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Simple Summary: This study develops a deep learning framework called PorcineAI-enhancer
to predict enhancer sequences in pigs. Enhancers play a key role in regulating gene expression.
However, identifying enhancers experimentally remains challenging. This study constructs a reliable
pig enhancer dataset by integrating multiple data sources. The PorcineAI-enhancer model employs
convolutional neural networks to extract features from DNA sequences and classify them into
enhancers or non-enhancers. Evaluation on an independent test set shows the model has excellent
performance. It also demonstrates strong predictive capability on tissue-specific enhancers from
human and pig. This tool facilitates research on gene regulation mechanisms in pigs. It provides
valuable resources to understand complex traits related to agriculture and biomedicine.

Abstract: Understanding the mechanisms of gene expression regulation is crucial in animal breeding.
Cis-regulatory DNA sequences, such as enhancers, play a key role in regulating gene expression.
Identifying enhancers is challenging, despite the use of experimental techniques and computational
methods. Enhancer prediction in the pig genome is particularly significant due to the costliness of
high-throughput experimental techniques. The study constructed a high-quality database of pig
enhancers by integrating information from multiple sources. A deep learning prediction framework
called PorcineAI-enhancer was developed for the prediction of pig enhancers. This framework
employs convolutional neural networks for feature extraction and classification. PorcineAI-enhancer
showed excellent performance in predicting pig enhancers, validated on an independent test dataset.
The model demonstrated reliable prediction capability for unknown enhancer sequences and per-
formed remarkably well on tissue-specific enhancer sequences.The study developed a deep learning
prediction framework, PorcineAI-enhancer, for predicting pig enhancers. The model demonstrated
significant predictive performance and potential for tissue-specific enhancers. This research provides
valuable resources for future studies on gene expression regulation in pigs.

Keywords: enhancer; convolutional neural networks; sequence classification

1. Introduction

Understanding how complex gene expression patterns are regulated is a fundamental
question in biology. At the core of this question is the genome-wide identification and
characterization of cis-regulatory sequences that influence the expression of protein-coding
genes and long non-coding RNA genes [1]. Cis-regulatory DNA sequences play a crucial
role in the regulation of gene expression. These sequences, which can be located far away
from gene promoters, have been shown to have significant effects on gene expression,
sometimes resulting in up to a 100-fold increase in expression [2]. Enhancers, silencers,
insulators, and tethering elements are examples of cis-regulatory sequences [3]. Among

Animals 2023, 13, 2935. https://doi.org/10.3390/ani13182935 https://www.mdpi.com/journal/animals

https://doi.org/10.3390/ani13182935
https://doi.org/10.3390/ani13182935
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0009-0009-7101-5780
https://doi.org/10.3390/ani13182935
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani13182935?type=check_update&version=2


Animals 2023, 13, 2935 2 of 18

them, enhancers and their associated transcription factor proteins are particularly important
in the regulation of gene expression [4]. Enhancers are genomic regions that function as
major regulatory elements controlling gene expression. They play a key role in cell-type-
specific gene expression programs by forming physical interactions, often over long distances,
with the promoters of their target genes [5]. Multiple enhancers, located tens or hundreds of
thousands of nucleotides away from their target genes, loop to their respective gene promoters
and work in coordination to regulate the expression of their common target gene [5].

Enhancers can synergistically interact with functional elements such as promoters
and silencers, greatly influencing the spatial and temporal expression and transcription
frequency of their target genes [6]. Enhancers possess three main characteristics: firstly,
enhancers exhibit specificity, meaning that each enhancer only functions in a limited
number of cell types or tissues [7]. This uniqueness limits the impact of mutations on their
function. Secondly, enhancers are bidirectional, meaning that enhancers can be located
upstream or downstream of the promoters they activate [8]. Additionally, enhancers exhibit
the feature of long-range action, where the distance between an enhancer and its activated
promoter can vary [9].

These characteristics of enhancers bring about many challenges in their identification.
Although high-throughput experimental techniques have achieved significant success in
enhancer identification [10–12], the enormous number of experimental conditions resulting
from the diverse activity of enhancers in different cell tissues presents a challenge [13–15].
It is not practical to experimentally verify the existence of all enhancers in thousands
of tissues or cells, which are the two drawbacks of this method: time-consuming and
expensive [16].

To overcome the limitations of high-throughput experimental techniques, computa-
tional approaches have emerged, including those based on genome comparison [17] and
machine learning [18,19]. Enhancers can exist in any region of the genome, making it
difficult to find a linear pattern for enhancer identification through genome comparison
methods [20].

Deep learning, a hot topic in the field of machine learning, possesses powerful learning
capabilities that outperform various algorithms [21–23]. As a result, it has been widely
applied in cutting-edge disciplines such as computer vision [24–26] and speech recogni-
tion [27–29]. In the field of gene sequences, deep learning has been proven to be a highly
effective method for enhancer prediction [16,30–35]. Unlike traditional machine learning
methods, deep learning constructs multi-layer neural networks to learn feature represen-
tations, enabling the automatic learning of higher-level abstract features [36] and better
handling of nonlinear data [37]. Therefore, deep learning methods can leverage more
information for enhancer prediction while reducing reliance on feature engineering. In re-
cent years, deep learning methods have achieved significant success in predicting human
enhancers [38–40] and have gradually become one of the methods for enhancer prediction.

In animal husbandry, to maintain food and agricultural production while minimizing
negative environmental impacts, understanding the molecular mechanisms underlying
economically important complex traits in farm animals is crucial for achieving biology-
driven breeding biotechnologies. The domestic pig (Sus scrofa), a cornerstone of economic
food security and international trade for many countries, holds significant positions in both
animal husbandry and the biomedical field. Identifying enhancer regions in pigs bears
great importance for advancing livestock farming and biomedical research. Enhancers play
a pivotal role in gene regulation, and linking them with genes, SNPs, SVs, or other regions
of interest holds the promise of providing valuable insights into the regulation of complex
production traits and adaptive characteristics. It’s worth emphasizing that pigs are not
only of interest due to their production traits but also due to their physiological similarities
with humans. They are widely used as large animal models for preclinical research [41,42]
and as xenotransplantation donors [43,44]. These features make pigs vital resources in the
field of research, rendering a deeper understanding of the regulatory mechanisms of the
pig genome immensely valuable for driving scientific research and applications.
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Some studies [45–48] have utilized two enhancer-associated histone modifications,
H3K27ac and H3K4me1 [7,49–51]. However, these studies come with high implementation
costs, are limited by tissue/cell types and genetic backgrounds, and still require substantial
effort and funding to determine whether these regions indeed possess actual enhancer
functionality, as demonstrated through regulatory assays in transgenic mice [52].

While there have been cost-saving efforts in using deep learning to predict enhancer
sequences in humans and mice [53–55], the progress in predicting enhancer sequences in
livestock remains relatively limited due to the lack of a publicly accessible and reliable
enhancer database for livestock species. As a result, deep learning models have not been
widely applied to predict enhancer sequences in livestock, particularly in poultry and other
livestock species.

In this study, we took the first step in addressing this issue by utilizing a publicly
available pig enhancer database to construct a trustworthy dataset of enhancer and non-
enhancer sequences. Subsequently, we employed this dataset to train a deep learning
framework, named PorcineAI-enhancer, for enhancer prediction in pig genomic sequences.
The main idea behind this model is to combine one-hot encoding and k-mer encoding to
represent sequence data and then use CNN to extract features and perform classification,
thus determining whether a sequence belongs to an enhancer region. Experimental results
on an independent test dataset demonstrate the excellent performance of this method.

We have made our PorcineAI-enhancer code and data freely available on GitHub
repository: https://github.com/castwj/PorcineAI-enhancer (accessed on 10 August 2023),
facilitating accessibility and encouraging further research and collaboration in this field.

2. Materials and Methods
2.1. Data Preparation

Although several scientists have conducted ChIP-seq experiments to explore enhancer
elements in pigs [47,56–58], most of these experiments lack collaborative support from
other high-throughput data and functional validation in the laboratory. This phenomenon
has resulted in a limited number of reliable enhancers in pigs, with varying quality.

To construct a deep learning model, there is an urgent need to create a high-quality
and highly reliable enhancer database for pigs. In this study, we collected relevant enhancer
sequence information from three different sources. Firstly, MacPhillamy et al. [59] utilized
transfer learning methods and high-quality enhancer data from VISTA [52] and publicly
available human and mouse ChIP-seq data to study enhancer functionality in three non-
model mammalian species (cattle [45,60–62], pigs [45,47], and dogs [62]). By combining
this data with species-specific ChIP-seq data, they obtained a high-confidence enhancer
list. Secondly, the Functional Annotation of Animal Genomes (FAANG) project [63] is an
international collaborative initiative aimed at systematically annotating animal genomes.
The project employs a variety of high-throughput techniques and bioinformatics methods to
comprehensively annotate the genomes of various animal species, revealing their functions
and regulatory mechanisms. Recently, Pan et al. [64] integrated 223 epigenomic and
transcriptomic datasets to create a comprehensive catalog of regulatory elements in pigs
(Sus scrofa). We extracted enhancer information from this catalog for all tissues and merged
it. Additionally, the EnhancerAtlas 2.0 database [65] is a multi-species public database that
contains 13,494,603 enhancers from 16,055 datasets.

The aforementioned three datasets collectively constitute the enhancer data sources
used in this study. It’s worth noting that the EnhancerAtlas 2.0 database [65] uses the
Sscrofa10.2 reference genome, while the other two datasets use Sscrofa11.1 [66]. Since
the conversion of BED files between different reference genomes can potentially lead to
the loss of some sequences, we opted to use pig iPSC and heart enhancer information
from the EnhancerAtlas 2.0 database [65] as our test data. This choice aims to assess the
PorcineAI-enhancer model’s ability to recognize tissue-specific enhancers. Additionally, the
EnhancerAtlas provides human iPSC and heart enhancer information (using hg19 as the
reference genome). Considering the relatively close genetic relationship between humans

https://github.com/castwj/PorcineAI-enhancer
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and pigs, we can compare cross-species tissue-specific enhancer prediction capabilities to
explore the model’s reliability.

2.2. High Confidence Sequence Acquisition

To construct an effective and robust model, we followed strict criteria to establish the
dataset. To obtain high-quality and reliable enhancer sequences, we combined enhancer
sequences obtained from MacPhillamy et al. [59] and Pan et al. [64]. We processed the BED
files from these two datasets to obtain the overlapping fragments, which served as the initial
enhancer sequences. We retained only sequences with a length more than 200 bp. Then,
based on the length requirements of model, we divided the sequences into fixed-length
(200 bp) fragments. Sequences shorter than 200 bp were discarded. We used Bedtools [67]
to obtain the sequences, resulting in a total of 7633 enhancer sequences.

To provide an intuitive representation of the enhancer dataset used by the model
within the context of the original datasets, we employed an enhancer source Venn diagram,
Figure 1. This diagram effectively illustrates the overlapping and non-overlapping portions
of enhancers from different sources.

Figure 1. Enhancer Source Venn Diagram. Each circle representing a specific source, the overlapping
regions indicate the common enhancers shared between the sources, while the non-overlapping regions
represent the unique enhancers specific to each source. MacPhillamy et al. [59] and Pan et al. [64].

Regarding the non-enhancer sequences, previous studies often randomly extracted
genomic fragments as negative samples [30], ensuring that their length distribution and
quantity were the same as the enhancer sequences. However, considering the potential
misclassification of some tissue-specific enhancers as non-enhancer sequences due to exper-
imental design limitations, to ensure the reliability and practicality of the non-enhancer
sequences, we initially utilized the gene annotation file of Sus11.1 [66] to extract fundamen-
tal genomic information. This encompassed gene annotations (such as protein-coding genes
and long non-coding RNAs) and promoter regions (defined as 2 kb regions centered around
the transcription start site of protein-coding genes). These sequences were intentionally
selected as they represent regions that are unlikely to be enhancers.

We then combined these sequences with the enhancer sequence regions covered by
the databases employed in our study. Using Bedtools [67], we filtered out the remaining
genomic regions. Lastly, we randomly selected 7633 segments from these filtered regions to
constitute the non-enhancer dataset used for training.

To reduce sequence similarity, we employed the Cd-hit [68–70] tool to remove re-
dundant sequences with a similarity exceeding 80%. Finally, we used the resulting non-
redundant sequences as the samples for the reference dataset.
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2.3. Sequence Coding Method

In many deep learning algorithms used for processing biological sequences, natural
language processing techniques are commonly employed to extract features from raw DNA
sequences [71–73]. In our CNN model, we utilized a method called One-hot Encoding
and k-mer descriptors to encode each input sequence. Each enhancer sequence in this
study consists of four bases, adenine (A), guanine (G), cytosine (C), and thymine (T), with
a length of 200 bp.

In the One-hot Encoding of genetic sequences, we represent each base as a one-
hot vector of length four, where only one element is 1, and the rest are 0. For example,
adenine (A) is represented as [1, 0, 0, 0], cytosine (C) is represented as [0, 1, 0, 0], and so
on. Thus, the genetic sequence can be represented as a concatenation of a series of one-hot
vectors, where each one-hot vector represents a base.

K-mer encoding is a method for converting protein or DNA sequences into vector
representations. It treats every consecutive k characters (or letters) in the sequence as a unit
and represents each unit as a numeric vector. When the step size is 1, a DNA sequence
of length l can be divided into (l − k + 1) k-mers. For example, when k = 2, the sequence
‘ACGTCGACG’ will be divided into seven 2-mers: “AC”, “CG”, “GT”, “TC”, “GA”, “AC”,
“CG”. This representation makes the sequence easier to compute and understand. We treat
the entire DNA sequence as a sentence and the k-mer fragments as words. These vectors
can be used for various bioinformatics tasks such as classification, clustering, sequence
alignment, and pattern recognition.

One drawback of k-mer encoding is that it may lose some contextual information of the
sequence since it divides the sequence into independent k-mer units. Additionally, k-mer
encoding can be influenced by the sequence length and the chosen value of k, requiring
optimization based on specific circumstances. To mitigate the impact of k-mer encoding on
the results, in this study, we set the values of k to 1, 2, and 3 respectively, to strike a better
balance between contextual information and computational efficiency.

To combine the One-hot and k-mer representations and form the inputs to our model,
we concatenated them together, resulting in a comprehensive feature vector that captures
both the nucleotide composition and sequential patterns present in the DNA sequence. This
hybrid approach enables us to leverage the fine-grained information captured by the one-
hot encoding and the higher-order patterns captured by the k-mer encoding simultaneously.

Specifically, the shape of the concatenated feature vector is (4 + 1 + 2 + 1) × SAMPLE
LENGTH, where the first four rows correspond to the one-hot encoding of the sequence,
the fifth row corresponds to the 1-mer features, the sixth and seventh rows correspond to
the 2-mer features considering both left and right directions, and the last row corresponds
to the 3-mer features. This comprehensive feature representation effectively captures
the individual nucleotide composition and higher-level sequence patterns present in the
enhancer sequence. SAMPLE LENGTH represents the chosen length of the sequence.

Finally, we convert this concatenated feature vector into a PyTorch tensor and use it as
input, along with the corresponding labels, to the neural network model. This enables the
model to learn from the combined information of one-hot and k-mer representations and
make accurate predictions.

2.4. Sequence Analysis

Sequence analysis is a computational approach used to analyze biological sequences,
such as DNA, RNA, and protein sequences. It helps researchers understand the patterns and
structures of biological sequences and enables analysis and comparison of these sequences
to reveal information about their functions, structures, and evolution.

SeqLogo [74] is a commonly used sequence analysis tool for visualizing conservation
and variation information in DNA, RNA, or protein sequences. SeqLogo graphs typically
represent the information entropy of each base or amino acid at each position in the
sequence using the height of the corresponding letter. Higher information entropy indicates
less conservation at that position.
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In a SeqLogo graph, the height at each position reflects the distribution of different
bases or amino acids at that position. If a specific base or amino acid is highly prevalent
(high frequency) at a particular position, the height at that position will be higher, indicating
higher conservation. Conversely, if there are multiple different bases or amino acids at a
certain position, the height will be lower, indicating higher variation.

By visualizing conservation and variation through SeqLogo graphs, researchers can
quickly gain insights into the conservation and variation within a sequence, aiding in the
analysis and interpretation of its function and structure. SeqLogo graphs are commonly
used to identify conserved motifs, functional sites, and important sequence features.

2.5. CNN Model Architecture

The PorcineAI-enhancer model we propose is a convolutional neural network designed
for identifying pig genomic enhancer and non-enhancer sequences. The model consists of
two convolutional blocks, each comprising three convolutional layers followed by a batch
normalization layer, with a max-pooling layer after each convolutional block. The first
convolutional block has 32 output channels for its convolutional layers, with a kernel size
of 4 × 4 and a padding of 1. The second convolutional block is similar to the first one, but
with an increased output channel size of 64.

After the convolutional blocks, the model flattens the output and processes it through
a fully connected layer with a ReLU activation function and a size of 256. Finally, the output
passes through a sigmoid activation function and a linear layer to generate scalar output.

The model utilizes binary cross-entropy loss as the training criterion. The forward
method of the model takes an input tensor and outputs a tensor of the same size, rep-
resenting the predicted output for each input sample. The model is trained through
backpropagation and optimization algorithms to minimize the loss function and improve
the accuracy of predictions. Table 1 below shows the variations in model parameters across
the layers of the CNN model.

Table 1. Variations in CNN Model Parameters Across Layers.

Layer (Type) Output Shape Param

Conv1d-1 [−1, 32, 200] 800
BatchNorm1d-2 [−1, 32, 200] 64

Conv1d-3 [−1, 32, 200] 3104
BatchNorm1d-4 [−1, 32, 200] 64

Conv1d-5 [−1, 32, 200] 3104
BatchNorm1d-6 [−1, 32, 200] 64

MaxPool1d-7 [−1, 32, 50] 0
Conv1d-8 [−1, 64, 50] 6208

BatchNorm1d-9 [−1, 64, 50] 128
Conv1d-10 [−1, 64, 50] 12,352

BatchNorm1d-11 [−1, 64, 50] 128
Conv1d-12 [−1, 64, 50] 12,352

BatchNorm1d-13 [−1, 64, 50] 128
MaxPool1d-14 [−1, 64, 12] 0

Linear-15 [−1, 256] 196,864
Linear-16 [−1, 1] 257

These parameter variations provide insights into the number of parameters in the
model and the shape changes between layers. This aids in understanding the complexity of
the model and the distribution of parameters, as well as the changes that may occur during
the training and optimization processes.

2.6. K-Fold Cross-Validation

K-fold cross-validation is a commonly used model evaluation method [75]. It involves
splitting the dataset into k non-overlapping subsets or folds, and then iteratively using
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each fold as the validation set and the remaining k-1 folds as the training set to train the
model. The evaluation results from each iteration are then aggregated to obtain the average
performance of the model.

K-fold cross-validation can effectively reduce overfitting by utilizing more data for
model training and providing a comprehensive evaluation of the model’s performance.
Additionally, it helps in selecting the best model hyperparameters, such as regularization
parameters and learning rates, to improve the model’s generalization ability.

In the training of the PorcineAI-enhancer model, we first randomly divide the training
set into five folds or partitions using stratified sampling, as illustrated in Figure 2. Each
fold is used as the validation set in turn, while the remaining four folds are used as the
training set for training the CNN model. Then, the five trained CNN models are combined
to form an ensemble model. Next, the ensemble model is used to test the samples in an
independent test set. This entire process, including data partitioning, model training, and
model testing, is repeated five times to observe the variation in model performance across
the five experiments.

Figure 2. Training and Validation Process for PorcineAI-Enhancer Model using Stratified Sampling
and Ensemble Learning. This figure illustrates the training and validation process for the PorcineAI-
Enhancer model. The training set is randomly divided into five folds or partitions using stratified
sampling, allowing for a balanced representation of the data in each fold. Each fold is then used as
the validation set in turn, while the remaining four folds are used as the training set for training the
Convolutional Neural Network (CNN) model. The five trained CNN models are combined to form
an ensemble model, which is used to test the samples in an independent test set. This entire process,
including data partitioning, model training, and model testing, is repeated five times to observe
the variation in model performance across the five experiments. The use of stratified sampling and
ensemble learning helps to improve the accuracy and robustness of the PorcineAI-Enhancer model.

By employing k-fold cross-validation, we can comprehensively evaluate the per-
formance of the PorcineAI-enhancer model and observe how it performs with different
combinations of training and validation sets. This approach helps obtain more reliable per-
formance evaluation results and provides guidance for further improvements to the model.

3. Results
3.1. Sequence Analysis

In the SeqLogo plot, the vertical axis can be scaled using frequency or bits. When the
frequency is used as the vertical axis, the SeqLogo plot displays the frequency of occurrence
for each type of base or amino acid at each position. The higher the frequency, the taller
the letter, indicating a more conserved base or amino acid at that position. Conversely, the
lower the frequency, the lower the letter, indicating a more variable base or amino acid
at that position. When bits are used as the vertical axis, the SeqLogo plot represents the
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information entropy of bases or amino acids at each position. The higher the information
entropy, the taller the letter, indicating a less conserved base or amino acid at that position.

Our results are presented in Figure 3. When the frequency is used as the vertical axis,
the distribution of enhancer sequences and non-enhancer sequences is nearly identical.
However, when bits are used as the vertical axis, they exhibit noticeable differences in
their distribution.

Figure 3. Differences in Information Entropy of Enhancer and Non-Enhancer Sequences Revealed
by SeqLogo Analysis. In this figure, we show the results of SeqLogo analysis, which is a graphical
representation of the conservation and variation of nucleotide or amino acid sequences. The vertical
axis of the SeqLogo plot can be scaled using frequency or bits. Our analysis reveals that enhancer
sequences and non-enhancer sequences exhibit significant differences in their information entropy
when bits are used as the vertical axis. This indicates that enhancer sequences and non-enhancer
sequences possess distinct characteristics in terms of sequence conservation and variation, which
may be associated with their different roles in gene expression regulation. These findings provide
further insights into the functional differences between enhancer and non-enhancer sequences and
may have implications for understanding the mechanisms of gene expression regulation.

These findings suggest that there are significant differences in the information entropy
between enhancer and non-enhancer sequences. This indicates that enhancer sequences and
non-enhancer sequences possess distinct characteristics in terms of sequence conservation
and variation. These characteristics may be associated with their different roles in gene
expression regulation.

3.2. PorcineAI-Enhancer Model Training

We conducted model training for the PorcineAI-enhancer model. As depicted in the
Figure 4, it provides a more intuitive overview of the training process for the PorcineAI-
enhancer model. As illustrated in Figure 1, Model 1 refers to the training configuration
where data from Fold 2–5 is employed as the training dataset, and Fold 1 serves as the
validation dataset. The model is built using the parameters that exhibit the best performance
on the validation set. Similarly, Model 2–5 follow this pattern, each involving a specific fold
for validation while the remaining folds are utilized for training. A total of 50 epochs, where
each epoch represents a complete iteration through the dataset, were carried out for training.
Throughout the training process, a learning rate of 1 × 10−5 was utilized—an essential
hyperparameter controlling the step size for model parameter updates. To optimize the
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model’s training, the Adam optimizer was chosen. Adam is a commonly used adaptive
learning rate optimization algorithm that dynamically adjusts the learning rate based on
estimates of the first and second moments of the gradients.

Figure 4. PorcineAI-enhancer model training loss curves. The horizontal axis represents the number
of training epochs, and the vertical axis represents the model’s loss value. The loss value is a metric
that measures the difference between the model’s predictions and the actual labels. Our goal is to
minimize the loss value through training. We observe two different loss curves. One is the loss curve
on the training set, which indicates the model’s fit to the training data. The other curve is the loss
curve on the validation set, which represents the model’s performance on unseen data. We use the
validation set to evaluate the model’s generalization ability in real-world scenarios. Typically, we
select the epoch corresponding to the minimum validation set loss as the optimal model’s parameters.

From the figure, it is observable that after around 20 epochs, the model’s performance
on the validation set had already reached its peak. This indicates that while the model
might potentially achieve better scores on the training set, further training is detrimental
to performance improvement. This phenomenon suggests the occurrence of overfitting,
where the model overly adapts to the training data and subsequently performs poorly
on new data. To counteract overfitting, ensuring the model’s generalization ability, we
opted to utilize the parameters from the epoch at which each model performed best on
the validation set as the parameters for the Ensemble model. This approach enables us to
attain better predictive performance on previously unseen data, enhancing model stability
and reliability.

3.3. Performance of the PorcineAI-Enhancer Model

Through 5-fold cross-validation on the training set, we obtained 5 validated CNN
models. These models were then evaluated on independent test sets, and the evaluation
parameters are presented in Table 2.

From Table 2, it can be observed that the accuracy of the models ranges from 0.905 to
0.911, with a very small standard deviation, indicating their ability to accurately classify
samples. As for the AUC metric, all values exceed 0.939, with the highest AUC value being
0.946, demonstrating the models’ high capability in discriminating between positive and
negative samples. The higher AUC values suggest effective classification of positive and
negative samples and demonstrate strong predictive performance.



Animals 2023, 13, 2935 10 of 18

Table 2. Performance Evaluation of CNN Models for Enhancer Prediction.

Model Accuracy Score AUC Score Sensitivity Specificity

Model 1 (Parts 2, 3, 4, 5 : Part 1) 0.909626719 0.939438503 0.963326785 0.855926654
Model 2 (Parts 1, 3, 4, 5 : Part 2) 0.910936477 0.944208139 0.974459725 0.847413229
Model 3 (Parts 1, 2, 4, 5 : Part 3) 0.910609037 0.94386183 0.965291421 0.855926654
Model 4 (Parts 1, 2, 3, 5 : Part 4) 0.910936477 0.940875633 0.964636542 0.857236411
Model 5 (Parts 1, 2, 3, 4 : Part 5) 0.904715128 0.94601431 0.948264571 0.861165684

Ensemble Model 0.916502947 0.948383796 0.974459725 0.858546169

By referring to Figure 5, we can observe that the evaluation metrics of the five models
exhibit consistent distribution, with specificity being the lowest. Considering that our
acquisition of non-enhancer sequences did not undergo experimental verification but rather
aimed to remove known functional sequences, the lower specificity may be attributed to
the presence of false negatives in the non-enhancer sequences. Nevertheless, the evaluation
parameters of all models indicate that each model possesses sufficient capability to predict
whether a sequence is an enhancer, underscoring the reliability of our construction of the
original training data.

Figure 5. Robust Performance of Deep Learning Models in Predicting Enhancer Sequences.
We present the evaluation metrics of five deep learning models in predicting enhancer sequences.
The models demonstrate high accuracy and AUC values, indicating their capability in discriminating
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between positive and negative samples. The evaluation metrics exhibit consistent distribution, with
specificity being the lowest, which may be attributed to the presence of false negatives in the non-
enhancer sequences. Nevertheless, all models possess sufficient capability to predict whether a
sequence is an enhancer, demonstrating the reliability of our construction of the original training
data. These findings support the effectiveness and feasibility of the proposed method and highlight
the robustness of the features and patterns learned by the deep learning models during the training
process. The robust performance of the models suggests their potential applications in predicting
enhancer sequences and advancing our understanding of gene expression regulation.

These excellent evaluation metrics further substantiate the effectiveness and feasibility
of the proposed method. The models achieve satisfactory results across multiple indicators,
highlighting the robustness of the features and patterns learned by the deep learning
models during the training process.

3.4. Comparison with Ensemble Model

Given the excellent sequence prediction capabilities exhibited by each individual
model, but with some variations, we decided to further improve the predictive perfor-
mance by using model ensembles. The advantage of ensemble models lies in their ability
to leverage the strengths of multiple models, resulting in higher accuracy and stronger
discrimination. By combining the effects of the ensemble models, we can obtain more
reliable and stable prediction results.

Therefore, we constructed an ensemble model using the predictions from each indi-
vidual model, and its model evaluation parameters are presented in Table 2. It is evident
that the ensemble model outperforms the individual models in terms of accuracy score and
AUC metrics. The ensemble model also demonstrates advantages in terms of sensitivity
and specificity. The sensitivity of the ensemble model is the same as the best individual
model, both achieving a value of 0.9745. This indicates that the model is highly sensitive in
detecting true positive samples and avoids misclassifying them as negative samples. This
is crucial in many real-world scenarios where the focus is on true positive cases. From the
perspective of these evaluation metrics, the ensemble model exhibits significant advantages
over the individual models, providing more reliable and accurate predictive performance.

The Figure 6 below presents the AUC curves plotted for each model on the test set.
The AUC curve is a common tool for evaluating the performance of classification models.
It illustrates the relationship between the true positive rate (Sensitivity) and the false
positive rate (1-Specificity) at various thresholds. A value closer to 1 indicates superior
performance of the model in classification tasks. Upon examining this graph, it is evident
that the AUC curve of the Ensemble model slightly surpasses those of the other models.
This indicates that the Ensemble model maintains a better balance between the true positive
rate and the false positive rate at various thresholds.

These results further validate the effectiveness and feasibility of our proposed method.
The ensemble model achieves satisfactory results across multiple metrics, showcasing the
robustness of the features and patterns learned by the deep learning model during the
training process. This also supports our research hypothesis and provides strong evidence
for a deeper understanding of gene expression regulation.
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Figure 6. AUC Curves of Different Models. AUC score (Model 1 = 0.939438503, Model 2 = 0.944208139,
Model 3 = 0.94386183, Model 3 = 0.940875633, Model 3 = 0.94601431, Ensemble Model = 0.948383796).
A higher AUC score signifies that the model performs better across the entire range of decision thresh-
olds, demonstrating its strong discriminative capability and overall effectiveness in distinguishing
between positive and negative samples.

3.5. Comparison with Existing State-of-the-Art Methods

While the current state of enhancer prediction in pigs lacks documented research, a
wealth of related studies exists in the human domain. To underscore the advancements
of the PorcineAI-enhancer model, we chose to compare it with other renowned models
in the realm of human enhancer prediction. Evaluation of the model’s performance was
conducted by analyzing several key metrics, as depicted in the Table 3 below.

Table 3. Result of comparison with existing state-of-the-art methods.

Method ACC AUC SN SP Source

iEnhancer-2L 0.730 0.806 0.710 0.750 Liu et al., 2016 [30]
EnhancerPred 0.740 0.801 0.735 0.745 Jia and He, 2016 [76]
iEnhancer-EL 0.748 0.817 0.710 0.785 Liu et al., 2018 [77]

iEnhancer-EBLSTM 0.772 0.835 0.755 0.795 Niu et al., 2021 [78]
PorcineAI-enhancer 0.652 0.811 0.335 0.969 This study

PorcineAI-enhancer (human enhancer data) 0.769 0.832 0.785 0.752 This study

As anticipated, the model without fine-tuning exhibited noticeably lower accuracy in
predicting enhancers compared to all models based on human enhancer data. While the
accuracy in predicting non-enhancers was relatively higher, this is primarily due to the
PorcineAI-enhancer model’s inclination to label all human sequences as non-enhancers,
thereby inflating its performance in non-enhancer prediction.

Upon training the model with human enhancer data, significant improvements across
all metrics were observed for the PorcineAI-enhancer model, particularly in terms of
AUC and MCC. Furthermore, when compared to the iEnhancer-EBLSTM method from
2021, our study’s model slightly outperformed in terms of SN and MCC, but exhibited
slightly lower performance in ACC, AUC, and SP. The comparative outcomes highlight
that the PorcineAI-enhancer model excels over previous methods in many aspects. This
superiority can be attributed to the inherent strengths of deep learning models, which are
capable of more accurately capturing features and achieving higher efficiency in learning
processes. The resultant model has more precise parameters, thereby achieving superior
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performance outcomes. This further substantiates the effectiveness and potential of our
proposed approach in enhancer prediction.

3.6. Model Performance on Tissue-Specific Enhancers

The generalization performance of deep learning models holds immense importance
in practical applications. Due to the strong nonlinear fitting capability of deep learning
models, issues such as training overfitting [79] and insufficient training data [80] can lead
to a situation where the model performs well on the training data but poorly on new data.
Overfitting causes the model to only capture the features of the training dataset without
abstracting more general features, resulting in a loss of predictive ability in real-world
scenarios [81]. Consequently, selecting an appropriate training set and effective model
training are critical issues in the field of deep learning.

In this study, we meticulously selected enhancer sequences spanning different species
and tissues as our training set to assess the model’s generalization ability. These tissue-
specific enhancer datasets originated from the EnhancerAtlas 2.0 database [65], encompass-
ing enhancer sequences from human and pig iPSCs as well as heart cells. We employed
the trained ensemble model to predict these sequences and compiled the prediction results
in Table 4.

Table 4. Performance of the Ensemble Model on Tissue-Specific Enhancer Datasets.

Tissue Pig Human

Heart 0.8240 0.7031
iPSC 0.2606 0.3146

Analyzing the data in Table 4, it’s evident that the model maintains remarkable gener-
alization performance in heart tissue, achieving prediction accuracies of 0.8240 and 0.7031
for pig and human heart enhancer sequences, respectively. These outcomes explicitly
demonstrate the model’s generalization capacity, performing well even on test data, indi-
cating that the model isn’t merely overfitting to the training data. These results not only
enhance our confidence in applying the model to a broader range of pig cell tissues but
also establish a solid foundation for cross-species enhancer prediction.

However, it’s noteworthy that the accuracy of the model in predicting pig and human
iPSC enhancer sequences is relatively lower, at 0.2606 and 0.3146, respectively. Impor-
tantly, iPSCs are undifferentiated cell types, and their gene regulatory mechanisms might
differ significantly from those of mature tissue cells. Therefore, the model’s suboptimal
performance on such cells doesn’t necessarily reflect a weak generalization capability of the
model. This further underscores the limitations of the model’s applicability and provides
insights for future improvements.

4. Discussion

We proposed the PorcineAI-enhancer framework, which leverages deep learning tech-
niques and addresses the challenge of limited high-quality datasets, providing a valuable
tool for predicting enhancers in pigs. The development of this framework, along with the
construction of a high-quality enhancer database specifically tailored for pigs, represents a
significant contribution to the field of enhancer prediction. However, the framework still
has some limitations and potential areas for improvement.

Through performance evaluation on an independent test dataset, the PorcineAI-
enhancer framework demonstrates excellent performance in enhancer prediction, showcas-
ing its potential in predicting pig enhancers. These findings align with previous studies
in human enhancer research [82–85], which indicate the effectiveness of deep learning in
predicting enhancers across various species, including humans. Therefore, similar to model
organisms such as humans, applying deep learning approaches to identify gene regulatory
elements in livestock genomes could become a new paradigm in livestock breeding [86,87].
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However, the dataset used in this study was constructed by integrating enhancer
sequence information from various sources [59,64,65], including transfer learning methods,
publicly available ChIP-seq data, and comprehensive regulatory catalogs. While we made
efforts to ensure the reliability and quality of the data, potential biases and inconsistencies
may still exist, particularly in the case of non-enhancer sequences where the random
sampling approach we employed may have limitations. Hence, future research should
consider incorporating more high-quality and well-validated enhancer datasets and non-
enhancer datasets to further enhance the accuracy and generalizability of the framework.

Furthermore, we must acknowledge that although the PorcineAI-enhancer framework
performs well in practical applications, this study still has its limitations. Firstly, due to
the diversity of pig breeds [56], tissue specificity [57,88], and developmental stages in
reality, further validation and verification of the enhancer prediction capability need to
be conducted under controlled conditions to ensure the reliability of the predictions. This
represents the next step for model improvement, namely fine-tuning by incorporating
Chip-seq-detected enhancer sequences from different breeds, tissues, and cells, expanding
its applicability to more refined application scenarios. By utilizing enhancer sequence data
from different breeds, we can better understand the conservation and diversity of enhancer
sequences across different species.

Additionally, our deep learning model has been widely used and performed well in
previous studies. However, other deep learning model frameworks, such as attention mech-
anisms [89], can be employed to capture longer, more complex, and higher-level sequence
features. From this perspective, further improving the PorcineAI-enhancer framework to
enhance its performance represents a developmental direction for increasing the predictive
capabilities of the model.

5. Conclusions

In conclusion, this study presents the development and evaluation of the PorcineAI-
enhancer framework, a deep learning-based approach for enhancer prediction in pigs.
The framework demonstrates excellent performance in identifying enhancer sequences
and addresses the lack of high-quality datasets specific to pigs. The findings highlight
the potential of deep learning techniques in enhancer prediction and contribute to the
growing body of evidence supporting their effectiveness across species. The framework
provides a valuable tool for researchers studying pig gene regulation and expression
patterns, facilitating advancements in understanding the molecular mechanisms underlying
pig traits and diseases. Despite the limitations and the need for further validation and
improvement, the PorcineAI-enhancer framework represents a significant advancement in
the field and sets the stage for future studies aiming to unravel the regulatory landscape of
pigs and other species.
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