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Abstract: Prosthetic joint infection (PJI) is the second most common cause of arthroplasty failure.
Though infrequent, it is one of the most devastating complications since it is associated with great
personal cost for the patient and a high economic burden for health systems. Due to the high
number of patients that will eventually receive a prosthesis, PJI incidence is increasing exponentially.
As these infections are provoked by microorganisms, mainly bacteria, and as such can develop
a biofilm, which is in turn resistant to both antibiotics and the immune system, prevention is the ideal
approach. However, conventional preventative strategies seem to have reached their limit. Novel
prevention strategies fall within two broad categories: (1) antibiotic- and (2) heavy metal-based
surface modifications of titanium alloy prostheses. This review examines research on the most
relevant titanium alloy surface modifications that use antibiotics to locally prevent primary PJI.

Keywords: prosthetic joint infection; local prevention

1. Introduction

The use of arthroplasty makes it possible to replace a natural joint with artificial
material or a joint prosthesis. Although, arthroplasty is highly effective and has improved
the quality of life of millions of patients [1], implant-related complications can appear
during the lifetime of patients [2]. One of the most important complications is prosthetic
joint infection (PJI), although others may occur. This is probably the most devastating
complication due to the high morbidity, mortality, and costs associated with PJI. The mean
cost per patient with knee PJI of is USD 52,555 (EUR 40,542), with a range of between
USD 24,980 (EUR 19,270.80) for patients with early PJI, and USD 78,111 (EUR 60,257) for
those with late PJI [3]. Incidence varies from country to country, between 0.5–2%. Thus, PJI
incidence is ranged between 1 and 2% in the United States, and between 0.6% and 0.72%
in Nordic countries [4,5]. It is important to know this incidence could be higher in patients
undergoing a primary arthroplasty with a history of a PJI in another joint showing up to
a three-fold higher risk of PJI [6]. Currently, the 5-year mortality rate associated with PJI is
greater than that of breast cancer, melanoma, and Hodgkin’s lymphoma [7].

The aim of this work is to review research on the most relevant titanium alloy surface
modifications that use antibiotics to locally prevent primary PJI.

2. Etiopathology

Staphylococci, including Staphylococcus aureus (30–40%) and different species of coagulase-
negative staphylococci (27–43%), among which S. epidermidis predominates, are the most
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common etiological agents associated with PJI [8–12]. Among Gram-negative bacteria
(3–9%) [13], enterobacteria and non-fermenting Gram-negative bacilli stand out. However,
there could be differences in these patterns according to the characteristics of the infec-
tion [9] or the affected joint [14,15]. Polymicrobial infections, or those caused by more
than one microorganism, may occur in 10–35% of cases [2,13]. Enterococcus species, Staphy-
lococcus, and various Gram-negative bacilli such as Enterobacteriaceae and Pseudomonas
aeruginosa are often associated with these infections.

A problem of growing importance associated with bacterial infections is antibiotic
resistance [16]. According to the Centers for Disease Control, approximately 2.8 mil-
lion antibiotic-resistant bacterial infections take place in the United States and provoke
more than 35,000 deaths every year [17]. The main bacteria related to this antibiotic resis-
tance are (as declared by the WHO) Acinetobacter baumannii, P. aeruginosa, enterobacteria
(e.g., Klebsiella pneumoniae and Enterobacter cloacae), Enterococcus faecium, S. aureus, Helicobac-
ter pylori, Campylobacter spp., Salmonella spp., Neisseria gonorrhoeae, Streptococcus pneumoniae,
Haemophilus influenzae, and Shigella spp. [16,18]. As can be seen, many of the listed bacteria
are causative agents of PJI, e.g., S. aureus, P. aeruginosa, K. pneumonia, E. cloacae, and E. fae-
cium, and for that, the antibiotic resistance is also an emerging threat for PJI and must be
taken into account in the development of any preventive treatment against them.

One of the most important characteristics in all the aspects of PJI is the ability of
microorganisms to form biofilms. A biofilm is a conglomerate of microbial cells of at least
one species that is irreversibly attached or not on a surface or an interface, and embedded
in a self-produced matrix of polymeric extracellular substances [19], where numerous
complex sociomicrobiological interactions prevail [20–22]. It is estimated that at least 80%
of chronic infections are directly related to the ability of the causative microorganism to
develop a biofilm, likely including 100% of all implant-related infections [23,24]. Biofilm
formation involves at least three different stages:

(1) Attachment. Microorganisms come into contact with the surface, a process that is at
least partly stochastic, driven by physical and chemical forces [25–27]. Furthermore, host
proteins rapidly coat the surface of medical devices, facilitating specific adhesion mediated
by microbial surface components recognizing adhesive matrix molecules (MSCRAMMs),
which are part of the surface of many bacteria, e.g., Staphylococcus spp. [28,29].

(2) Maturation is characterized by intercellular aggregation coupled to a variety of molecules
such as proteins or, usually, exopolysaccharides of a polysaccharide nature, and struc-
turing forces that rearrange the biofilm into three-dimensional structures of variable
morphology depending on the species and with microchannels within them [28]. During
this stage, one of the most important processes is the production of the exopolysaccha-
ride matrix, whose composition is characteristic of each species, and even of each
strain [28–31]. At this stage, the relatively simple structure that the pre-biofilm acquired
in irreversible adhesion takes on a much more structurally complex three-dimensional or-
ganization [32]. The nutritional gradient inside the biofilm gives rise to a variety of cells
with metabolic differences, including starved cells, dormant cells, viable non-cultivable
cells, “persister” cells, and dead cells [27,33].

(3) Dispersal. This is the process by which mature biofilm cells disperse to adjacent
areas passively or actively [23,27]. Through this stage, the infection spreads to adja-
cent niches in an environment or within the host once nutrients or space has been
depleted [32], where it attaches again and restarts the cycle.

The implications of biofilms in treatment and outcomes are enormous, as they confer
phenotypical resistance that required the use of new surgeries and prolonged treatments.
It is therefore of utmost importance to avoid bacterial colonization of implants and thus
avoid the appearance of infection. Moreover, the possibility of an interaction between
biofilms, cells, and implanted biomaterials is also of great importance, as the reservoir
in the tissue also needs to be removed to cure patients [34,35].
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3. Conventional Prevention of Prosthetic Joint Infections

Conventional prevention of PJI includes all measures developed for preventing surgi-
cal site infections (SSIs) that have appeared in official guidelines and statements [36,37].
More specific measures for the prevention of PJI have also been published recently [38–41],
and the importance of these measures was considered at the 2nd International Consensus
Meeting at Philadelphia as a whole chapter in the General Assembly issues [42]. Factors
increasing PJI risk can be grouped into three categories: preoperative, intraoperative,
and postoperative [43]. Among the preoperative factors, some well-known ones are obesity,
malnutrition, diabetes mellitus, smoking, skin decolonization before surgery, and nasal
decolonization. Some important intraoperative factors are surgical-site hair removal, peri-
operative antibiotics whose use has been successful in reducing the risk of such infections
by up to 80% [44,45], and perioperative antibiotic timing [13,46], surgical site skin decolo-
nization, intraarticular irrigation by incorporating antiseptic substances, fibrinolytic agent
use, wound closure, implant surface properties, and local antibiotic delivery, since, for
instance, the use of a prosthesis cemented with antibiotic-loaded polymethyl-methacrylate
cement has been proposed as a potentially useful method that diminishes the risk of
PJI [47–50]. However, the use of antibiotic-loaded cements is not used in all patients so far,
since its use has shown a high variability between cohorts, which is translated as a prob-
lem when comparing results [51] and requires the employment of specific heat-tolerant
antibiotics. Among postoperative factors, some authors consider the typical temporal pat-
terns of C-reactive protein, erythrocyte sedimentation rate test, interleukin 6, and D-Dimer
in the early postoperative period [43].

However, even taking all those risk factors into account, there are still several patients who
develop PJI after surgery. Several strategies have been devised to avoid this kind of infection.

4. Local Preventive Antibiotic-Based Strategies

During prosthetic implantation, the bone and surrounding tissue must be irrigated;
in addition, after implantation, the periprosthetic tissue may be left damaged, avascular,
or even, necrotic. These events inherent to surgery locally reduce the concentration of
the antibiotic systemically administrated and make it necessary to use a local antibiotic
approach with a period of action of hours or days.

On the other hand, the foreign body reaction after the implantation gives rise to
an interstitial milieu or a locus minus resistentiae, which is an immunosuppressed fibro-
inflammatory zone [52]. This zone is a relatively inaccessible environment for the immune
response due to the absence of normal blood supply to the periprosthetic tissue [53], which
impairs the ability of lymphocytes, antibodies, and certain antibiotics to properly reach
the implant surface and thus prevent and fight infection via the systemic route. For this
reason, any prosthesis would be susceptible to be infected not only during the perioperative
period but also throughout its whole lifetime [54]. Therefore, a local antibiotic approach
with an active period of months or years is required.

The ideal antibiotic-loaded titanium alloy surface modification would require two
components: a titanium alloy component and an antibiotic component. The ideal titanium
alloy surface modification must not compromise its good corrosion resistance, high strength,
low weight, its Young’s modulus of elasticity [55], or non-cytotoxicity. In addition, this
titanium alloy surface should be a selective surface able to impair the bacterial adhesion
and to favor bone tissue integration [56]. The ideal antibiotic to be loaded should be
a broad-spectrum drug based on local prevalence of antibiotic resistance with no adverse
local or systemic effects. Further, the ideal antibiotic-loaded titanium alloy should fulfil
some market requirements such as an acceptable cost, wide availability, and be easy to
manufacture and overcome regulatory issues [57].

The local prevention approach can be classified into two types according to the mecha-
nism of action: passive and active modifications. Passive modifications are surface coatings
that endow biomaterial with antibacterial (anti-adherent, bacteriostatic, and/or bacteri-
cide) properties without releasing any compound that is responsible for these properties.



Antibiotics 2021, 10, 1270 4 of 23

The active modifications do endow biomaterials with antibacterial properties through
a compound released from the material. These active modifications are divided into two
groups: active surfaces and coatings. The most recent antibiotic-loaded surface modifica-
tions of titanium alloys are illustrated in Figure 1.
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4.1. Active Titanium Surfaces Loaded with Antibiotics

The active titanium surfaces loaded with antibiotics can be divided into two categories:
nanostructured surfaces and surfaces with covalently bound antibiotics.

The most representative nanostructured titanium surface approaches are summarized
in Table 1. This strategy mainly consists of growing nanoscopic carriers made of the bulk
alloy and loading them with at least one antibiotic. The most widely used nanostructure
is the nanotube, a hollow cylinder without one of its circular faces. Nanotubes can be
manufactured using different methods such as sol–gel synthesis, template-assisted synthe-
sis, hydrothermal synthesis, and electrical anodization [58]. Among them, an exponential
trend of the use of hydrothermal synthesis and electrical anodization can be observed
over last two decades due to their multiple applications [59]. The hydrothermal synthesis
modifies the crystallinity of the titanium precursor [60] and allows incorporating other
chemical elements into the titanium nanotubes, which enhances their photoelectrochem-
ical [1] properties [59] and confers interesting environmental applications involved, for
instance, in the recalcitrant organic pollutant degradation [61]. However, between the two,
the most versatile and used in the field of Biomaterials is electrical anodization due to its
easy use and thrift.

This nanostructure allows its loading using different methods, mainly simplified
lyophilization or soaking.

Bacterial and cellular adhesion are complex processes arising from the interaction
between surface properties, biological factors, and environmental conditions. A recent sys-
tematic review concludes that there are three reasons why the relationship between surface
topography and bacterial attachment can give rise to contradictory results: (i) roughness
cannot be the sole descriptor of surface topography; (ii) topographical effects are influenced
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by the effects of other physicochemical factors, such as surface chemistry; and (iii) different
anti-adherent mechanisms may take place at different topographical scales: nanoscale and
microscale [62]. The last reason can be also applied to cell attachment. Some authors assert
that titanium nanotubes increase the bacterial attachment but have excellent biocompati-
bility properties because of their enhanced protein interaction (including adsorption and
conformation) what improves cellular adhesion and tissue growth [63]. Other authors, by
contrast, assert that titanium nanostructures themselves can prevent [64] or reduce bacterial
adhesion [65,66] or even biofilm development [67], and also promote cell adhesion and
proliferation on the alloy [66,68]. Furthermore, nanotubes composition could be involved
in part of these abilities. Thus, for instance, the incorporation of fluorine would be respon-
sible for an anti-adherent ability [65], whilst the additional incorporation of phosphorus
would be responsible for better osseointegration [69].

The nanotube diameter is pivotal for the release profile [70]; that is, the larger the di-
ameter, the faster the release. Most of the nanotube-based approaches offer a constant
antibiotic release for a few hours after surgery. As a result, this type of approach only
guarantees local antibiotic with an active period of hours. The main antibiotic used for
loading nanotubes are gentamicin [71–73] and vancomycin [74,75] in monotherapy since
only few studies have used them in combination [76,77]. Gentamicin is a broad spec-
trum antibiotic effective against both Gram-positive and Gram-negative bacteria which
has a great chemical stability since it remains stable at 4 ◦C for 30 days and at 23 ◦C for
7 days [78], and a great thermal stability due to this antibiotic retain its activity even
after autoclaving [79]. For its part, vancomycin is a narrow spectrum antibiotic effective
against Gram-positive bacteria, the main type of bacteria related to PJIs, and has a reduced
chemical stability due to its the concomitant crystalline thermal degradation at physiologic
condition [80], which can cause up to a 40% decrease in its activity in 3 weeks [81].

Table 1. Some of the most relevant studies based on titanium nanotubes loaded with antibiotics.

Year Type of Surface Modification Bacteria
Evaluated

Bacterial
State

Cytotoxicity
(%)

Level
Study

Cell Lines/Animal
Used In Vivo Reference

2014 Gentamicin-loaded nanotubes with
different diameters SA, SE Biofilm ND In vitro hBMMS cells [71]

2016 Chitosan-coated gentamicin-loaded
nanotubes SA Planktonic 20 In vitro MG-63 osteoblasts [72]

2017 Gentamicin-loaded nanotubes made
with anodization SA Biofilm ND In vivo -/rabbit [73]

2018

Chitosan-hyaluronic acid-coated
vancomycin-loaded nanotubes SA Planktonic/

Biofilm 0 In vitro/
in vivo

Primary
osteoblasts/rat [74]

Vancomycin-loaded micro-patterning MRSA Biofilm ND In vivo -/rabbit [75]

Gentamicin and/or vancomycin
F-dopped nanotubes SA, SE, EC Planktonic ND In vitro -/- [66]

2019 Gentamicin plus vancomycin F- and
P-dopped bottle-shaped nanotubes SA Biofilm 0 In vitro/

in vivo
MC3T3-E1

osteoblasts/rabbit [76]

Abbreviation: SA: S. aureus; SE: S. epidermidis, EC: E. coli; MRSA: Methicillin-resistant S. aureus; ND: Not determined. hBMMS cells: Human
marrow-derived mesenchymal stem cells.

Antibiotics covalently bound to titanium surfaces is another type of active titanium
surfaces with antibiotics (Table 2). The main techniques for covalently bound of antibiotics
onto titanium surfaces involve the covalent attachment of end-functionalized polymers in-
corporating an appropriate anchor, e.g., silane anchor, catechol anchor, and phosphor-based
anchor [82]. To date, numerous antibiotics have been employed using this strategy such
as daptomycin [83], ciprofloxacin [84], doxycycline [85], vancomycin [86], enoxacin [87],
bacitracin [88], a new antibiotic such as SPI031 [89], and even antifungals such as caspofun-
gin [86].
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Table 2. Some of the most relevant studies based on antibiotic covalently bound to titanium surfaces.

Year Antibiotic
Covalently Bound

Bacteria
Evaluated

Bacterial
State

Cytotoxicity
(%) Level Study Cell Lines/Animal

Used In Vivo Reference

2010 Daptomycin SA Biofilm ND In vitro -/- [90]

2014 Doxycycline - - 0− <40 In vitro/in vivo MC3T3-E1
osteoblasts/rabbit [85]

2015 Ciprofloxacin PA Biofilm 0 In vitro/in vivo NIH3T3
fibroblasts/mouse [84]

2016

Vancomycin/
caspofungin SA, CA Biofilm 0 In vitro/in vivo hME cells/rat [86]

SPI031 SA, PA Biofilm 0 In vitro/in vivo hBMMS cells, hME
cells/mouse [89]

Enoxacin MRSA, SE, EC Planktonic,
Biofilm 0 In vitro/in vivo hBMMS cells/rat [87]

2017 Bacitracin SA Biofilm ND In vivo -/rat [88]

Abbreviations: SA: S. aureus; SE: S. epidermidis, EC: E. coli; PA: P. aeruginosa; MRSA: methicillin-resistant S. aureus; ND: Not determined.
hBMMS cells: Human marrow-derived mesenchymal stem cells. hME cells: human microvascular endothelial cells.

4.2. Coating Loaded with Antibiotic for Titanium Alloys

Some of the most relevant coatings loaded with antibiotics described over the last
10 years are summarized in Table 3. In this period, strategies have focused on the design of
coatings instead of nanostructures and the covalent binding of antibiotics. This reorienta-
tion of local antibiotic therapies may be justified by the huge versatility the coatings offer
and their compatibility with not only titanium alloys, but also with almost any material
from which a biomedical implant may be made.

Table 3. Some of the most relevant studies based on antibiotic loaded coating for titanium implants.

Year Type of Coating Evaluated
Bacteria

Bacterial
State

Cytotoxicity
(%) Level Study Cell Lines/Animal

Used In Vivo Reference

2010

Vancomycin-loaded PMMA SE Biofilm ND In vitro -/- [91]

Inorganic sol–gel with Polymyxin B
covalently bound EC Planktonic ND In vitro -/- [92]

Gentamicin-loaded polyelectrolyte
multilayer SA Planktonic,

Biofilm 0–80 In vitro/
in vivo

MC3T3-E1
osteoblasts/rabbit [93]

2014

Rifampicin and fosfomycin-loaded
Hydroxyapatite coating MSSA, MRSA Biofilm ND In vivo -/rabbit [94]

Ciprofloxacin-loaded
chitosan-nanoparticles coating SA Planktonic <30 In vitro MG63

osteoblast-like cells [95]

Chitosan–vancomycin composite
coatings SA Planktonic 0 In vitro MG63

osteoblast-like cells [96]

Vancomycin-loaded PLGA-coating SA Planktonic/
Biofilm 0 In vitro MC3T3-E1

osteoblasts/rabbit [97]

2015 Doxycycline-loaded polymer-lipid
encapsulation matrix coating MSSA, MRSA Planktonic,

Biofilm ND In vitro/
in vivo -/mouse [98]

2015 PLGA-gentamicin-hydroxyapatite-
coating SA, SE Planktonic,

Biofilm ND In vitro/
in vivo -/rabbit [99]

2016 Gentamicin-derivates coating SA Biofilm ND In vivo -/rats [100]

2016 Vancomycin-loaded
phosphatidyl-choline SA Biofilm ND In vivo -/rabbit [101]

2016 Tetracycline loaded chitosan-gelatin
nanosphere coating SA Biofilm >90 In vitro/

in vivo
MC3T3-E1

osteoblasts/rabbit [102]

2017
Doxycycline-loaded coaxial
PCL-PVA nanofiber coating SA Biofilm ND In vivo -/rat [103]

Tobramycin-loaded PDLLA coating SA Biofilm ND In vivo -/rabbit [1]
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Table 3. Cont.

Year Type of Coating Evaluated
Bacteria

Bacterial
State

Cytotoxicity
(%) Level Study Cell Lines/Animal

Used In Vivo Reference

2018

Vancomycin-loaded mesoporous
bioglass-PLGA coating SA Planktonic,

Biofilm 0 In vitro hBMMS cells [104]

Vancomycin-loaded mesoporous
silica nanoparticles-containing

gelatin coating
SA Biofilm 0 In vitro hBMMS cells [105]

2019

Gentamicin-loaded polyelectrolyte
multilayer SA, SE Planktonic,

Biofilm <5 In vitro/
in vivo

MC3T3-E1
osteoblast/rats [106]

Tobramycin-loaded hydroxyapatite
coating SA Planktonic,

Biofilm ND In vitro/
in vivo

Endothelial cells,
primary

osteoblasts/rabbit
[107]

Vancomycin plus tigecycline-loaded
PEG-PPS coating SA Biofilm ND In vivo -/mouse [108]

Gentamicin-loaded calcium
phosphate-based coating SA Biofilm ND In vivo -/rat [109]

Vancomycin-loaded
polymethacrylate coating SA Planktonic/

Biofilm ND In vitro/
in vivo -/mouse [110]

2020

Cephalexin- and VEGF-loaded
agarose-nanocrystalline apatite

coating
SA Planktonic 0 In vitro MC3T3-E1

osteoblast [111]

Moxifloxacin-loaded
organic-inorganic sol–gel SA, SE, EC Planktonic,

Biofilm 0 In vitro/
in vivo

MC3T3-E1
osteoblasts/mouse [112]

Gentamicin loaded autologous
blood glue PA Planktonic,

Biofilm 0 In vitro hBMMS cells [113]

Fluconazole/anidulafungin-loaded
organic-inorganic sol–gel CA, CP Planktonic,

Biofilm 0 In vitro MC3T3-E1
osteoblasts [114]

Anidulafungin-loaded
organic-inorganic sol–gel CA Biofilm - In vivo -/mouse [115]

Vancomycin-loaded starch coating SA Planktonic ND In vitro -/- [116]

Abbreviations: PLGA: poly(lactic-co-glycolic acid); PCL-PVA: polycaprolactone/polyvinyl alcohol; PEG-PPS: poly(ethylene glycol-bl-
propylene sulfide); PDLLA: poly (D, L-lactide); SA: S. aureus; SE: S. epidermidis, EC: E. coli; PA: P. aeruginosa; MRSA: methicillin-resistant S.
aureus; MSSA: Methicillin-susceptible S. aureus; CA: Candida albicans; CP: Candida parapsilosis; ND: Not determined. hBMMS cells: human
bone marrow mesenchymal stem cells.

Different approaches of deposition of antibiotic-loaded coatings such as sol–gel, co-
valent immobilization, spraying, electrophoretic, polyelectrolyte, and dip coating have
been used on titanium surfaces [117]. Most of the coatings described are degradable over
time and are composed of synthetic or natural polymers. The antibiotic release from these
degradable coatings depends on their degradation or hydrolysis and the loaded antibi-
otic quantity depends on both the chemical composition of the coating and the chemical
structure and chemical properties of the antibiotic used. The antibiotics that have been
loaded onto these coatings are vancomycin [91,96,97,101,105,110,116], aminoglycosides
(mainly gentamicin [93,99,100,106,109,113] and tobramycin), tetracyclines (especially doxy-
cycline [98,103] and tetracycline) [102], cephalexin [111], moxifloxacin [112,118], and mix-
tures of antibiotics such as vancomycin plus tigecycline [108]. Further studies have demon-
strated that antifungals, such as fluconazole and anidulafungin, loaded in a coating are
effective to prevent C. albicans infection both in vitro [114] and in vivo [115].

The most commonly used synthetic polymers are poly (lactic-co-glycolic acid) (PLGA)
(polycaprolactone/polyvinyl alcohol), poly (ethylene glycol-propylene sulphide), and poly-
D,L-lactide. Most have been approved by the Food Drug Administration due to their
biodegradability and biocompatibility in light of a vast number of recently reviewed stud-
ies [119,120]. New strategies based on the use of inorganic [92] and organo-inorganic
sol–gels have recently emerged. Some of these organo-inorganic sol–gels have been shown
to degrade into non-cytotoxic monomers [112], promote osteoblast proliferation [121],
and can even prevent clotting [118]. The most representative natural polymers are based
on the use of polysaccharides, e.g., chitosan and hyaluronic acid, and proteins, e.g., silk
fibroin and collagen, whose use as drug delivery systems has been recently reviewed [122].



Antibiotics 2021, 10, 1270 8 of 23

One of these coatings made of natural compounds, an antibiotic-loaded autologous blood
glue [113], has attracted attention due to its enormous biocompatibility. This autologous
blood glue is composed of a mixture of thrombin, platelet-rich plasma, and bone mar-
row aspirate and could therefore be loaded with gentamicin and become an antibacterial
glue [113]. Several studies have evaluated the antibacterial efficacy of hybrid coatings made
of biodegradable polymer and non-biodegradable material. Among them, it is important
to consider gentamicin-loaded PLGA and hydroxyapatite, which improve the osteointegra-
tion of bone surrounding the implant [99]; vancomycin-loaded gelatin and mesoporous
silica nanoparticles, which can carry antibiotic more efficiently [105]; and more complex
coatings composed of agarose and nanocrystalline apatite for improved osseointegration,
and with mesoporous silica nanoparticles loaded with cephalexin and vascular endothelial
growth factor, able to promote vascularization surrounding the implant [123]. Hydrox-
yapatite coatings favor osteosynthesis [94,107] and prevent the development of fibrous
tissue [124] surrounding the implant.

There are two marketed products based on the antibiotic-loaded degradable coating
for titanium implants: gentamicin poly (D, L-lactide) (PLLA) coating, and a fast-resorbable
hydrogel coating composed of covalently linked hyaluronan and PLLA. Gentamicin PLLA
coating is based on a fully resorbable PLLA matrix loaded with gentamicin sulphate which
releases 80% of its antibiotic load within the first 48 h [125]. Gentamicin PLLA coating is
named PROtect Coating and is only marketed coating Expert Tibial Nail (DePuy Synthes,
Bettlach, Switzerland). Though its use is limited to tibial intramedullary nail, it might be
theoretically used on any titanium implant. In the first prospective study, Fuchs et al. [126]
demonstrated that none of the 19 patients with closed or open tibial fractures who completed
the 6-month follow-up showed implant-related infections. Similar results were obtained
by Metsemakers et al. [98] in a single-center case series, where they demonstrated again
its capacity of preventing implant-related infections in 16 patients with complex open tibia
fracture and revision cases after an 18-month follow-up, but they also reported 25% of patients
showed a nonunion, and 6.25% of them was a revision case. Finally, the most recent and largest
study performed by Schmidmaier et al. [127] in a multicenter study analyzed the outcome of
99 patients with fresh open or closed tibial fractures or undergoing nonunion revision surgery.
After an 18-month follow-up, deep SSI or osteomyelitis was only noted in 7.2% of patients
after fresh fracture and in 7.7% of patients after revision surgery.

Fast-resorbable hydrogel coating is composed of covalently linked hyaluronan and
PLLA and is marketed as Defensive Antibacterial Coating (DAC) (Novagenit Srl, Mez-
zolombardo, Italy). DAC is the first antimicrobial hydrogel specifically designed to avoid
implant-related infections in orthopaedic surgery and trauma, dentistry, and maxillofacial
surgery [128,129]. Its antimicrobial ability is due to the hyaluronic-based compounds
that reduce microbial adhesion and biofilm formation of both bacteria and yeasts [130].
Moreover, the DAC has demonstrated itself to be capable of entrapping several antibac-
terial agents at concentrations ranging from 2–10%, released locally for up to 72 h [128].
The safety and efficacy of DAC have been demonstrated by using rabbit models that
revealed the capacity of the vancomycin-loaded hydrogel to prevent implant-related infec-
tion [131,132]. In a further rabbit model, vancomycin-loaded DAC-coated implants showed
no detrimental effects on the bone healing and implant osteointegration [133]. In the first
large multicenter randomized prospective clinical trial reported by Romanò et al. [134],
a total of 380 patients were included. The patients were randomly dived into two groups
which received an implant with the DAC intraoperatively loaded with antibiotics (gentam-
icin, vancomycin, or vancomycin plus meropenem) or without the coating (control group).
Overall, 96.5% of patients were available at a mean follow-up of 14.5 ± 5.5 months. Eleven
SSIs were diagnosed in the control group (6%), whilst only one was observed in the treat-
ment group (0.6%). Any patient from the treatment group showed no local or systemic
side effects related to or detectable interference with implant osteointegration. In another
multicenter prospective study performed by Malizos et al. [135], 256 patients undergoing
osteosynthesis surgery for a closed fracture were randomly assigned to receive the DAC
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loaded with antibiotics (gentamicin, vancomycin, or vancomycin plus meropenem) or to
a control group without coating. Six SSIs (4.6%) were observed in the control group com-
pared with none (0%) in the treatment group after a mean follow-up of 18.1 ± 4.5 months.
As in the previous study, any patient from the treatment group showed no local or systemic
side effects related to or detectable interference with implant osseointegration.

Trentinaglia et al. [136] have recently described an algorithm to calculate the cost-
effectiveness of different antibacterial coating strategies applied to joint prostheses, con-
sidering both direct and indirect hospital costs. According to their model, an antibacterial
coating able to decrease post-surgical infection by 80%, at a cost per patient of EUR 600,
would reduce hospital costs by EUR 200 per patient if routinely applied in a population that
would theoretically show an expected PJI rate of 2% [137]. At a European level, considering
that approximately 2.2 million joint arthroplasties are performed per year, they speculate
that a year of delay in the routine use of this kind of coating would result in 35,200 PJI cases
per year with associated annual costs of approximately EUR 440 million per year [137].

4.3. The Antibiotic of Choice for Local Antibiotic-Based Therapy

The use of almost any antibiotic in clinical practice is always followed by the devel-
opment of resistant organisms, and the case of antibiotic-loaded titanium surfaces is not
an exception. Antimicrobial resistance is the result of three major factors: (1) the increasing
frequency of antimicrobial-resistant phenotypes among microbes resulting from selective
pressure exerted by the widespread use of antimicrobials; (2) globalization, which favors
the rapid spread of pathogens worldwide; and (3) improper use of antibiotics [138].

The antibiotic of choice for local antibiotic-based therapy should ideally be a broad-
spectrum antibiotic that is the least allergenic possible and with no local adverse effects
or cytotoxicity; furthermore, these antibiotics should not interfere with osseointegration
or be essential for the treatment of PJI [56]. Most of the local antibiotics of choice are
broad-spectrum antibiotics used in monotherapy, concretely gentamycin, tobramycin,
and vancomycin. To date, there is no antibiotic that is evolution-proof [139,140], as any
antibiotic monotherapy is associated with the emergence of antibiotic resistance to that
particular antibiotic. This has been described previously, for instance, when a gentamicin-
loaded spacer was used in a two-stage replacement which favored the emergence of
gentamicin-resistant S. aureus [141] and S. epidermidis [142]. Therefore, the best prophylactic
therapy should be based on the use of at least two antibiotics from different antibiotic
families, as a handful of studies have done [76,94,108,143]. The microorganisms tested
are staphylococci and, to a lesser extent, Gram-negative bacteria, such as E. coli and P.
aeruginosa. Given the incidence of PJI (up to 40%) [144], Gram-negative bacteria should
always be prevented by the local antibiotic approach.

5. Local Preventive Heavy Metals-Based Strategies

The increasing prevalence of antibiotic resistance among bacteria resulting in the se-
lective pressure which the widespread use of antibiotics exerts on them, the globalization,
and the inadequate use of antibiotics in many different settings [138] threaten to completely
impede the development of an ideal preventive antibiotic therapy for any type of infection.
Given this scenario, new non-antibiotic antimicrobials are gaining increasing importance
in the field of PJI prevention strategies (Table 4).

Metals have been used by the Persians, Phoenicians, Greeks, Romans, and Egyptians
for their antimicrobial properties for thousands of years [145,146]. Despite the fact that
the exact mechanism involved in their broad-spread antibacterial mechanism remains
unknown, metals show a higher number of unspecific targets within the bacteria, unlike
the antibiotic, which is directly related to a reduced not null emergence of metal resistance.
These targets are attacked by metallic cations and/or reactive oxygen species generated by
both cations and by metallic oxide [147]. Thereby, the main antibacterial mechanisms of
metals that show an antibacterial effect per se can be grouped into four categories: (outer
and/or cytoplasmatic) membrane damage, protein blocking/inactivation, protein synthesis
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blocking, and DNA damage [145] (Figure 2). Different strategies have incorporated heavy
metals into titanium surfaces. The main heavy metals used to provide titanium alloys with
antimicrobial capacity are silver, copper, and gallium. The type of surface modification
used to incorporate the metal on the titanium surfaces are mainly metallurgical addition,
co-sputtering, ion implantation, and coatings.

Table 4. Some of the most relevant studies based on heavy metals incorporation for titanium implants.

Year Type of Surface
Modification

Incorporated
Metal

Metal Incor-
poration

Bacteria
Evaluated

Bacterial
State

Cytotoxicity
(%)

Level
Study

Cell
Lines/Animal
Used In Vivo

Reference

2009 Metallurgical
addition Cu Forge SA, EC Planktonic/

biofilm Ctyocompatible In vitro/
in vivo

V79 cell
line/rabbits [148]

2010

Co-sputtering Cu-Mn-O,
Ag-Mn-O

ternary and
quaternary

oxides
SA, SE Planktonic - In vitro - [149]

Single step silver
plasma immersion
ion implantation

Ag Nanoparticles SA, EC Planktonic Cytocompatible In vitro
MG63 human
osteoblast-like

cells
[150]

2011

TiO2-
chitosan/heparin

coating
Ag Nanoparticles SA Biofilm - In vivo - [151]

Hydroxyapatite
coating Ag Nanoparticles EC Planktonic - In vitro - [152]

2013

Metallurgical
addition Cu Powder

metallurgy SA, EC Planktonic - In vitro - [153]

Titanium
nanotubular Ag Nanoparticle

loading SA, EC Planktonic - In vitro - [154]

Polydopamine-
modified alloy

surface
Ag

Silver inonic
inmobiliza-

tion
EC Planktonic - In vitro - [155]

Poly(ethylene glycol
diacrylate)-co-acrylic

acid coating
Ag Nanoparticles SA, EC, PA Planktonic Cytocompatible In vitro

MG63 human
osteoblast-like

cells
[156]

2014

Metallurgical
addition Cu Powder

metallurgy SA, EC Planktonic - In vitro - [157]

Metallurgical
addition Cu

Casting
with post-
treatment

SA, EC Planktonic Cytocompatible In vitro L929 cell line [158]

BMP-
2/heparinchitosan-

hydroxyapatite
coating

Ag Nanoparticles SE, EC Planktonic Cytocompatible In vitro
MC3T3-E1
cells, BMS

cells
[159]

Aminosilanized
titanium alloy Ag Nanoparticles SA Planktonic - In vitro - [160]

2016 Metallurgical
addition Ag Sintering SA Planktonic - In vitro - [161]

2017 Metallurgical
addition Ag

Sintering,
casting,

casting with
appropiate

post-
treatment

w/o surface
tretament

SA Planktonic Cytocompatible In vitro MC3T3-E1
cells [162]

2018

Metallurgical
addition Cu Powder

metallurgy SA, EC Planktonic Cytocompatible In vitro HeLa cells [163]

Metallurgical
addition Ag

Spark
plasma

sintering
and acid
etching

SA Planktonic Cytocompatible In vitro MC3T3-E1
cells [164]

Metallurgical
addition Cu

Casting
with post-
treatment

SA Planktonic - In vitro - [165]

2019

Metallurgical
addition Cu Sintering SA Biofilm - In vivo - [166]

Metallurgical
addition Ga Powder

metallurgy MRSA Planktonic/
biofilm Cytocompatible In vitro

ATCC
CRL-11372
and ATCC

HTB-96
[167]
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Table 4. Cont.

Year Type of Surface
Modification

Incorporated
Metal

Metal Incor-
poration

Bacteria
Evaluated

Bacterial
State

Cytotoxicity
(%)

Level
Study

Cell
Lines/Animal
Used In Vivo

Reference

2020

Metallurgical
addition Cu Microwave

sintering SA, EC Planktonic - In vitro - [168]

Metallurgical
addition Cu Powder

metallurgy EC Planktonic - In vitro - [169]

Metallurgical
addition Ag

Casting
with

appropiate
post-

treatment
w/o surface

tretament

SA Planktonic Cytocompatible In vitro MC3T3-E1
cells [170]

2021
Metallurgical

addition Cu As-cast SA Biofilm - In vitro/
in vivo Mouse [171]

Metallurgical
addition Cu As-cast MRSA Planktonic/

biofilm Cytocompatible In vitro/
in vivo

MC3T3-E1
cells/rat [172]

Abbreviations: BMP-2: bone morphology protein-2; BMS: bone marrow stromal cells.
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Regarding the use of these metallic-based titanium alloy surface modifications in pa-
tients, it is noteworthy that there are no comparative or prospective studies and only
retrospective cases of series have been published. Only silver has been proven in humans
and has shown low infection risk in clinical studies. There are two technologies mar-
keted nowadays for incorporated silver into titanium alloys: anodization and galvanic
deposition. Titanium alloy prostheses with silver incorporated by anodizing is marketed
under the name Agluna® (Accentus Medical, Oxfordshire, UK). Anodizing gives rise to
the formation of 5 µm diameter circular tanks in the surface of the prosthesis, containing
an amorphous titania species where the bulk of the ionic silver is stored. Silver galvanic
deposition into titanium alloy prostheses is marketed under the name MUTARS® (tumor
system components; Implantcast GmbH, Buxtehude, Germany). Its technology consists
of a 15 ± 5 µm-thick silver coating deposited by galvanic deposition on a 200 nm layer of
gold that acts as a carrier and bonding layer to the prosthesis. Recently, Deng et al. [173]
have pointed out that some factors might underestimate the real anti-infective effect of
silver-modified prostheses in clinical studies. First, most of indications published vouch
for the use of this type of prosthesis in immunocompromised patients, those with muscu-
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loskeletal tumors [174–177] and/or with a previous PJI [175,176,178], and patients who are
themselves more vulnerable to developing PJI [179]. Second, the antibiotherapy is usually
administered to all patients, whether or not they carry silver-modified prostheses.

The use of heavy metals for PJI prevention may just be getting started, thus new
promising metallic candidates with antimicrobial capacity are yet to be employed. This is
the case for metals such as nickel [180,181], cerium [182], selenium [183,184], cesium [185],
yttrium [186], palladium [187,188], or superparamagnetic Fe NPs [189].

6. Limitations Associated with Local PJI Prevention

Despite all the potential benefits offered by local prevention strategies for prosthetic
joint infections, each has several limitations associated with its use. The advantages and
disadvantages related to each preventive approach of PJI are summarized in Table 5.

Table 5. Some of the most important advantages and disadvantages related to each preventive approach of PJI.

Preventive Approach of PJI Advantages Disadvantages

Antibiotic-based strategies

Nanostructured titanium surfaces

Possibility of increasing
the osteointegration of the titanium
surfaces

Reduced durability of antibiotic
protection

Unknown biomechanical stability

Loaded antibiotic can act against both
bacteria directly adhered on the titanium
surface and bacteria near but not
in contact with it

Unknown effects on the useful life of
the implant, osteointegration,
and coagulation profile

Impossibility of intra-operative antibiotic
load
No clinical trials to support their use

Antibiotics covalently bound to titanium
surfaces

Long durability of antibiotic protection,
up to months or years

Loaded antibiotic can only act against
bacteria directly adhered on the titanium
surface

Unknown durability of antibiotic
protection

Impossibility of intra-operative antibiotic
load

No clinical trials to support their use

Coatings loaded with antibiotic for
titanium alloys

Possibility of increasing
the osteointegration of the titanium
surfaces

Incomplete surface protection

Loaded antibiotic can act against both
bacteria directly adhered on the titanium
surface and bacteria near but not
in contact with it

Unknown effects on the useful life of
the implant, osteointegration,
and coagulation profile

Possibility of intra-operative antibiotic
load

Clinical trials to support their use Clinical trials that support their use has
been carried out with few antibiotics

Heavy metals-based strategies

Broad spectrum antimicrobial effect
(beyond antibacterial effect)

Local and systemic toxicity supported by
clinical trialsLoaded metals can act against both

microorganisms directly adhered
on the titanium surface and those near
but not in contact with it

Long durability

Clinical trials to support their use
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Titanium nanotubular surfaces have at least five limitations. Firstly, the low drug concen-
tration resulting from sustained release in a non-bacteria environment consumes antibiotic
reserves and increases the possibility of developing drug-resistant bacteria in the vicinity
of the implant [58]. Therefore, the ideal antibiotic release of a nanotube-based approach
should terminate after the infection is eliminated until the next stimulus [58]. This perspec-
tive would require the use of self-responsive nanotubes able to release antibiotics before
different infection scenarios. Secondly, any metallic implant in the human body degrades
due to at least four fundamental phenomena: leaching, wear, corrosion, as well as the phe-
nomenon resulting from the synergy between the latter two, tribocorrosion. Wear studies
about the properties of nanostructured titanium surfaces are scarce, and it is known that
wear proprieties of nanotubular titanium surfaces have to be hypothetically different as
non-nanostructured surface and these nanostructures can be damaged during the prosthe-
sis implantation; nanostructures pulled from the surface could act as debris, able to cause
an aseptic loosening [190]. Nanotube fabrication increases the surface area and hence the cor-
rodible area. Corrosion studies of Ti-6Al-4V implants in patients showed that the detection
of elevated levels of titanium and normal levels of aluminum and vanadium (relative to
a control group without loosening) in the serum or urine of wearers of a prosthesis made of
this alloy was associated with the existence of aseptic loosening [191–194]. Thirdly, nothing is
known about the repercussions that this corrosion may have on the useful life of the implant
or its osseointegration. Fourthly, the current load methods require the employment of specific
equipment (vacuum ovens, agitators, etc.) and long loading times, which make it impossible
to load them in the operating theatre for the time being. Fifthly, this approach has no clinical
trials to support its widespread use in humans and marketing.

Regarding antibiotics covalently bound to titanium surfaces, there are also important
limitations associated with this approach. Unlike nanostructured surface, the antibiotics
covalently bound to surfaces are not released into the milieu, and thus can only exert their
action on bacteria in direct contact with the modified surface. There is no information
about the exact durability of their protection or the hypothetical effect of the release of
chemically modified antibiotic on the target bacteria and its role on the emergence of
antibiotic resistance. The chemical reaction needed for obtaining these surfaces makes
the intra-operative antibiotic load impossible. Finally, there are no clinical trials to back up
their use in humans.

Antibiotic-loaded coatings also show limitations. The main limitation is the incom-
plete protection of the implant, since the intramedullary component of the prosthesis
and some modular components (e.g., the acetabular component and the polyethylene
insert) cannot be coated. Therefore, an area of susceptibility will exist, where a bacterial
infection could proliferate. There is absence of knowledge about the long-term effect that
the product resulting from its degradation could exert on the useful life of the implant, its
osseointegration, or even, the patient coagulation profile. Although it is the only approach
with clinical trials, few antibiotics loaded in such coatings have been used so far.

Heavy metals into titanium surfaces are also associated with some limitations. First,
the price of these modified implants is high because they are indicated for a very low
number of specific patients [173]. Second, the heavy metals are linked to both local
and systemic toxicity. The main side effects of local toxicity are the immunosuppressive
effect [195] and the poor or impaired osteointegration that has been reported by both
in vitro [196] and in vivo [197] studies. The main systemic side effect related to a titanium
alloy surface modified with heavy metals has been described for silver. Argyria, a disease
caused by a high silver concentration in the human body, has been reported in up to
23% patients that underwent megaendoprostheses for infection or resection of malignant
tumors [198]. In this cohort, no neurological, renal, or hepatic symptoms of silver poisoning
were found, and neither a relationship between argyria and the size of the implant or levels
of serum silver [198]. Therefore, more studies about the silver intoxication caused by
silver-coated implants need to be performed.
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Therefore, toxicity is the first concern pertaining to these modifications. With a silver
coating, the elevated silver concentration in the blood or in organs has been proven by
Gosheger et al. [34], while there were no detectable clinical side effects in this study.
The silver ion concentration was lower than the reported harmful concentration, which
could be an explanation. Argyria, a disease caused by physiologic silver cation overload,
was reported in nearly 22% patients who have received silver-coated prostheses [67].
Therefore, the release of silver ions to the human body after implantation of silver-coated
prostheses should be investigated [52]. Impaired osteointegration, which is a special
concern for arthroplasty, was generally tested in in vitro co-culture models [68].

Other limitations include the selection of antimicrobial compound. For preventive
use, narrow-spectrum antibiotics that cover most potential pathogens are recommended
for chemoprophylaxis [36,37]. However, because some antibiotics, such as beta-lactams,
can degrade with different factors, such as time or temperature, more stable antibiotics
(for example, vancomycin, gentamicin, quinolones) are chosen in many studies. Another
important problem not directly related to the biomaterial is the increasing burden of
infections caused by antibiotic-resistant microorganisms [8]. The problem of antimicrobial
resistance is currently considered one of the most important menaces facing modern
medicine [199]. The recent appearance of multidrug-resistant microorganisms has become
an extremely important problem with implications for all aspects of medical practice.
In orthopaedic surgery, the increasing number of multidrug-resistant organisms, especially
Gram-negative organisms, has been described in PJI [8]. This type of infections caused
by these microorganisms implies a poor outcome in many cases [200–202]. Even silver or
copper as heavy metals representants can give rise to heavy metal-resistant Gram-negative
bacteria (mainly E. coli and P. aeruginosa) [203,204], one of the bacterial groups related with
PJI that is increasing its incidence [205].

In this scenario, the selection of the antimicrobials necessary to prevent PJI infections
should consider the existence of multidrug-resistant bacteria [206], which emphasizes
the need to select a mixture of at least two antibiotics for preventing PJIs or even using
more than one of the preventive approaches described here, e.g., an antibiotic-loaded
and heavy metal-dopped surface modification, but also drives the search for new strate-
gies based on the use of iodine-doped titanium alloys [207], antimicrobial peptides [208],
and bacteriophages [209–211], among others.

7. Conclusions

Research into the development of locally antibiotic therapy approaches is broad and
varied, though this review could mark the beginning of a promising journey towards
the development of prostheses capable of complete PJI prevention. Despite the numerous
preclinical studies that have been conducted, such as those using in vivo models, the move
from bench to bedside continues to be hindered by at least two factors, including the low
incidence of PJIs and the costs of clinical trials needed to demonstrate the efficacy of these
approaches in human beings; indeed, these costs are so high that only large pharmaceutical
companies can afford such an investment. These factors may be responsible for the fact
that existing multicenter prospective clinical trials are poorly well-structured and often
show contradictory or inconclusive results [212]. Thus, the only way patients can benefit
from these promising approaches is by improving collaboration between governments,
regulatory agencies, industry leaders, and health care payers [213].

Our review highlights that a trend from the antibiotic-loaded surface modifications of
the bulk material to the biodegradable antibiotic-load coating can be observed since only two
types of these coatings have come to be used in humans. Among heavy metals, silver-modified
titanium surfaces are supported by numerous in vitro studies and clinical trials, though other
metals such as copper or gallium might stand up as potential future candidates. Furthermore,
there is no uniform way of evaluating the efficacy of such approaches. For that, we consider
that at least cytotoxicity and cell proliferation should be evaluated in vitro, and that all be
tested by using in vivo models. Due to the increasingly threatening emergence of antibiotic
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resistance, it would therefore be recommendable to use at least two antibiotics or heavy metals
for functionalizing the titanium surfaces or antimicrobial substances whose antibacterial
mechanisms do not lead to the development of resistant bacterial mutants. Finally, any of
the PJI prevention approaches reviewed here are exempt of limitations, many of which should
be elucidated by specifically designed studies.
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Covalent immobilization of antimicrobial agents on titanium prevents Staphylococcus aureus and Candida albicans colonization and
biofilm formation. J. Antimicrob. Chemother. 2016, 71, 936–945. [CrossRef] [PubMed]

87. Nie, B.; Long, T.; Ao, H.; Zhou, J.; Tang, T.; Yue, B. Covalent immobilization of enoxacin onto titanium implant surfaces for
inhibiting multiple bacterial species infection and In Vivo methicillin-resistant staphylococcus aureus infection prophylaxis.
Antimicrob. Agents Chemother. 2017, 61, e01766-16. [CrossRef]

88. Nie, B.; Ao, H.; Long, T.; Zhou, J.; Tang, T.; Yue, B. Immobilizing bacitracin on titanium for prophylaxis of infections and for
improving osteoinductivity: An in vivo study. Colloids Surf. B Biointerfaces 2017, 150, 183–191. [CrossRef]

89. Gerits, E.; Kucharíková, S.; van Dijck, P.; Erdtmann, M.; Krona, A.; Lövenklev, M.; Fröhlich, M.; Dovgan, B.; Impellizzeri, F.;
Braem, A.; et al. Antibacterial activity of a new broad-spectrum antibiotic covalently bound to titanium surfaces. J. Orthop. Res.
2016, 34, 2191–2198. [CrossRef]

90. Chen, C.-P.; Wickstrom, E. Self-protecting bactericidal titanium alloy surface formed by covalent bonding of daptomycin
bisphosphonates. Bioconjug. Chem. 2010, 21, 1978–1986. [CrossRef]

91. Lawson, M.C.; Hoth, K.C.; Deforest, C.A.; Bowman, C.N.; Anseth, K.S. Inhibition of Staphylococcus epidermidis biofilms using
polymerizable vancomycin derivatives. Clin. Orthop. 2010, 468, 2081–2091. [CrossRef]
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