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Abstract: Background: Urinary tract infections (UTIs) are one of the most common infections in the
human medicine, both among outpatients and inpatients. There is an increasing appreciation for
the pathogenic role of non-fermenting Gram-negative bacteria (NFGNBs) in UTIs, particularly in
the presence of underlying illnesses. Methods: The study was carried out using data regarding a
10-year period (2008–2017). The antimicrobial susceptibility testing was performed using the disk
diffusion method, E-tests, and broth microdilution. Results: NFGNB represented 3.46% ± 0.93%
for the outpatients, while 6.43% ± 0.81% of all positive urine samples for the inpatients (p < 0.001).
In both groups, Pseudomonas spp. (78.7% compared to 85.1%) and Acinetobacter spp. (19.6% compared
to 10.9%), were the most prevalent. The Acinetobacter resistance levels were significantly higher in
inpatients isolates (p values ranging between 0.046 and <0.001), while the differences in the resistance
levels of Pseudomonas was not as pronounced. The β-lactam-resistance levels were between 15–25%
and 12–28% for the Acinetobacter and Pseudomonas spp., respectively. 4.71% of Acinetobacter and 1.67%
of Pseudomonas were extensively drug resistant (XDR); no colistin-resistant isolates were recovered.
Conclusions: Increasing resistance levels of the Acinetobacter spp. from 2013 onward, but not in the
case of the Pseudomonas spp. Although rare, the drug resistant NFGNB in UTIs present a concerning
therapeutic challenge to clinicians with few therapeutic options left.

Keywords: urinary tract infection; UTI; antibiotic; resistance; epidemiology; non-fermenting;
Acinetobacter; Pseudomonas; Stenotrophomonas

1. Introduction

Urinary tract infections (UTIs) are the second most common type of infections in the human
medicine in the United States and Europe and the third most common (following respiratory tract
infections and gastrointestinal infections) infectious pathologies worldwide, representing an important
factor of morbidity and mortality, both among outpatients and hospitalized patients (in the latter
group, they may represent 25–50% of infections overall) [1–3]. UTIs are a considerable economic
burden for healthcare institutions and national economies; additionally, they also have a substantial
economic impact, as they result in lost working days [4,5]. In fact, the annual cost of UTIs in the US
has been estimated to be more than 3.5 billion US dollars [6]. The principal causes of uncomplicated
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and community-associated UTIs are the members of the Enterobacteriaceae family (or more recently, the
Enterobacterales order), namely the Escherichia coli and Klebsiella spp. in the highest numbers, while
the CES [Citrobacter-Enterobacter-Serratia] group and members of the Proteae tribe are represented in
the lesser numbers [1–3,7–13]; nevertheless, the etiological spectrum of nosocomial infections is more
diverse, with non-fermenters, Staphylococcus aureus, S. saphrophyticus, Enterococcus spp., and Candida
spp. in the higher numbers [2,14–18].

Non-fermenting Gram-negative bacteria (NFGNB) are a heterogenous group of Proteobacteria,
which are characterized by the inability to ferment sugars to generate energy for their vital cellular
functions. NFGNB include (in a decreasing order of prevalence) Pseudomonas, Acinetobacter, the
Burkholderia cepacia complex (BCC), Stenotrophomonas (Xanthomonas) maltophilia, in addition to some less
frequently isolated genera, such as Achromobacter, Alcaligenes, Brevimundas, Elisabethkingia, Flavobacterium
and Ralstonia among others [19,20]. Some less prevalent members, such as B. mallei and B. pseudomallei
even possess the relevance as bioterrorism agents [21,22]. These microorganisms are ubiquitous in
nature, especially in aquatic environments and on abiotic surfaces, in addition to being associated with
plants pathologies [19,23]. In humans, they are most frequently isolated from respiratory tract samples
(they are especially important in cystic fibrosis patients) and from invasive infections (bacteremia,
sepsis), however, the pathogenic role of these microorganisms has been described in a variety of other
clinical situations [24–26]. They are extremely prevalent in opportunistic infections, affecting severely
immunocompromised, debilitated patients over 60 years of age [19,20,24,26–28]. Interpretation of the
NFGNB-positivity may be tricky for clinical microbiologists, as their true significance (contaminant,
colonizer or true pathogen) should be ascertained based on the patient’s symptoms and the presence
of relevant risk factors [29,30]. The introduction of the matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI-TOF MS) in routine laboratories has revolutionized clinical
microbiology diagnostics [31,32]. The use of this technology (based on measuring the spectra of
conserved, ribosomal proteins of relevant microorganisms) has brought forward a significant change
in the detection of NFGNB as well, allowing for the timely and precise identification of several species,
which previously only could be differentiated by the use of molecular methods (e.g., polymerase chain
reaction) [33–35].

There is an increasing appreciation for the pathogenic role of NFGNB in urinary tract infections,
particularly in children and in patients, who are present with underlying factors that predispose them
to the development of complicated UTIs, e.g., developmental abnormalities, obstruction, vesicourethral
reflux, Type II diabetes, immunosuppression (corresponding to diseases or iatrogenic factors, such as
the therapeutic use of corticosteroids, mycophenolate mofetil or methotrexate), cancer or others [36–38].
Additionally, the urinary catheterization is one of the most important factors, predisposing patients to the
development of UTIs [2,18]. The NFGNB possess lipopolysaccharide (LPS), various adhesins, flagella,
pili, and they are characterized by the production of biofilms, cytotoxins (exotoxin A, exoenzyme S),
and toxic pigments (pyoverdine, pyocyanin, pyomelanine), proteases, hemolysin, and siderophores;
all these virulence factors may have a role in the pathogenesis of UTIs, especially if the infection
occurs through the intraluminal (catheter-associated) route [36,39–43]. In addition, there is extensive
literature regarding the proclivity of NFGNB as multidrug resistant (MDR) pathogens. The therapy of
MDR UTIs is a serious concern for clinicians, as there are few therapeutic options available, especially
if some agents are further excluded due to intrinsic resistance mechanisms [36,38–40,44,45]. The
etiological spectrum and the prevalence of individual pathogens in UTIs may vary significantly in
different geographical regions or healthcare settings. In addition, treating physicians, armed with the
knowledge of regional epidemiological (prevalence) and non-susceptibility levels, may choose the
appropriate antimicrobial therapy for their patients more effectively [46,47]. The aim of this study
was to report the prevalence and the temporal changes in the susceptibility levels of NFGNB in the
urinary tract infections of inpatients and outpatients, using the methods of analytical epidemiology at
a tertiary-care center in Hungary retrospectively, during a 10-year study period (2008–2017).



Antibiotics 2019, 8, 143 3 of 13

2. Results

2.1. Demographic Characteristics, Sample Types

The median age of affected patients was 67 years (range: 0.2–99; median2008-2012: 64 years; range:
0–95; median2013-2017: 69; range: 0–99; p > 0.05) in the outpatient group with a female-to-male ratio
of 0.48 (32.3% female), while in the inpatient group, these values were 56 years (range: 0.7–95 years;
median2008-2012: 45 years; range: 0–88; median2013-2017: 62 years; range: 0–95; p = 0.032) and 0.59 (37.2%
female), respectively. The detailed age distribution of the patients in both affected patient groups is
presented in Figure 1. The difference in the age distribution of the inpatient and outpatient groups
was statistically significant (p = 0.0013). Among the affected patients, the age groups of 10 years or
younger (outpatients: 27.0%, inpatients: 17.2%) and patients over 60 years of age (outpatients: 44.9%,
inpatients: 56.1%) were the most numerous.
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Figure 1. Age distribution of the affected patients in the outpatient and inpatient group.

During the 10-year study period, the Institute of Clinical Microbiology received 21,150 urine
samples from outpatient clinics and 19,325 samples from inpatient departments that turned out to be
positive for a significant urinary pathogen. All samples (100%; n = 731) received from outpatient clinics
were voided (midstream) urine, while the sample distribution from the inpatient departments was the
following: Catheter-specimen urine (72.4%), midstream urine (24.4%), first-stream urine (2.3%), and
samples obtained through a suprapubic bladder aspiration (0.8%).



Antibiotics 2019, 8, 143 4 of 13

2.2. Distribution of Non-fermenting Gram-negative Bacteria in Urine Samples

731 NFGNB isolates were obtained from outpatients (73.1 ± 11.9/year; range: 54–99) and
1229 from inpatients (122.9 ± 15.6/year; range: 104–144), corresponding to n = 649 outpatients and
n = 1084 inpatients. Thus, out of the positive urine samples, these pathogens represented 3.46% ± 0.93%
(range: 2.52–5.53%) for outpatients, while 6.43% ± 0.81% (range: 5.61–7.84%) of all positive urine
samples for inpatients; (p < 0.001). In both groups, the Pseudomonas spp. (outpatients: 78.7%; inpatients:
85.1%; mainly P. aeruginosa, >99%) and Acinetobacter spp. (outpatients: 19.6%, inpatients: 10.9%), were
the most prevalent, while the other species, e.g., S. maltophilia, Alcaligenes spp., B. cepacia complex,
Elisabethkingia spp., Sphynogomonas spp.) were in a minority (inpatients: 4%, outpatients: 1.9%). The
epidemiology and detailed species distribution of the samples in both patient groups are presented in
Figure 2 (inpatients) and Figure 3 (outpatients). In the inpatient group, 14 different species of NFGNB
were isolated (median: 6; range: 4–8), while in the outpatient group, the species distribution was more
diverse, with 20 different species (median: 11; range: 4–15) detected.
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2.3. Antibiotic Resistance Levels Among Urinary Non-fermenting Gram-negative Bacteria

The resistance levels of Acinetobacter and Pseudomonas isolates against the relevant antibiotics are
presented in Tables 1 and 2, respectively. To identify temporal developments in the resistance levels, the
10-year study period was divided into two five-year periods (2008–2012 and 2013–2017, respectively).
The level of resistance in the Acinetobacter species was significantly higher in (p values ranging between
0.046 and <0.001) in the isolates originating from inpatients, in both study periods (excluding SMX/TMP
resistance in the second half of the study period), the ratio of resistant isolates was 3–10-times higher
between 2008–2012, while 3–5-times higher during 2013–2017. The differences in the resistance levels
of Pseudomonas spp. was not as pronounced: While in the first part of the study period, there was a
significant difference among the inpatient/outpatient isolates (p values ranging between 0.033–0.045;
excluding amikacin resistance), this difference was shown only for gentamicin (p = 0.043), imipenem
(p = 0.036), and meropenem (p = 0.029) in the second half of the study period; the ratio of the resistant
isolates was 1.2–1.4-times higher between 2008–2012, while 0.8–2.2-times higher during 2013–2017.
A significant increase in the resistance levels of aminoglycosides, fluoroquinolones, and SMX/TMP was
demonstrated for the Acinetobacter spp. between 2008–2012 and 2013–2017, while similar trends were
identified for imipenem, meropenem, and ceftazidime, in the case of the Pseudomonas spp. (p < 0.01).
Based on the susceptibility-patterns of the individual isolates, 9.66% of the Acinetobacter spp. and
8.54% of the Pseudomonas spp. were multidrug resistant (MDR), while 4.71% of the Acinetobacter spp.
and 1.67% of the Pseudomonas spp. were extensively drug resistant (XDR), during the 10-year period
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overall. No colistin-resistant Acinetobacter or Pseudomonas isolates were recovered from the urinary
isolates during the study period. Resistance trends of the urinary S. maltophilia were the following:
Among eight outpatient isolates, six were susceptible to SMX/TMP, five to levofloxacin, four to colistin
and two to amikacin in the inpatient group, among 16 isolates, 12 were susceptible to SMX/TMP, 10 to
levofloxacin, eight to amikacin and seven to colistin.

Table 1. Percentage of resistant Acinetobacter strains to relevant antibiotics from the inpatient and
outpatient departments (2008–2017).

Tested
Antibiotics

2008–2012 2013–2017

Outpatients Inpatients Statistics a Outpatients Inpatients Statistics a

Amikacin 5.7% (n = 4) 57.0% (n = 39) p < 0.001 10.95% (n = 8) 51.0% (n = 34) p < 0.001
Gentamicin 7.1% (n = 6) 59.3% (n = 40) p < 0.001 10.95% (n = 8) 41.6% (n = 28) p < 0.001
Tobramycin 6.3% (n = 5) 37.4% (n = 25) p = 0.022 10.95% (n = 8) 26.9% (n = 19) p = 0.036
Ciprofloxacin 10.0% (n = 8) 61.1% (n = 41) p < 0.001 17.8% (n = 12) 43.7% (n = 29) p < 0.001
Levofloxacin 7.1% (n = 6) 53.7% (n = 36) p < 0.001 16.4% (n = 11) 38.6% (n = 26) p < 0.001

Imipenem 5.7% (n = 4) 16.7% (n = 11) p = 0.041 8.2% (n = 6) 24.7% (n = 16) p = 0.019
Meropenem 5.7% (n = 4) 22.2% (n = 15) p = 0.046 6.8% (n = 5) 20.8% (n = 14) p = 0.028
SMX/TMP b 11.4% (n = 10) 46.3% (n = 31) p < 0.001 27.4% (n = 20) 23.4% (n = 15) n.s.

Colistin 0% (n = 3) 0% (n = 2) - 0% (n = 8) 0% (n = 11) -
a Comparison of resistance levels among isolates originating from outpatients and inpatients;
b sulfamethoxazole/trimethoprim; Statistical analyses were performed using the Student’s t-test; p values < 0.05
were considered statistically significant, n.s.: Not significant.

Table 2. Percentage of resistant Pseudomonas strains to relevant antibiotics from inpatient and outpatient
departments (2008–2017).

Tested
Antibiotics

2008–2012 2013–2017

Outpatients Inpatients Statistics a Outpatients Inpatients Statistics a

Amikacin 18.3% (n = 52) 22.1% (n = 116) n.s. 13.1% (n = 38) 13.1% (n = 69) n.s.
Gentamicin 31.1% (n = 89) 47.4% (n = 247) p = 0.043 13.1% (n = 38) 25.9% (n = 135) p = 0.043
Tobramycin 28.6% (n = 82) 44.2% (n = 231) p = 0.038 18.2% (n = 52) 22.7% (n = 119) n.s.
Ciprofloxacin 34.5% (n = 99) 51.2% (n = 268) p = 0.033 31.6% (n = 91) 38.2% (n = 200) n.s.
Levofloxacin 39.4% (n = 113) 54.8% (n = 286) p = 0.033 33.9% (n = 98) 41.5% (n = 217) n.s.

Imipenem 10.9% (n = 31) 22.8% (n = 119) p = 0.042 16.2% (n = 47) 28.3% (n = 148) p = 0.036
Meropenem 12.7% (n = 36) 24.7% (n = 129) p = 0.04 11.9% (n = 34) 26.3% (n = 138) p = 0.029
Ceftazidime 9.6% (n = 29) 23.1% (n = 121) p = 0.036 13.0% (n = 37) 15.1% (n = 79) n.s.

Cefepime 14.9% (n = 43) 23.3% (n = 122) p = 0.045 9.5% (n = 27) 12.1% (n = 63) n.s.
Piperacillin/
tazobactam 11.2% (n = 32) 21.9% (n = 115) p = 0.045 16.9% (n = 48) 18.4% (n = 96) n.s.

Colistin 0% (n = 2) 0% (n = 3) - 0% (n = 10) 0% (n = 12) -
a Comparison of resistance levels among isolates originating from outpatients and inpatients; Statistical analyses were
performed using the Student’s t-test; p values < 0.05 were considered statistically significant, n.s.: Not significant.

3. Discussion

Non-fermenting Gram-negative bacteria present a concerning therapeutic challenge to clinicians,
due to their increasing levels of resistance to several classes of antibiotics, ultimately leading to MDR,
XDR or even pandrug-resistant (PDR) isolates, leading to prolonged therapy, sequelae, and excess
mortality in the affected patient population [36,38–41,43–45,48–53]. While the most worrisome reports
in the international literature have emerged regarding drug resistant A. baumannii, due to its much higher
prevalence, the relevance of P. aeruginosa is not negligible, as this microorganism also has the proclivity of
becoming multiple drug resistant [36,41,44,49]. Resistance in these pathogens may arise due to intrinsic
non-susceptibility mechanisms, they may be acquired (mutations or through plasmids/integrons) or
they may develop during prolonged therapy, which was initially effective [36,38–41,43–45,48,49]. The
mechanism of resistance include porin loss and mutations affecting outer membrane permeability
(β-lactam antibiotics), alterations in target sites (aminoglycosides, fluoroquinolones), energy-dependent
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efflux pumps (fluoroquinolones), in addition to the production of drug-inactivating enzymes (e.g.,
AmpC-β-lactamases, carbapenemases) [36,38–41,43–45,48,49,54,55]. In some cases, these resistance
mechanisms affect the susceptibility of individual antibiotics differently (even in the same group); this
is the reason why some isolates may be resistant to meropenem, but not imipenem, or resistant to
amikacin, but not tobramycin. S. maltophilia infections are also a serious concern, as this microorganism
is intrinsically resistant to a wide range of antimicrobial drugs, and data on clinical effectiveness is
only available for sulfamethoxazole/trimethoprim and fluoroquinolones [56–59].

The epidemiological characteristics of this region, regarding other Gram-negative urinary pathogens
has already been described previously: E. coli was the most prevalent (~57% for outpatients and ~42%
for inpatients), followed by Klebsiella spp. (~8% compared to ~13%) [60], Proteus-Morganella-Providencia
species (~5% compared to ~7%) [61], and the CES group [Citrobacter-Enterobacter-Serratia species]
(~3% compared to ~3%) [62]. Thus, it can be concluded that NFGNB in the UTIs should not be
neglected as important pathogens from an epidemiological standpoint, as their recorded prevalence
was higher than of microorganisms in the CES group, and it was on par with members of the Proteae
tribe [39]. Interestingly, the abovementioned group of bacteria are often grouped together by clinicians
as “SPACE” pathogens (Serratia, Sseudomonas, Scinetobacter, Sitrobacter and Snterobacter spp.), as all
of these bacteria possess AmpC-type β-lactamases in their chromosomes [63,64]. In our present
study, there was a marked increase detected in the resistance levels of the Acinetobacter spp. in the
second half of the study period (from 2013 onward), while this trend was not as pronounced in
the case of the Pseudomonas spp., the β-lactam-resistance levels were between 15–25% among the
Acinetobacter species, while for the Pseudomonas spp., the β-lactam-resistance levels were 12–28%
and the aminoglycoside resistance was 13–25%. The increase in the ratio of resistant NFGNB
isolates severely limits the therapeutic options available for clinicians in the infections, which is
especially true for vulnerable patient populations (e.g., neonates, children, pregnant women) as some
of the possible alternative drugs (fluoroquinolones, aminoglycosides) are contraindicated due to
their debilitating side effects or teratogenicity [36,41,44,49,65]. In some cases, physicians have no
choice but to use agents with pronounced toxicities (e.g., colistin), or newer agents with significantly
higher prices (e.g., ceftazidime-avibactam, delafloxacin) [66,67]. The introduction of such novel
antimicrobial drugs in the last decade may temporarily prevent the situation of untreatable infections,
however, it is unknown when will they become a part of mainstream therapeutic protocols, due to
financial considerations [66,68]. In addition to underlying patient factors and drug hypersensitivity,
national/institutional drug availability and the local resistance profile of urinary pathogens should
influence the choice of antibiotic therapy [69–71].

The purpose of the present study was to report on the importance of non-fermenting Gram-negative
bacteria in urinary tract infections at the southern region of Hungary over a long surveillance period
(10 years), in a clear and concise fashion. To the best of our knowledge, this is the longest-spanning and
most detailed study originating from Hungary. The data in this study may aid the creation of a national
surveillance system for urinary tract pathogens and to ascertain the relevance of non-fermenters as
important uropathogens. Some limitations of this study should be noted: The retrospective design and
the inability to access the medical records of the individual patients affected by these infections hindered
the authors from assessing the correlation of the relevant risk factors and underlying pathologies with
the NFGNB UTIs. The selection bias is a characteristic of such epidemiological studies, as most of
these reports are originated from tertiary-care centers, corresponding to patients with more severe
conditions or underlying illnesses [72]. Lastly, the molecular characterization of resistance determinants
in the mentioned isolates was not performed, non-susceptibility was characterized by phenotypic
methods only.
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4. Materials and Methods

4.1. Study Location and Design, Data Collection

The present retrospective microbiological study was carried out using data collected, corresponding
to the time period between 1 January 2008–31 December 2017, at the Institute of Clinical Microbiology,
University of Szeged. This clinical microbiology laboratory serves the Albert Szent-Györgyi Clinical
Center, which is an 1820-bed primary- and tertiary-care teaching hospital in the Southern Great Plain
of Hungary (population: 401,500 people; 2017) [73]. Data collection was performed electronically, in
the records of the laboratory information system (LIS), corresponding to urine samples positive for the
NFGNB, based on the criteria below.

Samples with clinically significant colony counts for NFGNB (>105 CFU/mL; however, this was
subject to interpretation by the senior clinical microbiologists, based on the information provided on the
clinical request forms for the microbiological analysis and international guidelines) that were positive
for the nitrite and leukocyte-esterase tests were included in the data analysis. Only the first isolate per
patient was included in the study; however, isolates with different antibiotic-susceptibility patterns
from the same patient were considered as different individual isolates. To evaluate the demographic
characteristics of these infections, patient data was also collected, which was limited to sex, age at
the sample submission, and inpatient/outpatient status. The study was deemed exempt from ethics
review by the Institutional Review Board, and informed consent was not required as data anonymity
was maintained.

4.2. Identification of Isolates

Ten microliters of each uncentrifuged urine sample was cultured on UriSelect chromogenic agar
(Bio-Rad, Berkeley, CA, USA) and blood agar (bioMérieux, Marcy-l’Étoile, Lyon, France) plates with
a calibrated loop, according to the manufacturer’s instructions, and incubated at 37 ◦C for 24–48 h,
aerobically. In the period between 2008–2012, presumptive, biochemical reaction-based methods and
VITEK 2 Compact ID/AST (bioMérieux, Marcy-l’Étoile, France) were used for bacterial identification;
from 2013 onward, the MALDI-TOF MS (Bruker Daltonik Gmbh., Billerica, MA., USA) was introduced
to the workflow of the Department of Bacteriology. Mass spectrometry was performed by the Microflex
MALDI Biotyper (Bruker Daltonics, Germany) instrument, using the MALDI Biotyper RTC 3.1 software
(Bruker Daltonics, Germany) and the MALDI Biotyper Library 3.1 for the spectrum analysis. The
sample preparation, methodology, and the technical details of the MALDI-TOF MS measurements
were described elsewhere [74].

4.3. Susceptibility Testing of Relevant Isolates

Antimicrobial susceptibility testing for the Pseudomonas and Acinetobacter species was performed
using the Kirby-Bauer disk diffusion method and E-tests (Liofilchem, Abruzzo, Italy) on the
Mueller-Hinton agar (MHA) plates in the case of piperacillin-tazobactam, ceftazidime, cefepime,
imipenem, meropenem, ciprofloxacin, levofloxacin, gentamicin, tobramycin, amikacin, and
sulfamethoxazole-trimethoprim (SMX/TMP), taking into account the intrinsic resistance mechanisms
of the NFGNB and the local antibiotic utilization data [44,75]. In addition, for the verification of
discrepant results, the VITEK 2 Compact ID/AST (bioMérieux, Marcy-l’Étoile, France) was also utilized.
Colistin susceptibility was performed using the broth microdilution method in a cation-adjusted
Mueller-Hinton broth (MERLIN Diagnostik). Colistin susceptibility testing was not routinely performed,
only per request of the clinicians. Susceptibility testing for the S. maltophilia was performed for
sulfamethoxazole-trimethoprim, levofloxacin, colistin, amikacin, and tigecycline, according to a
protocol previously described [57]. The interpretation of the results was based on EUCAST breakpoints
(http://www.eucast.org). The S. aureus ATCC 29213, E. faecalis ATCC 29212, Proteus mirabilis ATCC
35659, E. coli ATCC 25922, P. aeruginosa ATCC 27853, A. baumannii ATCC 19606, and S. maltophilia
ATCC 13637 were used as quality control strains. Intermediate results were grouped with and reported

http://www.eucast.org
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as resistant. Classification of the isolates as a multidrug resistant (MDR) or extensively drug resistant
(XDR) was based on the EUCAST Expert Rules [76].

4.4. Statistical Analyses

Statistical analyses, including the descriptive analysis (means or medians with ranges and
percentages to characterize data) and statistical tests (Student’s t-test [for data on resistance levels] and
Mann-Whitney U test [for epidemiological data]) were performed with the SPSS software version 24
(IBM SPSS Statistics for Windows 24.0, IBM Corp., Armonk, NY, USA,). The normality of variables
was tested using Shapiro–Wilk tests [for epidemiological and resistance data]. p values <0.05 were
considered statistically significant.

5. Conclusions

Urinary tract infections are principally caused by members of the Enterobacterales (E. coli,
Klebsiella spp., CES species and Proteae), non-fermenting Gram-negative bacteria are emerging as
important causative agents of UTIs, primarily affecting elderly, hospitalized patients (characterized
by co-morbidities, catheterization), both in high- and low-income countries. The emergence of drug
resistance in these pathogens should be closely monitored, due to their proclivity to becoming MDR
and their plasticity in drug resistance mechanisms. The present report aims to summarize the results
of a long-term surveillance study of resistance levels in NFGNB originating from urine samples.
Although the levels of extensively drug resistant isolates was relatively low in the southern region of
Hungary (<5%), an increase in the levels of non-susceptibility to the respective antibiotics (especially
in case of Acinetobacter spp.) was shown. For public health purposes, the continuous surveillance of
resistance trends in these pathogens (both in urinary tract infections and from invasive samples) is of
utmost importance.
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