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Simple Summary: Cephalopods are not only important economic products in fisheries, but also
located in the middle pyramid of the marine ecosystem, playing a role of carrying the top and bottom.
Cephalopods are the meals of large marine mammals, and their soft tissues are mostly digested in the
stomach, and the beaks can be retained as hard tissues of cephalopods, which are structurally stable
and resistant to corrosion. Therefore, the biodiversity of cephalopods can be analyzed by studying
the beaks. However, there are many difficulties in the identification of beaks, such as the high level
of similarity between different species of beaks and the variability arising from the growth process.
The local shallow features, namely texture features and morphological features, and the global deep
features were used, and the two types of features were fused for identification. This study verifies the
complementarity between the two types of features and further contributes to the progress of beak
recognition, providing a new approach to analyzing the biodiversity of cephalopods.

Abstract: Cephalopods are an essential component of marine ecosystems, which are of great signifi-
cance for the development of marine resources, ecological balance, and human food supply. At the
same time, the preservation of cephalopod resources and the promotion of sustainable utilization
also require attention. Many studies on the classification of cephalopods focus on the analysis of
their beaks. In this study, we propose a feature fusion-based method for the identification of beaks,
which uses the convolutional neural network (CNN) model as its basic architecture and a multi-class
support vector machine (SVM) for classification. First, two local shallow features are extracted,
namely the histogram of the orientation gradient (HOG) and the local binary pattern (LBP), and
classified using SVM. Second, multiple CNN models were used for end-to-end learning to identify
the beaks, and model performance was compared. Finally, the global deep features of beaks were
extracted from the Resnet50 model, fused with the two local shallow features, and classified using
SVM. The experimental results demonstrate that the feature fusion model can effectively fuse multiple
features to recognize beaks and improve classification accuracy. Among them, the HOG+Resnet50
method has the highest accuracy in recognizing the upper and lower beaks, with 91.88% and 93.63%,
respectively. Therefore, this new approach facilitated identification studies of cephalopod beaks.

Keywords: cephalopods; beaks; CNN; HOG; LBP; SVM; feature fusion

1. Introduction

The important role cephalopods (Mollusca: Cephalopoda) play in many marine
ecosystems has been widely acknowledged [1]. Cephalopods are predators for numerous
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prey and are preyed upon by predators [2–5]. In particular, cephalopods are one of the main
food sources for large marine predators such as whales [6], dolphins [7], and sharks [8].
Consequently, cephalopods are located in the middle of the marine trophic level pyramid,
playing a significant role in the marine food chain and nutrition structure [9]. Furthermore,
cephalopods are significant marine animals in economic terms, due to their short life
cycles (typically 1 year), rapid growth, and abundant resources [10]. In recent decades,
the development of the global cephalopod fishery industry and the production of edible
cephalopods have accelerated. Research on cephalopods is beneficial for the sustainable
utilization of this resource and will also increase the number of cephalopod species available
for future commercial development.

The majority of our understanding of cephalopods comes from analyzing the stomach
contents of their predators. The identification of cephalopods in stomach contents is
typically dependent on beaks since the majority of soft tissue has been digested, but the
beaks can resist digestion for as long as several months [11,12]. As the main feeding
organ of cephalopods, beaks are located in the buccal mass and are divided into the upper
beak and the lower beak [13–16]. The beak is one of the hard tissues in cephalopods,
which has a stable structure and is resistant to corrosion [14]. In recent years, the beak
has been extensively utilized for the identification of cephalopod populations [13,17] and
the classification of species [18]. Therefore, a lot of research work has been devoted to
improving the feature extraction and recognition methods for beaks.

In the field of computer vision, shallow features refer to extracting basic image at-
tributes or features from image data. The common shallow features in computer vision
include edge features, texture features, morphological features, color features, and so on.
The morphological features of the beak are a useful tool for searching for inter- and intra-
species differences in cephalopods, as well as for species identification [10]. Hence, the
majority of research on the classification of beaks has centered on refining methods for
extracting morphological features. The research on deriving the morphological features of
the beak focuses primarily on the calibration of feature points and the extraction of feature
parameters [19]. With the development of artificial intelligence, edge detection has been
applied as a basic method for image processing using computer vision in the study of
beak recognition. He Q H et al. [20] extracted the contours of the beak by using the canny
algorithm to assist in the calibration of feature points and extraction of feature parameters,
which resulted in addressing issues such as time-consuming and labor-intensive manual
measurements. Wang B Y et al. [21] proposed an improved edge detection method to
extract the morphological outer contour of the beak, which can effectively distinguish
signal noise and improve the accuracy of target selection, while ensuring the integrity of
the contour within the error tolerance. The feature algorithm used in the above study to
extract a single shallow feature of the beak is effective in beak image classification, which
has the advantages of high interpretability, good performance with a small number of
samples, and low computational resource requirements. This traditional method typically
requires the manual design of region of interest features and feature extraction operators in
the image, which fails to fully define the subtle differences in the beak and is, therefore,
sensitive to changes in scale and morphology.

CNN is the most prominent deep learning method in which the multiple layers are
trained and tested robustly. In recent years, deep learning has been broadly applied in
various domains [22], since it autonomously extracts image features for image recogni-
tion [23,24]. Deep features are high-level feature representations that are learned from
original image data by deeply learned models. These features can help computers better
understand and utilize complex real-world data. Tan H Y et al. [25] extracted shallow and
deep features from beaks and classified them using eight machine learning classification
methods. They concluded that deep features were preferable to shallow ones for beak
classification. This model has several limitations, including imbalance and a small sample
size, as well as a single beak view and a limited number of morphological features in mor-
phological shape descriptors (MSDs). Deep learning methods based on the convolutional
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neural network (CNN) model have led to significant breakthroughs in various fields, as
they can achieve the extraction of complex target features to some extent and also reduce
the errors arising from human-defined features. However, the CNN model requires a
large amount of labeled data and a long training time to fully learn and represent complex
features within the image data. Also, its performance may be limited in the face of an
insufficient amount of beak data. Therefore, shallow feature algorithms and deep feature
methods have advantages and disadvantages and differ in their representation of features.

Based on the preceding analysis, we have reason to believe that traditional algorithms
are beneficial for extracting shallow features for classifying beaks. However, the feature
information extracted by a single feature descriptor is relatively limited, and the required
features may not be extracted sufficiently. At the same time, the deep features contain
semantic information, but due to the limited number of beak samples, the descriptor may
not be able to extract all the necessary details. Therefore, we tried to improve accuracy
by describing multiple features of the image and achieving a complementary means of
feature information. This study proposes, for the first time, a recognition method based on
fusing global deep features with local shallow features in the field of beak research. The
study included four cephalopod species, namely Dosidicus gigas (D. gigas), Illex argentinus
(I. argentinus), Eucleoteuthis luminosa (E. luminosa), and Ommastrephes bartramii (O. bartramii),
which provided images of upper and lower beaks. Initially, the histogram of the orientation
gradient (HOG) and the local binary pattern (LBP) feature descriptors were employed
to derive the morphological and texture features from the beak image. Meanwhile, we
selected the optimal CNN model for deep feature extraction, including the VGG16 [26],
InceptionV3 [27], and Resnet series [28]. Next, two types of local shallow features and
global deep features were fused separately to highlight the details of the features, and the
support vector machine (SVM) classifier was utilized for classification. This method will
facilitate the development of beak recognition and provide a new and feasible strategy for
future cephalopod biodiversity studies.

2. Materials and Methods
2.1. Materials

In this study, we collected samples of four oceanic cephalopods targeted for fisheries,
including D. gigas, I. argentinus, E. luminosa, and O. bartramii (Table 1). Among them,
D. gigas, I. argentinus, and O. bartramii were obtained by handfishing from squid boats,
and E. luminosa was caught using trawl nets. Species identification was confirmed with
reference to Jereb P et al. [29]. These specimens were selected to represent the diversity of
unique morphological groups and size classes during the sampling process. The collected
samples were frozen immediately upon arrival at the laboratory and the beaks were peeled
off and stored in bottles containing 75% ethanol. A total of 200 beak samples were obtained.

Table 1. Sampling information for four cephalopod samples.

Species Sampling Location Sampling Date

Dosidicus gigas 89◦ W~118◦ W, 0◦~6◦ S March 2020
Illex argentinus 57◦ W~60◦ W, 41◦ S~47◦ S March 2021

Eucleoteuthis luminosa 158◦ E~162◦ E, 36◦ N~38◦ N June 2021
Ommastrephes bartramii 157◦ E~164◦ E, 36◦ N~45◦ N July 2022

2.2. Image Acquisition

We collected digital images of the beak. First, the beak sample was placed in the center
of the white light board, and a smartphone was used as the shooting instrument to capture
images from multiple angles, including the top view, left view, right view, front view, etc.
(Figure 1). The project gathered 4000 images to satisfy the training requirements of the
CNN model. The original image resolution was 3020 px × 3020 px and all images were
saved in JPEG format. Then, images were input into the model for feature extraction and
resized according to the image input standards.
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Figure 1. Four species of beaks. (a) Represents the upper beak image. (b) Represents the lower beak
image.

2.3. Partition Dataset

In shallow feature extraction models, the dataset of upper and lower beaks for each
species was split into training and testing sets according to an 80% and 20% ratio. A total
of 20% of the dataset was used as the testing set. The remaining 80% of the beak dataset
was randomly split into 80% for training and 20% for the validation set in the CNN model.
After each training iteration, the validation set serves as a preliminary evaluation of the
learning architecture. Once the CNN model had been trained, the parameters (network
weights) were stored and used to evaluate the performance of the testing set. There was
zero overlap between the training set, validation set, and testing set.

2.4. Data Augmentation

It is a generally accepted notion that a bigger dataset results in better deep learning
models [30,31]. Data augmentation is a frequently employed technique in deep learning
that generates new training samples by expanding and transforming the original data.
An affine transformation was used for data augmentation (Figure 2). This can be written
as follows:

y = ωx + b (1)

where y represents the transformed data, ω represents the weight matrix that contains the
parameters of the transformation, x is the input data, and b is a constant term.

The following enhanced parameters were applied:
Image flipping and rotation: by randomly determining whether or not to perform the

flip and rotate operation and by randomly generating the corresponding parameters (flip
direction and rotation angle).

Random crop: by selecting at random the position of a crop box on the original image
and cropping it.

Scale transformation: by generating a new aspect ratio at random and calculating the
new width and height of the beak image.
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Figure 2. Data enhancement example: (a) original image; (b) flip the image horizontally; (c) rotate
the image 45 degrees to the left; (d) randomly crop the image; (e) randomly change the width and
length of the image.

2.5. Methods

The methods for identifying the four species of beaks can be split into four main
stages: (a) obtaining digital images of beaks and adjusting the image size; (b) extracting the
shallow features of HOG and LBP, and using the SVM classifier to automatically classify the
beak; (c) obtaining deep features through six different CNN models and classifying them;
(d) selecting the deep features with the best deep model in fusion with shallow features
and using the SVM classifier to identify the beaks (Figure 3). The details of the specific
process steps are as follows.
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2.5.1. Local Shallow Feature Extraction
Local Binary Patterns (LBP)

LBP [32] is a descriptor used to characterize the local texture features of the image,
with robust extraction capabilities for texture information. The method must be applied to
image regions containing multiple points, as opposed to a single pixel. The improved LBP
descriptor is employed to adapt to texture features of varying dimensions and satisfy the
requirements of grayscale and rotation invariance, which replaces square neighborhoods
with circular neighborhoods. In the image of the beak, the improved LBP descriptor permits
random P sampling points within a circular neighborhood of radius R (Figure 4).
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Expressed in terms of the formula:

LBP(xc, yc) =
P−1

∑
p=0

2ps(ip − ic) (2)

where (xc, yc) is the center pixel, P is the number of samples, p belongs to a number from 0
to P, ic is the gray value, ip is the gray value of the neighboring pixel, and S is a sign function;

S(x) =
{

1 i f x ≥ 0
0 else

(3)

For a given center point (xc, yc), the position of the sampling point (xp, yp) is deter-
mined using Equations (4) and (5), p ∈ P, P is the number of samples, p belongs to the
number from 0 to P.

xp = xc + Rcos
(

2p
P

)
(4)

yp = yc − Rsin
(

2πp
P

)
(5)

The LBP statistical histogram is the feature vector of the beak image (Figure 3). The
following is a summary of the LBP features extracted from the beak image:

1. The image of the beak is converted to a grayscale image and divided into n × n cells;
2. The central pixel of each cell is compared with P pixels in the circular neighborhood

and the LBP value of each cell is calculated;
3. Normalize the histogram of every cell;
4. The histograms of all cells are concatenated as texture feature vectors of the whole image.

Histogram of Oriented Gradient (HOG)

HOG is one of the best features to capture edge or local morphological information [33]
and is widely used in machine learning, pattern recognition, and image processing that
uses gradient information to reflect the edge features of beak images and describe the
appearance and morphology of images based on the value of local gradients (Figure 3).
The following is a summary of the extraction process:

1. The beak image is grayscaled and normalized, which diminishes the effect of shadows
and illumination on the image and reduces noise.
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2. The gradient (including size and direction) of each pixel is calculated, and the image
is divided into multiple units. The gradient calculation formula is defined as:

Gx(x, y) = I(x + 1, y)− I(x− 1, y) (6)

Gy(x, y) = I(x, y + 1)− I(x, y− 1) (7)

∇G(X, Y) =
√

Gx(x, y)2 + Gy(x, y)2 (8)

theta(x, y) = arctan
(

Gy(x, y)
Gx(x, y)

)
(9)

where Gx(x, y) is the gradient in the x direction, Gy(x, y) is the gradient in the y direction,
∇G(X, Y) is the gradient amplitude, theta(x, y) is angle;

3. The image is separated into numerous cells. Each cell consists of C × C pixels, with N
cells forming a block (Figure 5).

4. The statistical direction gradient histogram of the cell builds a block, and the feature
vectors of the beak image are obtained by connecting feature vectors of all blocks.
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2.5.2. Deep Feature Extraction

Deep learning is a field of machine learning which learns high-level abstractions in
data by using hierarchical architectures [34]. Three typical CNN models are used to extract
deep features, namely VGG16, InceptionV3, and ResNet series. ResNet can be divided into
ResNet18, ResNet34, ResNet50 (Figure 6), and ResNet101 based on the network structure of
different layers. CNN typically includes three fundamental operations: convolution layers,
pooling layers, and full connection layers. The convolutional layer refers to the application
of convolutional kernels to obtain image pixel data. The main function of the pooling layer
is to reduce redundant feature data. The full connection layer acts as a classifier.

2.5.3. Feature Fusion

The results of the extraction of image features frequently influence the accuracy of
classification. A single type of image feature overlooks the complementarity of multiple
features. Shallow features and deep features each represent different species of image
features. In this study, shallow features and deep features are fused, which means deep
features are fused with HOG or LBP features to form fused features, and this method
effectively utilizes the relationship between various features to obtain more discriminative
detailed features. The fused features are introduced through the SVM classifier to obtain
the final classification result (Figure 3).
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In this paper, the vector stacking fusion method is used. Assuming that xhog is a
morphological feature, xdeep is a deep feature and xlbp is a texture feature. The feature
fusion expression is as follows:

y1 =
[

xhog, xdeep

]
(10)

y2 =
[

xlbp, xdeep

]
(11)

where, y1 represents the fusion of morphological features and deep features, y2 represents
the fusion of texture features and deep features.

2.5.4. Support Vector Machine (SVM)

SVM originated for binary classification problems and is a binary classification model.
SVM is extensively used in species classification and is considered a representative of
machine learning [35], which can solve both linearly separable and linearly nonseparable
problems [36]. The classification of four species of beaks is a nonlinear problem with
multi-class classifications. When addressing problems involving multiple classes, it is
necessary to develop appropriate multi-class classifiers [37,38]. Therefore, the basic theory
of multi-class SVM is to transform the space by introducing the kernel function K and find
the optimal hyperplane in the high-dimensional feature space to maximize the distance
between multi-class samples, thus transforming the nonlinear classification problem into
the high-dimensional linear classification problem [36,39].

2.5.5. Performance Evaluation

The confusion matrix is a performance evaluation tool presented in matrix form
to measure the classification results of a model for different species. In this study, the
classification was based on the true beak species and the predicted beak species, and the
classification results could be classified into four different cases: true positive (TP), false
positive (FP), true negative (TN), and false negative (FN). Based on the confusion matrix, a
series of classification performance metrics were calculated, including accuracy, precision,
recall, and F1-score. Accuracy is the ratio of the number of correctly classified samples
to the total number of samples. Precision is defined as the proportion of true positives
to all positives predicted by the model. Recall is the proportion of correctly predicted
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positive classes relative to the total number of actual positive classes. F1-score is an all-
encompassing measure of precision and recall rate. The following are the definitions of
these classification indicators:

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1-score = 2
Precision× Recall
Precision + Recall

(15)

where, TP = true positive, TN = true negative, FP = false positive, FN = false negative.

2.5.6. Experimental Parameter Settings

Based on prior knowledge of hyperparameter settings for the SVM classifier, this
study chose the hyperparameter that achieves the best results for SVM (Table 2). The
parameters of the multi-class SVM classifier are kernel function (K), C, and decision function
morphological, correspondingly. K is set to “rbf” so that the feature data of the beak is
separable in the feature space. C represents the penalty coefficient, which is the tolerance
for errors.

Table 2. Parameters set in feature extraction and classification.

Model Parameter Name Parameter Value

SVM K ‘rbf’
C 10

decision function morphological OVR

CNN learning rate “1 × 10−3/1 × 10−4”
epoch 100

batch size 16

In addition, the relevant parameters of all deep feature extraction models include
learning rate, epoch, and batch size (Table 2). The learning rate is closely related to the
convergence process of the model. In this experiment, the learning rates of 0–50 epoch and
51–100 epoch are set to 1 × 10−3 and 1 × 10−4, respectively. The appropriate batch size
is selected based on factors such as hardware resources, model complexity, and dataset
size, so batch size = 16 in this experiment. In the actual training, the appropriate number
of epochs was chosen according to the convergence of the model and the limitation of
computational resources, which can determine the required eopch = 100 for complete
training.

The experimental environment included computer processor Intel(R) Xeon(R) Gold
6130 CPU @ 2.10 GHz, Intel Corporation, Santa Clara, CA, USA; mainboard model YZMB-
00882-104, Samsung, Seoul, SouthKorea; primary hard drive ADC55CE5-E726-44DF-A85C-
CE534483DE11, Seagate Technology PLC, Dublin, Ireland; graphics card NVIDIA TITAN
RTX (24,576 MB), NVIDIA Corporation, Santa Clara, CA, USA; and Python 3.8.1.

3. Results
3.1. Using Shallow Features and SVM for the Classification of Beaks

This experiment tests the classification performance of HOG and LBP on the beak test
set to determine the optimal LBP and HOG features (Table 3).
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Table 3. The size of the input image, parameter settings, and vector dimensions of the features.

Models Input Parameter Number of Feature Vectors

LBP 512 × 512 R = 1, P = 8 59
R = 2, P = 8 59

R = 2, R = 16 59
HOG 256 × 256 C = 16 8100

C = 32 1764
C = 64 324

Resnet50 224 × 224 FC 2048

LBP+Resnet50 FC, R = 1, P = 8 2107
HOG+Resnet50 FC, C = 32 3812

When R = 1 and P = 8, the greatest classification results were obtained for the upper
and lower beaks, with 53.63% and 41.88%, respectively (Table 4).

Table 4. Adjusting the R and P values in the LBP descriptor to obtain testing accuracy.

Testing Accuracy of LBP

R = 1, P = 8 R = 2, P = 8 R = 2, P = 16

Upper beak 53.63% 33.75% 30.88%
Lower beak 41.88% 40.88% 33.88%

In the HOG experiment, morphological features were extracted from beak images by
adjusting the C value. The experimental results showed that when C = 64, the classification
accuracy for the upper and lower beaks was 70.25% and 58.00%, respectively. When C = 32,
the classification accuracy was 69.38% and 60.50%, respectively (Table 5). The two sets of
experiments showed that the local morphological features extracted by the HOG descriptor
more accurately express the differences between the four species of beaks.

Table 5. Adjusting the C value in the HOG descriptor to obtain testing accuracy.

Testing Accuracy of HOG

C = 16 C = 32 C = 64

Upper beak 65.25% 69.38% 70.25%
Lower beak 59.50% 60.50% 58.00%

3.2. Six CNN Models for Extracting Deep Features

The loss function curves of the training and validation sets (Figure 7) are important
tools for model selection and tuning, which can help determine how well the model fits,
its generalization ability, and the appropriate time to stop training. After approximately
35 epochs in the beak dataset, the convergence trend of most models slowed. After about
100 epochs, the minimum value of the loss function was attained and the optimal fitting
result was obtained.

This experiment used different CNN models for performance comparison on the
testing set for the beaks, including VGG16, InceptionV3, ResNet18, ResNet32, ResNet50,
and Resnet101.
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Figure 7. The loss function curves of the validation set and testing set derived from six CNN models,
namely VGG16, InceptionV3, Resnet18, Resnet34, Resnet50, Resnet101: (a–f) represents the loss
function curves for the upper beak; (g–l) represents the loss function curve for the lower beak.

The recognition performance of the six CNN models on beaks was excellent, with
accuracy ranging between 89.38% and 90.50% (Table 6). In contrast to the other four CNN
models, InceptionV3 and Resnet18 had a recognition accuracy error of about 3.00% in the
lower beak, and their accuracy was 86.40% and 87.60%, respectively. Resnet50 showed
better classification abilities, with accuracy rates of 89.38% and 90.50% in the upper and
lower beaks. The correct identification numbers of the upper beaks of D. gigas, I. argentinus,
E. luminosa, and O. bartramii were 165, 170, 199, and 181, respectively. And the right
number of species for the lower beaks was 172, 193, 199, and 160, respectively (Figure 8).
In comparison to the confusion matrix of the other five models, Resnet50 had a more
uniform and stable distribution of the number of correct recognitions in the four species of
beaks, and the recognition rate was optimal overall. In particular, all of the CNN models
successfully classified E. luminosa. The lower beaks performed better than the upper beaks
following a comprehensive evaluation of the six CNN models.

Table 6. Accuracy for CNN models recognizing upper and lower beaks.

Testing Accuracy of CNN Models

Model Upper Beak Lower Beak

VGG16 88.75% 90.00%
InceptionV3 88.75% 86.40%

Resnet18 88.75% 87.60%
Resnet34 88.38% 90.13%
Resnet50 89.38% 90.50%
Resnet101 88.50% 90.13%
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3.3. Experimental Analysis of the Fusion of Shallow Features with Deep Features

The experiment examined ResNet50 as the backbone network for extracting deep
features and fusing them with shallow features, and SVM was used for classification to
test the performance of the fused features. The fully connected layer was the result of
the multi-layer convolution of the obtained beak features. The feature information of this
layer structure was very plentiful. There is a practical reason for extracting the feature
vectors of the fully connected layer as parameter inputs to the SVM [22]. Therefore, the
deep features of the fusion model originate from the fully connected layer of Resnet50, and
the dimensions of the two fusion features are detailed (Table 3).

Based on the results of the shallow experiments, the morphological features extracted
by the HOG descriptor were used for feature fusion when C = 32. When R = 1 and P = 8,
the texture features extracted by the LBP descriptor were used for feature fusion. The
four species of beaks can be effectively classified using this method of feature fusion
(Tables 7 and 8). The results of the confusion matrix based on the CNN model and the
feature fusion model (Figures 7 and 9) indicate that the number of correct classifications of
beaks can be significantly increased when feature fusion is applied. The feature fusion of
HOG and CNN obtains the highest classification performance, with the average testing
accuracy of 91.88% and 93.63% for the upper and lower beaks, respectively (Tables 7 and 8).
The correct identification numbers of the upper beaks of D. gigas, I. argentinus, E. luminosa,
O. bartramii are 175, 175, 199, and 186, respectively. And the right number of species for
the lower beaks is 192, 182, 199, and 176, respectively. Compared with the CNN model
using deep features, the average testing accuracy of HOG+CNN for upper and lower beaks
improved by 2.50% and 3.13%, respectively. And the average testing accuracy of LBP+CNN
improved by 2.21% and 2.33%, respectively. In both feature fusion models, the accuracy of
classification for D. gigas, I. argentinus, E. luminosa, and O. bartramii was improved in the
upper beak. The classification accuracy of the lower beak of D. gigas and O. bartramii was
improved. However, the classification accuracy of I. argentinus decreased.

Table 7. Comparison of feature fusion experiments of the upper beak.

Models Species Accuracy Precision Recall F1-Score

LBP+Resnet50 ALL 91.50% 91.81% 91.50% 91.65%
D. gigas 89.50% 86.06% 89.50% 87.75%

I. argentinus 85.50% 96.07% 85.50% 90.48%
E. luminosa 99.50% 100.00% 99.50% 99.75%
O. bartramii 91.50% 85.12% 91.50% 88.19%

HOG+Resnet50 ALL 91.88% 92.13% 91.88% 92.00%
D. gigas 87.50% 87.06% 87.50% 87.28%

I. argentinus 87.50% 96.15% 87.50% 91.62%
E. luminosa 99.50% 100.00% 99.50% 99.75%
O. bartramii 93.00% 85.32% 93.00% 88.99%

Table 8. Comparison of feature fusion experiments of the lower beak.

Models Species Accuracy Precision Recall F1-Score

LBP+Resnet50 ALL 92.63% 93.08% 92.63% 92.85%
D. gigas 91.50% 81.33% 91.50% 86.12%

I. argentinus 90.50% 96.79% 90.50% 93.54%
E. luminosa 99.50% 99.50% 99.50% 99.50%
O. bartramii 89.0% 94.68% 89.0% 91.75%

HOG+Resnet50 ALL 93.63% 94.34% 93.63% 93.98%
D. gigas 96.00% 81.70% 96.00% 88.27%

I. argentinus 91.00% 98.38% 91.00% 94.55%
E. luminosa 99.50% 99.50% 99.50% 99.50%
O. bartramii 88.00% 97.78% 88.00% 92.63%
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4. Discussion
4.1. The Descriptors of the Two Local Shallow Features Are HOG and LBP

Morphological features and texture features are important shallow features in the study
of image classification. If efficient morphological and textural features can be extracted,
this is advantageous for beak classification. The HOG descriptor modifies the cell units
to alter the range of local operations. After a comparison of classification experiments
using three C values to extract morphological features, the lower beak achieved the highest
classification accuracy of 60.50% when C = 32. However, the upper beak achieved the
highest classification accuracy of 70.25% when C = 64. The morphological features obtained
at C = 32 were used in the experiments for feature fusion. LBP was proposed to extract
texture features. The texture features of the beak were extracted utilizing an enhanced
circular LBP descriptor, with R and P values representing the number of the neighborhood
radius and sample points, respectively. Three sets of different fusions of R and P values
were employed, and the results demonstrate that the small neighborhood range was more
appropriate for expressing the detailed features of the beak images.

According to the results of the shallow feature experiments, morphological features
were more effective than texture features in distinguishing the beaks of the four cephalopod
species. The significant difference in the dimension of features retrieved by HOG and
LBP is due to the HOG descriptor having an advantage in extracting high dimensional
morphological features, which may convey and characterize variations in the details
of the beak. The morphological specificity of the beaks [40] is superior in cephalopod
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biometrics, and the detailed variation within the two-dimensional morphology of the
beak is extremely rich. Therefore, morphological features can be accurately extracted by
analyzing image pairs from different perspectives [41]. There was some variation among
the beak profile characterization factors of various squids, but they all contained several
important characterization factors, such as upper hood length (UHL), upper crest length
(UCL), and lower hood length (LHL), lower crest length (LCL), which indirectly provided
a basis for the identification of cephalopod species using beak feature factors [10,42,43].
In order to meet the predatory needs and changes in the cephalopods during different
growth periods, the pigmentation of the beaks also changes [43–45]. In addition, there
were differences in pigmentation between male and female individuals [46]. Therefore,
these factors also increase the difficulty of extracting discriminative texture features of
similar beaks. The experimental results of feature fusion show that the HOG+CNN can
improve classification accuracy. Therefore, we can infer that morphological features are
more suitable for distinguishing beaks.

4.2. CNN Model to Extract Global Deep Features

VGG16, InceptionV3, and Resnet series were used to extract the deep features of the
beaks for performance comparison. Most models have a significant decrease in loss values
at the start of training, indicating a suitable learning rate and gradient descent. After a
certain stage of learning, the change in loss is not as obvious as at the beginning, and the
loss curve tends to stabilize. Four evaluation metrics were used to assess the models, and
all models were effective in extracting features and performed well in classification. VGG16
builds a deep network structure by stacking 16 convolutional layers, which is simple to
understand and implement. However, VGG16 contains a huge number of parameters,
which results in significant computational costs for training and inference. According
to the loss function curve and evaluation indicators, VGG16 is easier to train on beaks
but performs poorly in the upper beak classification of D. gigas. InceptionV3 improves
the performance of image classification by introducing a structure of multi-scale feature
extraction and parallel operation. InceptionV3 performs poorly on the beaks of D. gigas and
I. argentinus. ResNet19 and ResNet34 are both equipped with skip connections and fewer
full connection layers. Therefore, ResNet19 and Resnet34 have fewer parameters and faster
convergence during training. Resnet18 performed the worst in the upper and lower beak
classification of D. gigas. Resnet50 has a deeper network structure to acquire more complex
and abstract feature representations, which achieves the highest classification accuracy in
both the upper and lower beaks. Resnet101 is less accurate than Resnet50 since the beak
dataset was too small to effectively train the Resnet101 model.

4.3. Advantages of Feature Fusion

The approach of fusing global deep features and local shallow features was employed
in the classification of beaks for two key reasons. The first reason is that there are subtle
interclass variations as well as large intraclass variations among species of beaks, which
renders it challenging to classify specific regions based on subtle differences, and factors
such as the morphology, size, pigmentation, age, and growth environment of the same
species of cephalopod may all lead to differences. Therefore, the information contained
in the fused features of different species can complement each other to produce a more
robust feature representation, and the feature design and interpretation of shallow feature
descriptors as well as the learning ability and generalization performance of deep learning
can be used to improve accuracy in practical applications. Secondly, a strong advantage
of deep learning is feature learning, i.e., automatic feature extraction from raw data, with
features from higher levels of the hierarchy being formed by the composition of lower
level features [36]. However, some species of beak samples are extremely challenging to
acquire and belong to the category of tiny samples. As a result, the accurate identification
of beaks using deep learning techniques is limited. Based on the global deep features, using
local shallow features as an important reference for the classification task can effectively
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help in beak recognition. The results show that the fusion of deep features and shallow
features can better represent the detailed features to distinguish the four beaks, compared
to single deep features or shallow features. In particular, the HOG+Resnet50 model can
more accurately show the distinctions between the beaks.

4.4. Using Multi-Class SVM Classifier for Beak Classification

The recognition results achieved by fused features for beaks of the same family but
distinct genera using a multi-class SVM classifier were analyzed. Approximately 800 images
of each kind of beak were used for training in feature extraction process. Due to the limited
training samples, there may be overfitting and underfitting. SVM can perform nonlinear
classification on small samples and enhance classifier performance by mapping data to high
dimensional feature spaces using kernel functions. Second, SVM is insensitive to a small
number of outliers or noise data and thus can handle interference effectively. During the
experiment, the parameter C was adjusted to balance the fitting ability and generalization
ability of the model. In summary, SVM has superior generalization ability, robustness,
and controlled complexity, which can effectively solve classification problems in small
sample datasets.

5. Conclusions

The study proposes an effective method for beak identification that fuses global deep
features with local shallow features and uses multi-class SVM for automatic classification.
In two shallow feature experiments, adjusting the parameters resulted in the greatest results,
the HOG descriptor gave better results than the LBP descriptor in extracting the features. In
CNN model experiments, Renet50 performed the best, achieving an upper beak accuracy of
89.38% and a lower beak accuracy of 90.50%. In the feature fusion experiments, both sets of
fusion models showed good performance, and the feature fusion method of Resnet50+HOG
achieved the highest recognition accuracy, with 91.88% and 93.63% for the upper and lower
beaks, respectively. Resnet50+LBP achieved 91.50% and 92.63% for the upper and lower
beak test datasets, respectively. Also, it was demonstrated that classification of the beak
dataset can be effectively performed automatically using the multi-class SVM classifier. This
study verifies the complementarity and differentiality of different types of features in the
beak recognition task by using different performance analysis methods. The comparative
analysis of fusion of different features shows that the fused features can be used to analyze
the biodiversity of cephalopod beaks. Extracting HOG features, LBP features, deep features,
and combining two types of features is conducive to the analysis of beaks, enriching the
toolbox for studying cephalopod biology, and advancing the field of cephalopod biology.
The combination of feature fusion with SVM-based recognition methods demonstrates
robust performance. This not only promotes the automation of beak recognition but also
fosters interdisciplinary collaboration and research by bridging deep learning, machine
learning, and biological studies. Therefore, this approach drives the automation of beak
recognition and provides an efficient and innovative research method applicable not only
to cephalopods but also to various other biological domains. Since this study used a lower
resolution image dataset and a more complex image background to classify beaks, the
accuracy achieved by this research method can be applied. High-quality images will help
to apply the research method more accurately to solve classification problems in the future.
There are still many things we can achieve in cephalopod classification. Future research will
continue to focus on the use of more beneficial shallow and deep features to obtain feature
information of the beaks, and how to improve the usefulness of automatic classification
tools to achieve the ultimate goal of real-time image processing.
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