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Abstract: A global distribution in marine, brackish, and freshwater ecosystems, in combination
with high abundances and biomass, make vibrios key players in aquatic environments, as well
as important pathogens for humans and marine animals. Incidents of Vibrio-associated diseases
(vibriosis) in marine aquaculture are being increasingly reported on a global scale, due to the fast
growth of the industry over the past few decades years. The administration of antibiotics has been
the most commonly applied therapy used to control vibriosis outbreaks, giving rise to concerns about
development and spreading of antibiotic-resistant bacteria in the environment. Hence, the idea of
using lytic bacteriophages as therapeutic agents against bacterial diseases has been revived during
the last years. Bacteriophage therapy constitutes a promising alternative not only for treatment,
but also for prevention of vibriosis in aquaculture. However, several scientific and technological
challenges still need further investigation before reliable, reproducible treatments with commercial
potential are available for the aquaculture industry. The potential and the challenges of phage-based
alternatives to antibiotic treatment of vibriosis are addressed in this review.
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1. Vibrios in Marine Ecosystems

The Vibrionaceae family, and more specifically, the genus Vibrio, encompasses genetically and
metabolically diverse, heterotrophic bacteria that can thrive in a great range of habitats. The particularly
versatile features of vibrios have made them ubiquitous components of world’s marine and even
brackish or freshwater ecosystems [1]. The relatively high abundance (often 103 to 104 cells per mL)
and biomass of vibrios in the oceans [2], makes them important players in marine biogeochemical
cycling. Key traits supporting this are (a) their ability to survive for a long time under nutrient-limited
conditions [3,4], (b) their ability to maintain high ribosome content, which helps them achieve a fast
recovery from starvation as soon as carbon sources become available [5–7], and c) their chemotactic
response in finding nutrient sources [8–11].

The vast majority of vibrios occupy ecological niches associated with attachment to living
organisms, which provide them protection and nutrients [12–14]. However, vibrios also occur as
free-living cells in the water column [15,16]. Among several environmental variables that have been
examined, salinity and temperature have been consistently linked to the observed variation in the
total Vibrio abundance in the water column [17,18]. For example, V. vulnificus could tolerate a broad
range in salinity from 5 to 38 ppt [19], while V. cholerae can grow in salinities of up to 45 ppt, if the
nutrient concentration is high [20]. High temperature significantly boosts the growth of vibrios and
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the increased sea surface temperature has been suggested to promote a long-term increase in Vibrio
abundance [21,22].

Their opportunistic lifestyle features, as well as their easy cultivation under laboratory conditions,
have made them ideal models for investigations of bacterial population biology and genomics, disease
dynamics, bacteria-phage interactions, and quorum sensing (QS) [23–26].

Several Vibrio species are pathogenic, and constitute a serious threat for human health. Over
80 species have been described, and at least 12 of them are known human pathogens [27,28]. V. cholerae,
the causative agent of epidemic cholera, was introduced in Europe via sea trade routes from Asia,
and was a devastating disease during 1817–1923 [29]. V. cholerae, as well as the seafood poisoning
agents V. parahaemolyticus and V. vulnificus [30], have aroused significant attention among the scientific
community, especially today, when increases in Vibrio-associated disease outbreaks in response to
elevated ocean temperatures [31–33] emphasize the increasing importance of vibrio pathogens in a
future warmer climate [34,35].

2. Vibrios in Aquaculture

According to Food and Agriculture Organization (FAO) [36], aquaculture is one of the most
rapidly growing sectors for animal food production, supporting approximately 50% of the global
human fish consumption. Vibrios have been characterized as the “scourge” of marine fish and shellfish,
since several members of the genus can be the causative agents of a fatal disease, commonly known as
vibriosis [37]. Sudden vibriosis outbreaks have been causing severe losses in biomass, with significant
economic consequences for the aquaculture industry [38]. Furthermore, lower growth rate of sick fish
and shellfish, excessive waste of fish feeds, and finally, the increased skepticism of consumers about
aquaculture’s quality and credibility, are also important consequences of vibriosis.

Sustainability in aquaculture demands a thorough and sophisticated disease management plan
in which the issue of pathogenic vibrios should be an integral part. The last report of the World
Bank about prospects for fisheries and aquaculture [39] is a case in point, since it was reported that
Vibrio-caused disease designated as early mortality syndrome (EMS), or else, acute hepatopancreatic
necrosis disease (AHNPD), is a rapidly emerging disease, and a serious setback to the shrimp rearing
industries of Asia and America [40,41]. FAO has drawn special attention to vibriosis [36], because the
distribution of vibrios is being shifted according to the changing warming patterns, hence, outbreaks
tend to be observed even in temperate or cold regions [42].

V. anguillarum, initially reported as Bacillus anguillarum [43], used to be the first isolated Vibrio to
which “Red Pest of eels” was attributed, during early 1900s [44]. Although it still remains a serious
threat for aquaculture [45,46], a plethora of other Vibrio species have been recorded in the literature as
causative agents of vibriosis in aquaculture. V. harveyi, V. parahaemolyticus, V. alginolyticus, V. vulnificus,
and V. splendidus [28,47–52] are the most important, while the list is expanding with the discovery of
new pathogenic species, such as V. owensii [53].

Chemical stressors, such as poor water quality and diet composition, biological stressors, such
as population density and presence of other micro- or macro-organisms, and physical stressors,
such as temperature above 15 ◦C, are the most important factors triggering vibriosis outbreaks [46,54].
Although the regulatory mechanisms of virulence in vibrios still need to be elucidated, virulence-related
factors and genes that have been found in several pathogenic marine Vibrio. Iron uptake systems
of V. ordalii, V. vulnificus, V. alginolyticus, and V. anguillarum have been recorded to contribute to
their virulence, by binding the iron attached to the siderophore proteins of their hosts [46,50,55].
Extracellularly secreted proteins can have proteolytic, hydrolytic, hemolytic, and cytotoxic activity
in several pathogenic Vibrio, such as V. anguillarum, V. alginolyticus, V. harveyi, V. splendidus, and
V. pelagius [56–60]. However, the presence of virulence genes alone is not always a sufficient condition
for a virulent phenotype. For instance, both virulent and avirulent V. harveyi and V. campbellii do carry
virulence genes. It has been found that virulence can be coordinated via cell to cell communication,
regulated by the presence of specific signal molecules [61]. The three-channel QS system of V. campbellii,
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previously described as V. harveyi [62], is a well-described case of QS-regulated virulence system
using three different signals [63]. It was also recently shown that the virulence of V. anguillarum
against European seabass (Dicentrarchus labrax) larvae is regulated by the indole signaling molecule
pathway [64]. Clinical signs of vibriosis (Figure 1) include lethargic behavior, loss of appetite, unusual
swimming behavior close to the water surface, increased mucus secretion, as well as petechiae and
hemorrhages on their skin. Additional symptoms of the disease commonly observed are intestinal
necrosis, anemia, ascetic fluid, petechial hemorrhages in the muscle wall, and liquid in the swim
bladder [65,66].

Antibiotics 2018, 7, x  3 of 23 

system using three different signals [63]. It was also recently shown that the virulence of V. 
anguillarum against European seabass (Dicentrarchus labrax) larvae is regulated by the indole signaling 
molecule pathway [64]. Clinical signs of vibriosis (Figure 1) include lethargic behavior, loss of 
appetite, unusual swimming behavior close to the water surface, increased mucus secretion, as well 
as petechiae and hemorrhages on their skin. Additional symptoms of the disease commonly observed 
are intestinal necrosis, anemia, ascetic fluid, petechial hemorrhages in the muscle wall, and liquid in 
the swim bladder [65,66]. 

 
Figure 1. Massive mortalities caused by vibriosis in different developmental stages. (a,b) cultured 
European seabass, Dicentrarchus labrax, (c) cultured European seabass, Dicentrarchus labrax fry and (d) 
cultured gilthead sea bream, Sparus aurata larvae in the hatchery. 

A vibriosis outbreak may have catastrophic consequences for both the cultured animals and the 
producer, hence, implementation of preventive strategies is the safest way to cope with such potential 
events. Development of vaccines against vibriosis has so far been quite successful, since it has 
managed to significantly prevent the outbreaks of the disease [67], yet there are still important issues 
to be addressed. While fish are still in the hatchery, their immune system is not completely developed 
yet, thus vaccination is inefficient at this stage. Additionally, vaccination of juvenile fish by injection 
is difficult, so they are vaccinated orally and/or by immersion, resulting in low efficacy and short 
protection [68]. However, this is not the case for all vibrios, since immersion vaccination against V. 
anguillarum has been shown to provide a high level of protection. The biggest problem, however, is 
the lack of commercially available vaccines for the majority of the pathogenic Vibrio species other 
than V. anguillarum. Administration of antibiotics is therefore the most commonly applied strategy to 
tackle vibriosis outbreaks. However, if applied in marine hatcheries, antibiotics disturb the natural 
microbial balance in the water, as well as the developing microbiota of the larvae [69]. Furthermore, 
the excessive amount of antibiotics that have been used, not only for treatment, but even for 
prophylaxis during the last decades, has become a constantly growing problem for human and 

Figure 1. Massive mortalities caused by vibriosis in different developmental stages. (a,b) cultured
European seabass, Dicentrarchus labrax, (c) cultured European seabass, Dicentrarchus labrax fry and (d)
cultured gilthead sea bream, Sparus aurata larvae in the hatchery.

A vibriosis outbreak may have catastrophic consequences for both the cultured animals and
the producer, hence, implementation of preventive strategies is the safest way to cope with such
potential events. Development of vaccines against vibriosis has so far been quite successful, since it
has managed to significantly prevent the outbreaks of the disease [67], yet there are still important
issues to be addressed. While fish are still in the hatchery, their immune system is not completely
developed yet, thus vaccination is inefficient at this stage. Additionally, vaccination of juvenile fish by
injection is difficult, so they are vaccinated orally and/or by immersion, resulting in low efficacy and
short protection [68]. However, this is not the case for all vibrios, since immersion vaccination against
V. anguillarum has been shown to provide a high level of protection. The biggest problem, however,
is the lack of commercially available vaccines for the majority of the pathogenic Vibrio species other
than V. anguillarum. Administration of antibiotics is therefore the most commonly applied strategy to
tackle vibriosis outbreaks. However, if applied in marine hatcheries, antibiotics disturb the natural
microbial balance in the water, as well as the developing microbiota of the larvae [69]. Furthermore, the
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excessive amount of antibiotics that have been used, not only for treatment, but even for prophylaxis
during the last decades, has become a constantly growing problem for human and animal health,
as well as for the environment [70]. There is a fundamental difficulty in controlling the amount and
types of antibiotics that are applied, since the regulations for their usage can vary broadly among
different countries. Development of multi-drug resistant strains, disturbance of natural microbiota,
environmental residues, and public health issues, are only some of the most important problems
caused by the excessive use of chemotherapy [71], and new alternatives are necessary.

3. Lytic Bacteriophages against Marine Vibrios

The use of bacteriophages against pathogenic bacteria in aquaculture was first introduced
experimentally in Japan against Lactococcus garvieae in 1999 [72], and it has since been a topic of
great interest for the scientific community [73–76]. Vibrios have been one of the main targets for
bacteriophage isolation because of their high pathogenicity, broad presence, and ability to infect
cultured fish and shellfish at various culture stages. Several potent phages have been tested against
vibriosis causative agents, such as V. harveyi, V. parahaemolyticus, V. alginolyticus, V. splendidus,
V. anguillarum, and V. coralliilyticus (Table 1), leading, in all cases, to increased survival rates of
the cultured animals.

Table 1. Phage therapy trials against causative agents of vibriosis in experimental aquaculture setups.

Cultured Animal Causative Agent Reference

Penaeus monodon
V. harveyi

[77–81]
Haliotis laevigata [82]
Panulirus ornatus [83]
Ostrea plicaltula V. parahaemolyticus [84]

Litopenaeus vannamei [85]
Apostichopus japonicus V. alginolyticus [86]
Apostichopus japonicus V. splendidus [87]
Apostichopus japonicas V. cyclitrophicus [88]

Salmo salar V. anguillarum [89]
Danio rerio [90]

Acropora millepora V. coralliilyticus [91]

Biological treatment of V. harveyi-caused vibriosis has been quite successful in Penaeus monodon
shrimp hatcheries. Vinod and colleagues [77] performed both short-term and long-term phage
treatment trials using a broad host range, lytic siphovirus. During the short-term trials (48 h), the
lytic vibriophage was administered as phage suspension at low multiplicity of infection (MOI = 1)
to post-larval shrimps (18 days) that were previously infected by V. harveyi. Both single-dose (0 h)
and double-dose (0 and 24 h) phage administration, led to 70% shrimp survival along with a 2-log
reduction of V. harveyi, and 80% shrimp survival along with a 3-log reduction of V. harveyi, respectively.
By contrast, controls without phage treatment showed only 25% survival and a 1-log increase of
V. harveyi. During long-term trials (17 days), 35,000 naturally V. harveyi-infected nauplii were treated
with the lytic vibriophage on a daily basis, and their average survival was 86%, compared to only 17%
in the non-treated nauplii. Compared to antibiotics, which only led to a 40% survival, phage therapy
provided better protection for infected shrimp. Similarly, Karunasagar and colleagues performed
large-scale phage trials in a commercial shrimp hatchery using two lytic V. harveyi-specific broad host
range bacteriophages. Phage application yielded 88% and 86% shrimp survival for each of the phages,
while in antibiotic-treated (oxytetracycline and kanamycin) tanks, shrimp survival was 68% and 65%,
respectively [79].

Phage therapy applications have shown promising results in other commercial species, such as
sea cucumber, Apostichopus japonicus [87]. Three lytic bacteriophages (PVS-1, PVS-2 and PVS-3) were
in all cases effective when tested in vitro against four pathogenic V. splendidus strains. Focusing on the
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preventive aspect of phage therapy, the authors prepared six different diets: a non-supplemented diet
serving as control, an antibiotic-supplemented, three diets supplemented with single phages, and a
diet that was supplemented with a cocktail of the three phages. Juvenile sea cucumbers were then
fed on a daily basis. After 60 days, the animals were challenged by immersion in seawater containing
V. splendidus for 2 days, and their survival rates were monitored for 10 days. The survival was 18%
for the control diet, 82% for the antibiotics-supplemented diet, 65%, 58%, and 50% for the individual
phage-supplemented diets and 82% for the phage cocktail-supplemented diet. In the same study,
V. splendidus strain VS-ABTNL was injected in two groups of healthy sea cucumbers, while the control
group was injected with sterile seawater. A phage cocktail was subsequently injected in one of the
infected groups, and the survival rates were monitored for the following 10 days. All animals in the
control group survived (100%), only 20% in the non-treated group and 80% survived in the phage
treated group. Thus, it was concluded that phage cocktails could successfully protect A. japonicus
against V. splendidus infection, and that both injection and immersion worked as delivery routes of
phages. V. splendidus is a rapidly emerging pathogen, and the attempts for isolation of lytic phages
have attracted a keen interest lately [92]. Similar phage trials in A. japonicus cultures have been
performed against V. alginolyticus and V. cyclitrophicus using a mixture of two vibriophages and one
vibriophage, respectively. In the former case, phage treatment at MOI = 10 led to 73% survival rates of
the sea cucumbers, compared to only 3% survival that was observed in the non-treated group [86].
In the latter, the survival rate of juvenile A. japonicus was enhanced from 18% to 81% when fed with
phage-containing feed, to 63% when injected with purified phage virions and to 58% when immersed
in the phage-containing bath [88].

The bacteriophage CHOED has been tested for conferring protection against vibriosis in Atlantic
salmon (Salmo salar) [89]. The presence of CHOED at MOI of 1 and 20 provided 100% protection of
the fish against V. anguillarum, whereas untreated fish suffered over 90% mortality. When S. salar was
challenged with V. anguillarum in aquaculture conditions, the administration of CHOED at MOI of 100
resulted in 100% fish survival 20 days after exposure to the pathogen, compared to only 60% survival
in the non-treated fish.

The in vitro use of a phage cocktail with VP-1, VP-2, and VP-3 against V. parahaemolyticus, has
been significantly more effective than using individual phages, albeit VP-3 was mainly responsible for
the cocktail’s lytic activity [93]. Although the efficacy of the phages contained in the cocktail can vary,
multivalent phage cocktails can be effective against several pathogenic strains of the host and they can
greatly delay the development of resistance due to the different phage components. Moreover, the
idea of a phage cocktail allows the use of lytic phages with narrow host ranges, since several of them
can be combined to produce a much broader lytic spectrum [94].

Phage delivery methods are of vital importance for a successful therapy, and depend on the
presence of the phages at the area of infection in a titer above the therapeutic threshold. Ryan and
colleagues have reviewed the phage delivery routes in human phage therapy trials, and they concluded
that parenteral injection is the most successful route of phage administration, because the phages
can immediately reach the systemic circulation [95]. In several aquaculture phage therapy trials,
administration of bacteriophages via injection has also been the most successful route of delivery,
since bacteriophages could be detected in the fish tissues for several days after administration [76,96].
However, parenteral injection, apart from the fact that it is rather stressful for the animals, has
significant limitations in its practical application when (1) fish or shellfish are too small or too numerous
or (2) continuous treatment is required. In the majority of the in vivo trials, phages are added to the
water simultaneously, or right after the bacteria. This method reduces the number of pathogens
used for the challenge, which in turn results in lower infection rate. The oral route of delivery, the
immersion in phage bath, and the addition of phages to the surrounding water are very common
methods that often lead to high protection against bacterial pathogens [74,75,97] and greatly increase
the applicability of phage therapy. Especially, administration of phages via phage-coated feed has been
shown to be an efficient delivery method, resulting in constant, high abundance of phages in the fish
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organs for several weeks [97]. A variety, though, of delivery routes has been suggested in aquaculture
phage trials, because bacterial infections can occur during all the developmental stages of cultured
organisms; from the eggs to the broodstock [98].

Reducing the number of vibrios in aquaculture environment is another strategy that has been
examined. Pathogenic vibrios are present in live feeds offered to fish or invertebrate larvae, and the feed
is thus a major source of pathogens entering the marine hatcheries [93,99]. Preventive administration
of bacteriophages can be applied either directly to the environment of the cultured animal, preferably
during early growth stages, or to the live prey, to control the source of pathogens to the hatchery
facilities. V. anguillarum, V. alginolyticus, and V. splendidus are some common examples of pathogenic
vibrios which are entering the aquaculture environment through live feeds, such as Artemia salina and
Brachionus plicatilis (Figure 2) [52,100–102].

Antibiotics 2018, 7, x  6 of 23 

Reducing the number of vibrios in aquaculture environment is another strategy that has been 
examined. Pathogenic vibrios are present in live feeds offered to fish or invertebrate larvae, and the 
feed is thus a major source of pathogens entering the marine hatcheries [93,99]. Preventive 
administration of bacteriophages can be applied either directly to the environment of the cultured 
animal, preferably during early growth stages, or to the live prey, to control the source of pathogens 
to the hatchery facilities. V. anguillarum, V. alginolyticus, and V. splendidus are some common examples 
of pathogenic vibrios which are entering the aquaculture environment through live feeds, such as 
Artemia salina and Brachionus plicatilis (Figure 2) [52,100–102].  

 
Figure 2. Facilities for live feed production from a commercial fish farm unit. (a) Artemia salina in 
culture tanks with vigorous aeration, where the native presumptive Vibrio load is regularly estimated 
between 107 and 108 cells per mL; (b) Brachionus plicatilis culture tanks, where the native presumptive 
Vibrio load is regularly between 102 and 108 cells per mL [103]. 

The V. alginolyticus-specific broad host range lytic phages φSt2 and φGrn1 have been 
successfully used as a “smart” disinfectant that selectively reduces vibrios in live feeds. Since V. 
alginolyticus is a prevalent component in live feeds, such as Artemia and rotifers, a scheme of 
precautionary phage administration in Artemia salina live feed cultures was evaluated. A combination 
of these two phages was administered in A. salina live prey at MOI: 100, leading to a significant 
reduction of the native Vibrio load by 1.3 log units, suggesting a decrease in the risk of a vibriosis 
outbreak in the marine hatchery [104]. Further research on φSt2 and φGrn1 has revealed that during 
infection, these phages are able to hijack and reprogram the host’s metabolic machinery, in order to 
meet their augmented demands for energy and nucleotide biosynthesis, making their therapeutic 
potential highly efficient [105]. 

The Profile of a Good Candidate: KVP40 Case  

Several issues are important when selecting safe and efficient candidates for phage therapy and 
next generation sequencing technology plays an important role in revealing the genomic composition 
and the lytic nature of viruses, which are main criteria in the selection process. The absence of genes 
related either to lysogeny or to any known toxins [106] confirmed the lytic nature of the vibriophage 
KVP40, making it a proper candidate for phage therapy trials against vibriosis. Phage KVP40 
[106,107], is a myovirus classified in a group which has been designated as “schizoT4like” or “KVP40-
like” [108]. It was isolated against a clinical V. parahaemolyticus strain, however, it has a broad host 
range, able to infect several other strains of eight different Vibrio species: V. alginolyticus, V. cholerae, 
V. parahaemolyticus, V. anguillarum, V. splendidus, V. mimicus, V. natriegens, and V. fluvialis [25,107]. The 
broad lytic spectrum and efficiency against several causative agents of vibriosis emphasizes the 
potential of KVP40 to control vibriosis in aquaculture settings. 

Figure 2. Facilities for live feed production from a commercial fish farm unit. (a) Artemia salina in
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between 107 and 108 cells per mL; (b) Brachionus plicatilis culture tanks, where the native presumptive
Vibrio load is regularly between 102 and 108 cells per mL [103].

The V. alginolyticus-specific broad host range lytic phages ϕSt2 and ϕGrn1 have been successfully
used as a “smart” disinfectant that selectively reduces vibrios in live feeds. Since V. alginolyticus
is a prevalent component in live feeds, such as Artemia and rotifers, a scheme of precautionary
phage administration in Artemia salina live feed cultures was evaluated. A combination of these
two phages was administered in A. salina live prey at MOI: 100, leading to a significant reduction
of the native Vibrio load by 1.3 log units, suggesting a decrease in the risk of a vibriosis outbreak in
the marine hatchery [104]. Further research on ϕSt2 and ϕGrn1 has revealed that during infection,
these phages are able to hijack and reprogram the host’s metabolic machinery, in order to meet their
augmented demands for energy and nucleotide biosynthesis, making their therapeutic potential highly
efficient [105].

The Profile of a Good Candidate: KVP40 Case

Several issues are important when selecting safe and efficient candidates for phage therapy and
next generation sequencing technology plays an important role in revealing the genomic composition
and the lytic nature of viruses, which are main criteria in the selection process. The absence of genes
related either to lysogeny or to any known toxins [106] confirmed the lytic nature of the vibriophage
KVP40, making it a proper candidate for phage therapy trials against vibriosis. Phage KVP40 [106,107],
is a myovirus classified in a group which has been designated as “schizoT4like” or “KVP40-like” [108].
It was isolated against a clinical V. parahaemolyticus strain, however, it has a broad host range, able to
infect several other strains of eight different Vibrio species: V. alginolyticus, V. cholerae, V. parahaemolyticus,
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V. anguillarum, V. splendidus, V. mimicus, V. natriegens, and V. fluvialis [25,107]. The broad lytic spectrum
and efficiency against several causative agents of vibriosis emphasizes the potential of KVP40 to
control vibriosis in aquaculture settings.

The bacterial receptor that KVP40 recognizes in order to infect its hosts is the universal outer
membrane protein K (OmpK), which is very common among Vibrio species [109]. Targeting a broadly
distributed receptor is a key point when looking for a broad lytic spectrum bacteriophage; however,
as it will be further discussed below, this can also result in the development of several defense
strategies from the bacterial host in order to reduce the cost of resistance. In addition, KVP40 is a
phage with a large genome (244,835 bp) able to take advantage of its host’s metabolic machinery in
order to maximize the efficiency of the infection, and thus, the overall impact of phage therapy. Lytic
bacteriophages can manipulate and reprogram the host’s metabolic machinery in order to support
and facilitate their own DNA replication and protein synthesis, which are necessary for the packaging
and release of the new virions [110,111]. They can mediate a transition from a host-oriented to a
phage-oriented metabolism [112,113] during infection, since the interactions of their early phage genes
with DNA metabolism-involved host proteins, cease the host replication [110]. KVP40 was found to
encode a functional NAD+ salvage pathway, which can boost its own replication during infection.
This pathway is also conserved in other large genome phages that carry similar genes involved in
nucleotide metabolism [114]. Last but not least, many phages, including KVP40, carry a high number
of tRNAs, which may provide the phage with a small degree of autonomy when it comes to the
translation of its own genes [115].

4. Issues Raised in Phage Therapy

As evident from above, phage therapy is definitely an attractive alternative to combat pathogenic
bacteria, which may be used not only as a treatment, but also to prevent infections. However, there are
several important constraints, such as the phage efficacy under aquaculture conditions, administration
methods and persistence of phages in the system, the possibility of unwanted phage-encoded
properties and, perhaps most importantly, the development of phage resistance, that need to be
evaluated before a phage therapy application scheme can be considered successful.

4.1. Phage Therapy from the Lab to the Field

During the stages of a therapeutic phage suspension development in the lab, host specificity, life
cycle parameters and lytic nature of the phage, are the main prerequisites that need to be covered.
The selection of appropriate phages that are going to be used alone or forming a phage cocktail is
also crucial for the outcome of the phage therapy. However, despite the promising results that some
lytic bacteriophages have shown under laboratory conditions, application of phage-based treatment in
aquaculture settings is associated with a number of additional challenges that need to be addressed.

Previously, reporting of phages with low in vivo activity has been one reason for questioning
globally the actual efficacy of phage therapy against bacterial infections in animals and humans [116,117].
The optimal phage delivery method (injection, oral, immersion) may vary between different aquaculture
settings, and should be carefully determined in each case. For instance, although injection has
been mentioned as the most effective delivery route [95], immersion of the cultured animals in
phage-containing water has been also quite effective, since bacteria begin their infection cycle from
adhering to the mucosa of the fish, which constitutes the first physical and chemical barrier of fish against
pathogens [118]. Marine fish species drink water to maintain their internal ionic balance, and therefore,
phages of the water will have the opportunity to encounter pathogenic bacteria for which the infection
route is through the fish intestinal mucosa. Even when bacteria attack the intestinal mucosa, fish drink a
lot of water, so phages still encounter intestinal bacteria [97]. In vitro results based on immersion are
very often similar to those obtained in vivo, since this approach, in both cases, is based on phage-bacteria
interactions that take place in a phage-containing suspension [119]. Quantification of the viruses, in the
animal tissues or in the aquatic environment where therapy was applied, will define the efficacy of the
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delivery route. However, repeated phage administration using either delivery route has been the most
effective way to maintain a high bacteriophage titer in the system [77,87,97]. Oral administration via
phage-coated fish pellets is a quite feasible and effective way to keep a constant phage input to the system
with minimum effort, and easily incorporated into the daily routine of the fish farm [97]. Furthermore,
as the pathogens may be present in different stages of the production process, it is important to consider
where in the production the addition of phages is expected to most efficiently reduce the pathogen (i.e.,
disinfection of live feed, disinfection of fish eggs, treatment of infected fish, etc.).

4.2. Concerns about Phage-Treated Organisms

A bacterial lysate might contain endotoxins which, if not removed, may be fatal for the cultured
organism [120,121]. The phage stocks that are administered to the cultured organisms should therefore
be meticulously prepared to remove bacterial debris, secondary metabolites, enzymes, etc., that might
potentially be toxic for the fish or shellfish [122]. Endotoxin-free phage suspensions are regularly
produced today [123,124], eliminating potential side effects that may create unnecessary consideration
to legislation and public opinion about phage therapy. Another concern about phage therapy in
organisms such as fish, which have an adaptive immune system, is the potential immunological
response of the phage-treated organism, that might trigger the production of phage-neutralizing
antibodies, decreasing in vivo phage efficacy [125,126]. This possibility in aquaculture has been
examined after phage-coated feed administered in yellowtail, Seriola lalandi [72] and intramuscular
phage injection in ayu, Plecoglossus altivelis [127], however, phage-neutralizing antibodies were not
detected in the studies. Production of such antibodies after phage administration in aquaculture is not
yet documented in the literature [74].

4.3. Development of Resistance

Development of resistance is probably the most significant limitation in the whole concept of
phage therapy. In the ocean, phages and their bacterial hosts are in a perpetual arms race, under
strong evolutionary pressure [128,129]. Although the use of phage cocktails can reduce or delay the
emergence of resistant strains [93,130], bacteria have developed several strategies (Figure 3) to cope
with their viral predators [131–133].
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Figure 3. Overview of the main phage defense mechanisms in bacteria. Prevention of viral attachment
on the bacterial surface can be achieved by mutating or masking the receptors, as well as downregulation
of receptor expression, orchestrated by quorum sensing (QS). DNA injection may be successfully averted
by superinfection exclusion (Sie) mechanisms. If phage DNA enters the bacterial host, its digestion
can be catalyzed by R-M mechanism and CRISPR-Cas arrays systems. Deliberate death of the infected
cell (abortive infection) constitutes another strategy against viral predators, where prevention of phage
proliferation reduces spreading of the infection to the rest of the population.
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4.3.1. Preventing Viral Attachment

The most crucial step for the successful infection of a bacterial host by a phage is its adsorption
by the host through a specific reaction between the phage receptor-binding protein and the bacterial
cell surface receptor. There is a great variety of components on the bacterial surfaces that are targets
for phage attachment, such as proteins, polysaccharides, and lipopolysaccharides [134]. However,
bacteria have developed strategies to effectively prevent phage adsorption events by (a) modifying
the phage receptors by mutational changes, (b) masking receptors by producing an extracellular
matrix, (c) producing competitive inhibitors, or (d) losing or downregulating the expression of the
receptor [131,133]. In several cases the regulation of surface modifications is orchestrated by QS [135].
For instance, in the case of KVP40 phage infecting V. anguillarum, QS is used by bacteria in order to
select between two different protection mechanisms according to their population density. At low host
densities, the OmpK receptor for KVP40 is fully expressed, and the bacteria are protected from infection
by forming aggregates and biofilms. At high host densities, the OmpK receptor is downregulated
through a QS regulation pathway, making V. anguillarum less susceptible to the phage [24]. In V. cholerae,
a different mechanism has been described, where surface modification of the phage receptor prevents
attachment of the lytic phage ICP2 [136]. However, bacteriophages can regain their ability to attach on
their targets by modifying their receptor-binding proteins and getting access to the modified bacterial
cell surface receptors [137].

4.3.2. Preventing DNA injection

Even if the adsorption of the phage has been successful, bacteria have developed strategies to
prevent the injection of the incoming viral DNA. Superinfection exclusion (Sie) systems are based
on proteins related to cell surface modifications or inhibition of replication, and are often encoded
by prophages or plasmids. Sie systems can provide immunity to the prophage-carrying bacterium
against a second potential infection by similar bacteriophages [133,138,139]. A subcategory of Sie is
the repressor-mediated immunity, where the repressor protein retains the prophage in the lysogenic
cycle while providing immunity against an infective phage carrying the same type of repressor [140].
In a recent study, several temperate V. anguillarum-specific bacteriophages, designated as H20-like
phages, were shown to contain a lambda-like cI repressor gene in their genomes. It was suggested
that this mechanism possibly confers repressor-mediated immunity to other H20-like phages in their
V. anguillarum host [141]. A Sie system-encoding prophage has recently been reported to confer phage
resistance in the V. cholerae strain 919TP [142]. Compared to receptor alteration strategies, which prevent
phage adsorption, and thus only protect the individual resistant cell, the Sie systems immobilize and
inactivate the phage, thereby reducing the infection load on the remaining population [143].

4.3.3. Digesting Extrinsic DNA

In cases where the phage DNA enters the bacterial host, bacteria have developed several
mechanisms for its inactivation: (a) Restriction-modification (R-M) systems and (b) CRISPR-Cas
system [131]. R-M systems (type I, II, III, and IV) are composed by a methyltransferase and a restriction
endonuclease, which catalyze the methylation of the bacterial DNA and the cleavage of the viral,
unmethylated DNA, respectively [144–146]. Almost all bacterial genera carry R-M systems [133], and
it is hypothesized that high levels of horizontal gene transfer (HGT) are responsible for their spreading
and evolution among prokaryotes [145]. Vibriophage KVP40 has been reported to be restricted and
modified by the R-M system of at least five Vibrio species [147]. However, phages have simultaneously
evolved to evade the omnipresent R-M systems. Approximately, 20% of the available phage genomes
carry methyltransferase-encoding genes, suggesting the ability to protect their own genome through
methylation [141,148]. Methyltransferases can also affect bacterial virulence [149] or they may function
as transcriptional regulators by either activating or repressing bacterial genes [150,151]. N6-adenine
methyltransferase was previously found in the temperate vibriophage VHML, where it was linked
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to the virulence of V. harveyi host strain upon integration [152]. H20-like vibriophages were also
found to carry a N6-adenine methyltransferase gene; however, its exact function still needs to be
explored [141]. Phages may methylate parts of their genome, preventing its degradation by the
host’s restriction enzymes, whereas methylation could modify the properties of the host. It has been
reported that viral infection of specific bacterial hosts subsequently affected the host range of the newly
produced virions [153,154], suggesting that specific differences in the methylation of viral DNA during
phage production affects the infectivity of the produced phages. Integrating conjugative elements
(ICEs), ICEVspPor3 and ICEValSpa1, that were recently identified in V. splendidus and V. alginolyticus,
respectively, harbor genes encoding distinct R-M systems, which are able to confer protection against
viral infection when expressed in Escherichia coli [155].

CRISPR-Cas has been described as an adaptive immune system of bacteria. This system is
composed of (1) cas genes, which are responsible for the expression of the protein machinery that
performs the immune response, and (2) the CRISPR loci, composed of 21–48 bp direct repeats interspaced
by non-repetitive spacers of 26–72 bp, which provide genetic memory of previous viral infections.
Although there are two classes, six types, and 16 subtypes of CRISPR-Cas systems [156], all of them are
based on three common functional phases: (1) adaptation-spacer(s) from invasive DNA are acquired
and then integrated into the CRISPR loci of the bacterial genome, (2) expression—transcription of the
CRISPR loci that encode a CRISPR RNA (crRNA) molecule which will be combined with Cas protein
forming crRNA–Cas complexes, and (3) interference—the crRNA-Cas complexes attach and digest
complementary nucleic acids, providing immunity to the bacterial host [131]. Among the sequenced
bacterial genomes, CRISPR loci are found in approximately 40% of them [157]. Although CRISPR-Cas
systems are highly sophisticated, their conferred immunity can be bypassed by the bacteriophages by
mutations or deletions in the targeted proto-spacer in the phage genome. Single nucleotide mutations
in the protospacer genomic region of S. thermophilus phages were able to circumvent their bacterial
host’s CRISPR-Cas defense system [158,159]. Screening of the 1935 publicly available Vibrio genomes
using CRISPRfinder [160] showed that CRISPR(s) were present in 278 (14.4%) genomes. Most of the
CRISPR-containing Vibrio strains had one CRISPR array, but some carried up to 11 [161]. In total,
388 CRISPR arrays were identified in all the Vibrio genomes The CRISPR prevalence in the Vibrio genus
is thus substantially lower than the reported 50% in bacteria in general [156]. Within the 28 genome-
sequenced V. anguillarum strains, only one strain, V. anguillarum PF7, contained CRISPR. Out of the two
CRISPR-Cas arrays of V. anguillarum PF7, eighteen spacers were >95% similar to genomic parts of the
H20-like vibriophages, with eight of them being 100% identical [141]. The knowledge of the contribution
of CRISPR-Cas systems in vibrios’ defense is sporadic, and needs to be more thoroughly evaluated.
It is also worth mentioning that the V. cholerae phage ICP1 is the first bacteriophage recorded to encode
its own CRISPR-Cas arrays as a counter-defense against V. cholerae phage inhibitory chromosomal
island [162].

4.3.4. Abortive Infection System

Bacterial infection by phages can sometimes be non-productive, even though it leads to the death
of bacterial host. This kind of abortive infection may be the result of “lysis from without” (LO), where
extensive simultaneous infections (i.e., very high MOI) may destroy the cell membrane. In another
type of abortive infection leading to non-productive phage infections, the infected bacteria can enter
a programmed cell death, and thereby prevent the spreading of the infection to the neighboring
cells. This altruistic behavior is orchestrated by the abortive infection (Abi) system [131,163].
Although the best characterized Abi system is the Rex system, which is found in phage λ-lysogenized
E. coli preventing infection by other coliphages [164,165], and most Abis have been identified in
plasmids of Gram-positive strains [163], V. cholerae has also been documented as a carrier of such a
system [166]. However, it has been proven that some Abis, such as TA system ToxIN described in
Pectobacterium atrosepticum, may act also through toxin-antitoxin (TA) mechanisms, aborting phage
infection [167]. TAs were initially found in plasmids, but are now known to be abundant in bacterial
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genomes. The components of these systems, a toxin and an antitoxin, neutralize each other, keeping
the balance that maintains bacterial life. Upon phage infection, toxin and antitoxin production stops,
yet antitoxin degrades faster, allowing the toxin to kill the bacterial cell [168]. For instance, MosAT
TA system in V. cholerae resembles AbiE, a broadly distributed TA-Abi system in bacterial genomes
inducing bacteriostasis and conferring phage resistance [168]. A high number of both confirmed and
putative TA systems have been reported in V. cholerae and V. parahaemolyticus [169,170], however, their
potential functionality as Abi systems still needs to be elucidated.

Even though the result of abortive infections is lysis of the bacterial cell, the phenomenon limits
self-adjusting properties of the phages because there is no virion production. The implication of
this defense mechanism in vibrios needs to be evaluated in vitro, during the assessment of the viral
lytic spectrum.

4.3.5. Resistance Comes at a Cost

Thinking of the variety of phage defense mechanisms identified in bacteria, one might wonder
what determines their distribution among bacteria, and why not all bacteria carry all of them.
The explanation is that development of resistance comes at a fitness cost for the bacteria [171], so
they need to be parsimonious when they invest on resistance strategies. Phage-binding bacterial
receptors, which serve as recognition points for the phages, are often also associated with important
cell functions, such as nutrient uptake, motility, and ability to attach on surfaces [172–174]. Therefore,
surface modifications may significantly reduce bacterial fitness, including a reduced colonization
ability [175,176] and increased susceptibility to other phages [177]. Loss of virulence and gliding
motility has been observed in phage resistant Flavobacterium columnare [178], and similar results were
recorded in phage-resistant Flavobacterium psychrophilum strains, which have shown decreased hemolytic
activity, gelatinase activity, and total protease activity, as well as mutations in significant virulence
genes [179]. Accordingly, in vibrios, phage-resistant strains have been shown to be less harmful against
their eukaryotic host. In experimentally challenged pipefish (Syngnathus typhle), three Vibrio spp. Isolates,
representing different phage susceptibility, showed positive correlation between phage susceptibility
and virulence [180]. Further, loss of virulence was observed in four KVP40-resistant V. anguillarum strains
as demonstrated by reduced mortality of cod (Gadus morhua) larvae challenged with phage-resistant
clones, compared to a control group challenged with the wild type V. anguillarum strain [181].

Bacteria and phages are in a perpetual arms race, so phages also evolve counter-defensive
strategies to circumvent bacterial defense mechanisms. The fitness cost, including loss of virulence,
which is often associated with resistance, constitutes a barrier to the prevalence of these defense
mechanisms [131], and selection pressure on different anti-phage strategies depends on the trade-off
between mortality imposed by phages and fitness cost of the defense strategy, under the given
environmental conditions. Hence, constitutive defense strategies, such as mutating the bacterial
receptors and inducible defense strategies, such as CRISPR-Cas systems, may prevail under different
conditions and for different phage-host interactions. In the former case, modification of the receptors
is permanently associated with a substantial fixed cost that directly affects bacterial fitness, while in
the latter case, bacterial CRISPR-Cas systems may be elicited only upon viral infection [182]. The force
of infection and the nutrient availability are usually the most important factors that will determine the
bacterial decision between constitutive and inducible defense mechanisms [182–184]. The CRISPR-Cas
system is favored when the frequency of infection is low and the nutrients are limited, because
it is associated with a lower cost for the bacterial cell. Viruses can, though, quickly mutate and
escape, suggesting that these systems would be most effective when exposed to low phage diversity,
due to relatively limited capacity for spacer acquisition. Accordingly, genomic mapping of CRISPR
spacers and viral genomes has shown that only recently acquired resistance was functional for phage
defense [185]. On the other hand, surface modifications are favored when frequency of infection is
high and nutrients are abundant, because bacteria need to be in an “always on” defensive position,
even if the costs are high [182].
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Acquiring resistance against more than one bacteriophage might increase the fitness cost for the
host, since it will need to modify different phage-binding surface receptors [175,186]. Therefore, coping
with phage cocktails implies a higher fitness cost for the bacteria. Furthermore, the accumulating
indications that phage-resistance leads to dominance of less virulent phenotypes, suggest that the
problems with resistance associated with phage treatment in aquaculture may be limited. Indeed,
the fitness cost of phage immunity needs to be comprehensively explored, with special emphasis
on the virulence properties of phage resistant pathogens, potentially allowing the prediction of the
implications of the development of presumably less virulent phage resistant bacteria for the survival
of phage treated animals.

5. Temperate Vibriophages and Lysogenic Conversion

Another concern when selecting phages for therapeutic purposes is the risk of using phages
encoding unwanted genes that may spread in the pathogen population. Consequently, it must be
explicit that only lytic bacteriophages should be considered as potential candidates.

However, temperate bacteriophages are also a vital part of the natural virome, and key players
in driving bacterial evolution by disseminating genetic information through horizontal gene transfer
(HGT). HGT may take place in both lytic and temperate phage with the form of generalized
transduction, whereas the events of specialized transduction and lysogenic conversion are restricted
only to temperate phages [187,188]. The high rate of generalized transduction events, which also
applies to lytic phages, has lately raised significant concerns against phage therapy, since virulence
or resistance genetic element might spread among the pathogenic bacteria [189]. Complementary
researches on E. coli and Streptococcus pyogenes, though, have shown that antibiotic resistance genes
may be disseminated only through temperate transducing bacteriophages [190–192]. However, it
was recently found that two lytic bacteriophages against E. coli, designated as “superspreaders”,
could promote extensive plasmid transformation, and therefore efficiently disperse antibiotic
resistance genes [193]. Hence, it is crucial that such phages are avoided in phage therapy or other
medical applications.

A serious constraint in phage therapy is, therefore, the unsafe use of temperate phages as
therapeutic agents. The process through which prophages integrate in their host’s genome and transfer
genes whose expression may render increased bacterial fitness, either directly (e.g., phage-encoded
toxins) or indirectly (e.g., increased fitness during infection) is designated as lysogenic conversion.
This process possesses a dominant role in conferring enhanced fitness to the prophage-carrying bacteria.
The importance of this process is highlighted in vibrios, since there is a plethora of vibriophages where
lysogenic conversion has positively affected, both directly and indirectly, the fitness of their lysogenized
hosts. A classic example of lysogenic conversion in vibrios is the phage-mediated production of
cholera toxin, by the filamentous phage CTXΦ [194]. However, there are several examples of lysogenic
conversion in other Vibrio pathogens. V. harveyi strains carrying the prophage VHML, were able to
metabolize fewer nutrient sources than their uninfected counterparts [195]. Switching off unnecessary
bacterial functions would make lysogenized V. harveyi strains less energy-consuming, hence more
competitive under nutrient-limited environments [196]. The same temperate phage VHML was
reported as being responsible for conferring virulence to the V. harveyi strain 642, since avirulent
V. harveyi strains were converted to virulent, when infected by phage VHML [78,197]. A similar
observation was made in the case of the prophage VOB, which was integrated in the genome of its
V. owensii host. After the induction of VOB in the lab, it was co-cultured with naïve V. harveyi and
V. campbellii. The avirulent vibrios were lysogenized by the induced VOB and they became virulent,
causing increased mortality to Penaeus monodon. It was concluded that VOB was responsible for
some of the virulence of V. owensii, as well as for the acquired virulence of V. harveyi and V. campbellii
lysogens [198]. In a very recent study, prophage-like elements that were identified in the genomes of
V. anguillarum strains T265 and Ba35, contained genes related to zonula occludens toxin (Zot), implying
the contribution of the prophage to bacterial virulence [199]. Prophages K139 and VIPΦ have also
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been reported to increase the pathogenesis of their V. cholerae hosts by increasing both virulence and
colonization ability [200,201]. Lysogenic conversion may be implicated also in bacterial host’s defense
against viral infection. Phage-induced lysis of some cells could release prophage-encoded toxins,
such as colicins, that might eliminate competitors, helping the rest of the bacterial population to take
advantage of the environmental niche and resources [202,203]. In a recently published study, the tail
length tape measure gene that was identified in the genome of the H20-like temperate vibriophages
resembled the structure of channel forming toxin colicin Ia, hence, an additional role of the gene in
bacterial competition was suggested by the authors [141]. Furthermore, Sie and Abi defense systems
that were previously mentioned, are also among the beneficial effects that prophages impart to their
hosts [204].

Although temperate bacteriophages are not suitable for therapeutic purposes, lysogenic lifestyle
is the symbiotic aspect of the virus-bacteria interactions which has been the outcome of their refined
co-evolutionary relationships [205]. Already in 1961, Campbell suggested a beneficiary contribution of
prophages to their host by stating “One therefore must look for possible means by which the phage
might impart a selective advantage to its host” [206].

6. Perspectives on Phage Therapy Today

Wherever bacteria thrive, so do predatory phages. During 2017, we celebrated 100 years from
the discovery of the bacteriophages and the idea of using specific bacteriophages as a weapon to
biologically control pathogenic bacteria. Phage therapy approaches against bacterial infections have
been revived, primarily due to major problems with antibiotic-resistant bacteria we are facing as a
result of excessive usage of antibiotics. In addition, the increasing temperature in the oceans, the fatal
effects of vibriosis on the global aquaculture industry, as well as a plethora of different vibrios that may
trigger the disease has further emphasized the need for exploring the potential of phages to control
vibrio pathogens.

While the initial idea behind phage therapy was treatment of diseases, as in the case of antibiotics,
future work should include prophylactic use of lytic bacteriophages to reduce the pathogen load and
reduce the risk of infection. In marine aquaculture, addition of bacteriophages to live feeds, such as
Artemia and rotifers, may be an efficient way to selectively disinfect the life feeds immediately prior
to entering fish or invertebrate production cycle. Since both Artemia and rotifers are produced in
batch cultures with a short retention time, the risk of resistance development is minimal, as opposed
to providing phages prophylactically in the feeds of fish, or directly in rearing tanks, which would
allow for phage-bacteria co-evolution. However, application of lytic phages as fish feed additives
may be an efficient way to prevent the pathogens from establishing in the fish organs. Recirculating
aquaculture systems (RAS) could be ideal environments for the application of phage therapy, since
the water exchange is quite limited. Additionally, the combinatory usage of bacteriophages, together
with another ecologically friendly alternative such as probiotic bacteria, constitutes a strategy that
would be expected to be highly effective against bacterial diseases. Combining biological approaches
with different targets and modes of action may minimize the risk of future resistance development,
as has been seen in human medicine, where combined drugs are successful in antibacterial and
antiviral treatment.

More research is still required to optimize the phage application under field conditions (phage
composition, timing of application, delivery etc.) and to eliminate the potential risk factors associated
with phage application (dispersal of unwanted genes, effects on fish microbiota). Further investigation
of the naturally occurring phages in the cultured animals’ microbiota is going to unravel their role in
the organism’s protection against bacterial diseases, and evaluate the possibility of them being used
in a more targeted phage therapy scheme. This requires extensive sequencing of viral genomes and
analyses for presence of genetic elements that might potentially interfere with the bacterial fitness
or affect the organism’s health. Such knowledge would also provide us a window for visualizing a
future of molecularly engineered lytic virions. Consequently, more in vitro and in vivo test trials are
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required before the final release, and any side effects need to be meticulously recorded. However,
facing a future with increasing problems with antibiotic resistant pathogens, exploring phage-based
alternatives is now more necessary than ever.
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