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Simple Summary: Lipid metabolism has a substantial impact on the quality of meat in swine farming.
PPARγ has a close association with lipid metabolism and displays high expression in adipose tissues.
It is of paramount importance to control lipid metabolism to regulate PPARγ expression and activity
in pigs. In this study, the association between the expression of the PPARγ gene and the backfat
thickness of pigs was investigated. In recent years, retrotransposon insertion polymorphisms (RIPs),
a new type of molecular marker, have emerged as a potentially valuable tool for genetic breeding
in livestock and poultry. In this study, a combined retrotransposon insertion in the PPARγ gene of
pigs was discovered that could be used as an efficient marker in selecting pigs for growth rate and
lean percentage.

Abstract: PPARs are essential regulators of mammalian fatty acid and lipid metabolism. Although
the effects of genetic variations, including single nucleotide polymorphisms (SNPs) in PPARs genes
on the phenotype of domestic animals have been investigated, there is limited information on the
impact of retrotransposon insertion polymorphisms (RIPs). In this study, a combined comparative
genome and polymerase chain reaction (PCR) was used to excavate the RIPs in porcine PPARs.
We also investigated the potential effects of retrotransposon insertion on phenotype and expression
patterns. This study identified the two RIPs in PPARs genes, namely an ERV in intron 1 of PPARα and a
combined retrotransposon in intron 2 of PPARγ, designated as PPARα-ERV-RIP and PPARγ-COM-RIP,
respectively. These RIPs exhibited different distribution patterns among Chinese indigenous breeds
and Western commercial breeds. Individuals with the PPARα-ERV-RIP+/+ genotype (+/+ indicated
homozygous with insertion) among Large White pigs had significantly higher (p < 0.05) corrected
backfat thickness compared to those with the other two genotypes. Similarly, those with the PPARγ-
COM-RIP−/− genotype had significantly higher (p < 0.05) corrected backfat thickness than those with
the other two genotypes in Large White pigs. Moreover, in 30-day-old Sujiang piglets, the PPARγ

gene expression in the backfat of those with the PPARγ-COM-RIP−/− genotype (−/− indicated
homozygous without insertion) was significantly greater (p < 0.01) than those with other genotypes.
The dual luciferase reporter gene assay demonstrated that the combined retrotransposon insertion
significantly reduced the activity of the MYC promoter in both C2C12 and 3T3-L1 cells (p < 0.01).
Therefore, the combined retrotransposon insertion could function as a repressor to decrease the
expression of PPARγ, making PPARγ-COM-RIP a valuable molecular marker for assisted selection of
backfat thickness in pig breeding.
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1. Introduction

Peroxisome proliferator-activated receptors (PPARs) were discovered in 1990 and
consist of three members: PPARα, PPARγ, and PPARβ [1,2]. PPARs acquired transcriptional
activity by forming a heterodimer with the Retinoid X receptor (RXR), after which they
binded to the Peroxisome proliferator response element (PPRE) to regulate the transcription
of target genes [3–6]. PPARα was predominantly found in the liver, kidney, heart, and
muscle, with a high capacity for catabolizing fatty acids [7,8]. PPARβ exhibited ubiquitous
expression across multiple tissues [7]. PPARγ exhibited high expression in adipose tissue,
and was also present in multiple other tissues, such as the mammary gland [9]. PPARs
played crucial roles in metabolic syndrome [10], glucose and lipid metabolism [11], angio-
genesis [12], immune responses [13], and inflammation control [14]. Multiple signaling
pathways, including AMPK, were proved to be regulated by PPARs. Due to their vital role
in regulating fatty acid and lipid metabolism, the nucleotide variations of PPARs genes that
affect the economic traits of domesticated animals have received significant attention in
recent years.

Single nucleotide polymorphisms (SNPs) in PPARs genes have been linked to growth,
development, and meat quality in various species such as cattle and sheep [15–17]. A
636A>G SNP in the PPARα gene influenced adipose accumulation in Polish landrace
pigs [18]. SNPs in the 5′ regulatory region of the PPARβ gene significantly impacted pig
fat deposition traits [19]. Polymorphisms within the PPARγ promoter had a significant
impact on intramuscular fat (IMF) content in the longissimus dorsi (LD) muscle of Er-
hualian pigs [20]. However, few research papers focus on the retrotransposon insertion
polymorphism (RIPs) of these genes.

Retrotransposons are widely distributed in mammalian genomes, and their poten-
tial for mobilization can have significant impacts on the structure and function of these
genomes [21]. Retrotransposon can be classified into long terminal repeat (LTR) elements,
which mainly contain endogenous retrovirus (ERV) and non-LTR elements (Long inter-
spersed nuclear elements, LINEs; Short interspersed nuclear elements, SINEs). Retrotrans-
posons contribute to genetic diversity [22–24] and generate rich polymorphism [25–27] in
the mammal genome. By changing gene expression patterns, retrotransposon insertion
can result in human neurologic and psychiatric disorders [28–30], genetic disorders [31,32],
and cancer [33,34]. RIPs have been widely used in evaluating genetic diversity [35,36],
phylogenetic relationships [37], crop evolution [38], and germplasm resource analysis [39]
of plants.

Previous studies have investigated RIPs in the pig genome [40]. RIPs were utilized
to evaluate the genetic variation and population structure of different pig breeds [41,42].
Additionally, RIPs in important protein-coding genes were conducted to determine their
association with porcine phenotypes, including coat color [43], reproductive traits [25,44],
growth traits [45,46], and immunity [47]. Based on the genetic variation and population
structure evaluations conducted in previous studies, as well as the importance of PPARs in
lipid metabolism, RIPs in these genes were identified in this study. The study investigated
the correlation between these RIPs and several of the pigs’ economic performances.

2. Materials and Methods
2.1. Ethical Statement

The collection of biological samples and experimental procedures involved in this
study were approved by the Animal Experiment Ethics Committee of Yangzhou University
(No. NSFC2020-dkxy-02, 27 March 2020).

2.2. Animals and Extraction of DNA and RNA

DNA extractions were conducted on multiple pig breeds, including Duroc, Landrace,
Large White, Sujiang, Sushan, Erhualian, Meishan, Bama, Banna, Wuzhishan, Tibetan, and
Wild boars, in order to investigate retrotransposon polymorphisms using PCR analysis.
Subsequently, the extracted DNA was mixed into DNA pools. A total of eight breeds of
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pigs, including two commercial lean-type breeds (Large White and Duroc), two crossbreeds
(Sushang and Sujiang), and four Chinese fat-type indigenous breeds (Erhualian, Jiangquhai,
Fengjing, and Meishan), were genotyped for population genetic polymorphism using
DNA extracted from their ear tissues. The date of age at 30 kg bodyweight, age at 100 kg
bodyweight, and corrected thickness of backfat in Large White pigs were collected to
analyze the correlation between RIPs and growth traits. Total RNA was prepared from
tissues of Sujiang piglets. Table S1 showed the origin and number of breeds studied.

2.3. Extraction of DNA and RNA

DNA extraction was conducted on the ear tissues of each individual pig using the
TIANamp Genomic DNA Kit (Tiangen, Beijing, China). After extraction, the concentration
of each DNA sample was measured using the NanoPhotometer N60 Touch spectropho-
tometer (NanoPhotometer N60 Touch, Implen Gmbh, Munich, Germany) and then diluted
to a concentration of 40 ng/µL. Total RNA from the liver, backfat, longissimus dorsi, and
leaf fat of fifteen Sujiang piglets was extracted using TRIzol (Takara, Tokyo, Japan) to
investigate the expression pattern of PPARs. Storing total RNA at −80 ◦C after measuring
the concentration.

2.4. RIPs Detection

The PPARα (NC_010447.5), PPARβ (NC_010449.5), and PPARγ (NC_010455.5) genes,
along with their flanking regions (2 kb upstream and 2 kb downstream), were obtained from
a reference genome of Duroc (https://ncbi.nlm.nih.gov/, accessed on 20 July 2022). The
upstream 2 kb and downstream 2 kb of PPARs gene sequences were used as seeds to search
similar sequences of other breeds or populations in the whole-genome sequencing (WGS)
database (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 20 July 2022) and then
the corresponding sequences of other thirteen non-reference genomes were downloaded
based on the beginning and ending location of comparison results. PPARs gene sequences
information of other pig breeds or populations are provided in Table S2. To identify
large structural variants exceeding 50 bp, a ClustalX tool was used to perform a multiple
sequence alignment of the gene sequences from different breeds. RepeatMasker was
utilized to annotate retrotransposon insertions, including LINEs, SINEs, and ERVs, among
the predicted structural variations. The identified retrotransposon insertions were referred
to as RIPs and used for further identification via PCR amplification (Vazyme, Nanjing,
China). Relevant primer sequences are provided in Table S3.

2.5. Population Diversity Based on RIPs

Eight pig breeds (Large White, Duroc, Sushang, Sujiang, Erhualian, Jiangquhai,
Fengjing, and Meishan) were used to illustrate the genetic diversity. Genotype frequency,
allele frequencies, and Hardy–Weinberg equilibrium were evaluated using the Popgene.
The polymorphic information content (PIC) was calculated using the following formula:

PIC = 1−
n

∑
i=1

(Pi)
2−∑n−1

i=1 ∑n
j=i+1 2P2

i P2
j

2.6. qPCR

A total of twenty-one 30-day-old Sujiang piglets were genotyped. RNA was extracted
from tissues of fifteen 30-day-old Sujiang piglets, with five individuals per genotype, and
reverse transcribed to synthesize cDNA using a FastKing RT Kit (With gDNase) (TIANGEN,
Beijing, China). Next, qPCR was conducted on the 7900 HT Fast Real-Time PCR System
(Applied Biosystems, New York, NY, USA). The total reaction system includes 10 µL SYBR
mix (Vazyme, Nanjing, China), 0.4 µL upstream and downstream primers each, 1 µL cDNA
sample and 8.2 µL ddH2O. Gene expression was normalized to ACTB and measured using
the 2−∆∆Ct method. The primer sequences also are shown in Table S3.

https://ncbi.nlm.nih.gov/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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2.7. Dual-Luciferase Reporter Assay

A 643 bp insertion fragment of PPARγ was cloned using the Duroc genome and
confirmed by sequencing. Subsequently, it was inserted into pGL3-Oct4-basic and pGL3-
MYC-basic vectors to evaluate its potential as an enhancer or repressor. C2C12 and 3T3-L1
cells (1.5 × 105 cells each) were cultured in 6-well plates until they reached approximately
80% cell density. Then, Luciferase reporter vectors were transfected into the cells using
Lipofectamine 3000 reagents (Invitrogen, Carlsbad, CA, USA). Measurement of Luciferase
activity was undertaken 48 h later using the dual luciferase reporter system (Promega,
Madison, WI, USA).

2.8. Statistical Analysis

Using the mean ± standard deviation (SD), the data were summarized. Statistical
analyses were conducted by one-way ANOVA, followed by Tukey’s post hoc test using SPSS
17.0 (SPSS, Chicago, IL, USA). The age at 100 kg body weight was adjusted based on the
formula recommended by the National Swine Genetic Assessment Scheme. ANOVA was
used to investigate the relationship between genotype and phenotype, focusing specifically
on the age at 30 kg body weight, age at 100 kg body weight, and the corrected thickness
of backfat.

3. Results
3.1. Two RIPs Generated by Retrotransposon Insertions in Pig PPARs Genes

ClustalX was utilized to analyze one reference genome and thirteen assembled non-
reference genomes of PPARs genes, resulting in the prediction of 58 large structural varia-
tions (more than 50 bp). They were further annotated using the RepeatMasker program and
13 RIPs were predicted (Table S4). Two RIPs were identified by PCR from the DNA pool
(Figure 1A, the original electrophoretic figure is in Figure S1) and subsequently sequenced
by Beijing Tsingke Biotech. Each gene was characterized by three genotypes: homozygous
with insertion, heterozygous with insertion, and homozygous without insertion. These
genotypes were abbreviated as +/+, +/−, and −/−. The ERV insertion identified at posi-
tions 3316558–3316851 bp on chromosome 5 of the porcine reference genome (Sscrofa11.1)
in the PPARα gene was found to be from the subfamily ERV14-I with a length of 294 bp. A
combined retrotransposon consisting of one SINEB1 (64 bp), one ERV7-I (26 bp), and one
SINEA4 (197 bp) was detected in the PPARγ gene. The insertion was located on chromo-
some 13 of the porcine reference genome (Sscrofa11.1), with positions 68351107–68351108
bp. The two insertions have been designated as PPARα-ERV-RIP and PPARγ-COM-RIP.
The schematic diagram of the retrotransposon insertions in PPARα and PPARγ genes are
shown in Figure 1B,C.

3.2. Genetic Diversity of Two RIPs in Different Pig Breeds

The distribution of retrotransposon insertion was evaluated in eight different pig
breeds. Additionally, a Hardy–Weinberg test was performed, and the PIC value was
calculated. In Table 1, the frequency of PPARα-ERV-RIP+ was higher in crossbreed pigs
(Sushan and Sujiang) and indigenous Chinese fat-type breeds (Erhualian, Jiangquhai,
Fengjing, and Meishan) relative to commercial pigs. PPARγ-COM-RIP− frequency was
dominant in every pig breed except Meishan. Erhualian, one of the Chinese fat-type
indigenous breeds, did not adhere to the Hardy-Weinberg equilibrium in the PPARα-ERV-
RIP. Additionally, two commercial lean-type breeds (Large White and Duroc) and one
crossbreed (Sujiang) diverged from the Hardy–Weinberg equilibrium in both RIPs. This
observation suggests that these breeds may have undergone intensive selection which may
have impacted the distribution of the two RIPs. The majority of the breeds displayed low to
medium polymorphism, as indicated by the PIC values. However, one crossbreed (Sujiang)
showed high polymorphism in the PPARα-ERV-RIP.
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The distribution of retrotransposon insertion was evaluated in eight different pig 

breeds. Additionally, a Hardy–Weinberg test was performed, and the PIC value was 

calculated. In Table 1, the frequency of PPARα−ERV−RIP+ was higher in crossbreed pigs 

Figure 1. RIPs identification in PPARs genes. (A) PCR detection of RIPs and genotype schematic.
1. Duroc, 2. Landrace, 3. Large White, 4. Sujiang, 5. Sushan, 6. Erhualian, 7. Meishan, 8. Bama,
9. Banna, 10. Wuzhishan, 11. Tibetan, 12. Wild boars. M: DNA marker DL2000. The electrophoretic
results showed that the homozygous with insertion (+/+) exhibited a single long band, the het-
erozygous with insertion (+/−) exhibited both long and short bands, and the homozygous without
insertion (−/−) exhibited a single short band. (B) The ERV sequence in PPARα-ERV-RIP site with
and without ERV insertion and its location on PPARα gene. (C) The sequence in PPARγ-COM-RIP
site with and without combined insertion and its location on PPARγ gene.

3.3. Correlation Analysis between RIPs and Phenotype of Large White

The relationship between two RIPs and the phenotype of Large White pigs was
analyzed. As shown in Table 2, the corrected backfat thickness of PPARα-ERV-RIP+/+

individuals was significantly higher (p < 0.05) than that of PPARα-ERV-RIP+/− individuals
and extremely significantly higher (p < 0.01) than that of PPARα-ERV-RIP−/− individuals.
The age at 30 kg body weight and 100 kg body weight of PPARα-ERV-RIP+/+ individuals



Animals 2023, 13, 2355 6 of 12

were significantly lower (p < 0.01) than that of individuals with the PPARα-ERV-RIP+/−

and PPARα-ERV-RIP−/− genotypes. The corrected backfat thickness of PPARγ-COM-
RIP−/− individuals was significantly higher (p < 0.05) than that of individuals with the
PPARγ-COM-RIP+/+ and PPARγ-COM-RIP+/− genotypes. The age of 30 kg body weight
of PPARγ-COM-RIP−/− individuals was significantly lower (p < 0.05) than that of PPARγ-
COM-RIP+/− individuals.

3.4. Expression Pattern of PPARα and PPARγ in Tissues of Sujiang Pigs

The expression patterns of PPARα and PPARγ were investigated in 30-day-old Su-
jiang piglets with different genotypes in the liver, backfat, longissimus dorsi, and leaf
fat. The results are shown in Figure 2. Only two genotypes, PPARα-ERV-RIP+/+ and
PPARα-ERV-RIP+/−, were observed in PPARα. No significant differences in the expression
of PPARα were observed between the two genotypes in all four tissues. In the backfat
tissue, individuals with the PPARγ-COM-RIP−/− genotype showed significantly higher
(p < 0.01) expression of PPARγ as compared to those with PPARγ-COM-RIP+/+ and PPARγ-
COM-RIP+/− genotypes. Individuals with the PPARγ-COM-RIP+/− genotype displayed
significantly lower (p < 0.05) expression of PPARγ in the leaf fat compared to those with
the other two genotypes.
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Figure 2. The expression pattern of two loci (PPARα-ERV-RIP and PPARγ-COM-RIP) in tissues
of 30-day-old Sujiang piglets. (A) Relative expression of PPARα gene in Sujiang piglets’ tissues.
(B) Relative expression of PPARγ gene in Sujiang piglets’ tissues. The values are shown as mean± SD,
and * shows p < 0.05, ** shows p < 0.01.

Table 1. Analysis of RIPs’ distribution in different breeds.

Loci Breeds Number
Genotype Frequency Allele Frequency Hardy–Weinberg

Equilibrium

Polymorphic
Information

Content+/+ +/− −/− + −

PPARα-ERV-RIP

Large
White 551 19.24 71.14 8.89 54.81 44.46 <0.01 0.38

Duroc 24 8.33 91.67 0.00 54.17 45.83 <0.01 0.37
Sushsan 24 79.17 20.83 0.00 89.58 10.42 0.5689 0.17
Sujiang 21 38.10 61.90 0.00 69.05 30.95 0.0400 0.55

Erhualian 24 25.00 75.00 0.00 62.50 37.50 0.0033 0.36
Jiangquhai 24 95.83 4.17 0.00 97.92 2.08 0.9170 0.04
Fengjing 24 50.00 45.83 4.17 72.92 27.08 0.4319 0.32
Meishan 24 83.33 16.67 0.00 91.67 8.33 0.6561 0.03

PPARγ-COM-RIP

Large
White 505 9.50 67.92 22.57 43.47 56.53 <0.01 0.37

Duroc 24 0.00 75.00 25.00 37.50 62.50 <0.01 0.36
Sushan 32 3.13 18.75 78.13 12.50 87.50 0.4190 0.19
Sujiang 23 4.55 68.18 27.2 38.64 61.36 0.0400 0.37

Erhualian 24 4.17 62.50 33.33 35.42 64.58 0.0728 0.35
Jiangquhai 21 0.00 33.33 66.67 16.67 83.33 0.3594 0.24
Fengjing 24 0.00 0.00 100.00 0.00 100.00 / 0.00
Meishan 22 30.43 47.83 21.74 54.35 45.65 0.8622 0.36
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Table 2. Association analysis between PPARs-ERV-COM-RIP and growth traits of Large White pigs.

Genotype Number Age at 30 kg Body
Weight/d

Age at 100 kg
Body Weight/d

Correcting
Backfat

Thickness/mm

PPARα-ERV-RIP+/+ 122 72.53 ± 9.72 a 159.75 ± 5.85 a 11.33 ± 2.54 a

PPARα-ERV-RIP+/− 321 75.66 ± 7.82 b,* 163.76 ± 9.04 b,* 10.65 ± 2.65 b

PPARα-ERV-RIP−/− 102 75.88 ± 6.96 b,* 162.95 ± 7.37 b,* 10.42 ± 2.43 b,*
PPARγ-COM-RIP+/+ 86 74.65 ± 9.51 a 162.47 ± 8.59 10.46 ± 2.33 a

PPARγ-COM-RIP+/− 304 75.73 ± 8.01 a 163.19 ± 8.63 10.64 ± 2.73 a

PPARγ-COM-RIP−/− 110 73.92 ± 7.22 b 162.68 ± 7.65 11.17 ± 2.36 b

Note: Different superscript letters indicated difference between groups (p < 0.05). Different superscript letters
with * indicated significant difference between groups (p < 0.01).

3.5. The 643 bp Insertion from PPARγ May Act as Repressor to Regulate the MYC Promoter

The structural variation of 643 bp was analyzed using the RepeatMasker annotation
information. The structural variation includes three retrotransposons: SINEB1, ERV7-1,
and SINEA4. Based on the expression differences of PPARγ in three genotypes of Sujiang
piglets, this study investigated the potential functions of this 643 bp structural variation.
Two predicted promoters were 8452 bp and 10952 bp away from the transcription start
site (ATG) of PPARγ (Figure 3A). The 643 bp insertion was cloned by PCR using the DNA
template of Duroc homozygote and inserted into pGL3-Oct4-basic and pGL3-MYC-basic
vectors. The recombinant plasmids were named PPARγ-COM+-Oct4-Luc+ and PPARγ-
COM+-MYC-Luc+. C2C12 and 3T3-L1 cells were transfected with these two vectors. The
dual luciferase reporter assay demonstrated that the retrotransposon insertion significantly
suppressed MYC promoter activity in C2C12 and 3T3-L1 cells (p < 0.01). In contrast, in 3T3-
L1 cells, the inserted fragment increased Oct4 promoter activity (p < 0.01). The data suggest
that the inserted fragment may act as a repressor to regulate PPARγ gene expression.

Animals 2023, 13, x FOR PEER REVIEW 8 of 13 
 

 
Animals 2023, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/animals 

 

Table 2. Association analysis between PPARs−ERV−COM−RIP and growth traits of Large White 

pigs. 

Genotype Number Age at 30 kg Body Weight/d Age at 100 kg Body Weight/d Correcting Backfat Thickness/mm 

PPARα−ERV−RIP+/+ 122 72.53 ± 9.72 a 159.75 ± 5.85 a 11.33 ± 2.54 a 

PPARα−ERV−RIP+/− 321 75.66 ± 7.82 b,* 163.76 ± 9.04 b,* 10.65 ± 2.65 b 

PPARα−ERV−RIP−/− 102 75.88 ± 6.96 b,* 162.95 ± 7.37 b,* 10.42 ± 2.43 b,* 

PPARγ−COM−RIP
+/+

 86 74.65 ± 9.51 a 162.47 ± 8.59 10.46 ± 2.33 a 

PPARγ−COM−RIP+/− 304 75.73 ± 8.01 a 163.19 ± 8.63 10.64 ± 2.73 a 

PPARγ−COM−RIP−/− 110 73.92 ± 7.22 b 162.68 ± 7.65 11.17 ± 2.36 b 

Note: Different superscript letters indicated difference between groups (p < 0.05). Different 

superscript letters with * indicated significant difference between groups (p < 0.01). 

3.5. The 643 bp Insertion from PPARγ May Act as Repressor to Regulate the MYC Promoter 

The structural variation of 643 bp was analyzed using the RepeatMasker annotation 

information. The structural variation includes three retrotransposons: SINEB1, ERV7−1, 

and SINEA4. Based on the expression differences of PPARγ in three genotypes of Sujiang 

piglets, this study investigated the potential functions of this 643 bp structural variation. 

Two predicted promoters were 8452 bp and 10952 bp away from the transcription start 

site (ATG) of PPARγ (Figure 3A). The 643 bp insertion was cloned by PCR using the DNA 

template of Duroc homozygote and inserted into pGL3−Oct4−basic and pGL3−MYC−basic 

vectors. The recombinant plasmids were named PPARγ−COM+−Oct4−Luc+ and 

PPARγ−COM+−MYC−Luc+. C2C12 and 3T3−L1 cells were transfected with these two 

vectors. The dual luciferase reporter assay demonstrated that the retrotransposon 

insertion significantly suppressed MYC promoter activity in C2C12 and 3T3−L1 cells (p < 

0.01). In contrast, in 3T3−L1 cells, the inserted fragment increased Oct4 promoter activity 

(p < 0.01). The data suggest that the inserted fragment may act as a repressor to regulate 

PPARγ gene expression.  

 

Figure 3. A combined retrotransposon insertion served as a regulating element to affect the 

promoter activities. (A) Schematic diagram of promoter prediction. (B) Schematic diagram of the 

recombinant vector structure. (C) Impact of combined insertion of PPARγ−COM−RIP on the 

Figure 3. A combined retrotransposon insertion served as a regulating element to affect the promoter
activities. (A) Schematic diagram of promoter prediction. (B) Schematic diagram of the recombinant
vector structure. (C) Impact of combined insertion of PPARγ-COM-RIP on the promoter activity of
MYC and Oct4 in C2C12 and 3T3-L1 cells by dual-luciferase reporter assay. ** shows p < 0.01.
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4. Discussion

Peroxisome proliferator-activated receptors (PPARs) are important factors in regulating
lipid metabolism, adipogenesis, inflammatory response, and cell differentiation [48]. PPARα
and PPARγ, subtypes of the PPARs gene, played an important role in fatty acid catabolism
and adipogenesis [3–6]. This study found 13 putative polymorphic loci in porcine PPARs
genes resulting from retrotransposon insertion. PPARα-ERV-RIP and PPARγ-COM-RIP
were identified by PCR, both of which were located in the intron. The introns of genes in
higher eukaryotes contain a large number of regulatory elements [49–51]. Approximately
90% of human and mouse genes included TEs in their introns [52]. In the pig genome,
retrotransposons that were inserted into the introns of protein-coding genes accounted
for a proportion of 35.1 [53]. Massive genomic variation may result from the existence of
transposable elements (TEs) [54,55].

The distribution of two RIPs was evaluated in the different types of pig breeds, includ-
ing fat-type, lean-type, and crossbreed. PPARα-ERV-RIP+ was dominant in the crossbreeds
and fat-type, while PPARγ-COM-RIP− was dominant in the lean-type. Commercial pigs
have a higher lean percentage and thinner backfat than Chinese native pigs [56–59]. This
may be attributed to artificial and natural selection. Compared to other animals, pigs
are more efficient in adipogenesis and fat deposition. In recent years, consumers prefer
pork with a high lean percentage and commercial pigs were more popular. Therefore, the
selection of lean percentage in pigs may result in the nucleotide changes of genes related
to fat deposition such as PPARs. In commercial lean-type (Large White and Duroc) and
crossbreed (Sujiang), which have diverged from the Hardy–Weinberg equilibrium, a higher
frequency of the heterozygous with insertion (+/−) was observed. This may be due to
the fact that these breeds may have undergone strong selection pressure for lean meat
percentage. Additionally, in Erhualian pigs at the PPARγ-COM-RIP, the genotype frequency
of heterozygous with insertion (+/−) was also higher than that of the other two genotypes.
The Erhualian pigs were kept in breed conservation and whether this attribute affects
selection should be further studied.

The association between these two RIPs and the growth traits of Large White pigs was
investigated. The results showed that PPARα-ERV-RIP+/+ individuals grew more quickly
and had thicker backfat (p < 0.05), while PPARγ-COM-RIP+/+ individuals grew more slowly
and had thinner backfat (p < 0.05), which may indicate that the ERV and SINE insertion
in PPARs may affect the porcine phenotype and the mechanism should be further studied.
Porcine backfat thickness is one of the important factors affecting pig lean percentage.
Transposons can affect phenotypes by regulating gene expression. Laiwu pigs have a
thicker backfat and higher expression of PPARγ in backfat than western pig breeds [60].
In tissues of Sujiang piglets, PPARα expression was not significantly different between
PPARα-ERV-RIP+/+ and PPARα-ERV-RIP+/− genotypes individuals. This might be related
to differences in gene expression in different tissues and developmental stages [61]. In the
backfat, PPARγ expression in the COM−/− genotype was much higher than that of the other
two genotypes (p < 0.05). Experimental results about the expression of PPARγ indicated
that the combined retrotransposon insertion might reduce the expression of PPARγ in the
backfat. However, the homozygous without ERV insertion of 30-day-old Sujiang piglets
was not found and the expression difference of PPARα between the homozygous with and
without ERV insertion could not be observed. So, the mechanism of how the ERV insertion
effected the phenotype of Large White pigs should be further studied.

A dual luciferase reporter assay was subsequently conducted to verify the function of
combined retrotransposon insertion. The combined retrotransposon insertion significantly
decreased the MYC promoter activity in both C2C12 and 3T3-L1 cells. However, the
insertion resulted in increased Oct4 promoter activity specifically in 3T3-L1 cells. In our
previous studies, the SINE retrotransposon insertion in the GHR gene of the pig could
lead to a reduction in GHR gene expression [45]. Additionally, SINE insertion could
also function as an enhancer, increasing the expression of BMPR1B in the ovaries and
influencing the reproductive traits of Large White pigs [44]. The ERV insertion may act
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as an enhancer affecting the regulation of the TLR signaling pathways [47]. In this paper,
the combined retrotransposon insertion acted as a repressor to regulate the MYC promoter
activity in C2C12 and 3T3-L1 cells. Previous studies have confirmed that retrotransposon
insertions could perform different functions. This difference may be related to different
promoters [62], different cells [63], or methylation status [64]. The reason the insertion did
not reduce Oct4 promoter activity in C2C12 cells may be due to the fact that the combined
retrotransposon could not work with the Oct4 promoter in C2C12 cells. Since the combined
retrotransposon insertion was present upstream of the CDS domain, combined with the
results of the expression pattern and growth trait affected by the insertion in PPARγ, the
combined retrotransposon could serve as a repressor in regulating the expression of PPARγ
and affect the fat deposition in porcine backfat. In the human genome, SINE-VNTR-Alu
(SVA), a young composite retrotransposon, was presented in about 2700 copies [65]. SVA
might impact the genome and sometimes cause disease [66]. In the LRIG2 gene, SVA,
as methylation quantitative trait loci (mQTL), could regulate the expression levels of
LRIG2 [67]. Therefore, multiple transposons could combine to affect the architecture of
the host animal genome. However, in this study, the combined retrotransposon insertion
existed only in one copy. Further research is needed to reveal the possible mechanism of
formation of this insertion and the function of each retrotransposon.

5. Conclusions

This study identified two RIPs, one in intron 1 of PPARα and another in intron 2 of
PPARγ, through comparative genomics and PCR verification. The distribution of PPARα-
ERV-RIP+ and PPARγ-COM-RIP+ was different between commercial pigs and Chinese local
pigs. These two RIPs displayed a significant correlation in growth rate and backfat thickness
in Large White pigs. Furthermore, the combined retrotransponson insertion reduced the
PPARγ expression in the back fat of Sujiang piglets and decreased the MYC promoter
activity in C2C12 and 3T3-L1 cells (p < 0.01) according to a dual luciferase reporter gene
assay. Therefore, PPARγ-COM-RIP could serve as useful markers in selecting pigs aimed
at growth rate and lean percentage and the insertion may affect the host gene expression
and further affect the fat deposition.
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