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Abstract: Klebsiella pneumoniae is an increasingly important hospital pathogen. Classical K. pneumoniae
(cKp) and hypervirulent K. pneumoniae (hvKp) are two distinct evolutionary genetic lines. The
recently ongoing evolution of K. pneumoniae resulted in the generation of hybrid hvKP-MDR strains.
K. pneumoniae distinct isolates (n = 70) belonged to 20 sequence types with the prevalence of ST395
(27.1%), ST23 (18.6%), ST147 (15.7%), and ST86 (7.1%), and 17 capsular types with the predominance
of K2 (31.4%), K57 (18.6%), K64 (10.0%), K1 (5.7%) were isolated from patients of the Moscow
neurosurgery ICU in 2014–2019. The rate of multi-drug resistant (MDR) and carbapenem-resistant
phenotypes were 84.3% and 45.7%, respectively. Whole-genome sequencing of five selected strains
belonging to cKp (ST395K47 and ST147K64), hvKp (ST86K2), and hvKp-MDR (ST23K1 and ST23K57)
revealed blaSHV, blaTEM, blaCTX, blaOXA-48, and blaNDM beta-lactamase genes; acr, oqx, kpn, kde, and
kex efflux genes; and K. pneumoniae virulence genes. Selective pressure of 100 mg/L ampicillin or
10 mg/L ceftriaxone induced changes of expression levels for named genes in the strains belonging
to cKp, hvKp, and hybrid hvKp-MDR. Obtained results seem to be important for epidemiologists
and clinicians for enhancing knowledge about hospital pathogens.

Keywords: Klebsiella pneumoniae; sequence type; capsular type; MDR; hvKp; hybrid hvKp-MDR;
resistance genes; virulence genes; gene expression; qPCR

1. Introduction

Klebsiella pneumoniae is an increasingly important hospital pathogen causing a wide
range of infections including urinary tract infections, pneumonia, bacteremia, and liver
abscesses. In severe clinical cases, it can also lead to multiple organ failure, or even death [1].
Two different evolutionary genetic lines, classical K. pneumoniae (cKp) and hypervirulent
K. pneumoniae (hvKp), were described and are both global pathogens [2]. Most multidrug-
resistant (MDR) K. pneumoniae strains belong to particular clones (ST11, ST395, ST147,
etc.) producing beta-lactamases in combination with other functional classes of resistance
determinants [3]. Hypervirulent K. pneumoniae were attributed to sequence types ST23,
ST86, ST65, etc., and capsular types K1, K2, K57, K20, etc. [4]. Virulence determinants of
hvKp include siderophore systems for iron acquisition, increased capsule production, and
the colibactin toxin commonly located on virulence plasmids [5].

Recent studies have shown the ongoing evolution of K. pneumoniae resulting in the
generation of hybrid hvKp-MDR strains. Mechanisms for the emergence of such strains
can be a result of acquiring hypervirulent plasmids by cKp [6], acquiring MDR plasmids
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by hvKp [7], and acquiring hybrid virulence-MDR plasmids [8]. However, the relative
expression of resistance and virulence genes in bacteria of cKp, hvKp, and hybrid hvKp-
MDR evolutionary branches is poorly studied.

This study aimed to determine the genetic lines of K. pneumoniae strains collected in
Moscow neurosurgery ICU in 2014–2019, to identify resistance and virulence genes in their
cells, and to estimate relative expression levels of such genes in selected strains belonging
to epidemiology significant genetic lines cKp (ST395K47 and ST147K64), hvKp (ST86K2), and
hybrid hvKp-MDR (ST23K1 and ST23K57).

2. Results
2.1. Bacterial Isolates and Clinical Data

K. pneumoniae caused about 28% among the agents of nosocomial infections in neu-
rosurgery ICU during the period from January 2014 to May 2019. The incidence rates of
K. pneumoniae infections were 8.0 per 100 patient infections of the central nervous system,
4.3/100 of bloodstream infections, 26.3/100 of respiratory infections, and 25.3/100 of uri-
nary tract infections [9,10]. A total of 545 K. pneumoniae clinical isolates were collected from
283 patients in this period, including those isolated from the respiratory system (n = 271),
urine (n = 166), the nervous system (n = 41), blood (n = 36), surgical wounds (n = 27), and
other (n = 4).

2.2. K. pneumoniae Sequence Types and Capsular Types

Seventy non-duplicate isolates selected from the collection of 545 isolates were char-
acterized by sequence types and capsular types. These isolates were collected from the
respiratory system (n = 34), urine (n = 19), the nervous system (n = 8), blood (n = 6), and
surgical wounds (n = 3). As a result, 20 sequence types were identified, the majority of
them were ST395, ST23, ST147, and ST86, and a total of 17 capsular types were identified.
Predominant K-types were K2, K57, K64, and K1 (Figure 1).
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Figure 1. Prevalence of K. pneumoniae genetic lines among 70 isolates collected in Neuro-ICU in
2014–2019: (a) sequence types; (b) capsular types.

2.3. Susceptibility to Antimicrobials and Resistance Genes

It was shown that major K. pneumoniae isolates were resistant to ampicillin (100.0%),
ampicillin-sulbactam (90.0%), cefuroxime (86.8%), cefoxitin (68.8%), ceftriaxone (77.8%),
ceftazidime (72.8%), cefoperazone-sulbactam (82.7%), cefepime (69.2%), ertapenem (48.1%),
tetracycline (80.7%), ciprofloxacin (81.2%), chloramphenicol (77.0%), gentamicin (67.1%),
tobramycin (83.0%), trimethoprim-sulfamethoxazole (69.2%), and nitrofurantoin (82.2%).
Fewer resistant isolates were found for imipenem (33.8%), tigecycline (37.2%), and amikacin
(31.8%) (Figure 2).
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The frequency of the multi-drug resistant (MDR) phenotype was 84.3%, with the
carbapenem-resistant phenotype consitituting 45.7%. K. pneumoniae isolates carried beta-
lactamase genes blaSHV (100.0%), blaCTX-M (74.2%), blaTEM (51.4%), blaOXA-48 (40.0%), blaNDM
(11.4%), class 1 (37.6%) and 2 (2.1%) integrons, and porin protein gene ompK36 (91.5%).
Both blaOXA-48 and blaNDM carbapenemase genes were detected in four (5.7%) isolates.
Beta-lactamase genes blaKPC, blaVIM, and blaIMP were not detected (Table S1).

2.4. K. pneumoniae Virulence Genes

Eight virulence genes were detected in 70 K. pneumoniae isolates: rmpA (34.2%),
aer (21.4%), kfu (17.1%), uge (85.7%), wabG (100.0%), fimH (97.1%), allS (94.3%), and allR
(5.7%). Twelve virulence gene combinations were identified. The most prevalent combina-
tion was uge+wabG+fimH+allS (51.4% isolates), followed by rmpA+aer+uge+wabG+fimH+allS
(11.4%), uge+wabG+kfu+fimH+allS (7.1%), rmpA+wabG+fimH+allS (5.7%), and rmpA+aer+
+uge+wabG+kfu+fimH+allR (5.7%). The rarest combinations were wabG+fimH+allS (4.3%),
rmpA+uge+wabG+fimH+allS (4.3%), uge+wabG+allS (2.8%), rmpA+aer+wabG+fimH+allS
(2.8%), rmpA+wabG+kfu+fimH+allS (1.4%), rmpA+aer+uge+wabG+kfu+fimH+allS (1.4%), and
rmpA+wabG+kfu+fimH+allS (1.4%) (Table S2).

2.5. Hypermucoviscousity Phenotype

Phenotype of hypermucoviscousity was detected for 11 of 70 isolates (15.7%) collected
from the respiratory system (n = 9) and urine (n = 2), belonging to genetic lines ST23K1

(n = 4), ST86K2 (n = 3), ST23K57 (n = 2), ST65K2 (n = 1), and ST218K57 (n = 1). Isolates
of ST23K1 carried rmpA+aer+uge+wabG+kfu+fimH+allR; isolates of ST86K2 and ST218K57

harbored rmpA+aer+uge+wabG+fimH+allS; isolates of ST23K57 carried two combinations,
rmpA+uge+wabG+fimH+allS and rmpA+wabG+kfu+fimH+allS; and isolates of ST65K2 carried
rmpA+aer+uge+wabG+kfu+fimH+allS virulence gene combinations. All 11 hypermucovis-
cous isolates carried rmpA, wabG, and fimH genes. Major isolates of hypermucoviscousity-
positive isolates were MDR (n = 6), resistant to 3–7 antimicrobial functional groups (beta-
lactams, aminoglycosides, tetracyclines, phenicols, fluoroquinolones, sulfonamides, ni-
trofurans). Among them, two isolates were CR. The remaining isolates were resistant to
ampicillin only. As a result, there was no revealed correlation between the hypermuco-
viscousity phenotype and genetic line or the antimicrobial phenotype or virulence gene
profiles (Tables S1 and S2).
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2.6. Whole-Genome Sequencing

Five clinical isolates belonging to epidemically significant K. pneumoniae genetic lines,
cKp (ST395K47 and ST147K64), hvKp (ST86K2), and hvKp-MDR (ST23K1 and ST23K57), were
analyzed by whole-genome sequence and quantitative analyses of antimicrobial resistance
and virulence gene expression. One of these strains (B2523/18) was resistant to AMP and
carried only one beta-lactamase gene of the blaSHV type. In contrast, the other four strains
that belonged to the MDR category were resistant to 10–18 antimicrobials. The latter strains
carried beta-lactamase genes of blaSHV, blaTEM, blaCTX-M, blaOXA-48, and blaNDM types and
the resistance determinants for other antimicrobial groups in the genomes: aminogly-
cosides, fosfomycin, streptogramins, phenicols, quinolones, sulfonamide, tetracyclines,
sulfonamides, macrolides, and rifamycins, as well as genes coding 4–5 efflux pumps and
1–4 genes of heavy metal resistance. The following genetic determinants of K. pneumoniae
virulence were identified in the genomes: peg-344 (n = 3), rmpA (n = 3), rmpA2 (n = 1), iroB
(n = 2), iroN (n = 2), iroD (n = 2), uge (n = 5), wabG (n = 5), kfu (n =1 ), fimH (n = 5), allR (n = 1),
irp (n = 4), iuc (n = 3), entB (n = 3), iut (n = 4), mrk (n = 5), ybt (n = 4), fyu (n =4 ), treC (n = 5),
celB (n = 5), and ureA (n = 5) (Table 1).

Table 1. Characteristics of K. pneumoniae strains used for whole-genome sequence analysis.

Feature/strain B185/19 B16K/19 B2523/18 B2580/14 B1261/19

SCPM-O SCPM-O-B-9222 SCPM-O-B-9221 SCPM-O-B-9220 SCPM-O-B-7852 SCPM-O-B-9223

Isolation date 30-Jan-2019 09-Jan-2019 30-Aug-2018 21-Jul-2014 27-May-2019

Source wound urine blood urine urine

GenBank JAGVVR000000000.1 JAGVVS000000000.1 JAGRZF000000000.1 PUXF00000000.1 JAGVVQ000000000.1

Genome size, bp 5,812,311 5,532,115 5,430,135 5,773,846 5,570,452

Number of contigs 267 180 125 360 160

Genetic line ST395K47 ST147K64 ST86K2 ST23K1 ST23K57

String-test Negative Negative Positive Positive Positive

Antimicrobial
resistance
phenotype

AMP, SAM, CXM,
FOX, CRO, CAZ,

CSL, FEP, ETP,
IPM, TET, CIP,

CHL, GEN, TOB,
AMK, SXT, NIT

AMP, SAM, CXM,
FOX, CRO, CAZ,

CSL, FEP, ETP,
IPM, CIP, GEN,

TOB, AMK, SXT,
NIT

AMP

AMP, SAM, CXM,
CRO, TET, CIP,
CHL, TOB, SXT,

NIT

AMP, SAM, CXM,
FOX, CRO, CAZ,

CSL, FEP, ETP,
IPM, TET, TGC,
CIP, CHL, GEN,
TOB, SXT, NIT

Beta-lactamases

blaSHV-12, blaTEM-1B,
blaCTX-M-15,

blaOXA-1, blaOXA-48,
blaNDM-1

blaSHV-67, blaTEM-1B,
blaCTX-M-15,

blaOXA-1, blaOXA-48,
blaNDM-1

blaSHV-28

blaSHV-190,
blaTEM-1B,

blaCTX-M-15,
blaOXA-1, blaOXA-48

blaSHV-33,
blaCTX-M-55,

blaOXA-1, blaOXA-48,
blaNDM-1

AG-resistance aadA2, aph(3′)-Ia,
armA

aph(3′)-VI, aadA1,
aadA2, aadA5, armA -

aph(6)-Id,
aac(6′)-Ib-cr,
aph(3”)-Ib

aph(6)-Id, aph(3′)-Ia,
aph(3”)-Ib,

aac(3)-IIa, aac(3)-IId,
aadA16

FOS-resistance fosA fosA fosA fosA fosA

STR-resistance msr(E) msr(E) - -

PHE-resistance catB3 catB3 - catB3 catB3, floR

QNL-resistance aac(6′)-Ib-cr, oqxA,
oqxB

aac(6′)-Ib-cr, oqxA,
oqxB oqxA, oqxB qnrB1, oqxA, oqxB aac(6′)-Ib-cr, oqxA,

oqxB

SUL-resistance sul1 sul1 - sul2 sul1, sul2
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Table 1. Cont.

Feature/strain B185/19 B16K/19 B2523/18 B2580/14 B1261/19

TET-resistance tet(A) - - tet(A) tet(A)

TRI-resistance dfrA1, dfrA12 dfrA12, dfrA17. - dfrA14 dfrA27

MCR-resistance mph(A), mph(E) mph(E) - - mph(A)

RIF-resistance - - - - ARR-3

HM-resistance ars, pco, sil sil pbr, pco, sil, ter pbr, pco, sil, ter pbr, pco, sil, ter

Efflux pums acr, oqx, kpn, kde,
kex

acr, oqx, kpn, kde,
kex

acr, oqx, kpn, kde,
kex acr, oqx, kpn, kde acr, oqx, kpn, kde,

kex

Virulence genes
uge, wabG, fimH,
irp, iut, mrk, ybt,

fyu,treC, cellB, ureA

uge, wabG, fimH,
mrk,treC, cellB,

ureA

peg-344, rmpA, iro,
ent uge, wabG, fimH,
irp, iuc, iut, mrk, ybt,
fyu,treC, cellB, ureA

peg-344, rmpA,
rmpA2, iro, ent, uge,

wabG, kfu, fimH,
allR, irp, iuc, iut,

mrk, ybt, fyu,treC,
cellB, ureA

peg-344, rmpA, ent,
wabG, fimH, irp, iuc,

iut, mrk, ybt,
fyu,treC, cellB, ureA

Plasmid

ColRNAI,
IncFIB(K),

IncFII(K), IncR,
IncX3

IncFIA(HI1),
IncFIB(K), IncFIB,
IncFII(K), IncHI1B,

IncM2

IncHI1B, repB IncFII(K), IncHI1B,
IncL, repB

ColRNAI, IncC,
IncFIA(HI1), IncFII,
IncFII(K), IncL, repB

Note: SCPM-O, State Collection of Pathogenic Microbes, AMP, ampicillin; SAM, ampicillin-sulbactam; CXM,
cefuroxime; FOX, cefoxitin; CRO, ceftriaxone; CAZ, ceftazidime; CSL, cefoperazone-sulbactam; FEP, cefepime;
ETP, ertapenem; IPM, imipenem; TET, tetracycline; TGC, tigecycline; CIP, ciprofloxacin; CHL, chloramphenicol;
GEN, gentamicin; TOB, tobramycin; AMK, amikacin; SXT, trimethoprim-sulfamethoxazole; NIT, nitrofurantoin;
AG, aminoglycosides; FOS, fosfomycin; STR, streptogramin; PHE, phenicol; QNL, quinolone; SUL, sulfonamide;
TRI, trimethoprim; RIF, rifamycin; HM, heavy metal.

2.7. Relative mRNA Levels of Antimicrobial Resistance and Virulence Genes in K. pneumoniae Cells

The expression levels of the resistance genes in all K. pneumoniae strains during growth
without selective pressure of antimicrobials were different: the chromosomal beta-lactamase
genes blaSHV were transcribed significantly lower compared with those of the reference
gene rpoD. In contrast, other beta-lactamase genes (blaTEM, blaCTX-M, blaOXA-48, and blaNDM),
as well as porin gene ompK36 were transcribed at higher levels compared with the reference
gene, with the exception of blaTEM in the hvKp-MDR strain of ST23K1 which exhibited
lower expression. The efflux pump genes and the virulence genes were expressed mostly at
the same or lower levels compared with the rpoD gene, with the exception of two virulence
genes: treC in the strains of ST395K47, ST147K64, ST23K1, and ST23K57; and celB in the strain
of ST86K2 (Figure 3).
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Figure 3. Expression levels of K. pneumoniae antimicrobial resistance and virulence genes detected in
the strains: (a) B-185/19; (b) B-16K/19; (c) B-2523/18; (d) B-2580/14; and (e) B-1261/19 detected by qPCR
compared with rpoD gene as a reference. Expression levels for three replicates along with the standard
error of the mean are shown on the plots; the area of no significant differences with the expression of the
reference gene (from minus 1 to 1) are circumscribed by dotted lines; NA, not acceptable.
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2.8. Fold Change of Expression Levels of K. pneumoniae Antimicrobial Resistance and Virulence
Genes under AMP and CRO Selective Pressure

We analyzed gene expression patterns of antimicrobial resistance and virulence genes
of K. pneumoniae strains belonging to different genetic lines in the presence of 100 mg/L
AMP. The MDR strain of ST395K47 demonstrated upregulation of the fimH (4.6-fold)
gene, and downregulation of the blaTEM (5.5-fold), acrA (2.4-fold), acrB (2.8-fold), oqxB
(4.8-fold), kpnE (3.5-fold), kpnF (2.0-fold), and kdeA (3.0-fold) genes. Another MDR strain
of ST147K64 was characterized by the upregulation of the blaTEM (2.2-fold), kpnE (3.2-fold),
kdeA (2.7-fold), fimH (2.3-fold), and ureA (14.0-fold) genes, and downregulation of the
blaOXA-48 (5.3-fold) gene. The hvKp strain of ST86K2 demonstrated upregulation of only one
gene, iroN (4.1-fold), and downregulation of 13 genes: blaSHV (2.6-fold), acrA (9.0-fold), acrB
(10.0-fold), oqxB (10.1-fold), kpnE (9.9-fold), kpnF (5.0-fold), kexD (4.9-fold), kdeA (4.8-fold),
iroD (4.0-fold), uge (3.2-fold), wabG (6.2-fold), treC (4.8-fold), and ureA (5.3-fold). The hybrid
hvKp-MDR strain of ST23K1 showed upregulation of the acrB (3.4-fold), oqxA (2.1-fold),
oqxB (2.1-fold), wabG (6.2-fold), fimH (3.2-fold), celB (8.0-fold), and ureA (8.9-fold) genes.
The second hvKp-MDR strain of ST23K57 expressed upregulation of the blaTEM (4.1-fold),
blaCTX-M (5.3-fold), ompK36 (2.9-fold), acrB (2.3-fold), oqxA (2.9-fold), oqxB (4.6-fold), kpnE
(2.3-fold), kpnF (2.0-fold), kexD (3.2-fold), kdeA (11.7-fold), uge (3.4-fold), wabG (14.5-fold),
fimH (2.9-fold), celB (3.7-fold), and ureA (3.1-fold) genes (Figure 4).
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Figure 4. Heatmap of changes in gene expression levels of K. pneumoniae resistance and virulence genes
under ampicillin (100 mg/L) and ceftriaxone (10 mg/L) selective pressure during 90 min in LB medium
in comparison with expression levels of these genes in LB medium without antibiotics. Values of each
cell represent log2 of gene expression fold changes (fold changes ≥1 or ≤−1 are significant).
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Additionally, we estimated fold changes of expression levels for the above listed genes
in response to 10 mg/L CRO conditions. The MDR strain of ST395K47 demonstrated down-
regulation of the blaTEM (3.3-fold) and acrA (2.4-fold) genes. The MDR strain of ST147K64

was characterized by upregulation of the oqxB (2.7-fold), kpnE (7.0-fold), kpnF (4.4-fold), kdeA
(2.3-fold) genes, and downregulation of the blaOXA-48 (2.1-fold) gene. The hybrid hvKp-MDR
strain of ST23K1 showed upregulation of the fimH (2.1-fold) gene, and downregulation of the
blaTEM (2.1-fold), kdeA (5.1-fold), and ureA (2.7-fold) genes. The second hybrid hvKp-MDR
strain of ST23K57 expressed upregulation of the blaSHV (2.3-fold), blaTEM (2.4-fold), blaCTX-M
(6.3-fold), acrB (3.0-fold), oqxB (3.8-fold), kpnE (2.1-fold), kdeA (8.6-fold), wabG (14.8-fold), and
ureA (4.2-fold) genes, and no genes were downregulated (Figure 4).

3. Discussion

K. pneumoniae was one of the major nosocomial pathogens in a Moscow neurosurgery
ICU during the period from January 2014 to May 2019, causing about 28% infections
including those of the central nervous system, bloodstream, respiratory tract, and uri-
nary tract. This rate was similar to those in the Multispecialty Hospital, Riga, Latvia in
2017–2020 (16–20%) [11], and significantly lower than those reported from 15 China centers
in 2012–2016 (52.4%) [12].

Non-duplicate 70 K. pneumoniae isolates collected from 62 patients were attributed
to specific genetic lines, virulence, and antimicrobial resistance genotypes. Single isolates
were collected from 54 patients and two isolates from eight patients. Double isolates were
studied from one patient in a case of their differences in ST (Patients 19, 32, 36, 46, and 48),
K-type (Patient 35), and antimicrobial resistance genes profiles (Patients 4 and 39) (Table
S1). Two isolates collected from the trachea and urine of the Patient 4 attributed to ST147K64

carried (blaTEM+blaSHV+blaCTX-M+blaOXA-48+blaNDM) and (blaSHV+blaOXA-48) beta-lactamase
genes, respectively. Two isolates obtained from the trachea of Patient 39 belonged to
ST23K57 (blaTEM+blaSHV+blaCTX-M) and (blaSHV+blaCTX-M+blaOXA-48) beta-lactamase genes,
respectively. Different antimicrobial resistance gene profiles of K. pneumoniae named isolates
possibly indicate the evolution events in the patient’s body as described previously [13].

Twenty STs and 17 K-types were identified. The most prevalent sequence types
were ST395 (27.1%), ST23 (18.6%), ST147 (15.7%), and ST86 (7.1%). The remaining 16 STs
were each represented at ≤ 4.3%. The dominant STs were described previously as K.
pneumoniae genetic lines common for classical K. pneumoniae (cKp) (ST395 and ST147) and
hypervirulent K. pneumoniae (hvKp) (ST23 and ST86). ST395 was reported as prevalent
for cKp-MDR strains in studies from Poland, France, Italy, and Russia [14–17]. ST147
has been estimated as Hight-Risk-Clone of cKp distributed worldwide, causing serious
infections and associated with polyresistance [18]. K. pneumoniae of ST23 and ST86 were
described previously as hvKp causing bacteremia, sepsis, and liver abscess in India, France,
Taiwan, and Russia [19–22]. The prevalent K-types in our study were K2 (31.4%), K57
(18.6%), K64 (10.0%), and K1 (5.7%); the remaining of the 12 K-types were each present
at a frequency of ≤ 4.3%. Among them, K1, K2, and K57 were identified in many studies
as specific capsular types for hvKp [23]. K. pneumoniae isolates of K64 commonly were
recognized as cKp, but recently some isolates of K64 were described as hybrid hvKp-MDR
due to acquiring the hvKp virulence plasmids [24]. Moreover, many reports have been
published in the last decade concerning hvKp-MDR hybrids generated on the base of
cKp ST11K20/K64, ST395K2, as well as hvKp ST23K1 and ST86K2 [25–29]. Major (84.3%)
K. pneumoniae isolates in our study were MDR with resistance to carbapenems for 45.7%
isolates. Such high MDR rates were reported from China and Iran [30,31]. The prevalence of
beta-lactamase genes blaCTX-M in our study was 74.2%, carbapenemase genes blaOXA-48 and
blaNDM at 40.0% and 11.4%, respectively, similar to the prevalence of these genes published
previously [31]. Hypermucoviscous isolates identified in this study (n = 11) were attributed
to ST23K1, ST86K2, ST23K57, ST65K2, and ST218K57 genetic lines. All of them carried the
rmpA gene coding the major virulence-associated factor in hvKP isolates [32], although
not all rmpA-positive isolates in this study were hypermucoviscousity-positive, which is
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in agreement with a previously published report [22]. Hypermucoviscous isolates were
characterized in our previous study as hypervirulent in the mouse model [22]. The rate of
MDR K. pneumoniae among hypermucoviscousity-positive isolates in this study was 6/11,
which is consistent with the modern trend for the appearance of hybrid hvKp-MDR genetic
lines [8,33,34].

Five K. pneumoniae strains belonging to prevalent STs and K-types (cKp, ST395K47, and
ST147K64; hvKp, ST86K2; and hybrid hvKp-MDR, ST23K1, and ST23K57) were selected for
further comparative study of whole-genome sequences, antimicrobial resistance pheno-
types, hypermucoviscosity, and altered expression levels of virulence and resistance genes
in response to beta-lactams effect (AMP and CRO). It was shown that K. pneumoniae isolates
belonging to ST86K2, ST23K1, and ST23K57 demonstrated hypermucoviscosity phenotype in
contrast with isolates of ST395K47 and ST147K64, which confirmed the virulent phenotype of
three isolates. All K. pneumoniae isolates carried blaSHV genes, including extended-spectrum
beta-lactamase (ESBL) variant blaSHV-12, broad-spectrum variants blaSHV-28 and blaSHV-33,
and narrow-spectrum variants blaSHV-67 and blaSHV-190. These alleles of blaSHV genes were
previously described in Portugal, Turkey, China, Russia, and Spain [22,35,36]. Three K.
pneumoniae isolates (ST395K47, ST147K64, and ST23K1) carried the blaTEM-1B, blaCTX-M-15,
and blaOXA-1 genes. It was reported that these genes were horizontally transferred by the
IncFIA-FIB-FII and IncHI2 plasmids [37,38]. One isolate (ST23K57) carried the blaCTX-M-55
and blaOXA-1 genes; such gene combination was reported previously from China [39]. It
should be noted that MDR isolates of ST395K47 and ST147K64 additionally carried two
carbapenemase genes, i.e., blaOXA-48 and blaNDM-1. Previously, it was reported that K.
pneumoniae clinical isolates of ST395 and ST147 harbored blaNDM-5 and blaOXA-181/232 in
Nepal and that ST11 harbored blaNDM-1 and blaOXA-48 in Greece [33,40]. Of greatest interest
are K. pneumoniae isolates belonging to the hvKp evolutionary branch, which acquired
the resistance genes and became a hybrid hvKp-MDR. In our study, a hvKp-MDR isolate
of ST23K1 carried simultaneously blaCTX-M-15 and blaOXA-48 genes, similar to a recently
published study [34]. Moreover, another hvKp-MDR isolate of ST23K57 carried not only the
blaCTX-M-55 and blaOXA-48 genes but additionally the blaNDM-1 gene. This is the first report
describing K. pneumoniae of ST23K57 genetic-line-acquired cefalosporinase gene blaCTX-M-55,
and two carbapenemase genes blaOXA-48 and blaNDM-1, which is particularly alarming. The
incidence of high-risk clone ST383 carrying blaCTX-M-14b gene and two carbapenemase
genes blaNDM-1 and blaOXA-48 combining both resistance and virulence elements was re-
cently published [8] as well as the incidence of ST147-carrying blaCTX-M-15, blaNDM, and
blaOXA-181 genes [41]. Additionally, we detected the efflux pump genes (acrA, acrB, oqxA,
oqxB, kpnE, kpnF, kdeA, and kexD) because of their clinical significance for K. pneumoniae
beta-lactam resistance presented recently [41]. In our study, one strain of ST23K1 carried
four efflux pump genes: acr and oqx of RND-type systems, kde of MATE-type, and kpn of
SMF-type. The rest of the four strains carried five efflux pumps: acr, oqx, kde, kpn, and
additionally the kex gene of the RND-type efflux system. The same efflux pump genes
were detected recently in K. pneumoniae clinical isolates, which exhibited co-resistance to
beta-lactams and aminoglycosides, glycopeptides, fluoroquinolones, and tetracyclines in
India [41]. Interestingly, the efflux pumps were associated with bacterial virulence, namely
biofilm formation [42].

It is known that multiple biomarkers have been shown to predict hvKp isolates: peg-
344, iroB, iucA, plasmid-encoded rmpA, and rmpA2 and quantitative siderophore production
(entB and ybtS) [43]. In this study, these genes were detected only in the genomes of hvKp
isolates of ST86K2, ST23K1, and ST23K57. In contrast, K. pneumoniae virulence genes (uge,
wabG, fimH, mrk, treC, cellB, and ureA), common for both hvKp and cKp, were detected
in all five isolates. This is in agreement with recently published data [44]. Two strains of
ST23K1 and ST23K57 are characterized as hybrid hvKp-MDR. Thus, the data obtained in
this study indicate the ongoing formation of hybrid K. pneumoniae on the base of the ST23
genetic line, which was already defined in the last decade [7,22,35,45].
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We estimated the basal expression levels of K. pneumoniae resistance and virulence
genes at non-selective conditions in vitro and the fold change of expression levels in pres-
ence of AMP and CRO. It was shown that ESBL gene blaSHV-12 expressed ~4-fold higher in
the MDR strain of ST395K47 than blaSHV-type genes coding broad-spectrum and narrow-
spectrum beta-lactamases in the remaining K. pneumoniae strains. This is in agreement with
previously reported data that ESBL variants of the blaSHV-12 gene expressed higher than
non-ESBL variants [46]. These genes did not change their expression after 90 min growing
at 100 mg/L AMP or 10 mg/L CRO.

Beta-lactamase genes blaTEM, blaCTX-M, blaOXA-48, and blaNDM and porin gene ompK36
were expressed at higher levels, with the exception of blaTEM in the hvKp-MDR strain of
ST23K1. Notably, the expression levels of the beta-lactamase (blaTEM and blaCTX-M) and
carbapenemase (blaOXA-48, and blaNDM) genes were higher in cKp-MDR strains than those in
hybrid hvKp-MDR strains. Possibly, the reason for this observation is the higher metabolic
load in Klebsiella cells producing resistance and virulence factors simultaneously. Growing
at AMP conditions for 90 min induced upregulation of blaTEM gene expression in cKp-MDR
of ST147K64 (2.1-fold), as well as the blaCTX-M (5.3-fold) and ompK36 (2.8-fold) genes in
hvKp-MDR of ST23K57, but downregulation of blaTEM gene expression in cKp-MDR of
ST395K47 and the blaOXA-48 gene in cKp-MDR of ST147K64. In contrast, growing at CRO
conditions induced upregulation of the blaCTX-M gene in hvKp-MDR of ST23K57 (6.5-fold)
and downregulation of the blaTEM gene in cKp-MDR of ST395K47 (3.3-fold), in hvKp-MDR
of ST23K1 (2.1-fold), and the blaOXA-48 gene in cKp-MDR of ST147K64 (2.1-fold).

The basal level of efflux pump gene expression was very different for cKp, hvKp, and
hybrid hvKp-MDR strains. In cKp-MDR strains, 5–6 efflux genes were expressed on the
same level as reference gene ropD, and 2–3 genes were lower than the reference. In the
hvKp strain, one efflux gene expression was higher, three genes were expressed at the
same level, and four genes were lower than the reference gene. In contrast, major efflux
genes in hybrid hvKp-MDR strains were expressed lower than the rpoD gene, and one gene
in the strain of ST23K57 was expressed on the same level as the reference. Interestingly,
the previously described expression of the arcB efflux gene showed upregulation of this
gene in carbapenem-resistant K. pneumoniae strains compared with non-resistant ones [47].
The relatively high expression level of efflux genes in cKp and hvKp strains indicates the
importance of efflux pumps for virulence of both Klebsiella evolutionary branches that
are consistent with previous reports [48]. It is known that efflux pumps use different
antimicrobials as substrates. Our results suggest that the change in efflux gene expression
in certain K. pneumoniae genetic lines may reflect differences in bacterial surface structures
in particular K-types: downregulation in the strains of K47 and K2, and upregulation in the
strains of K1 and K57 in response to AMP; and upregulation in the strains of K64 and K57
in response to CRO (Figure 4).

It was shown in our study that transcripts of K. pneumoniae virulence genes common for
both the cKp and hvKp evolutionary branches (uge, wabG, fimH, and treC) were present at
higher levels in the cKp strains of ST395K47, ST147K64, and hvKP ST86K2 than in the hybrid
hvKp-MDR strains of ST23K1 and ST23K57. In conditions containing 100 mg/L AMP, these
genes were upregulated in cKp and hybrid hvKp-MDR strains (fimH 2.3-4.6-fold) and wabG
in hvKp-MDR strains (6.1–14.9-fold), while downregulated in the hvKp strain (uge, wabG, and
treC, 3.2-4.9-fold). In conditions with 10 mg/L CRO, only the wabG gene was upregulated in
hybrid hvKp-MDR strains (2.3-14.9-fold). The expression levels of the remaining virulence
genes common for cKp and hvKp (celB and ureA), as well as common for only hvKp (rmpA,
iroN, iroD, and allR), were approximately equal in all studied strains at non-selective conditions.
The celB gene expression at AMP medium was upregulated in hvKp-MDR strains (3.7–8.0-
fold); the ureA gene expression was upregulated in the cKp strain of ST147K64 (13.9-fold)
and hvKp-MDR strains of ST23K1 (9.2-fold) and ST23K57 (3.2-fold). It was detected that
CRO induced upregulation of the ureA gene in a hvKp-MDR strain of ST23K57 (4.3-fold) and
downregulation of this gene in a hvKp-MDR strain of ST23K1 (2.6-fold). Expression levels
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of virulence genes common for hvKp strains were not changed under selective pressure
generated by AMP or CRO in the growth media (Figure 4).

In summary, expression levels of antimicrobial resistance and virulence genes were
characteristic for K. pneumoniae of different certain genetic lines. Selective pressure by
sub-inhibitory concentrations of ampicillin or ceftriaxone induced differential upregulation
or downregulation of these genes depending on the strain belonging to classical cKp,
hypervirulent hvKp, or hybrid hvKp-MDR evolutionary branches. Results obtained in
this study may be fruitful for future studies of evolution, the spread of antimicrobial and
virulence genetic determinants, and the clinical impact of K. pneumoniae genetic lines.

4. Materials and Methods
4.1. Bioethical Requirements and Patients

K. pneumoniae isolates were collected from the patients of the neuro-intensive care
unit (Neuro-ICU) in a specialized Neurosurgical Hospital in Moscow, Russia. Following
the requirements of the Russian Federation Bioethical Committee, each patient signed
informed voluntary consent to treatment and laboratory examination. The materials used
in the study did not contain the personal data of patients.

4.2. Bacterial Isolates, Identification, and Growth Conditions

Seventy K. pneumoniae isolates were collected from the respiratory system, blood, urine,
cerebrospinal fluid, and wounds of 62 patients of the neuro-ICU. Bacteria identification
was performed using by a Vitek-2 Compact instrument (BioMérieux, Paris, France) and
a MALDI-TOF Biotyper (Bruker Daltonics, Bremen, Germany). Bacteria were grown at
37 ◦C with agitation on Luria-Bertani broth (Difco Laboratories, Detroit, MI, USA) and
Muller-Hinton broth (Becton Dickinson, Franklin Lakes, NJ, USA). Bacterial isolates were
stored in 20% glycerol at minus 80 ◦C.

4.3. Susceptibility to Antimicrobials

Minimal inhibitory concentrations (MICs) of ampicillin (AMP), ampicillin-sulbactam
(SAM), cefuroxime (CXM), cefoxitin (FOX), ceftriaxone (CRO), ceftazidime (CAZ), cefoperazone-
sulbactam (CSL), cefepime (FEP), ertapenem (ETP), imipenem (IPM), tetracycline (TET), tige-
cycline (TGC), ciprofloxacin (CIP), chloramphenicol (CHL), gentamicin (GEN), tobramycin
(TOB), amikacin (AMK), trimethoprim-sulfamethoxazole (SXT), and nitrofurantoin (NIT) were
determined using a Vitek-2 instrument with VITEK-2 using AST n-101 and AST n-102 cards
(BioMérieux, Paris, France). The results were interpreted according to the European Com-
mittee on Antimicrobial Susceptibility Testing (http://www.eucast.org/clinical_breakpoints,
accessed on 1 November 2021). E. coli strains ATCC 25922 and ATCC 35218 were used for
quality control. Strains non-susceptible to ≥1 agent in ≥3 antimicrobial categories were
identified as multi-drug resistant (MDR), according to Magiorakos et al., 2012 [49].

4.4. Hypermucoviscousity Testing

The string test was used for the identification of hypermucoviscous K. pneumoniae
strains growing on the plates with Luria-Bertani broth (Difco Laboratories, Detroit, MI, USA)
overnight at 37 ◦C [23]. The positive test was assigned if a colony of K. pneumoniae formed
viscous strings >5 mm length using a standard bacteriological loop.

4.5. K. pneumoniae Sequence Type and Capsular Type Identification

Sequence types (STs) of K. pneumoniae isolates were determined by the Multilocus Sequence
Typing (MLST) scheme of Pasteur Institute (Paris, France) using the previously published
primers [50,51]. The PCR capsular serotyping of the K. pneumoniae isolates was performed using
specific primers for the wzy gene associated with K serotypes K1, K2, K20, and K57 [52] and by
wzi gene sequencing for identification of capsular types K23, K27, K28, K31, K47, K60, K62, and
K64 [53]. Bacterial thermolysates were used as DNA templates for amplification.

http://www.eucast.org/clinical_breakpoints
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4.6. Detection of Antimicrobial Resistance and Virulence Genes

Beta-lactamase genes blaSHV, blaCTX-M, blaTEM, blaOXA-48, blaKPC, blaVIM, blaIMP, and
blaNDM, class 1 and 2 integrons, and porin protein gene ompK36, as well as 8 genes associated
with K. pneumoniae virulence, rmpA (hypermucoid phenotype regulator), aer (aerobactin),
kfu (ferric absorption system), uge (uridine diphosphate-galacturonate-4-epimerase), wabG
(glucosyltransferase), fimH (fimbria type I), allS and allR (allantoin regulon), were detected
by PCR using specific primers as was described previously [10].

4.7. Real-Time PCR Detection of Antimicrobial Resistance and Virulence Genes

Oligonucleotides for RT-PCR (Table 2) were designed using Vector NTI Advance
11.0 (Invitrogen, Carlsbad, CA, USA) and purchased from Evrogen (Moscow, Russia).
Secondary structures were controlled with Gene Runner 6.5.52 (http://www.generunner.
net/, accessed on 1 November 2021) and in silico analysis by insilico.ehu.eus [54] was
performed to check primer specificity. K. pneumoniae virulence genetic determinants (rmpA,
iroN, iroD, mrkD, uge, wabG, fimH, treC, celB, ureA, and allR) and antibacterial resistance
genes (blaTEM, blaSHV, blaCTX-M, blaOXA-48, blaNDM, blaKPC, blaVIM, ompK36) were detected
by RT-PCR using qPCRmix-HS SYBR (Evrogen, Moscow, Russia) and the CFX96 Real-Time
PCR system (Bio-Rad Laboratories, Hercules, CA, USA) with the following program: 95◦

for the 20s, 61◦ for 20s, 72◦ for 30 s, repeat 40 times. Bacterial thermolysates were used as
DNA templates.

4.8. Whole-Genome Sequencing

WGS was carried out on the Illumina MiSeq platform using Nextera DNA Library
Preparation Kit (Illumina, Carlsbad, CA, USA) and MiSeq Reagent Kits v3 (Illumina,
Carlsbad, CA, USA). The obtained single reads were collected into contigs using the
SPAdes 3.9.0 software (Petersburg State University, St-Petersburg, Russia). De novo as-
sembled genomes were annotated in the GenBank database (https://github.com/ncbi/
pgap, accessed on 1 November 2021). Antimicrobial resistance genes, STs, plasmids, and
restriction-modification systems were identified using the web resource of the Center for Ge-
nomic Epidemiology (http://www.genomicepidemiology.org/, accessed on 1 November
2021). Virulence genes, capsular type, genes conferring resistance to heavy metals, and
efflux pumps were identified by the Institut Pasteur, Paris, France, BIGS database web-
resource of (https://bigsdb.pasteur.fr/, accessed on 1 November 2021).

4.9. K. pneumoniae Growing in Antimicrobial Conditions and RNA Isolation

Overnight bacterial culture was diluted 1/50 in Luria-Bertani broth (Difco Laboratories,
Detroit, MI, USA) containing/not containing antimicrobials (100 mg/L AMP or 10 mg/L
CRO) and incubated at 37 ◦C with agitation for 90 min. Each experiment was represented
by three independent repeats. All following steps for RNA isolation were performed at
4 ◦C to limit RNase activity. Total RNA was isolated by phenol-chloroform extraction using
kit RNA-extran (Sintol, Moscow, Russia), following manufacturer protocol. After isolation,
RNA was treated with TURBO DNase (Invitrogen, Carlsbad, CA, USA) to remove traces of
genomic DNA.

http://www.generunner.net/
http://www.generunner.net/
https://github.com/ncbi/pgap
https://github.com/ncbi/pgap
http://www.genomicepidemiology.org/
https://bigsdb.pasteur.fr/
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Table 2. Oligonucleotide primers for RT-PCR were used in this study for the detection of K. pneumoniae
antimicrobial resistance and virulence genes.

Target Gene Forward Primer (5′→3′) Reverse Primer (5′→3′) Size of PCR Product, bp

proC * GATTGCCGATATCGTCTTCG GAGACCACCAGCGACTCTTT 99

recA * TTAAACAGGCCGAATTCCAG CCGCTTTCTCAATCAGCTTC 99

rpoD * TCCGGTGCATATGATTGAGA ATACGCTCAGCCAGCTCTTC 105

blaTEM GCCAACTTACTTCTGACAACGA GATCAAGGCGAGTTACATG 88

blaSHV GCCATTACCATGAGCGATAA CAAAAAGGCAGTCAATCC 81

blaCTX-M AAGCAGAGTGAAACGCAAAA GGCAATCGGATTGTAGTTAA 84

blaOXA-48 GTGTTTTTGGTGGCATCGATTA GGTTCGCCCGTTTAAGATTATT 164

blaNDM ACTTTGGCCCGCTCAAGGTATT TGATCAGGCAGCCACCAAAA 105

ompK36 CGGTTACGGCCAGTGGGAATA GAGCCCGCGTCGCCAAATTT 111

acrA ATGTGACGATAAACCGGCTC CTGGCAGTTCGGTGGTTATT 101

acrB TGGTGCTGCATGGCCAGGTT CTTGTCCACCAGCCGCGAAA 149

oqxA AGGCGCTTCCGGTGGAGATT GCAAACAGCCCTGGCGTGAA 160

oqxB CGCAACTACGCCACGCTGAA GCCAGACGCGCATCGCATAT 103

kpnE ATTGCTGAAATTACCGGCAC AAATACCGATCCCTTCCCAC 172

kpnF ATAACCCCCGCCCAGCCTTT CCCTGTCGCAGGCGGTTAAA 139

kexD TGAAGTTGCGCCACCCGGTA TGTCGGTGCCGGGTTTGAAA 191

kdeA CAGGCGCTGTTGTTCCCGTT AAACATGCCGCCTGCCAGAT 162

rmpA TGTACCTTTTGCAGCCAA CTGCAATGCCTACTGAAAA 121

iroN TTCCGGCTGGTTGGTGTATA ATCGAAGTGATCCGTGGCC 132

iroD ATAAGTTTGGCCGGCAGG TTCGTGCCGAACAACCGC 183

uge CCCGGATATGGCGCTGTTCA CGCTTCATTTTGCCGTAGTT 84

wabG AACGTATTCCCGGCTGCGATCT CCGCGCAGGTGTGAGTCTTCAT 175

fimH GCAGGATCAGCACCGCGATTAA TCACGGACCGATAAACCCTGGC 106

allR GAGCCTTCCGCGCAAAA CCGCGCCTTCCAGCACTTTTA 163

treC CCATTTCTCTCCGCCGGGATAA ACCTGATGACCGTCGGCGAGAT 137

celB GCGCGACGGCATCATTCT GCGATGCCGAAGCTGGAAAT 192

ureA GAGGGCGTCCCGGAAAT TGTGAACGGTGACCAGCTT 79

Note: *, obtained from [55].

4.10. cDNA Synthesis and Quantitative Real-Time PCR

One µg of isolated total RNA was used for cDNA synthesis with RevertAid RT Reverse
Transcription Kit (Thermo Fisher Scientific, Waltham, MA, USA). qPCR was performed
using qPCRmix-HS SYBR (Evrogen, Moscow, Russia) and the CFX96 Real-Time PCR system
(Bio-Rad Laboratories, Hercules, CA, USA) with the following program: 40 cycles of 20 s at
95 ◦C for denaturation, 20 s at 61 ◦C for annealing, 30 s at 72 ◦C for extension and SYBR
Green detection. The melting curve analysis in the temperature range from 60 ◦C to 94 ◦C,
with a fluorescence estimation step of 0.2 ◦C, was performed to confirm the specificity of
the reaction. Relative quantification of the target gene expression was normalized with
reference genes proC, recA, and rpoD expression. Three technical replicates per each of the
three biological samples were used for statistical validity. The relative transcript levels of
antimicrobial resistance and virulence genes were calculated using the 2−∆∆Ct method [56].
A heat map of changes in gene expression levels relative to reference genes was designed
using GraphPad Prism version 8.0.1 for Windows (GraphPad Software, La Jolla, CA, USA,
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www.graphpad.com accessed on 1 November 2021). Gene expression levels of each gene at
present of AMP and CRO were compared to those in conditions without antimicrobials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antibiotics11010007/s1, Table S1: Clinical characteristics, susceptibility to antibacterials, and
antimicrobial resistance gene profiles of K. pneumoniae clinical isolates collected from 62 patients of
Moscow Neuro-ICU, Table S2: K. pneumoniae virulence gene profiles of the clinical isolates collected
from 62 patients of Moscow Neuro-ICU.
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