or synthesized by the granular cells, including the cumulus
granulosa cells and oocytes [18]. Circulating MT can be absorbed by the ovaries, but
ovarian follicles also have the ability to synthesize and secrete MT [19]. The level of MT
is higher in follicular fluid (FF) than in the blood [20], and its concentration in FF rises
significantly as follicles mature [21]. MT affects reproductive physiology by modulating
sex steroid secretion at various phases of folliculogenesis, mainly mediated via its MT1
and MT2 receptors [22]. Therefore, MT has important paracrine effects in the female
reproductive system. A significantly decreased expression was observed for the MT2
receptor in PCOS induced by letrozole in rats [23], and the mRNA expressions of MT1
and MT2 decreased in the theca cells of cystic follicles. Cortisol and MT are involved in
regulating follicular development and maintain the follicular microenvironment through
glucocorticoid receptors (GRs) and melatonin receptors (MTRs), respectively [24,25].

The cellular levels of the GR and 11β-hydroxysteroid dehydrogenase (11β-HSD)
regulate the concentrations and effects of glucocorticoids in tissues. As a major regulator
of cortisol metabolism, 11β-HSD is expressed as two isoenzymes, 11β-HSD1 and 11β-
HSD2 [26], which regulate follicular development by changing the concentration of cortisol
during follicular development and can act in the development of endocrine diseases. 11β-
HSD1 converts non-bioactive cortisone to active cortisol, thereby regulating cortisol levels
available to intracellular GRs, while 11β-HSD2 converts cortisol to cortisone to protect the
mineralocorticoid receptor from undue occupation by cortisol [27]. Under the regulation of
11β-HSD, cortisol in the FF is converted to cortisone and participates in the regulation of
follicular development. Blood cortisol levels are abnormally elevated in sows with follicular
cyst formation in response to heat stress [28]. The level of cortisol in the FF of cystic bovine
follicles is significantly higher than that in normal follicles, and the expression of 11β-HSD1
is significantly increased in the granulosa cells of such follicles [29]. These findings suggest
the involvement of cortisol and its metabolic enzymes in the occurrence of follicular cysts
in cattle, but there are few studies on spontaneous cystic follicles in sows.

Cortisol and MT levels regulated by the circadian rhythm are out of synchrony. Thus,
cortisol secretion peaks during the day, whereas MT peaks at night. MT may play an
important role in metabolic diseases, and its absence in pinealectomized animals causes
the development of ovarian cysts via the altered synthesis of luteinizing hormone (LH) and
follicle stimulating hormone [13]. The acute lowering of cortisol secretion stimulates MT
secretion. When MT is low in the serum, it leads to increased cortisol secretion, and the
administration of exogenous prolonged-release MT can rectify cortisol production.

Follicular theca interna cells provide structural support for follicles and secrete precur-
sors for steroid synthesis by the granulosa cells. Here, we speculated that porcine theca
interna cells might show abnormal expression of steroid synthetase activities and signaling
of cortisol and MT, leading to the formation of cystic follicles.
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2. Materials and Methods
2.1. Ethics

The study was conducted at the Beijing Academy of Agriculture and Forestry Sciences,
and use of animals in the experiments was approved by the Ethical Committee of Beijing
Academy of Agriculture and Forestry Sciences (SYXQ-2012-0034).

2.2. Collection of Ovaries

Gilts (crossbred Landrace × Large white 110–130 kg body weight, aged 200 to 220 days),
were used. Ovaries from spontaneous follicular cysts of sows (n = 5) and control follicles
(n = 5) were collected from a local abattoir and transported to the laboratory within 2 h
in pre-warmed phosphate-buffered saline (PBS; 37 ◦C) with Pen-Strep antibiotic solution
(Biological Industries, Beit HaEmek, Israel). Follicular cysts were diagnosed on the basis
of macroscopic characterization (>20 mm diameter, fluid-filled with smooth thin and
translucent walls, and the absence of corpora lutea on the ovaries). Normal control follicles
(~4–6 mm in diameter) with no gross morphological abnormalities were used as controls.

2.3. Collection of Follicular Fluid and Theca Interna

Ovaries were washed two to three times with PBS in a 100 mm Petri dish. Individual
follicles were dissected carefully from the ovarian stroma using forceps and scissors. After
making a small incision with a scalpel, two blunt-tipped forceps were used to peel off the
outer membrane from the incision, which left the intact theca interna containing FF. This
was carefully aspirated from cystic and control isolated follicles with a syringe. The FF was
centrifuged at 1000× g for 5 min and stored at −80 ◦C until hormone measurements. The
theca interna was collected by modifying the method of Hatzirodos [30]. Follicles were
dissected, and granulosa cells were aspirated and scraped from each follicle with a Pasteur
pipette, and washed at least three times to remove other cell types, and the granulosa
cells were discarded. The theca interna was then dissected from the follicle wall under a
stereomicroscope in PBS. The theca interna was then frozen in liquid nitrogen and stored at
−80 ◦C for RNA extraction and mRNA analysis.

2.4. Steroids, Cortisol, and Melatonin Assays

Estrogen (GEL4598-A) was measured in FF using enzyme-linked immunosorbent
assays (ELISAs) for pigs (Gene Lab Biotechnology Co., Ltd., Beijing, China), according
to the manufacturer’s instructions; the intra- and inter-assay coefficients of variation for
serum were 4.1–6.8% and 6.7–9.4%, respectively. Progesterone (GEL4686-A) was measured
in FF using ELISA for pigs (Gene Lab Biotechnology Co., Ltd., Beijing, China), according
to the manufacturer’s instructions. The intra- and inter-assay coefficients of variation for
the serums were 2.9–4.8% and 6.8–9.2%, respectively. The level of MT in FF was measured
using a specific ELISA kit (RE54021, IBL International Gmbh, Hamburg, Germany). For the
assays, the sensitivity was 1 ng/mL, and the intra- and inter-assay coefficients of variation
were 5.2–12.2% and 5.1–14.9%, respectively. The concentration of cortisol was measured
using 125I-labeled radioimmunoassay kits (S10940097, Beijing North Biotechnology Insti-
tute, Beijing, China), according to the manufacturer’s instructions. For the assays, the
sensitivity was 2 ng/mL, and the intra- and inter-assay coefficients of variation were <10%
and <15%, respectively.

2.5. Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR)

Total RNA was isolated using RNAzol reagent (RNAzol RT reagent, rn190; Molecular
Research Center, Cincinnati, OH, USA). A NanoDrop 2000c spectrophotometer (Thermo
Fisher Scientific Inc., Wilmington, DE, USA) was used for qualitative analysis. The PCR
primers for genes were designed by NCBI. All primer sequences, accession numbers,
product length and primer positions for qPCR are listed in Table 1. Primer sequences
were synthesized by Shanghai Bioengineering Co., Ltd. Quantitative amplification of
cDNA was performed in 0.2 mL PCR tubes using iScript advanced cDNA synthesis kits
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(Bio-Rad Laboratories, Hercules, CA, USA). Amplification efficiencies of the primer set
candidates can then be verified experimentally and their specificity confirmed by melt-
curve analysis and agarose gel electrophoresis of RT-qPCR amplification products. The
qPCR was performed using a Bio-Rad (Bio-Rad Laboratories, Hercules, CA, USA) Chrome
4 Real-Time qPCR System. The qPCR mix (10 µL) included 5 µL of SYBR green premix,
0.3 µL of each forward and reverse primer (10 µmol/L), 4 µL of cDNA and 0.4 µL of dH2O.
The qPCR conditions were as follows: 2 min denaturation at 95 ◦C, 40 cycles of PCR for
the quantitative analysis (95 ◦C for 5 s and 60 ◦C for 30 s), one cycle for the melting curve
analysis (95 ◦C for 5 s, 60 ◦C for 1 min, 95 ◦C for 1 s) and cooling at 4 ◦C. The relative
expression level for each gene was calculated using the 2−∆∆CT method. The qPCR analysis
was performed three times for each group sample. We defined the gene expression cut-off
as a mean Ct value of 35. GAPDH was used as the reference gene for GR, 11β-HSD, MT1,
MT2, LHCGR, StAR, 3β-HSD, CYP11A1.

Table 1. Primers for PCR amplification.

Gene Primer Sequence Primer Positions Accession
Numbers Product Length

GAPDH
F: TGAAGGTCGGAGTGAACGGATT 105–126

NM_001206359.1 120R:CCATGTAGTGAGGTCAATGAAGG 224–201

StAR
F:GACTTTGTGAGTGTGCGCTG 547–566

NM_213755.2 108R:AGCTCTGATGACCCCCTTCT 635–654

3β-HSD F:GTTCTCCAGAGTCAACCCCG 651–670
NM_001004049.2 112R:GTTCTCCAGAGTCAACCCCG 743–762

CYP11A1
F:CCGCTCAGTCCTGGTCAAAG 24–43

NM_214427.1 145R:GTCACCAGGAGAGGGGATCT 149–168

LHCGR
F:GCTGATTTCCCTGGAGCTGA 594–613

NM_214449.1 124R:ACTAGGCAGGGCCTGTAGTT 698–717

GR
F:GTGATGGGAAGTGACCTGGG 292–311

NM_001008481.1 231R:CTGACCCTTCACATTCGGCT 503–522

11β-HSD1 F:CACGCTCTGTATCCTCGGTC 630–649
NM_214248.3 201R:TCCAGGATCTTCCTCCCTGG 811–830

11β-HSD2 F:GGAGTTGGATAGCCCTGGTG 342–361
NM_213913.1 173R:TGTTGTGGCCTGCATTGTTG 495–514

MT1
F:ACAAGAAGCTGAGGAACGCA 209–228

XM_021078041.1 207R:TGATGGCAATTCCCGCGATA 396–415

MT2
F:CCAGAACTTCCGCAGGGAAT 738–757

XM_021063941.1 126R:CTAACCTCGGGGAGAGCTTG 844–863

2.6. Data Analysis and Statistics

Data from control and cystic follicle groups were analyzed using two-tailed Student’s
t tests with IBM SPSS Statistics for Windows version 20.0 (IBM Corp., Armonk, NY, USA).
All data are presented as the mean ± standard deviation. A p value of <0.05 was considered
statistically significant. Statistical significance was evaluated using data from at least three
independent experiments.

3. Results
3.1. Hormone Concentrations in Follicular Fluid

The concentrations of estradiol, progesterone, cortisol, and MT in the FF of cystic
and control follicles are shown in Figure 1. The estradiol concentration was significantly
higher in the cystic follicles (p = 0.034). The progesterone concentration was higher in cystic
follicles than in control follicles (p = 0.020). The concentration of cortisol in cystic FF was
much higher than that in control follicles (p = 0.000). However, the concentration of MT
was significantly lower (p = 0.045).
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Figure 1. Concentrations of estradiol, progesterone, cortisol, and melatonin in the follicular fluid
of cystic and control follicles. * Indicates statistically significant (p < 0.05); ** Indicates statistically
extremely significant (p < 0.01).

3.2. Relative mRNA Levels of GR, 11β-HSD, MT Receptor and Steroidogenic Enzymes

The expression levels of GR mRNA in the theca interna of cystic follicles were signifi-
cantly higher than those in control follicles (p = 0.016). Moreover, 11β-HSD1 and 11β-HSD2
mRNA levels were higher in cystic follicles than in control follicles (p = 0.011; p = 0.026;
Figure 2a). The transcription levels of MT1 and MT2 were lower in cystic follicles than
in control follicles (p = 0.025; p = 0.011; Figure 2b). Next, we measured the mRNA lev-
els of StAR and steroid hormone synthase genes by RT-qPCR (Figure 2c). The mRNA
expressions of StAR, CYP11A1 and 3β-HSD in theca interna cells of cystic follicles were
significantly higher than in control follicles (p = 0.000; p = 0.005; p = 0.001). Expression of
LHCGR in the theca interna of cystic follicles was significantly lower than that in control
follicles (p = 0.005).
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of steroidogenic enzymes and LHCGR in theca interna of cystic and control follicles. * Indicates
statistically significant (p < 0.05); ** Indicates statistically extremely significant (p < 0.01).
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4. Discussion

As the basic unit of ovarian structure and function, a follicle is not only the site of
oogenesis but also the site of steroid hormone synthesis and secretion. Normal follicular de-
velopment requires subtle and precise regulation by interactions between these hormones
and a complex signaling network [31]. Disruption of hormone secretion can lead to ovarian
diseases and impair the reproductive performance of animals [32]. Cortisol and MT are
involved in regulating follicle development and maintaining the follicular microenviron-
ment [33–35]. The abnormal change of concentration of these molecules causes ovarian
dysfunction [13,29].

We found that the concentration of cortisol in the FF of cystic follicles was significantly
higher than in control follicles. Moreover, sows with low-quality cumulus-oocytes complex
have FF with a higher concentration of cortisol [36]. Cortisol is higher in the FF of spon-
taneous or adrenocorticotropic hormone-induced follicular cysts in cattle [29], which is
consistent with these results. Stressors induce elevated cortisol levels and suppress the HPO
axis activity [37]. Stress-induced increases in adrenal glucocorticoids cause an increase that
contributes to the hypothalamic suppression of reproductive function [38]. Cortisol affects
follicular function as determined by the amount of GR, the intracellular concentration of
glucocorticoids, and the activity of 11β-HSD during follicular development [39]. In this
study, the mRNA expressions for GR and 11β-HSD1/2 were higher than in normal follicles.
Cortisol concentrations in the FF and 11-HSD1 mRNA are significantly elevated in human
patients with polycystic ovarian syndrome (PCOS); increased 11-HSD1 expression is the
major cause of increased cortisol concentrations in the FF of such patients [40]. Additionally,
there might be disruption of the internal follicular environment, which could also be a
factor in the high expression of 11β-HSD2 [41]. In theca interna cells of cattle, GR expression
was higher in spontaneous cystic ovarian follicles than in normal tertiary follicles [42]. The
increase in GR and 11-HSD expression in cystic follicles could be related to the formation
of follicle cysts in sows.

High concentrations of cortisol affect the synthesis and secretion of MT [43], but also
influence the physiological function of MT in follicles by suppressing the expression of
MT receptors. MT can act on the HPO axis by regulating the production of hypothalamic
gonadotropins, which can also directly bind to ovarian granulosa cells to exert effects on
the HPO axis [15]. Low MT levels are linked to ovarian problems, MT levels in the FF of
women with PCOS are notably lower than in healthy women [13]. Consistent with the
results of this study, MT levels in the cystic follicles of gilts were lower than in control
follicles. A significantly decreased expression was observed for the MT2 receptor in PCOS
induced by letrozole in rats [23], and the mRNA expressions of MT1 and MT2 decreased in
the theca cells of cystic follicles in the present study.

The levels of estrogen, progesterone and steroidogenic enzymes expression increased.
Estrogen excretion by sows with large cystic follicles was relatively high [44], and cold
stress increased progesterone and cortisol levels [45]. The inhibited gene expression of
steroidogenic enzymes (Cyp11a1, StAR and 3β-HSD) reduced the production of proges-
terone and 17β-estradiol [46]. Glucocorticoids regulate the expression of StAR through
the GR and affect the synthesis of steroid hormones [47]. Acute stress induced by capture,
short confinement, or anesthesia results in significant elevation of plasma cortisol and
increased mRNA post-stress levels of StAR and CYP11A1 [48]. Here, during the formation
of porcine follicular cysts, excess cortisol might have affected the mRNA expressions of
StAR, CYP11A1, and 3β-HSD, resulting in abnormally elevated levels of progesterone in
FF. LH is a necessary factor that triggers ovulation via the LHCGR [42]. Glucocorticoids
influence the gonadal responsiveness to LH and the expression of LHCGR [49]. Enhanced
secretion of cortisol decreases LHCGR content in follicles [50]. Here, the mRNA expression
level of LHCGR was significantly decreased in the theca interna cells of cystic follicles,
consistent with findings that the concentration of corticosterone in rat increased under
constraining stress and that the expression of LHCGR decreased significantly [48]. How
elevated cortisol induces follicular cysts remains to be determined.



Animals 2022, 12, 357 8 of 10

5. Conclusions

The levels of steroid hormones, cortisol and MT were clearly disrupted in the cystic
follicles of gilts. Molecular alterations of steroid hormone synthases, GR, LHCGR, and the
MTR might be involved in this pathology.
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