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Simple Summary: Live weight is an important indicator of livestock productivity and serves as an
informative measure for the health, feeding, breeding, and selection of livestock. In this paper, the live
weight of pig was estimated using six morphometric measurements, breed, weight at birth, weight at
weaning, and age at weaning. In the present paper, we propose a comparative analysis of various
machine learning methods using outlier detection, normalisation, hyperparameter optimisation,
and stack generalisation to increase the accuracy of the predictions of the live weight of pigs. The
StackingRegressor algorithm yielded a prediction quality of the live weight of Duroc, Landrace, and
Yorkshire pigs that was higher than that of the state-of-the art algorithms.

Abstract: Live weight is an important indicator of livestock productivity and serves as an informative
measure for the health, feeding, breeding, and selection of livestock. In this paper, the live weight
of pig was estimated using six morphometric measurements, weight at birth, weight at weaning,
and age at weaning. This study utilised a dataset including 340 pigs of the Duroc, Landrace, and
Yorkshire breeds. In the present paper, we propose a comparative analysis of various machine
learning methods using outlier detection, normalisation, hyperparameter optimisation, and stack
generalisation to increase the accuracy of the predictions of the live weight of pigs. The performance of
live weight prediction was assessed based on the evaluation criteria: the coefficient of determination,
the root-mean-squared error, the mean absolute error, and the mean absolute percentage error. The
performance measures in our experiments were also validated through 10-fold cross-validation to
provide a robust model for predicting the pig live weight. The StackingRegressor model was found
to provide the best results with an MAE of 4.331 and a MAPE of 4.296 on the test dataset.

Keywords: live pig weight estimation; machine learning; ensemble methods; prediction; regression
algorithm; body measurement

1. Introduction

Live weight is an important indicator of livestock productivity and serves as an in-
formative feature for the health, feeding, breeding [1], and selection of livestock [2]. The
prediction of live animal weight based on different body characteristics observed during dif-
ferent growth periods for sheep [3], goats [4], chickens [5], ducks [6], rams [7], and cattle [8]
has been extensively studied in the literature. Moreover, live weight measurement is a
production tools available to farmers in nutrition [9], fertility management [10], health [11],
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and marketing [12]. Live weight prediction can be based on morphological features that
are automatically measured using computed tomography [13], ultrasonic machines [14],
and 3D vision systems [15].

Although the direct weighing method provides the most accurate [16] results, it
requires physical effort to force the animal to stand on the scale. Therefore, this method is
traumatic and can be stressful for both animals and livestock keepers. The latter is also true
for other contact methods of weight measurement, such as measuring the pig’s girth behind
the front legs. Current digital noncontact weight measurement methods are limited by the
requirement that the animal be in some standard position and remain motionless during
capture with a 2D CCD camera [16–18] or a 3D camera [19]. That is, such requirements are
feasible in a research laboratory, but not on an active pig farm. Animal weight estimates are
computed from measurements of the animal’s back area and height, which are estimated
using 2D digital images from a CCD camera or animal volume estimates from a 3D camera.
The error rate of animal weight estimation by these laboratory methods is approximately
5–7%. The three-dimensional structure of the animal makes it possible to select the best
animals for breeding, culling, and quality control of various cuts of meat from live pigs. For
example, leg weakness is a major cause of premature culling of breeding sows, which can
be automatically determined by the shape and position of the legs [20]. Note that inspectors’
visual assessments may vary due to fatigue and a lack of training. Many properties of
the three-dimensional structure can be extracted from two-dimensional images, while
three-dimensional data allow for the isolation of cross-sectional areas and volumes and
measurement of characteristics such as the rectangularity of the back muscles, which are
known measures of muscle mass. With regular measurement of the three-dimensional
shape of an animal, it is possible to routinely quantify the effects of an animal’s height, diet,
genetics, health, and posture. There are two ways to obtain the three-dimensional shape of
an animal: using stereo [20] or depth cameras [21,22]. However, restrictions on the position
of the animal and its immobility remain, and therefore, the application of such systems on
active pig farms is not possible.

In past studies, linear regression analysis was usually used to predict the live weight of
pigs [23–25]; however, these traditional methods are inadequate for prediction [3]. Recently,
several researchers have effectively employed various machine learning algorithms to
predict the live weight of pigs using morphological features [26]. These methods aim to
predict the live weight of animals from morphological measurements. These studies have
shown the potential of machine learning algorithms for accurately predicting the nonlinear
relationship between the body weight and morphological traits of animals [3].

The objective of this paper is to study various machine learning methods [27,28] for
predicting the live weight of pigs based on breed, weight at birth, weight at weaning,
age at weaning, and six morphometric measurements. This study aimed to identify the
best machine learning algorithms for predicting the live weight of pigs using various
morphological features.

The main contributions of this article are as follows:

• We show that machine learning methods can provide better results than traditional
linear regression algorithms for predicting the live weight of pigs.

• By using outlier detection, normalisation, hyperparameter optimisation, stack general-
isation, and cross-validation, pig live weight prediction was improved.

• The dataset and model for live weight prediction of Duroc, Landrace, and York-
shire pigs can be downloaded for use by the livestock research community freely by
following the link [29].

2. Materials and Methods

The animal experimental and data collection were approved by the Animal Care and
Use Committee of the South Ural State Agrarian University and Federal Research Centre of
Biological Systems and Agro-technologies of the Russian Academy of Sciences (01-14/758).
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All procedures and data collection in this study were conducted according to the Guidelines
for Experimental Animals (Russia).

2.1. Data Collection

This study used data from 340 Duroc, Landrace, and Yorkshire pigs kept on a private
farm in the Chelyabinsk region of Russia. Traits associated with reduced live weight of
pigs included weight at birth (kg), weight at weaning (kg), age at weaning (days), body
length (cm), chest girth (cm), withers height (cm), chest depth (cm), chest width (cm), and
metacarpus girth (cm). The weight of these pigs was measured with a scale and ranged
from 86 to 113 kg. The distribution of pigs by breed was as follows: 231 Yorkshire, 72 Duroc,
37 Landrace. The age of the pigs was 6 months. They were all females at finishing stages. A
histogram illustrating the distribution of the live weight by breed is shown in Figure 1.
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Figure 1. Histogram of the distribution of the live weight by breed.

The six body measurements shown in Figure 2 were taken manually by an expert with
tailor measuring tape and measuring sticks and recorded in centimetres. The created data
collection are open and available to the research community [29].

Figure 2. Picture of six measured body dimensions of a pig: (1) body length, (2) chest girth, (3) withers
height, (4) chest depth, (5) chest width, and (6) metacarpus girth.

The estimated body measurements were as follows:

• Body length was measured at the middle of the occipital ridge along the upper straight
line of the neck, withers, back, loin, and sacrum to the root of the tail using tailor tape.

• Chest girth was measured behind the shoulder blades by girdling the animal in a
vertical plane tangent to the posterior angles of the shoulder blades using tailor tape.

• Withers height was measured at the highest point of the withers using a measuring
stick.

• Chest depth was measured from the withers to the sternum vertically, tangent to the
posterior angle of the scapula, using a measuring stick.

• Chest width was measured at the widest point of the vertical tangent to the posterior
angle of the scapula using a measuring stick.

• Metacarpus girth was measured at the lower end of the upper third of the metacarpus
using tailor tape.
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2.2. Preprocessing

Outlier detection as a preprocessing step was used to identify anomalies of rare
samples that were suspicious because they differed significantly from most data points.
The SciKit-Learn library (SKlearn) [30] provides a set of machine learning tools to detect
outliers: z-score, InterQuartileRange, IsolationForest, LocalOutlierFactor, OneClassSVM,
EllipticEnvelope. After extensive experimentation with normalisation algorithms, the
z-score normalisation algorithm was chosen because it exhibited the best performance. The
z-score normalisation algorithm calculates the z-score for each sample of data. The z-score
is defined as

z =
x− u

s
, (1)

where x is the current sample value and u and s are the mean and standard deviation of all
samples, respectively.

2.3. Feature Standardisation

The features have different units and scales. To reduce this impact on the prediction
results, the data should be normalised before training the model to make sure that each
feature has the same order of magnitude.

The following normalisation algorithms from the SKlearn library [30] were used:
MinMaxScaler, MaxAbsScaler, StandardScaler, PowerTransformer, StandardScaler, Power-
Transformer, QuantileTransformer, Normalizer, FunctionTransformer, PolynomialFeatures,
and RobustScaler. The MinMaxScaler normalisation algorithm was chosen because it exhib-
ited the best performance. The StandardScaler normalisation algorithm scales each feature
to a specified range. The normalisation is shown as:

y =
2(x− xmin)

xmax − xmin
− 1, (2)

where x represents the sample value, xmin and xmax represent the minimum and maximum
values of all samples, respectively, and y is the normalised value of the feature.

2.4. Machine Learning Algorithms

We studied all the machine learning algorithms from the SKlearn library [30]. How-
ever, some algorithms led to poor results, which are not shown in this article. The model
evaluation results are presented only for the following regression algorithms: extra trees
(ExtraTreesRegressor), random forest (RandomForestRegressor), k-nearest neighbours
(KNeighborsRegressor), linear regression (LinearRegression), epsilon-support vector (SVR),
gradient boosting (GradientBoostingRegressor), decision tree (DecisionTreeRegressor),
adaptive boosting (AdaBoostRegressor), ridge regression with cross-validation (RidgeCV),
cross-validated lasso linear model (LassoCV), cross-validated lasso with the LARS algo-
rithm (LassoLarsCV), cross-validated orthogonal matching pursuit model (Orthogonal-
MatchingPursuitCV), Bayesian ridge (BayesianRidge), Theil–Sen estimator (TheilSenRe-
gressor), and linear regression Huber model (HuberRegressor). The following machine
learning algorithms were also used for prediction: two methods of gradient boosting
(CatBoostRegressor) [31] and (LGBMRegressor) [32], as well as scaled gradient boosting
(XGBRegressor) [33].

The data were initially partitioned randomly into two parts: the training dataset
(70%) and the test dataset (30%). Additionally, 20% of the training dataset were used for
validation.

Our experiments with the models involved testing various combinations of hyper-
parameters to find the optimal response. We used the GridSearchCV algorithm from the
SKlearn library [30] to automate the process of obtaining the best combination of hyperpa-
rameters. We found the optimal hyperparameters for all regression algorithms used using
GridSearchCV. Some algorithms can lead to overfitting, especially tree-based methods.
Therefore, we used regularisation and the early stopping technique to avoid overfitting.
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2.5. Ensemble Methods

Ensemble methods have greatly helped obtain a more powerful prediction based on
combinations of many different machine learning models. There are various ensemble
methods: averaging methods based on different weighted averaging algorithms, bagging,
boosting, stack generalisation, and the special network StackNet. StackNet is a scalable
meta-modelling methodology that utilises stacking to combine multiple models in a neural
network architecture with multiple levels in parallel.

Stacked generalisation or stacking is an ensemble machine learning algorithm [34].
The advantage of stacked generalisation is the capability of prediction with better perfor-
mance than any single model. Stack generalisation typically yields better performance
than any single trained model [35]. Although stack generalisation does not guarantee an
improvement in performance, it depends on the complexity of the regression task, the
choice of base models, and uncorrelated base models in predictions.

Stacked generalisation uses a meta-learning algorithm to fit a combination of the
prediction models. Stacked generalisation can combine the predictions from some models
on the same dataset, such as boosting and bagging. In contrast to boosting, the stacking
model uses a single model to fit a combination of the predictions from the models. In
contrast to bagging, the stacking model is typically different and fits the same dataset.
The stacking model consists of some base models and a meta-model that integrates the
predictions of the base models. The outputs from the base models are used as the input
to the meta-model. In the meta-model, the training dataset can be prepared using k-fold
cross-validation from the base models and can also use the training dataset as the inputs
to the base models, which can provide additional data to the meta-model to fit the best
combination of the predictions from the meta-model. The base models are trained on the
entire original training dataset, and the meta-model is trained on the prepared training
dataset. Base models should be diverse and complex.

2.6. Model Evaluation

Some evaluation criteria were used to estimate the performance of the models used in
this study for predicting the pig live weight.

In this study, we examined various commonly used evaluation measures. We used the
coefficient of determination (R2), the root-mean-squared error (RMSE), the mean absolute
error (MAE), and the mean absolute percentage error (MAPE) as measures to evaluate
quality. They are defined as

R2 = 1− ∑n
i=1(yi − fi)

2

∑n
i=1(yi − ȳ)2 , (3)

RMSE =

√
1
n

n

∑
i=1

(yi − fi)2, (4)

MAE =
1
n

n

∑
i=1
|yi − fi|, (5)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − fi
yi

∣∣∣∣, (6)

where n is the number of samples in the dataset, ȳ presents the average value among the
measured live weight values, yi, i = 1, . . . , n are the measured live weight values, and fi,
i = 1, . . . , n are the predicted live weight values.

3. Results and Discussion
3.1. Preprocessing

After preprocessing, 311 out of 340 samples remained after excluding outliers.
Figure 3 shows the boxplots before preprocessing. Note that body weight, age at wean-
ing, live weight, body length, withers height, chest depth, and metacarpus girth have
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outliers because of anomalous causes, for example an error in data transcription, human
error, or natural deviations in populations. The basic statistics of the features used after
preprocessing are shown in Table 1.
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Figure 3. In the boxplots, the whiskers show the range, the boxes show the upper and lower quartile
and median (solid dark horizontal line) values, and red points are outliers.

Table 1. The mean values, standard deviation (SD), and coefficient of variation (CV) of each feature.

Features Mean SD CV (%)

Live weight (kg) 101.78 6.51 6.40
Weight at birth (kg) 1.21 0.12 10.13

Weight at weaning (kg) 6.11 0.77 12.61
Age at weaning (days) 24.56 3.04 12.37

Body length (cm) 113.73 5.27 4.63
Chest girth (cm) 109.27 4.35 3.98

Withers height (cm) 58.78 3.30 5.61
Chest depth (cm) 35.12 2.88 8.19
Chest width (cm) 30.11 2.58 8.56

Metacarpus girth (cm) 17.37 0.82 4.74

3.2. Machine Learning Model

We obtained the results of various evaluation measures used to evaluate model per-
formance on the training and test datasets shown in Table 2. The tree-based algorithms
improved the overfitting situation. The most robust algorithm was actually the LassoCV
algorithm with a consistent R2 of approximately 0.299 on the training dataset and 0.301 on
the test dataset, but the RidgeCV algorithm did not have the smallest MAE of 4.533 and
MAPE of 4.521 on the test dataset.

Table 2. Comparison of the ensemble model performances in terms of R2, RMSE, MAE, and MAPE.

Algorithm
On Training Dataset On Testing Dataset

R2 RMSE MAE MAPE R2 RMSE MAE MAPE

VotingRegressor 0.394 5.026 4.172 4.150 0.328 5.436 4.594 4.573
BaggingRegressor 0.300 5.403 4.432 4.399 0.303 5.539 4.504 4.487
StackingRegressor 0.377 5.095 3.803 3.803 0.352 5.339 4.331 4.296

We investigated different ensemble methods to achieve better predictions based on
combinations of many different machine learning models (Show in Table 3): the aver-
aging method using VotingRegressor method [30], bagging using the BaggingRegressor
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method [30], and stack generalisation using the StackingRegressor method [30]. Our experi-
ments with models involved testing various combinations of hyperparameters and machine
learning algorithms to find the optimal response using an exhaustive search. We used a var-
ied range of models: RandomForestRegressor, ExtraTreesRegressor, DecisionTreeRegressor,
AdaBoostRegressor, XGBRegressor, CatBoostRegressor, KNeighborsRegressor, LassoCV,
and RidgeCV.

Table 3. Comparison of the model performances in terms of R2, RMSE, MAE, and MAPE.

Algorithm
On Training Dataset On Testing Dataset

R2 RMSE MAE MAPE R2 RMSE MAE MAPE

RandomForestRegressor 0.652 3.811 3.125 3.101 0.264 5.688 4.798 4.777
ExtraTreesRegressor 0.588 4.145 3.389 3.362 0.247 5.755 4.903 4.881

KNeighborsRegressor 0.443 4.817 3.851 3.828 0.232 5.812 4.884 4.858
LinearRegression 0.313 5.354 4.431 4.405 0.282 5.619 4.607 4.592

GradientBoostingRegressor 0.756 3.192 2.572 2.551 0.260 5.706 4.757 4.701
AdaBoostRegressor 0.571 4.229 3.725 3.674 0.224 5.842 4.865 4.823

RidgeCV 0.307 5.374 4.437 4.410 0.297 5.561 4.533 4.521
LassoCV 0.299 5.408 4.465 4.438 0.301 5.545 4.542 4.532

LassoLarsCV 0.271 5.514 4.609 4.585 0.269 5.670 4.704 4.698
BayesianRidge 0.272 5.508 4.530 4.504 0.305 5.528 4.577 4.566

TheilSenRegressor 0.275 5.498 4.481 4.467 0.208 5.901 4.822 4.808
XGBRegressor 0.714 3.454 2.820 2.768 0.248 5.751 4.748 4.675

LGBMRegressor 0.801 2.877 2.239 2.222 0.270 5.667 4.720 4.667
CatBoostRegressor 0.786 2.986 2.422 2.408 0.288 5.596 4.692 4.658

The RidgeCV base model with two estimators yielded the optimal response for the
BaggingRegressor model. The KNeighborsRegressor, LassoCV, and RidgeCV base models
yielded the optimal response for the VotingRegressor model. The StackingRegressor model
yielded the optimal response using LassoCV, KNeighborsRegressor, and LGBMRegressor
base models and the CatBoostRegressor meta-model. We obtained the following results
shown in Table 2 for the ensemble models. The most robust algorithm was the StackingRe-
gressor algorithm, with a consistent R2 of approximately 0.377 on the training dataset and
0.352 on the test dataset. Moreover, the StackingRegressor algorithm had the smallest MAE
of 4.331 and MAPE of 4.296 on the test dataset.

The performance measures in our experiments were also validated by 10-fold cross-
validation. The 10-fold cross-validation results for the StackingRegressor model using
various evaluation measures are shown in Table 4. For all 10 iterations, the values of the
evaluation measures remained almost the same, indicating the stability of the StackingRe-
gressor model for prediction. Thus, we can conclude that the StackingRegressor model
performed better than the other models used in this study to predict pig live weight.

Table 4. Results of 10-fold cross-validation for the most efficient algorithms on the test dataset. SD
(×10−4) is the standard deviation.

Algorithm
R2 RMSE MAE MAPE

Mean SD Mean SD Mean SD Mean SD

StackingRegressor 0.369 0.027 5.226 0.037 4.319 0.028 4.281 0.019

Figure 4 shows the feature importance identified by the StackingRegressor algorithm
for predicting the pig live weight. The most important feature was found to be chest girth,
which accounted for approximately 21% of the variation in the pig live weight prediction.
Body length and weight at weaning were also found to be important features, together
explaining approximately 27% of the variation. Other features such as metacarpus girth
and chest depth contributed little to the variation.
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Figure 4. Feature importance identified by the StackingRegressor algorithm.

It is of interest to note that the StackingRegressor algorithm yielded a prediction
quality of the live weight of Duroc, Landrace, and Yorkshire pigs that was higher than that
of the state-of-the art algorithms [3,23–26].

4. Conclusions

This study employed various machine learning algorithms to predict the live weight
of Duroc, Landrace, and Yorkshire pigs using body length, chest girth, withers height,
chest depth, chest width, metacarpus girth, weight at birth, weight at weaning, and age at
weaning. We found strong evidence of better performance for machine learning algorithms
compared with the traditional linear model using various evaluation measures. The
StackingRegressor model was found to provide more accurate pig live weight prediction,
outperforming the traditional linear model. The results of the present study demonstrate
that the StackingRegressor model can be used to predict pig live weight. Moreover, outlier
detection, normalisation, hyperparameter optimisation, and stack generalisation algorithms
can be used to increase the accuracy of predicting pig live weight. The findings of this study
may help researchers and practitioners adopt machine learning algorithms for accurate live
weight prediction using various morphological traits and other features. Since we used
data from pigs with the weight ranging from 86 to 113 kg, the proposed model will be
guaranteed to predict the weight of pigs in this range. We think that an indirect automated
estimation of the live weight should be a non-invasive measurement of morphometric
measurements based on computer vision, followed by live weight prediction using a
machine leaning.
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