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Simple Summary: Deep learning-based segmentation methods rely on large-scale pixel-labeled
datasets to achieve good performance. However, it is resource-costly to label animal images due to
their irregular contours and changing postures. To keep a balance between segmentation accuracy and
speed using limited label data, we propose a one-shot learning-based approach with pseudo-labeling
to segment animals in videos, relying on only one labeled frame. Experiments were conducted on
a challenging feedlot cattle video dataset acquired by the authors, and the results show that the
proposed method outperformed state-of-the-art methods such as one-shot video object segmentation
(OSVOS) and one-shot modulation network (OSMN). Our proposed one-shot learning with pseudo-
labeling reduces the reliance on labeled data and could serve as an enabling component for smart
farming-related applications.

Abstract: Computer vision-based technologies play a key role in precision livestock farming, and
video-based analysis approaches have been advocated as useful tools for automatic animal monitor-
ing, behavior analysis, and efficient welfare measurement management. Accurately and efficiently
segmenting animals’ contours from their backgrounds is a prerequisite for vision-based technologies.
Deep learning-based segmentation methods have shown good performance through training models
on a large amount of pixel-labeled images. However, it is challenging and time-consuming to label
animal images due to their irregular contours and changing postures. In order to reduce the reliance
on the number of labeled images, one-shot learning with a pseudo-labeling approach is proposed
using only one labeled image frame to segment animals in videos. The proposed approach is mainly
comprised of an Xception-based Fully Convolutional Neural Network (Xception-FCN) module and
a pseudo-labeling (PL) module. Xception-FCN utilizes depth-wise separable convolutions to learn
different-level visual features and localize dense prediction based on the one single labeled frame.
Then, PL leverages the segmentation results of the Xception-FCN model to fine-tune the model,
leading to performance boosts in cattle video segmentation. Systematic experiments were conducted
on a challenging feedlot cattle video dataset acquired by the authors, and the proposed approach
achieved a mean intersection-over-union score of 88.7% and a contour accuracy of 80.8%, outper-
forming state-of-the-art methods (OSVOS and OSMN). Our proposed one-shot learning approach
could serve as an enabling component for livestock farming-related segmentation and detection
applications.

Keywords: one-shot learning; video segmentation; pseudo-labeling; precision livestock farming;
deep learning
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1. Introduction

The demand for livestock production, as the second largest human food supplier,
is rapidly rising as a result of the growth in population and incomes and changes in
lifestyles and dietary habits [1,2]. Cattle farming has become one major commodity in
the livestock industrial section. In order to improve the production yield (e.g., meat,
milk), significant intensification in livestock farming has occurred, achieved by increasing
animal densities and production units [3]. Industrial-scale livestock production is the most
common and widespread means of livestock production, which relies on sensors, big data,
and machine learning technologies to improve management efficiency, reduce production
costs, and enhance animal welfare [4]. Individual animal information acquisition and
analysis is desired for “per-animal” production management and increasing profits.

Farmers that acquire accurate information on each animal can monitor their welfare
and growth during the whole life cycle of individual cattle, and make the optimal feedlot
management strategies [5]. As a non-contact approach, vision-based monitoring has been
attracting growing interest from both academia and industry. Cattle video contains valuable
motion and behavior information, and the extracted visual features (e.g., appearance
phenotype, motion parameters, pose and behavior patterns) can be used for evaluating
cattle health and welfare such as lameness detection, live weight prediction, body condition
score evaluation and behavior recognition [6,7]. For this, segmenting the animal from
the background and obtaining their accurate body contour is a prerequisite. However,
traditional segmentation methods based on optical flow, graph partitioning or frame
difference struggle to accurately segment the animal in complicated outdoor environments.

Convolutional Neural Network (CNN)-based approaches with strong feature learning
ability have achieved great success in segmentation tasks [8]. Since fully convolutional
network (FCN)-based semantic segmentation was proposed by [8] in 2015, a variety of deep
learning-based approaches have been developed for image segmentation [9]. He et al. [10]
proposed Multi-Scale and Pyramid Network-Based models that merge low and high-
resolution features to enhance segmentation performance. Qiao et al. [11] implemented the
Mask R-CNN with image enhancement for beef cattle image segmentation. The majority of
the above deep learning-based approaches need to train models on at least thousands of
pixel-level labeled images to guarantee segmentation performance.

However, in the field of livestock farming, the amount of available public data is
scarce [12]. Moreover, producing pixel-wise labels for images acquired from a feedlot or
paddock is time-consuming (taking at least several minutes) as cattle have an irregular
body contour, and their body posture changes with movement. In addition, in real farming
management, motion variation in the videos and the influence of changing illumination,
shadows and complex backgrounds (e.g., farm facilities, crush or wet ground) will also
lead to the degradation of the segmentation performance.

In recent years, to reduce the reliance on large-scale labeled data, one-shot learning
and pseudo-labeling approaches have been introduced to handle many visual tasks such as
image classification and video segmentation [13,14]. On the one hand, one-shot learning
methods utilize one labeled sample and prior knowledge (e.g., data, model and algorithm)
to generalize the deep learning networks to new tasks. Two influential one-shot video
segmentation methods are OSVOS [15] and OSMN [13]. OSVOS [15] adopted the FCN
architecture to transfer generic semantic information to the foreground segmentation task,
and then learn the appearance of annotated objects of the test sequence. OSMN [13]
utilized the one labeled frame and the previous frame’s spatial information to improve the
segmentation performance.

Alternatively, pseudo-labeling (PL) is a typical technique in leveraging unlabeled data
by alternating the pseudo-label prediction and feature learning, which improves the model
prediction performance for unlabeled data. For example, Tokunaga et al. [14] utilized
pseudo-labeling and class proportion to realize semantic segmentation. Ohkawa et al. [16]
proposed consensus pseudo-labeling for segmenting the hand image. Zou et al. [17]
generated structured pseudo-labels for semantic segmentation.
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Inspired by the above, in this study, in order to balance the segmentation accuracy and
speed with one labeled image in complex background environments, one-shot learning with
a PL-based cattle video segmentation approach is proposed for smart livestock farming.
Our proposed approach includes two main parts: Xception-based Fully Convolutional
Neural Network (Xception-FCN) and PL. More specifically, Xception-FCN is responsible
for feature extraction, and it localizes dense prediction based on CNN feature fusion;
the PL leverages pseudo-labels (i.e., the segmented results of the Xception-FCN model
on unlabeled data) to re-train the model that leads to boosts in performance on cattle
video segmentation.

The main contributions of this study are summarized as follows: (1) we propose a
framework of a one-labeled frame-based animal video segmentation approach for precision
livestock farming, which takes advantage of both one-shot learning and pseudo-labeling
to enhance the segmentation performance. In particular, the proposed Xception-FCN ex-
tracts CNN features using depth-wise separable convolutions, and then fuses these CNN
features to increase representational efficiency and reduce over-fitting probability; the
pseudo-labeled data generated from the Xception-FCN model were then utilized to boost
the segmentation performance; (2) comprehensive comparative experiments were con-
ducted on a real acquired cattle video dataset to validate the effectiveness of the proposed
approach. The proposed approach achieved 88.7% mIoU and 80.8% contour accuracy,
which outperformed the state-of-the-art methods (e.g., OSVOS and OSMN); (3) the effects
of pseudo-labeling and pre-training on segmentation performance were also investigated.
Experimental results show that both pseudo-labeling and pre-training can enhance the
segmentation performance. Our proposed approach achieved accurate and real-time cattle
video segmentation using only one labeled image frame, and could serve as an enabling
component of a comprehensive solution to the automatic animal appearance phenotype
and monitoring in the field of smart livestock farming.

The remainder of this paper is organized as follows: Section 2 briefly reviews the
related works of one-shot learning, pseudo-labeling and video segmentation; Section 3
describes our proposed video segmentation method; Section 4 introduces the experimental
dataset, network parameters, and evaluation methods; Section 5 presents cattle video
segmentation results; discussions of the performance are presented in Section 6; finally,
conclusions are given in Section 7.

2. Related Work
2.1. One-Shot Learning

In deep learning, one-shot learning [18] that uses only one labeled training image
has been increasingly attracting more attention. One-shot learning methods have model
generalization ability, which could be easily transferred to different tasks based on three
aspects of prior knowledge—data, model and algorithm [19]. In terms of the data aspect,
these methods use prior knowledge to augment the training set and enlarge the size of
the training samples. Kwitt et al. [20] explored how the transient classes are represented
in the feature space and how the new data can be transferred from the existing data.
Douze et al. [21] proposed a semi-supervised method based on label propagation to lever-
age the effects of a large collection of images. Wu et al. [22] utilized the pseudo-labeled
tracks to gradually update the person re-identification model.

Furthermore, model prior knowledge can share parameters for different learning tasks.
For example, two natural language processing tasks about legal texts can be dealt with
together to simultaneously infer the attributes and charges [23]. The auto-encoder can
first be pre-trained on source tasks to obtain the generic information and then applied to
the target task [24]. The transfer between models can also be applied in an embedding
space [25]. With regard to the algorithm transfer, refining existing parameters is commonly
used in the fine-tuning process. Yoo et al. [26] refined the parameters in a group-wise way
by clustering them using the pre-trained filters on CNN, and pre-trained functions from
unlabeled data were used to cluster and separate samples in [27].
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2.2. Pseudo Labeling

The main principle of PL is to leverage unlabeled data by alternating the pseudo-
label prediction and feature learning [28]. This firstly trains a model using the limited
labeled data, the trained model is then applied to the unlabeled data to generate pseudo-
labels and these pseudo-labels are used to re-train the model for boosting the final per-
formance [29]. Through this simple and effective self-training method, PL improves the
network performance using limited labeled data. For example, Lee et al. [30] exploited the
trained model to generate pseudo-labels for the unlabeled data, and then fine-tuned the
model to fully leverage the unlabeled data.

Recently, Pan et al. [28] utilized the pseudo-label learning to minimize the distribution
of target-domain data with the source-domain prototypes. For unsupervised semantic
segmentation, Zou et al. [31] introduced a pseudo-label strategy to the semantic segmenta-
tion and provided one comprehensive analysis of the regularization terms. Most recently,
Zheng and Yang [32] applied the pseudo-labels to learn the domain-specific features, yield-
ing competitive results. Sindagi and Patel [33] leveraged the scene-wise pseudo-labels to
transfer the trained model to a new task. In short, PL can assist unlabeled data in their
supervision of the training of the model. All the above research has illustrated that PL has
the capability to improve deep learning network performance with only a limited amount
of labeled data [29].

2.3. Video Segmentation

Video segmentation refers to analyzing video frames and segmenting them into regions
of interest. According to the required level of supervision, video segmentation techniques
can be broadly categorized into unsupervised, semi-supervised and supervised methods.

• Unsupervised segmentation can be achieved by motion analysis, trajectory clustering,
or object proposal ranking [34]. Faktor and Irani [35] found motion salient regions
by extracting dominant motion for video object segmentation. Xiao and Jae Lee [34]
generated a set of spatio-temporal bounding box proposals, and then refined them
to obtain pixel-wise segmentation proposals. Recently, Wang et al. [36] proposed
unsupervised video object segmentation through visual attention. Li et al. [37] trans-
ferred the knowledge encapsulated in image-based instance embedding networks
for unsupervised video object segmentation. Although unsupervised approaches do
not rely on data labeling, the underlying segmentation hypotheses restricted their
applications in high-complexity datasets.

• Semi-supervised segmentation propagates the label information of candidate objects in
one or a few key-frames to all video frames [15,38]. Tsai and Huang [39] incorporated
motion analysis and image processing techniques in video sequences for the automatic
detection of cattle behavior. Liu et al. [40] trained a classifier on low-level hand-crafted
features with limited data to process videos for farming automation. Deep learning
approaches such as OSMN [13] and FEELVOS [41] began to utilize motion and spatial
relationships without fine-tuning. Ventura et al. [42] proposed a Recurrent Neural
Network (RNN)-based approach to utilize the temporal correlation between video
frames. Feng et al. [43] classified the complex agricultural planting structure with a
semi-supervised extreme learning machine framework. Semi-supervised segmenta-
tion reduces the need for large labeled datasets but still requires many iterations of
optimization for real-world applications.

• Supervised segmentation requires tedious user interaction and iterative human correc-
tions [44], which can attain high-quality boundaries and is more favorable for specific
scenarios such as video post-production. Tokmakov et al. [45] combined the outputs of
pre-trained appearance and a motion network to generate final segmentation results.
Similarly, Xu et al. [46] proposed a sequence-to-sequence model that learns to generate
segmentations from sequences of frames. Unfortunately, these performance achieve-
ments rely on large amounts of labeled training data, and data labeling is expensive
and time-consuming.
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For video analytics applications in precision agriculture and livestock farming, Milioto
et al. [47] achieved the real-time semantic segmentation on crop and weed based on the
encoder–decoder architecture network. Zhang et al. [48] estimated animal poses from video
data. The cow joints’ spatial positions were analyzed by [49] with two CNN structures and
a post-processing module.

Through the strong learning capability of the neural networks and the availability of
large-scale pixel-label datasets, the video object/animal segmentation task was formulated
as a one-shot problem [15]. The one-shot learning approach usually trains an offline model
to produce an initial estimation, and then fine-tunes the model using the available ground-
truth. For animal video segmentation tasks, to avoid the high-cost of data labeling, one-shot
learning with PL is more suitable as it only needs to label one image-frame [50].

3. The Proposed Approach
3.1. Overview of the Proposed Approach

The proposed approach (Figure 1) consists of two main parts: Xception-FCN and PL.
Firstly, the input video and its first labeled frame are fed to the pre-trained Xception-FCN
for network fine-tuning and initial segmentation result generation. Then, these segmented
images are regarded as pseudo-labels to re-train the models and refine the segmentation
results. By this, PL filters the outliers from the segmented images and refines animal
contours, which enhance the final cattle video segmentation performance.

Figure 1. The framework of one-shot learning with PL for cattle video segmentation.

For a given video F with n frames ( f1, f2, · · · , fn), its first frame f1 with the corre-
sponding manually labeled mask sgt and video F are input into Xception-FCN for network
fine-tuning. Here, the pre-trained weights of Xception-FCN are obtained from public
datasets (e.g., PASCAL VOC 2012). After Xception-FCN has completed the fine-tuning
process with the only one labeled frame sgt, the obtained network model M is applied
to the unlabeled video frames. The corresponding segmentation results generated from
the unlabeled video frames are denoted as Y = [y2, · · · , yn]. Here, Y can be regarded as
pseudo-labeled data. Then, the labeled image sgt and pseudo-labeled data Y are used to
re-train the model M. The re-trained model M is fine-tuned again with the only label frame
sgt, and then applied to unlabeled video frames to produce more accurate segmentation
results Yf = [y f 2, · · · , y f n]. More details of our proposed approach are demonstrated below.
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3.2. Xception-FCN Architecture

Feature extraction plays an important role in visual recognition and segmentation.
VGG and Xception networks have shown good feature representation in vision tasks [51].
However, they are time-consuming due to their lower learning efficiency and large amount
of network parameters.

In this work, we improved the Xception network and developed a lightweight
Xception-FCN network architecture to extract visual features for cattle video segmen-
tation. According to our experiments with different layer-length backbones, an Xception
architecture with 20 convolutional layers was confirmed as an Xception-FCN backbone.
Compared with the original Xception (65 layers), the proposed Xception-FCN significantly
reduces the training parameters but retains the network performance.

As illustrated in Figure 2, there are five main blocks in Xception-FCN, and between the
different blocks there is a MaxPooling layer that down-samples feature maps. In each block,
the dilated convolution with different dilation rates is used to expand the receptive field.
Xception-FCN extracts CNN features from five different layers, and then fuses them for
final video segmentation. The features obtained from the first three blocks mainly contain
spatial information such as edge, texture and shape, whilst the features extracted from the
last two blocks have more semantic information.

Figure 2. The proposed Xception-FCN network architecture.

Given one video frame f and learned weight w, the process of extracting features can
be represented by

Xn = ln((· · · l2(l1( f ; w1); w2) · · · ); wn) (1)

where l1, l2, ·, ln are activated functions at different layers, and Xn is the extracted feature
map at the n-th layer.

In general, with the layer going deeper, the extracted features from Xception-FCN
are gradually transferring from spatial to semantic and abstract information. How to
leverage different layer features for segmenting the cattle from video is challenging. Based
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on our experimental testing, the feature maps from five different stages were chosen and
concatenated for segmenting cattle video. These utilized five feature maps containing the
shallow layers’ low-level and deep layers’ high-level visual features that enhance the cattle
representation ability of video segmentation.

As these five feature maps’ sizes are different, we first upsample them to make their
sizes the same as that of the video frame. Then, these upsampled features were concatenated
together to generate the final feature X f inal :

X f inal = Up{X5}↑4 ++Up{X8}↑8 ++Up{X11}↑16 ++Up{X17}↑16 ++Up{X20}↑32 (2)

where X5, · · · , X20 are visual features from the corresponding layer number; Up{} indicates
the upsampling operation, and the subscripts ↑ 4, ↑ 8, ↑ 16, ↑ 32 indicate upsampling ratios
with 4, 8, 16 and 32, respectively.

By inputting the one labeled frame to the Xception-FCN network, a fine-tuned model
M is obtained. This process is regarded as a one-shot learning process. After applying M to
the unlabeled video sequence ( f2, · · · , fn), the initial segmentation results Y = (y2, · · · , yn)
are obtained.

3.3. Pseudo-Labeling for Cattle Video Segmentation

Segmenting the animal from its background in a video with only one labeled image
(foreground/background information in this frame) is challenging. Although Xception-
FCN can segment cattle from the background using one-shot learning, there are some
false segmentation problems such as noise and contour errors. In order to reduce the
segmentation errors and leverage the unlabeled data information, pseudo-labeling was
considered to re-train the model and boost the segmentation performance.

The unlabeled data’s segmentation results (obtained from Xception-FCN) Y = (y2, · · · ,
yn) and the first labeled frame sgt are combined and used to re-train the Xception-FCN
model M. The re-trained model M is again fine-tuned with the only label frame sgt, and then
applied to segment the cattle video, and output the final obtained segmentation results
Yf = ( y f 2, · · · , y f n). By this, we yield large gains in segmentation accuracy without extra
additional labeled data or inference cost.

4. Experimental Setup
4.1. Datasets

To verify the effectiveness of the proposed video segmentation approach, extensive
experiments were conducted on our cattle video dataset acquired from a Southern Queens-
land commercial feedlot. Cattle videos were recorded when the cattle were walking along
the crush race (path). Rear-view videos were recorded using the ZED camera in three
different months during the feed period (i.e., induction, middle and end point) on the
20 March, 30 April and 30 May 2018, respectively. The animal study was reviewed and
approved by University of Sydney Animal Ethics Committees (AEC).

A total of 22 cattle videos (i.e., 809 frames) were selected for our experiments (each
video was acquired from a different cattle), and the video length varied from 16 frames
to 68 frames due to the different cattle walking speeds. Each video begins with the cattle
walking into the crush (from the moment that the cattle body trunk can be seen), and the
video ends when the cattle hips leave the exit gate. As illustrated in Figure 3, this dataset is
challenging due for the following reasons: (1) the cattle frequently changed body posture
and moved fast when they were driven into the cattle crush; (2) the cattle coat colors were
different, and the color of some cattle had a high similarity with the soil background; (3) the
cattle shape becomes small and unclear at the end of the fence, which are even difficult
to distinguish for human beings; (4) the lighting condition changes during the day time.
Different illumination and shadows appeared in the video images. These lighting issues
require the deep learning model to have a strong generalization ability.
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(a) confusion color (b) poor illumination (c) shadow influence

(d) white coat (e) normal condition (f) half body

Figure 3. Samples of images in the challenging cattle dataset.

4.2. Network Pre-Training and Fine-Tuning Details

Our experiments were implemented using Python and PyTorch on a computer equipped
with NVIDIA RTX 2080Ti GPU and Ryzen 5 3600 3.6 GHz CPU. The implementation of our
proposed approach mainly includes pre-training, fine-tuning and re-training steps.

• Network pre-training: Several open datasets were used to pre-train the proposed
Xception-FCN network, and based on the datasets used, we classified the pre-training
process into base and objectness training. For base training, a total of 11,840 images
from the PASCAL VOC 2012 dataset [52] and an extended dataset [53] were used.
In terms of objectness training, the DAVIS 2016 dataset containing 30 videos (not
including cattle videos) was used.
For the pre-training, the optimization algorithm used was stochastic gradient descent
(SGD) and the whole process had 45,000 iterations (25,000 iterations for base training
and 20,000 iterations for objectness training). During the pre-training process, the used
learning rate gradually declined from 10−6 to 2.5× 10−7. With the help of pre-training
weights, the optimized Xception-FCN network has the certain capability of segmenting
foreground objects (i.e., cattle) from the video.

• Network fine-tuning: After pre-training, the manually labeled one image (first frame)
of the testing video was used to fine-tune the proposed Xception-FCN network.
To maximize the effectiveness of this one labeled image, some typical data augmenta-
tion techniques such as flipping, cropping, brightness, zooming and contrast change
were also used. For network fine-tuning, the learning rate was set to 10−7. As the
light-weight Xception-FCN architecture and separable convolution utilized our ap-
proach, the model efficiency of the video segmentation was enhanced. Additionally,
based on the experimental comparison, optimized fine-tuning iterations were set to
100 in consideration of the speed and accuracy of the cattle video segmentation.

• Network re-training: for further reducing the segmentation noises and contour errors,
pseudo-labels, namely the initial segmentation results generated by Xception-FCN,
combined with the one labeled frame, were used to re-train the model. The re-trained
epochs were set to 100 and the learning rate was set to 10−7. The other parameters
were the same as those used in the process of network fine-tuning.
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4.3. Performance Evaluation

In order to evaluate the video segmentation performance, four popular measure
metrics—region similarity regarding intersection over union J , contour accuracy F , the
temporal instability of the masks T , and testing speed (second per frame) were used in our
experiments. The metric J measures the matching of ground truth and prediction, while F
reflects the contour accuracy. The metric T estimates the deformation among the segmented
frames, where high temporal instability means strong occlusions and deformations.

For segmentation output Y and the corresponding ground-truth mask G, J can be
computed by

J =
|Y ∩ G|
|Y ∪ G| (3)

Contour accuracy F can be computed using the contour based precision Pc and recall
Rc:

F =
2PcRc

Pc + Rc
(4)

In our experiments, both J and F have three different values: mean (the average
results of all segmented video frames), recall (the average results for the frames with a
large threshold of 0.5) and decay (performance loss over time, which was computed using
the segmentation result of the first frame minus the last frame [54]). Higher values of J
and F indicate good segmentation performance, while higher decay value represents poor
video segmentation.

5. Experimental Results
5.1. Comparison of Different Segmentation Methods

To verify the effectiveness of the proposed approach, the real acquired cattle videos in
a feedlot were used for verification and a comparison was carried out with state-of-the-art
methods, namely OSVOS and OSMN. Here, OSVOS and OSMN were implemented on our
cattle dataset using their public codes and weights to compare with our proposed approach.
Table 1 illustrated the video segmentation results of different methods.

Table 1. Comparison of the different video segmentation methods.

J (M)↑ J (R)↑ J (D)↓ F (M)↑ F (R)↑ J (D)↓ T ↓ Time (s/f)

OSMN 80.0 93.4 16.6 62.1 74.6 11.3 47.4 1.21
OSVOS 84.4 97.5 13.9 75.0 89.4 14.7 46.2 0.76
Ours-PL 87.6 98.6 10.6 79.4 96.4 12.3 48.9 0.42

Ours 88.7 99.8 9.0 80.8 97.7 10.7 45.2 0.44
“M” is short for mean, “R” represents recall and “D” indicates decay. Noticeably, the up-arrows beside the metrics
indicate that the higher the metric is, the better it is. Similarly, the down-arrows indicate that a lower figure is
preferred. Note that since the original OSMN does not contain fine-tuning, for a fair comparison, fine-tuning was
added to the used OSMN.

As shown in Table 1, our proposed one-shot learning-based approach achieved a
J (Mean) of 88.7%, J (Recall) of 99.8%, F (Mean) of 80.8%, and F (Recall) of 97.7% on
cattle video segmentation. These achieved values are significantly higher than that of
OSVOS (84.4% J (Mean), 75.0% F (Mean)) and OSMN (80.0% J (Mean), 62.1% F (Mean)).
Meanwhile, the temporal instability T of our proposed approach is 45.2%, which is lower
than that of OSVOS (46.2%) and OSMN (47.4%). The J (Mean) and F (Mean) of our
approach are significantly higher than those of OSVOS and OSMN. These improvements
illustrate that our proposed approach is favorable for high-accuracy video segmentation
tasks in smart livestock farming.

The ablated version without PL module also achieved 87.6% J (Mean) on the cattle
dataset, which demonstrated that our Xception-FCN network architecture is more advanced
for segmenting animals. Overall, the proposed one-shot learning with the pseudo-labeling
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network architecture has strong feature learning and extraction ability, which can feasible
be used for cattle video segmentation in the smart livestock farming applications.

For testing the speed of our approach on cattle video segmentation, the computa-
tional efficiency of our proposed approach, OSVOS and OSMN are also given in Table 1.
The testing speed of our approach is 0.44 s/frame, which is faster than those of OSVOS
and OSMN.

The qualitative comparison of different approaches (i.e., OSMN, OSVOS and our
approach) on our cattle dataset is demonstrated in Figure 4. It can be seen that the seg-
mented cattle body area (red region) are obviously under-segmented in OSMN (Figure 4b)—
especially the regions nearby the cattle hips—while the tail and legs are missed in OSVOS
Figure 4c. However, our proposed approach can segment cattle with a highly accurate
cattle contour (Figure 4d), and offers a significantly superior performance to those of OSMN
and OSVOS.

(a) RGB image

(b) OSMN

(c) OSVOS

(d) Our-PL

(e) Our

Figure 4. Segmentation results of different approaches on the cattle dataset.
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The last frame in Figure 4d also illustrates that the proposed approach could signifi-
cantly reduce the influence of shadow and illumination. In addition, it can be noticed that
different cattle coat color such as white, brown and dark shown in Figure 4a are also well
segmented (displayed in Figure 4d). The above findings validate the robustness of our
approach. The proposed approach could be used for different cattle breeds in complex farm
scenes (e.g., different background, changing illumination and varying pose status), which
has potential commercial application value in the field of automatic cattle segmentation
and monitoring.

5.2. Qualitative Analysis

More cattle video segmentation examples of the proposed one-shot learning approach
are shown in Figure 5. Here, four typical video segmentation examples are displayed.
They contain the situations of changing illumination, shadow influence, cattle movement
and posture variation. Due to the content restriction, only four image frames in each
video are presented, and each row’s images are from the same video. In Figure 5, each
animal is walking forward in the crush. It can be seen that the image frames in each video
are well segmented, except for a few false segmented tail parts. The cattle body parts,
including ears, heads, legs, and body contours, were well segmented and can be clearly
seen. In general, the proposed one-shot learning with pseudo-labeling achieved satisfactory
cattle video segmentation with only one label image under complex background conditions
(e.g., different illuminations, cattle movement and posture changing).

Figure 5. Qualitative results of our approach on the cattle dataset.
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5.3. Ablation Study: Effect of PL

To analyze and quantify the significance and effects of pseudo-labeling in our approach,
comparison experiments were conducted on ablated versions and the results are illustrated
in Table 1.

Our approach without PL obtained 87.6% J (Mean), 98.6% J (Recall), 79.4%F (Mean)
and 96.4% F (Recall). However, with the PL module, our approach segmentation perfor-
mance was significantly improved. Specifically, the J (Mean) increased by 1.1%, J (Recall)
increased by 1.2%, while F (Mean) improved by 1.4% and F (Recall) increased by 1.3%.
Moreover, with the help of PL, the effective temporal instability of the masks T in the
segmented video was also improved by 3.7%, which means the last image frame of the
video was also well segmented. These results illustrated that pseudo labels generated
from Xception-FCN using only one label frame could help refine the network segmentation
performance, especially when a large amount of unlabeled data is available. In terms of
running-speed, although the PL module brings an extra 0.02 s time cost, it does boost the
segmentation accuracy.

5.4. Ablation Study: Effect of Pre-Training

In our work, the influence of the pre-training process on cattle video segmentation was
also investigated. As the pre-training process consists of base training (BT) and objectness-
training (OT), effects of both BT and OT on video segmentation were therefore analyzed.
As illustrated in Table 2, BT and OT contribute 11.6% and 1.3% to J (Mean), respectively.
In terms of F (Mean), BT and OT enhance the segmentation performance by 14.1% and
5.2%, respectively. These achievements show that OT makes a greater contribution than
BT. One possible reason for this is that OT focuses on pixel objectness using a binary
cross-entropy loss, so that the optimized network parameters by OT could significantly
reduce false segmentation and contour blur among these segmented images.

Apart from improving the accuracy and time instability, BT and OT also effectively
decrease J (Decay) by 19.3% and 8.7%, respectively. This demonstrates that the pre-training
modules of BT and OT can improve the performance in accuracy and time instability
in general.

Table 2. Comparison of our approach against the downgraded version without pre-training.

J (M)↑ J (R)↑ J (D)↓ F (M)↑ F (R)↑ J (D)↓ T ↓
Ours 88.7 99.8 9.0 80.8 97.7 10.7 45.2

Ours-BT 77.1 82.4 30.2 66.7 73.0 30.0 56.5
Ours-OT 87.4 99.8 10.9 75.6 92.4 19.4 41.1

6. Discussion

Here, we proposed a one-shot learning approach with pseudo-labeling for cattle video
segmentation. Unlike the works in [11,55] which used a large amount of labeled data to
segment cattle, the proposed one-shot learning approach leverages the unlabeled data
to boost the final segmentation performance. Our experimental results demonstrated
the proposed approach’s effectiveness for livestock segmentation and monitoring tasks.
The proposed approach provides an effective alternative to methods that require a large
amount of data-labeling for deep learning-based livestock farming applications.

6.1. Influence of the Cattle Phenotypic Appearances on Video Segmentation

Cattle phenotypic appearances such as coat color, body shape and body size are
important indicators of animal welfare and farming management. A robust and high-
accuracy segmentation method that is not sensitive to cattle phenotypic appearances is
vitally needed for smart farming. As Figure 5 shows, cattle with different coat colors
(e.g., brown, white, dark) were well segmented by our method. In addition, in our videos
acquired from three different months, the corresponding cattle have different body sizes
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and weights, but the proposed Xception-FCN model could still segment the cattle in videos
with 88.7% J (Mean) and 80.8% F (Mean). These results illustrated that cattle phenotypic
appearances could not bring much influence on the performance of our proposed approach.

6.2. Analysis of the Influence of Motion on Video Segmentation

Videos usually contain temporal cues, especially in situations where the cattle perform
repeated behaviors or activities. Our proposed approach labeled the first video frame for
cattle segmentation, which is favorable for the situation in which the cattle exhibit normal
behaviors. It could be noticed that with cattle walking far away from the camera, their
body scale and movement posture are continuously changing, but the overall segmentation
performance is favorable except for a few body parts such as hooves and tails. The main
reason is that the tiny body parts such as tails and hooves account for a small proportion of
the whole body, and few visual features can be extracted from these parts for segmentation.

Our video segmentation approach uses one labeled image (i.e., the first video frame)
to segment cattle in the video, reducing the data labeling costs. It should be noted that if
abnormal behaviors appeared, the large motion and occlusion in cattle video sequences
will lead to unstable segmentation performance. In addition, as discussed in [56], if the first
frame has low image quality or does not contain the complete object shape, it will not be the
best choice for data labeling. In the future, the best guidance frame selection [56] will be con-
sidered. Meanwhile, long-term dependency on video sequences and motion deformation
tracking will also be investigated to further enhance the segmentation performance.

6.3. Analysis of the Proposed Approach’s Applicability

The proposed approach is a light-weight and effective animal video segmentation
framework, which combines one-shot learning and pseudo-labeling to achieve segmen-
tation with one labeled image. As illustrated in Figure 4, the cattle are well segmented
under the conditions of changing illumination and shadow influence. In the proposed
approach, Xception-FCN fuses low and middle level features, and pseudo-labeling utilizes
pseudo-labels (generated by Xception-FCN model) to boost the segmentation performance.
Although experiments were only conducted on cattle video data in this paper, the proposed
approach also could be applied to other animal species.

On the other hand, data labeling is a prerequisite for deep learning-based vision tasks,
especially in the field of precision agriculture and smart livestock farming. Considering the
time and costs of data labeling, the proposed approach could have wide applications in
real livestock farm management. In addition, this approach can also be applied to assist an
unmanned aerial vehicle (UAV) or unmanned ground vehicle (UGV) in locating animals or
detecting or analyzing animal behaviors.

7. Conclusions

Cattle segmentation is a prerequisite to automatic body parameter measurements
and behavior recognition in smart livestock farming. Unlike other deep learning-based
approaches which rely on large-scale labeled data, in this study, one-shot learning cattle
video segmentation with pseudo-labeling is proposed. In the proposed approach, Xception-
FCN utilizes one labeled image and pre-training weights to generalize deep learning to
cattle segmentation; then, these segmented results are used as pseudo-labeled data to refine
the segmentation results. Extensive experiments were conducted on cattle videos in real
farming environments. Experimental results show that the proposed approach obtained
the segmentation performance with 88.7% J (Mean) and 80.8% F (Mean), outperforming
OSVOS (84.4% J (Mean), 75.0% F (Mean) ) and OSMN (80.0% J (Mean), 62.1% F (Mean)).
The proposed approach leverages the effects of fine-tuning and unlabeled data to enhance
visual feature representation ability, which boost the performance. Moreover, even without
the PL module, our approach still achieved 87.6% J (Mean) and 79.4% F (Mean), which is
also significantly higher than the values of OSVOS and OSMN. This result demonstrated
that the proposed Xception-FCN is an effective deep learning architecture and is favorable
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for video segmentation tasks. Overall, the proposed approach achieved a fast and highly
accurate one-shot video segmentation, which is favorable for the applications of animal
segmentation and monitoring in smart livestock farming.
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