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Abstract: Small ruminant mastitis is a serious problem, mainly caused by Staphylococcus spp. Different
virulence factors affect mastitis pathogenesis. The aim of this study was to investigate virulence
factors genes for biofilm production and antimicrobial resistance to f-lactams and tetracyclines
in 137 staphylococcal isolates from goats (86) and sheep (51). The presence of coa, nuc, bap, icaA,
icaD, blaZ, mecA, mecC, tetK, and tetM genes was investigated. The nuc gene was detected in all
S. aureus isolates and in some coagulase-negative staphylococci (CNS). None of the S. aureus isolates
carried the bap gene, while 8 out of 18 CNS harbored this gene. The icaA gene was detected in
S. aureus and S. warneri, while icaD only in S. aureus. None of the isolates carrying the bap gene
harbored the ica genes. None of the biofilm-associated genes were detected in 14 isolates (six S. aureus
and eight CNS). An association was found between Staphylococcus species and resistance to some
antibiotics and between antimicrobial resistance and animal species. Nine penicillin-susceptible
isolates exhibited the blaZ gene, questioning the reliability of susceptibility testing. Most S. aureus
isolates were susceptible to tetracycline, and no cefazolin or gentamycin resistance was detected.
These should replace other currently used antimicrobials.
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1. Introduction

Mastitis is the inflammation of the mammary gland, mainly due to intramammary
infection (IMI). In small ruminants, this disease is considered a serious economic issue due
to the mortality of lactating females, cost of treatment, reduced milk yield and quality [1,2],
as well as a public health concern associated with risk of consumer food poisoning [3,4].
Several pathogens can cause mastitis in small ruminants; however, species of staphylococci
are the most frequently isolated microorganisms from goat and sheep milk [2,5-8].

Staphylococcus aureus is one of the main pathogens associated with mastitis in small
ruminants [9]. Incidence of clinical mastitis in sheep due to this bacterium may reach 20%
with a mortality rate between 25% and 50%, and the affected mammary halves in surviving
animals are frequently destroyed. Chronic mastitis may cause a 25 to 30% reduction in
milk yield from the affected udder [10].

Coagulase negative staphylococci (CNS), although not as virulent as S. aureus, often
cause subclinical mastitis in small ruminants [5,11-13]. This type of infection, most times
not detected by the farmer, clearly reduces milk production, also changing milk composi-
tion, indirectly impairing the milk product’s properties [14]. CNS are the most prevalent
pathogens of the mammary gland in goats and sheep with subclinical mastitis, affecting
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60% to 80.7% in goats and 45% to 48% in sheep [1]. Other authors have reported as much
as 70.1% of subclinical mastitis in sheep is caused by CNS [5].

Virulence factors are bacterial molecules that enhance their capacity to establish and
to survive within the host and, thus, contribute to bring damage to the host. Staphylococci
possess a wide array of virulence factors [15].

Coagulase enzyme acts on plasma fibrinogen to form fibrin clots that protect the
microorganisms from phagocytosis and shelter them from other cellular and soluble host
defence mechanisms. This enzyme, encoded by the coa gene, is commonly used to dis-
tinguish coagulase positive staphylococci (CPS), namely S. aureus, S. intermedius, and
S. pseudintermedius, from CNS species [16]. Nevertheless, this gene has been found also in
species known as CNS such as S. epidermidis, S. chromogenes, and S. hominis [17]. The coa
gene has also recently been associated with biofilm production [18].

The staphylococcal nuclease is a thermostable nuclease encoded by the nuc gene [19],
which hydrolyzes DNA and RNA in host cells, causing tissue destruction and spreading
of staphylococci [20], also promoting the escape of microorganisms when retained by
neutrophil extracellular traps (NETs), allowing the bacteria to evade this host defence
mechanism [21,22]. For decades, the nuc gene has been considered the golden standard for
Staphylococcus aureus identification and is still used presently [23-25]. However, the nuc
gene has been detected in staphylococci of animal origin other than S. aureus [26]. Moreover,
the nuc encoded staphylococcal thermonuclease is a biofilm inhibitor that degrades the
environmental DNA (eDNA) associated with biofilm [27,28].

The production of biofilm is considered a major virulence factor that, besides protect-
ing from host defence mechanisms, also shields bacteria against antimicrobial agents [29].
Furthermore, the persistence of biofilm-producing isolates in the dairy environment en-
hances the dispersal of virulence factors though the transfer of genetic material to other
bacteria [30]. Biofilm major components are an exopolysaccharide matrix, proteins, and
eDNA, along with the bacterial cells [31]. The exopolysaccharide, polysaccharide inter-
cellular adhesin (PIA), is also a non-protein adhesin [32] assisting in bacterial adhesion to
different surfaces, comprising the first critical event in the establishment of an infection [33].
Staphylococcal PIA is encoded by the ica operon [34], and biofilm-associated protein (Bap)
is a surface protein connected to the cell wall encoded by the bap gene [35].

Antimicrobial resistance (AMR) is a major problem hampering the treatment of an ever
increasing range of infections caused by bacteria [36]. Staphylococci resistance has been
reported for different antimicrobials used for mastitis control in small ruminants [7,36-38].
Genes often described in Staphylococcus spp. isolated from the milk of small ruminants
are blaZ and mecA, responsible for 3-lactam resistance and tefK and tetM, accounting for
tetracycline resistance [39-41]. The presence of resistant bacteria in contaminated food
products may lead to the transfer of resistance genes to the indigenous microbiota in the
human gut [42].

The aim of this study was to identify Staphylococcus species isolated from small ru-
minants’ milk samples and investigate the presence of genes encoding virulence factors
associated with both biofilm (coa, nuc, bap, icaA, and icaD) and antimicrobial resistance to
pB-lactams (blaZ, mecA, and mecC) and tetracyclines (tetK and tetM).

2. Results and Discussion
2.1. Bacteriological Results

From the 646 milk samples collected from goats (508) and sheep (138), bacteriological
cultures resulted positive in 191 samples: 131 goat milk and 60 sheep milk. A total of
137 staphylococcal isolates were recovered, of which 86 were isolated from goat and 51
from sheep milk samples.
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2.2. Staphylococci Identification

Excellent (96 to 99% probability) and very good (93 to 95% probability) identifica-
tion was observed for most Staphylococcus. Unidentified isolates and isolates with low
discrimination results were confirmed by 165 rRNA gene sequencing.

Concerning goat milk samples, four S. aureus, one Staphylococcus sp., and 12 different
CNS species were found: S. caprae (25), S. chromogenes (10), S. epidermidis (11), S. simulans
(8), S. warneri (7), S. capitis (4), S. lentus (4), S. hominis (4), S. hyicus (3), S. auricularis (2),
S. haemolyticus (2), and S. equorum (1).

On the other hand, 31 S. aureus and seven different CNS species were recovered from
sheep milk samples: S. chromogenes (9), S. epidermidis (3), S. auricularis (2), S. haemolyticus
(2), S. simulans (2), S. lentus (1), and S. rostri (1). Staphylococcus rostri has only been seldom
isolated from the milk of a sheep with subclinical mastitis [43,44].

In the CNS group, S. caprae was the most found species and was isolated only from
goat’s milk samples. It is a commensal organism that prevails in the skin of the goat
udder [19] This species is most commonly found in cases of goat mastitis [37,45-47], but it
was also isolated from sheep [5,48], buffalo [17], and cow’s milk [49].

In this study, other Staphylococcus species were only isolated from goats: S. warneri,
S. capitis, S. hominis, S hyicus, and S. equorum. This was probably because the sheep sampling
was smaller, since all these species have been isolated before from sheep milk by several
other authors [44].

2.3. Biofilm Production

Of the 137 Staphylococcus isolates analyzed, 103 were biofilm producers (75%). Biofilm-
forming isolates belong to the following species: S. aureus (29/35), S. caprae (22/25),
S. chromogenes (12/19), S. epidermidis (11/14), S. warneri (7/7), S. simulans (6/10), S. auricularis
(4/4), S. capitis (3/4), S. lentus (3/5), S. haemolyticus (2/4), S. hominis (2/4), S. equorum (1/1),
and Staphylococcus sp. (1/1). All S. epidermidis goat isolates were found to produce biofilm
in the present study, in accordance with the findings of others authors that reported
S. epidermidis as the most commonly found species in biofilm-associated human infec-
tions [50]. However, none of the sheep S. epidermidis isolates were biofilm producers. In
fact, other studies had already reported only 8% of biofilm-producing isolates among sheep
mastitis S. epidermidis [51].

2.4. Genes Associated to Biofilm

We investigated the presence of coa and nuc genes in all 137 staphylococcal isolates,
mainly for identification purposes and due to historical reasons. In fact, the ability of a strain
to produce coagulase, encoded by the coa gene, is the basis of the primary classification of
staphylococci in coagulase-positive or coagulase-negative [16].

All S. aureus isolates (35) harbored the coa gene, as well as isolate B200E1, not identified
to the species level. Based on this result, this isolate was probable also S. aureus. Therefore,
the 101 Staphylococcus isolates not carrying the coa gene were confirmed as CNS. Further-
more, in the present study, different amplicons of the coa gene with band sizes ranging
from 400 to 900 bp were detected (Figure 1), as already reported by others [52-55]. In fact,
the coa gene also has a discriminatory power between isolates because of the heterogeneity
of its 3’ variable region containing 81-bp tandem short sequence repeats (SSR) [56-58].
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Figure 1. Agarose gel electrophoresis of S. aureus con gene PCR products. NZYDNA Ladder V
(200-1000 bp) (NZYTech, Lisbon, Portugal).

The nuc gene was detected in 67 out of 137 isolates (48.9%), of which only 35 were
S. aureus. The other nuc positive isolates included: S. chromogenes (8), S. warneri (4),
S. auricularis (3), S. caprae (3), S. hyicus (3), S. lentus (3), S. epidermidis (2), S. simulans (2),
S. capitis (1), S. haemolyticus (1), S. hominis (1), and Staphylococcus sp. (1). Furthermore, an
association was found between the Staphylococcus species and the presence of the nuc gene
(x? =70.968, df = 14, p <0.001). In fact, all S. aureus harbor the nuc gene, while most CNS
(70/101) do not. However, the nuc gene was also detected in more than 50% of the isolates
in some CNS species: S. warneri (4/7), S. lentus (3/5), S. auricularis (3/4), and S. hyicus (3/3).

The presence of the nuc gene was used in the past to identify S. aureus [23,25]. The
nuc gene is present in most S. aureus isolates; however, some isolates not carrying this gene
have been described [59,60]. Moreover, the nuc gene has also been detected in other species
of Staphylococcus, both CPS and CNS [61,62].

For the detection of the biofilm production genes, bap, icaA, and icaD, the 44 nuc-
positive biofilm-producing isolates were selected. nuc-positive biofilm-producing staphylo-
cocci and biofilm-associated genes are shown in Table 1.

Table 1. nuc-positive biofilm-producing staphylococcal isolates and biofilm-associated genes.

Bacterial

Isolate  Origin  Animal . coa nuc bap icaA  icaD
Species

1D PT goat S. aureus + + — + +
13D1 PT goat S. warneri - + - — -
17D1 PT goat S. aureus + + - - +
44D PT goat S. aureus + + — + +
47D2 PT goat S. chromogenes - + + - -
50E1 PT goat S. aureus + + — + +
54E1 PT goat S. warneri — + + — —
54E2 PT goat S. warneri - + - + -
55D1 PT goat S. capitis — + — — —
60D2 PT goat S. chromogenes - + + — -
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Table 1. Cont.

Isolate  Origin  Animal Bacte}qal coa nuc bap icaA  icaD
Species

65D PT goat S. caprae — + — — —
70D PT sheep S. aureus + + - - +
71E PT sheep S. aureus + + - - -
72D PT sheep S. aureus + + - — +
72E PT sheep S. aureus + + - - +
83D PT sheep S. aureus + + — — —
B51E BR goat S. chromogenes - + - — -
B64 BR goat S. chromogenes - + - - -
B76E BR goat S. chromogenes - + + — -
B101 BR goat S. warneri — + — + —
B159D BR goat S. chromogenes - + + - -
B159E BR goat S. chromogenes - + + — -
B190D BR goat S. auricularis - + - — -
B209D2 BR goat S. simulans - + + — -
B209E BR goat S. simulans — + — — —
B219D3 BR sheep S. auricularis - + - — -
B219D5 BR sheep S. aureus + + - — -
B223D BR sheep S. aureus + + — — —
B250D BR sheep S. auricularis - + + — -
CQ152E1 PT sheep S. aureus + + - + +
CQ185D1  PT sheep S. aureus + + — + +
CQI196E PT sheep S. aureus + + - — +
CQ201E PT sheep S. aureus + + — — +
CQ268D1  PT sheep S. aureus + + — — +
CQ270E1 PT sheep S. aureus + + - - -
CQ285D PT sheep S. aureus + + - - +
CQ286D PT sheep S. aureus + + — — +
CQ290D1  PT sheep S. aureus + + - — +
CQ290D2 PT sheep S. aureus + + - - +
CQ296D PT sheep S. aureus + + — — +
CQ335E PT sheep S. aureus + + - — -
CQ336E2  PT sheep S. aureus + + - — +
CQ349D PT sheep S. aureus + + — — —
CQ354D PT sheep S. aureus + + - — +

PT-Portugal; BR-Brazil.

The bap gene was amplified in eight isolates: S. chromogenes (5), S. auricularis (1),
S. simulans (1), and S. warneri (1). None of the S. aureus nuc-positive biofilm-producing
isolates carries the bap gene. In fact, the bap gene has been reported mainly in S. aureus
strains isolated from cattle [24,63,64]. However, Martins et al. [65] have detected the bap
gene in four sheep milk S. aureus isolates. In our study, 8 out of 18 CNS nuc-positive biofilm-
producing isolates harbored the bap gene. The bap gene encodes a cell wall associated
protein named Bap (for biofilm associated protein), which enhances biofilm formation as it
mediates bacterial primary attachment to abiotic surfaces and intercellular adherence [35].
Other studies have reported the presence of the bap gene in several CNS isolates [66].

The presence of the icaA gene was detected in seven isolates: S. aureus (5) and S. warneri
(2). On the other hand, the icaD gene was present in 19 S. aureus isolates. Furthermore, five
S. aureus isolates carried both icaA and icaD genes simultaneously. Xu, Tan, Zhang, Xia, and
Sun [59] detected the icaD gene in 20 out of 28 S. aureus bovine mastitis isolates, while it
was not detected in any of the 76 CNS analyzed. The same authors reported the absence of
the icaA gene in all analyzed staphylococcal isolates [59].

No isolate carrying the bap gene harbored the ica operon genes, as reported before by
other authors [67]. However, Marques et al. [68] found one single bovine mastitis S. aureus
isolate (out of 20) that simultaneously carried bap, icaA, and icaD.
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None of the three biofilm-associated genes were detected in 14 of the nuc-positive
biofilm-producing isolates: S. aureus (6) and CNS (8). Other authors have also reported
the absence of bap, icaA, and icaD genes in biofilm-producing S. aureus [24,69,70]. Despite
no association being found between the presence of the nuc gene and biofilm production,
most biofilm-producing isolates harbored the nuc gene (53.4%), while it was only detected
in about 35% of the non-producers. Nevertheless, Kiedrowski, Kavanaugh, Malone, Mootz,
Voyich, Smeltzer, Bayles, and Horswill [28] described an inverse correlation between Nuc
thermonuclease activity and biofilm formation and confirmed the important role for eDNA
in the S. aureus biofilm matrix.

Apparently, CNS produce biofilm mainly via Bap, as already suggested by Zuniga
et al. [71], who found the bap gene to be more frequently present in CNS when compared
to CPS.

Meanwhile, most S. aureus seem to form biofilm through PIA since they harbor the
icaA and icaD genes. Other authors have reported that a low prevalence of the bap gene in
S. aureus indicates that the ica operon-dependent mechanism may be the main responsible
for the adhesion and biofilm formation in this species [68]. Notwithstanding, it has been
reported that biofilm synthesis in S. aureus can also be encoded by the bap gene [72].

Other biofilm formation mechanisms in staphylococci not harboring the classical
biofilm-production genes, bap, icaA, and icaD, need to be explored. Furthermore, some of
the isolates not carrying bap, icaA, and icaD also did not harbor the coa gene, which has
been reported as associated with biofilm formation [18]. However, the nuc gene might be
an important factor to consider since all 44 isolates were biofilm producers and harbored
the nuc gene, although Nuc has been referred to as a biofilm inhibitor [27,28].

2.5. Antimicrobial Resistance

Out of 137 staphylococcal isolates analyzed for antimicrobial susceptibility, 15 were
multidrug resistant, 36 were non-susceptible to two antimicrobial categories, and 61 to one
antimicrobial category, according to the classification proposed by Magiorakos et al. [73].
Moreover, no antimicrobial resistances were detected in 24 staphylococcal isolates.

Staphylococci isolated from milk from small ruminants with mastitis are known for
their multiresistance [74]. In this work, the multidrug resistant (MDR) isolates belonged
to the following species: S. aureus (8), S. lentus (3), S. chromogenes (2), S. caprae (1), and
S. warneri (1). Contrarily, Taponen and Pyorala [75] reported that multiresistance was more
common in CNS than in S. aureus from bovine mastitis.

Susceptibility patterns of CPS and CNS isolates are shown in Figure 2. For most
antimicrobials tested, a higher percentage of resistant isolates was observed among CNS
when compared to CPS. Vasileiou et al. [76] also reported more resistant CNS isolates
than S. aureus. However, mastitis caused by CNS responds much better to antimicrobial
treatment than S. aureus mastitis [75].

Staphylococcal isolates were mainly non-susceptible to streptomycin (50/137), peni-
cillin (38/137), ampicillin (34/137), lincomycin (33/137), oxacillin (22/137), cloxacillin
(21/137), and tetracycline (17/137), as previously reported [77] (Figure 2). Moreover, most
CPS isolates were non-susceptible to streptomycin and lincomycin. On the other hand,
CNS isolates were mostly non-susceptible to the 3-lactams and tetracyclines.

In addition, an association was found between Staphylococcus species and antimicrobial
resistance to penicillin (x? = 45.981, df = 14, p < 0.001), ampicillin (x? = 48.327, df = 14,
p < 0.001), streptomycin (x? = 137.705, df = 28, p <0.001), lincomycin (x? = 156.536, df = 28,
p < 0.001), cephalexin (x? = 57.219, df = 28, p < 0.05), and tetracycline (x? = 51.626, df = 28,
p < 0.05). Regarding the results shown by the correspondence analysis, most S. caprae and
S. capitis isolates were resistant to penicillin and ampicillin, while all other staphylococci
were mostly susceptible to these antimicrobials (Figure 3). Most S. aureus isolates exhibited
an intermediate susceptibility pattern to streptomycin and lincomycin [78]. Additionally, all
S. hyicus isolates were resistant to streptomycin, while S. lentus and S. rostri were resistant
to lincomycin (Figure 3).
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Figure 2. Susceptibility patterns of CPS (1 = 36) and CNS (n = 101) isolates to antimicrobials.
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No staphylococci resistant to cefazolin and gentamycin were identified. Moreover, no
non-susceptible S. aureus isolates were found to amoxicillin + clavulanic acid. A number
of CNS isolates, although resistant to penicillinase-labile penicillins, were susceptible to
amoxicillin + clavulanic acid, which was expected due to the inhibitory action of clavulanic
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acid against -lactamases [79]. Regarding CNS isolates, none were found to be resistant
to neomycin.

One S. aureus and one CPS Staphylococcus sp. were found to be resistant to oxacillin,
while CNS oxacillin resistant isolates belonged to eight species: S. chromogenes (5), S. caprae
(4), S. lentus (3), S. simulans (3), S. epidermidis (2), S. auricularis (1), S. hominis (1), and
S. warneri (1). Other authors previously reported the presence of methicillin resistant
coagulase-negative staphylococci (MR-CNS) [80,81].

Regarding tetracycline, most S. aureus isolates (32/35) were susceptible, while non-
susceptible isolates belonged to the following CNS species: S. caprae (4), S. haemolyticus
(3), S. lentus (2), S. capitis (1), S. hominis (2), S. rostri (1), and S. warneri (1). Tetracycline
has been widely used in veterinary medicine, and other studies have reported a higher
percentage of resistant isolates: 42.8% [82] and 28.9% [45]. On the contrary, our results
show a relatively low percentage of non-susceptible isolates (12.4%). In recent years, there
has been an abusive use of more recent antimicrobial molecules, such as cephalosporins
and quinolones, that may justify the observed reversal in the patterns of resistance to
tetracyclines. To avoid the use of critically important antimicrobials for human medicine,
tetracyclines, gentamycin, or cefazolin, a first-generation cephalosporin, may be an option
for the control of mastitis in small ruminants. However, there should be a tight control
over the development of antimicrobial resistances.

Interestingly, an association between resistance to some antibiotics and animal species
was found: penicillin (x? =26.931, df = 1, p < 0.001), ampicillin (x> = 26.818, df = 1, p < 0.001),
oxacillin (x? = 6.241, df = 1, p < 0.05), streptomycin (x> = 26.231, df = 2, p <0.001), and
lincomycin (x? = 20.831, df = 2, p < 0.001). For example, isolates from goats (G) were more
resistant than sheep (S) isolates to 3-lactams, penicillin (G-43%; S-2%), ampicillin (G-39%;
S- = 0%), and oxacillin (G-22%; S-6%). These differences might be due to different manage-
ment systems, as suggested by Barrero-Dominguez et al. [45], who reported sheep and goat
staphylococcal isolates with the same pulsotypes to exhibit distinct resistance patterns.

2.6. Antimicrobial Resistance Genes

The 44 biofilm producing isolates were selected for the detection of antimicrobial
resistance genes involved in the resistance to (3-lactams and tetracyclines, namely, blaZ,
mecA, mecC, tetK, and tetM. Table 2 shows the antimicrobial genes detected in each isolate,
along with its antimicrobial resistance profile.

The blaZ gene was detected in 15 staphylococcal isolates belonging to the following
species: S. chromogenes (7), S. aureus (3), S. warneri (2), S. auricularis (1), S. caprae (1),
and S. simulans (1). Unexpectedly, nine penicillin-susceptible isolates harbor the blaZ
gene, namely S. chromogenes (5), S. warneri (2), S. auricularis (1), and S. simulans (1). El
Feghaly et al. [83] also reported penicillin-susceptible isolates harboring the blaZ gene
and concluded that conventional methods for susceptibility testing such as Kirby-Bauer
penicillin disk diffusion may not be reliable. According to CLSI [78], there may be rare
isolates of staphylococci containing (3-lactamase genes, which may result negative in
phenotypic 3-lactamase detection. Additionally, all isolates resistant to penicillin must be
considered resistant to all penicillinase-labile penicillins [78].

No staphylococcal isolates harboring the mecA or mecC genes were detected, although
two isolates were found to be non-susceptible to oxacillin and cloxacillin simultaneously,
one only to oxacillin and seven to cloxacillin alone. According to the CLSI (2016), oxacillin
disk diffusion testing is not reliable for detecting methicillin resistance, at least in S. aureus,
and cefoxitin should be used for disk diffusion testing. However, Barrero-Dominguez,
Luque, Galan-Relafio, Vega-Pla, Huerta, Romén, and Astorga [45] also did not detect the
mecA gene in a cefoxitin-resistant MRSA strain. Thus, other resistance mechanisms cannot
be excluded, namely, overproduction of 3-lactamase, modified penicillin-binding proteins,
distinct SCCmec elements, as well as putative mecA mutations [84,85]. Furthermore, Becker
et al. [86] have recently reported the presence of a mecB gene in a MRSA strain, negative for
both mecA and mecC genes. However, concerning mecC detection in our study, we cannot
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conclude that the isolates with a negative PCR result did not harbor the mecC gene, since
no positive control strain was available.

Table 2. nuc-positive biofilm-producing staphylococcal isolates, phenotypic resistance to selected antimicrobials and their

associated antimicrobial resistance genes.

Isolate Origin  Animal B;;:f:‘ P AMP OB AMC OXA TET blaZ imecA mecC tetK  tetM
1D PT goat S. aureus R R R S S S + - - -
13D1 PT goat S. warneri S S S S S S - - - -
17D1 PT goat S. aureus R R R S S R + - - +
44D PT goat S. aureus R R S S S S + - - -
47D2 PT goat S. chromogenes R R R R R S + - - - -
50E1 PT goat S. aureus S S S S S S - - - -
54E1 PT goat S. warneri S S R S S S + - - -
54E2 PT goat S. warneri S S R S R S - - - - -
55D1 PT goat S. capitis S S S S S S - - - -
60D2 PT goat S. chromogenes R R S S S S + - - -
65D PT goat S. caprae R R S S S S + - - -
70D PT sheep S. aureus S S S S S S - - - -
71E PT sheep S. aureus S S R S S S - - - -
72D PT sheep S. aureus S S S S S S - - - -
72E PT sheep S. aureus S S S S S S - - - -
83D PT sheep S. aureus S S S S S S - - - -
B51E BR goat S. chromogenes S S S S S S + - - -
B64 BR goat S. chromogenes S S S S S S + - - -
B76E BR goat S. chromogenes S S S S S S + - - -
B101 BR goat S. warneri S S S S S R + - - -
B159D BR goat S. chromogenes S S S S S S + - - -
B159E BR goat S. chromogenes S S S S S S + - - -
B190D BR goat S. auricularis R S S S S S - - - -
B209D2  BR goat S. simulans S S S S S S - - - -
B209E BR goat S. simulans S S S S S S - - -
B219D3  BR sheep S. auricularis S S S S S S - - -
B219D5  BR sheep S. aureus S S S S S S - - - -
B223D BR sheep S. aureus S S S S R S - - - - -
B250D BR sheep S. auricularis S S S S S S + - - -
CQ152E1 PT sheep S. aureus S S S S S S - - - -
CQ185D1 PT sheep S. aureus S S S S S S - - - -
CQ196E PT sheep S. aureus S S S S S S - - - -
CQ201E PT sheep S. aureus S S S S S S - - - -
CQ268D1 PT sheep S. aureus S S R S S S - - - -
CQ270E1 PT sheep S. aureus S S R S S S - - - -
CQ285D PT sheep S. aureus S S S S S S - - - -
CQ286D PT sheep S. aureus S S S S S S - - - -
CQ290D1 PT sheep S. aureus S S R S S S - - - -
CQ290D2 PT sheep S. aureus S S S S S S - - - -
CQ296D  PT sheep S. aureus S S S S S R - - + -
CQ335E PT sheep S. aureus S S S S S S - - - -
CQ336E2 PT sheep S. aureus S S S S S S - - - -
CQ349D PT sheep S. aureus S S S S S S - - - -
CQ354D PT sheep S. aureus S S S S S S - - - -

Penicillin (P), ampicillin (AMP), cloxacillin (OB), amoxicillin + clavulanic acid (AMC), oxacillin (OXA), tetracyclines-tetracycline (TET).

An association was found between the resistance to penicillin (x? =11.650, df = 1,
p < 0.05) and ampicillin (x? = 15.828, df = 1, p < 0.001) and the presence of the antimicrobial
resistance gene blaZ. The association between resistance to penicillin and ampicillin and
the presence of the antimicrobial resistance gene blaZ has been reported before by other
authors [87,88]. However, no association was detected between the resistance to oxacillin
and cloxacillin and the presence of the antimicrobial resistance gene mecA for this subgroup
of 44 isolates.

Only one S. aureus isolate carrying the tetK and another one carrying the tetM gene
were identified. Both showed resistance to tetracycline. A S. warneri tetracycline-resistant
isolate did not harbor either tetK or tetM (Table 3). El-Razik, Arafa, Hedia, and Ibrahim [82]
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found a S. intermedius isolate showing intermediate resistance to tetracycline, not harboring
tetK, tetL, tetM, and tetO genes.

3. Materials and Methods
3.1. Milk Samples Collection and Bacteriological Analyses

A total of 328 small ruminants (258 goats and 70 sheep), belonging to 23 both tradi-
tional and industrial dairy farms in Portugal and Brazil, were used to collect 646 half-udder
milk samples (508 from goats and 138 from sheep).

Milk samples were aseptically collected in a sterile bottle after the teat was carefully
disinfected with 70% ethanol and the first flush was rejected. The samples were kept
refrigerated and transported to the laboratory. Ten microliters of each milk sample were
plated onto MacConkey agar (Oxoid, Hampshire, UK, CM0007) and onto blood agar (BA)
(Oxoid, Hampshire, UK; CM0271 with 5% sheep blood) and incubated at 37 °C for 24 h
to 48 h.

Colonies from BA were transferred to brain heart infusion agar (BHI) (Oxoid, Hamp-
shire, UK, CM1136) and again incubated at 37 °C for 24h for primary identification of
the Staphylococcus genus through morphological and biochemical characteristics, namely;,
colony morphology, Gram staining, and catalase reaction, according to Markey et al. [89].

Identification of the species level of all isolates was performed by automated compact
system VITEK 2 (bioMérieux, Marcy 1'Etoile, France) using GP ID cards following the
manufacturer’s instructions. Biochemical identification was confirmed by 16S rRNA gene
sequencing whenever necessary, using the primers described previously [90].

3.2. Phenotypic Characterisation of Staphylococcal Isolates
3.2.1. Biofilm Detection

Biofilm production was evaluated following the procedures described by Merino
et al. [91] with some modifications. In brief, isolates were grown overnight in trypticase soy
broth (TSB) at 37 °C. This overnight culture was diluted 1:40 in TSB supplemented with
0.25% glucose, and 200 mL of this cell suspension was used to inoculate microplates. After
24 h of incubation at 37 °C, the microplates were washed three times with 200 uL. H,O,
dried in an inverted position, and stained with 100 uL of 0.25% crystal violet for 2 to 3 min
at room temperature. Afterwards, the microplates were rinsed again three times with H,O,
dried, the dye dissolved in 200 uL ethanol-acetone (80:20), and the absorbance measured at
620 nm. Each assay was performed in triplicate and repeated three times. Staphylococcus
epidermidis ATCC 12,228 and ATCC 35,984 were used as negative and positive controls,
respectively. A blank control was also used.

3.2.2. Antimicrobial Sensitivity Test

The antimicrobial sensitivity test (AST) was performed as described before [77] fol-
lowing the performance standard M02-A11 [92]. Resistance to 16 antimicrobials, belong-
ing to six antimicrobial categories, according to Magiorakos et al. [73], was evaluated:
(1) B-lactams-penicillin (P), ampicillin (AMP), cloxacillin (OB), amoxicillin + clavulanic
acid (AMC), oxacillin (OXA), cephalexin (CL), cefazolin (KZ), ceftriaxone (CRO), cefop-
erazone (CFP); (2) aminoglycosides-streptomycin (S), gentamycin (CN), neomycin (N);
(3) lincosamides-lincomycin (MY); (4) tetracyclines-tetracycline (TET); (5) fluoroquinolones-
ciprofloxacin (CIP); and (6) folate pathway inhibitors-cotrimoxazole (sulfamides + trimetho-
prim) (STX).

For the interpretation of AST results, the CLSI clinical breakpoints M100-525 were
used [78]. Isolates showing intermediate resistance, now called “susceptible increased
exposure” [93], were considered non-susceptible. Moreover, isolates resistant to three or
more antimicrobial categories were considered multidrug resistant [73].
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3.3. Molecular Characterisation of Staphylococcal Isolates

The presence of coa and nuc genes was investigated in all staphylococcal isolates. nuc-
positive biofilm-producing isolates were selected for the detection of the biofilm production
genes, bap, icaA, and icaD, and the antimicrobial resistance genes blaZ, mecA, tetK, and tetM.
The presence of the mecC gene was investigated only for nuc-positive biofilm-producing
isolates, which were simultaneously resistant to oxacillin and cloxacillin and did not harbor
the mecA gene.

3.3.1. Rapid DNA Extraction

Total DNA was extracted as described previously [94]. Bacterial cultures were grown
for 24 h in BHI (Oxoid, Hampshire, UK, CM1136). After this period, they were transferred
to microtubes with 200 pL of ultrapure water and centrifuged at 12,000 x g for two minutes.
Two hundred microliters of sterile saline solution (8.5%) were added to the pellet and
centrifuged again at 12,000 x g for two minutes. Subsequently, 100 L of 0.05 M NaOH
was added to the pellet and boiled for four minutes, then placed immediately on ice.
Afterwards, 600 uL of ultrapure water was added to the microtubes and centrifuged at
4000x g for three minutes. Subsequently, 400 uL were transferred to a new microtube and
stored at —20 °C until use.

3.3.2. PCR Amplification

All amplifications were done in a PTC1148C-M] Mini thermocycler (BioRad, Hercules,
CA, USA).

Amplified DNA fragments were stained with 1X Red Gel (Biotium, Fremont, CA, USA)
and run on 1.5% (w/v) agarose gels with 0.5X TBE (Tris-borate-EDTA) buffer. Different
NZYDNA Ladders (NZYtech, Lisbon, Portugal) were used as molecular weight markers,
depending on the size of the PCR products.

Agarose gels were photographed under ultraviolet light using the Gel Doc XR+ Gel
Documentation System (BioRad Universal Hood II, Philadelphia, PA, USA).

For all PCR amplifications, 50 pL. PCR reactions were prepared with 5 uL. of DNA
template, 1 U GoTaq DNA polymerase (Promega, Madison, WI, USA), 1X Green Go
Taq Flexi buffer (Promega, WI, USA), 1.5 mM MgCl, (Promega, WI, USA), 0.2 mM each
dNTP (VWR, part of Avantor, Radnor, PA, USA), and 15 pmol each primer (STAB VIDA,
Caparica, Portugal). Specific and individual modifications or optimizations were done
whenever necessary.

The primers used for amplification of the different genes are listed in Table 3.

Table 3. Primer sequences for amplification of the different genes.

Gene Primer Sequence Reference
con coa-F 5’ ATA GAG ATG CTG GTA CAG G 3 [55]
coa-R 5' GCT TCC GAT TGT TCG ATG C 3/
con coa2-F 5’ TA CTC AAC CGA CGA CAC CG 3/ [54]
coa2-R 5' GAT TTT GGA TGA AGC GGA TT 3
e nuc-F 5" GCG ATT GAT GGT GAT ACG GTT 3/ [95]
nuc-R 5 AGC CAA GCC TTG ACG AAC TAA AGC 3/
. bap-F 5' CCC TAT ATC GAA GGT GTA GAA TTG CAC 3/ [35]
P bap-R 5" GCT GTT GAA GTT AAT ACT GTA CCT GC 3/
"™ icaA-F 5 CCT AAC TAA CGA AAG GTA G 3 [96]
wa icaA-R 5' AAG ATA TAG CGA TAA GTG C 3
D icaD-F 5 AAA CGT AAG AGA GGT GG 3 [96]
rca icaD-R 5' GGC AAT ATG ATC AAG ATA C 3/
bz blaZ-F 5 AAG AGA TTT GCC TAT GCT TC 3’ [97]
a

blaZ-R 5" GCT TGA CCA CTT TTA TCA GC 3’
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Gene Primer Sequence Reference
" mecA-F 5" AAA ATC GAT GGT AAA GGT TGG C 3 [98]
mec mecA-R 5" AGT TCT GCA GTA CCG GAT TTG C 3’
c mecC-F 5 GAA AAA AAG GCT TAG AAC GCC TC 3/ [99]
mec mecC-R 5" GAA GAT CTT TTC CGT TTT CAG C 3/
X tetK-F 5' GTA GCG ACA ATA GGT AAT AGT 3 [59]
fet tetk-R 5/ TAG TGA CAA TAA ACC TCC TA 3/
i tetM-F 5" AGT GGA GCG ATT ACA GAA 3/ [59]
€ tetM-R 5' CAT ATG TCC TGG CGT GTC TA 3/

For the detection of the coa gene, different primer sequences were used. Staphylococcus
aureus ATCC 25,923 was used as positive control. The first pair of primers, coa-F and
coa-R, amplified a 676 bp fragment [55]. The amplification program was as follows: 3 min
at 95 °C, and 35 cycles of 30 s at 94 °C, 30 s at 55 °C, 30 s at 72 °C, and finally, 5 min at
72 °C. The second pair of primers, coa2-F and coa2-R, amplified a fragment of 1517 bp [54].
The amplification program comprised an initial denaturation of 45 s at 94 °C, followed by
29 cycles at 94 °C for 20 s, 55 °C for 1 min, and 72 °C for 90 s, and a final extension step of
2min at 72 °C.

For the amplification of the nuc gene, primers nuc-F and nuc-R, amplifying a 267 bp
DNA fragment, were used [95]. S. aureus ATCC 25,923 was used as positive control
and S. epidermidis ATCC 12,228 as negative control. The amplification program was the
following: 5 min at 94 °C, followed by 37 cycles, consisting of 94 °C for 1 min, 55 °C for
30s, and 72 °C for 30 s, ending with a final extension step at 72 °C for 7 min.

For detecting the bap gene, primers bap-F and bap-R were used for the amplification
of a 971 bp fragment [35]. No positive control strain was available. The amplification
program was as follows: 94 °C for 2 min, followed by 35 cycles of 94 °C for 45 s, 56.5 °C for
45s, and 72 °C for 50 s, and finally, 72 °C for 5 min.

Primers icaA-F and icaA-R were used for the amplification of a 1315 bp fragment of
the icaA gene [96]. S. epidermidis ATCC 35,984 was used as positive control. The following
amplification program was used: 92 °C for 5 min, followed by 30 cycles of 92 °C for 45 s,
49 °C for 45 s, and 72 °C for 1 min, and a final extension step of 7 min at 72 °C.

For the icaD gene, primers icaD-F and icaD-R were used to amplify a 381 bp frag-
ment [96]. S. epidermidis ATCC 35,984 was used as positive control. The same amplification
program as for icaA was used, except for the extension step within the cycles, which was
72 °C for 30 s.

The presence of the blaZ gene was detected using primers blaZ-F and blaZ-R, which
amplified a 517 bp fragment [97]. Staphylococcus aureus ATCC 29,213 was used as positive
control and S. aureus ATCC 25,923 as negative control [100]. The amplification program
was as follows: 94 °C for 4 min, followed by 37 cycles of 94 °C for 1 min, 50.5 °C for 30 s,
and 72 °C for 30 s, and finally, 72 °C for 5 min [97].

To detect the mecA gene, primers mecA-F and mecA-R were used to amplify a fragment
of 532 bp [98]. Staphylococcus epidermidis ATCC 35,984 was used as positive control [101]
and S. aureus ATCC 25,923 as negative control [102]. The following amplification program
was used: 94 °C for 2 min, followed by 29 cycles of 94 °C for 30 s, 55 °C for 30 s, and 72 °C
for 30 s, and a final extension of 5 min at 72 °C.

Primers mecC-F and mecC-R were used to amplify a 138 bp fragment [99]. No positive
control strain was available. The following amplification program was used: 95 °C for
2 min, followed by 30 cycles of 94 °C for 30 s, 50 °C for 30 s, and 72 °C for 30 s, and a final
extension of 10 min at 72 °C.

Primers tetK-F and tetK-R were used to amplify a 360 bp fragment of the tetK gene [59].
No positive control strain was available. For the amplification of the tetM gene, tetM-F
and tetM-R were used to amplify a fragment of 158 bp [59]. No positive control strain was
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available. The amplification program for both fet genes was: 94 °C for 2 min, followed
by 29 cycles of 94 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 s, with a final step of 5 min
at72°C.

3.4. Data Analysis

The chi-square test of association was used: to assess the relationship between the
presence of the nuc gene with Staphylococcus species; to investigate if the presence of the nuc
gene was associated with biofilm production; to check if the resistance to antimicrobials
was associated with bacterial species and with the animal species from which these were
isolated. For the abovementioned analyses, all 137 isolates were considered.

For the subgroup of 44 nuc-positive biofilm-producing isolates, the chi-square test
of association was performed to evaluate the putative relationship between phenotypic
resistance to antimicrobials and the presence of four resistance genes.

Multiple correspondence analysis (MCA) was used as an exploratory data analysis
technique to detect a structure in the relationships between bacterial species and resistance
to selected antimicrobials, divided either into two (susceptible and resistant) or three classes
(susceptible, intermediate, and resistant), depending on the antimicrobial.

All statistical analyses were performed using the software STATISTICA Version 12
(StatSoft, Inc., Tulsa, OK, USA).

4. Conclusions

Mastitis aetiology showed to be diverse in the two small ruminant species studied.
The most abundant species was S. caprae, which, however, was only present in goats.

The nuc gene was detected in 67 isolates, of which only 35 were S. aureus. Most CNS
did not harbor this gene; however, it was detected in more than 50% of S. warneri, S. lentus,
S. auricularis, and S. hyicus. Although many studies still consider the nuc gene as the
sole character to identify S. aureus, our results have clearly demonstrated that this gene is
insufficient, because it is present in numerous staphylococcal isolates other than S. aureus.

Most staphylococci were biofilm producers. The bap gene was only detected in CNS,
while ica operon genes were mainly detected in S. aureus isolates, suggesting that CNS
produce biofilm mainly via Bap, and most S. aureus form biofilm through PIA. Furthermore,
biofilm-producing staphylococcal isolates not harboring the classical biofilm-production
genes bap, icaA, and icaD carry the nuc gene. Therefore, the role of the Nuc thermonuclease
in staphylococci biofilm formation needs to be further investigated.

Antimicrobial resistance seems to be a growing concern in the treatment of sheep and
goat mastitis, with only a low number of isolates (18%) not showing any antimicrobial
resistances. Furthermore, CNS were generally more resistant to antimicrobials than CPS.
Additionally, an association between animal species and resistance to some antimicrobials
was found, suggesting different managing systems for the two species.

All staphylococcal isolates were susceptible to cefazolin and gentamycin. Furthermore,
all S. aureus isolates were shown to be susceptible to amoxicillin + clavulanic acid and
most (32/35) to tetracycline. The use of these antimicrobials to control mastitis may be
encouraged to avoid the use of others critically important for human medicine that are
currently being used, such as third generation cephalosporins and quinolones. Neverthe-
less, antimicrobial susceptibility tests cannot be neglected, as the development of resistant
strains is always a problem.

Regarding antimicrobial resistance genes, nine penicillin-susceptible isolates exhibited
the blaZ gene, highlighting the poor reliability of conventional methods for susceptibility
testing. Moreover, no staphylococcal isolates harboring the mecA or mecC genes were
detected among those found to be non-susceptible to oxacillin. Hence, other methicillin
resistance mechanisms need to be explored.
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