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Abstract: The development of RNA-based anti-infectives has gained interest with the successful
application of mRNA-based vaccines. Small RNAs are molecules of RNA of <200 nucleotides in
length that may control the expression of specific genes. Small RNAs include small interference RNAs
(siRNAs), Piwi-interacting RNAs (piRNAs), or microRNAs (miRNAs). Notably, the role of miRNAs
on the post-transcriptional regulation of gene expression has been studied in detail in the context of
cancer and many other genetic diseases. However, it is also becoming apparent that some human
miRNAs possess important antimicrobial roles by silencing host genes essential for the progress
of bacterial or viral infections. Therefore, their potential use as novel antimicrobial therapies has
gained interest during the last decade. The challenges of the transport and delivery of miRNAs
to target cells are important, but recent research with exosomes is overcoming the limitations in
RNA-cellular uptake, avoiding their degradation. Therefore, in this review, we have summarised the
latest developments in the exosomal delivery of miRNA-based therapies, which may soon be another
complementary treatment to pathogen-targeted antibiotics that could help solve the problem caused
by multidrug-resistant bacteria.

Keywords: miRNAs; pathogen; bacteria; infection; antimicrobial

1. Introduction

Small RNAs are non-coding molecules of RNA of less than 200 nucleotides in length
and with important roles in transcriptional regulation. There are different small RNAs,
such as small interference RNAs (siRNAs), piwi-interacting RNAs (piRNAs), and micro
RNAs (miRNAs). MicroRNAs were identified in the early 1990s [1], and their function
as transcriptional regulators was gradually elucidated [2]. MiRNAs are typically around
18–25 nucleotides long non-coding molecules that act as transcriptional regulators by target-
ing specific messenger RNAs (mRNAs) for their destruction to achieve gene silencing [3,4].
MicroRNA biogenesis is an important process that finalizes with the RNA-Induced Silenc-
ing Complex (RISC) formation, which localizes and binds miRNA with its target mRNA.
This results in the degradation of the targeted mRNA(s) and a subsequent reduction in
the expression of the affected gene(s) [5–7]. However, the silencing of a transcriptional
repressor may result in downstream gene upregulation. Therefore, some miRNAs can also
trigger the expression of specific genes [8].
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Most mammalian mRNAs possess conserved targets for miRNAs [9]. The perfect
match between a miRNA and its target (3’UTR region of the mRNA) results in mRNA
cleavage, eventually leading to gene silencing. However, there is also a possibility of a
non-perfect match between a miRNA and the 5’UTR region of a gene [10]. The comple-
mentarity degree between a miRNA and its mRNA target dictates its level of degradation
or silencing [7,11]. In addition, some post-transcriptional alterations could change the
processing of miRNAs by the DROSHA/DICER complex and their loading onto Argonaute
(AGO) proteins, an essential component of RISC. These changes in miRNA maturation may
alter the miRNA-mediated regulation of gene expression and could be different depending
on the type of cell or their microenvironment [7].

Despite their highly complex and understudied roles, it is now becoming clear that
miRNAs are essential molecules that regulate multiple molecular pathways in humans
and other organisms. There are >2500 human miRNAs annotated in public reposito-
ries, and >3000 miRNAs have been additionally identified in specific cell types. These
>5500 miRNAs have >45,000 gene targets, representing more than 60% of all human protein-
coding genes [4,9,12–14].

Initially, the role of miRNAs on infection was discovered in models of viral infec-
tions [15]. Plants and animals express miRNAs that target viral genes to combat infections
caused by a wide range of viruses [16,17]. Antiviral miRNAs may also control the levels of
mRNAs produced by the infected host cell, and they play major roles in viral pathogene-
sis [18]. This led to the development of novel antiviral strategies based on miRNAs [19]
and even the design of attenuated vaccines based on miRNA technology [20].

Interestingly, the first miRNA related to bacterial infections was found in plants,
when miR-393 was discovered as a contributor to the resistance to infection caused by
Pseudomonas syringae in Arabidopsis thaliana [21,22]. The discovery of natural antimicrobial
responses based on miRNAs opened the door to new studies in the field of immunology
focused on the role of miRNAs in the activation of the immune response [5].

MicroRNA expression is tightly controlled in cells and is tissue- or even organ-
specific [7]. Factors that regulate a miRNA expression and activity include genetic poly-
morphisms, DNA methylation, asymmetric miRNA strand selection, and the miRNA
interactions with RNA-binding proteins or other RNAs [7].

Based on this preliminary evidence, the roles of miRNAs were perceived as a new
opportunity to discover biomarkers and new therapeutic strategies against a wide range
of other pathogens, including bacteria and parasites [5,23–27]. The host miRNA response
to bacterial infection was initially studied by stimulation of toll-like receptors (TLRs)
with pathogen-associated molecular patterns (PAMPs) and subsequent analysis of the
expression profile of different miRNAs [5,28]. One of the earliest studies discovered that
miR-146 and miR-155 work as a negative-feedback loop to stop the TLR4-mediated cellular
response in human monocytes exposed to lipopolysaccharide (LPS) [28]. Later work has
focused on studying the miRNAs involved in the intracellular infection of different bacterial
pathogens [23]. Here, we have summarized the latest developments on the role of miRNA
in bacterial infections.

2. Human miRNAs and Pathogen Infections

In the context of infection, miRNAs may regulate innate immune pathways that control
the magnitude of host inflammatory responses by altering different signalling pathways.
However, other miRNAs regulate the expression of specific genes that control pathways
relevant to the host cell’s infection. Therefore, we have divided the following section into
two subsections to shed light on this matter. The first is dedicated to the role of microRNAs
on inflammation, and the second is focused on the role of specific microRNAs in the fine-
tuning of the infected host cell. In addition, we have created Table 1 to summarize current
knowledge about the miRNAs involved in bacterial infections.
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Table 1. List of microRNAs identified during infection and their mechanisms of action.

Pathogen miRNA Targets Mechanism of Action References

Adherent–Invasive
E. coli

↑ miR-30c and
miR-130a * ↓ ATG5 and ATG16L1 * Inhibits autophagy, facilitates

bacterial intracellular survival [29]

Burkholderia
pseudomallei

↑ miR-30b/c ↓ Rab32
Stops phagosome maturation,

facilitates bacterial
intracellular survival

[30]

↑ miR-3473 ↓ TRAF3
Activates TNF-α release, cell
apoptosis and inflammatory
response, facilitates infection

[26]

Chlamydia trachomatis

↑ miR-30c-5p ↓ Drp1
Inhibition of mitochondrial fission to
maintain ATP production, facilitates

intracellular survival
[31]

↑miR-9, miR-19 and
miR-451 ↑ NF-κB pathway Inflammation control [32]

↑ miR-155 and ↓
miR184 ↓ Wnt pathway Inflammation control [33]

Francisella tularensis ↑ miR-155 ↓ MyD88 and SHIP-1

Downregulates the TLR adapter
protein MyD88 and the inositol

5′-phosphatase SHIP-1 to inhibit the
inflammatory response

during infection

[34]

Helicobacter pylori ↑ miR-25
↑ miR-155

↓ KLF2
↓ MyD88

Kruppel-like factor 2 (KLF2) is a
direct target of exosome-transmitted
miR-25 in vascular endothelial cells,

which may contribute to chronic
heart disease

Reduction of pro-inflammatory
cytokine IL-8

[35]

Legionella pneumophila ↑ miR-125b, miR-221,
and miR-579

↓ DDX58, TP53,
LGALS8 and MX1

Three miRNAs govern expression of
the cytosolic RNA receptor DDX58,

the tumor suppressor TP53, the
antibacterial effector LGALS8, and

the antiviral factor MX1

[36]

Listeria monocytogenes

↑ miR-21 ↓ MARCKS and RhoB

The pro-phagocytic regulators
myristoylated alanine-rich C-kinase

substrate (MARCKS) and Ras
homolog gene family, member B

(RhoB) are downregulated to hinder
pathogen internalization

[37]

↑ miR-26a ↓ EPHA2 The downregulation of EPHA2
attenuates intracellular survival [38]

↑ miR-29 ↓ IFN-γ
Suppresses the immune response by

downregulating the expression
of interferon-γ

[39]

Mycobacterium bovis
(BCG) ↑ miR-144-3p ↓ ATG4a Inhibition of autophagy, facilitates

intracellular survival [40]

Mycobacterium
tuberculosis

↓ miR-17-5p ↑ Mcl-1 and ↑ STAT3 Autophagy activation increasing the
interaction of Mcl-1 and Beclin-1 [41]

↑ miR-18a ↓ ATM Inhibition of autophagy, facilitates
intracellular survival [42]

↑ miR-20a-3p ↓ IKKβ
Suppression of immune response,

facilitates intracellular survival [43]
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Table 1. Cont.

Pathogen miRNA Targets Mechanism of Action References

↓ miR-20b-5p ↑ Mcl-1 Inhibits apoptosis, facilitates
intracellular survival [44]

↑ miR-27 ↓ CACNA2D3 Autophagy inhibition by means of
Calcium associated transporters [45]

↑ miR-33 ↓ ABCA1, CROT, CPT1,
HADHB and PRKAA1

Inhibiting cellular cholesterol
transport and fatty acid oxidation [46]

↑ miR-99b ↓ Inflammatory
cytokines

Inhibition of inflammation via
MyD88 signaling [47]

↓ miR-147 and
miR-148a

↑ Inflammatory
cytokines Inflammasome activation [48,49]

↑ ↓ miR-155 # ↑ SHIP1/Akt Pathway
↓ Rheb

Cytokine activation and control of
autophagic flux [50,51]

↑ miR-1178 ↓TLR4-pathway Blocks immune response [52]

↑ miR-1958 ↓ Atg5 Reduction of autophagy [53]

Salmonella
Typhimurium

↑ miR-let-7i-3p ↓ RGS2

Inhibits bacterial replication by the
modulation of endolysosomal

trafficking and the
vacuolar environment

[13]

↓ miR-15 ↓ E2F1 ↑ Cyclin D1 Control of cell cycle progression,
which facilitates host cell infection [54]

↑ miR-29a ↓ CAV2 Caveolin 2 downregulation results
in increased bacterial uptake [55]

Shigella flexneri

↑ miR-29b-2-5p ↓ UNC5C
Enhances filopodia production,

facilitating bacterial capture
and uptake

[13]

↑ miR-3668,
miR-4732-5p and

miR-6073
↓ NWASP

Impairs bacterial actin-based
motility, stops cell-to-cell spread,
attenuates intracellular infection

[13]

Staphylococcus aureus ↑ miR-127 ↑ STAT3 ubiquitination Interleukin activation and
bacterial clearance [56]

Vibrio cholerae ↑ miR-155 and
miR-146a ↓ NF-κB pathway

Reduction of inflammatory and
immune responses in intestinal

epithelial cells
[57]

Broad-spectrum
miRNas

↑ miR-29
↑ miR-124
↑ miR-302b

↓ IFN-γ
↓ TLRs/NF-κB
↑ Cytokine genes

Inhibition of the immune response
Inhibition of the immune response

Activates the immune response

[39]
[25,58,59]

[60]

Lipopolysaccharide ↑ miR-155 and
miR-146a ↓ TLR4 pathway

Negative-feedback loop of the
TLR4-mediated cellular response in

human monocytes exposed to
lipopolysaccharide (LPS)

[28]

* The symbol ↑ represents upregulation during infection, whereas ↓ means downregulation. # The role of mir-155
in tuberculosis is host cell-specific.

2.1. Role of miRNAs in the Regulation of Host Inflammatory Responses during Bacterial Infection
2.1.1. Mycobacterium tuberculosis

By far, the most studied relationship between miRNAs and bacteria during infection
are those related to Mycobacterium tuberculosis [15]. Phagosome rupture is a critical event
in mycobacterial infections in which miRNAs play an important role. For example, EsxA
and EsxB are essential virulence factors of M. tuberculosis that play a role as phagosome
maturation inhibitors and miRNA regulators. The deletion of the esxBA genes results in the
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upregulation of mir-206, miR-147 and miR-148a, which play essential roles in the release of
many inflammatory cytokines [48,49,61].

In addition, miR-20a-3p, miR-99b and miR-1178 are overexpressed in M. tuberculosis-
infected cells and reduce the immune response to facilitate host colonisation. In particular,
miR-20a-3p controls the host immunity by blocking the production of pro-inflammatory cy-
tokines through the control of the IKK/NF-kB pathway [43]. At the same time, miR-99b up-
regulation blocks the expression of pro-inflammatory cytokines via MyD88 signalling [47].
Finally, miR-1178 targets the TLR4 to block the immune response in M. tuberculosis-infected
cells, increasing the pathogen’s survival rate [52].

However, the roles of some miRNAs in tuberculosis are still unclear, and their expres-
sion is host cell-specific [24]. For example, miR-155 facilitates cell survival and bacterial
propagation in macrophages, but it promotes cytokine production and bacterial clearance
in T cells via different metabolic routes [50].

2.1.2. Francisella tularensis

Interestingly, miR-155 has also been identified as a baffling immune response regulator
during the infection of other pathogens. In particular, miR-155 is upregulated during
infections caused by Francisella tularensis subspecies novicida. This is less virulent than
other subspecies of F. tularensis, which do not induce the expression of miR-155. This
observation suggests that there are virulence factors involved in controlling the expression
of miR-155 that are only present in the most virulent F. turalensis subspecies to favour the
infection [34,62]. The role of miR-155 in the non-virulent F. tularensis ssp. novicida is related
to the downregulation of SHIP in monocytes and macrophages, which eventually enhances
the expression of pro-inflammatory cytokines through the activation of the TLR2/MyD88
pathway [62]. In contrast, F. tularensis virulent strains show a marked decrease in miR-155
expression with a concomitant reduction of anti-inflammatory cytokines mediated by the
silencing of SHIP-1 and MyD88 [34].

2.1.3. Vibrio cholerae

miR-155 is also involved in other infections. For example, Vibrio cholerae releases
outer membrane vesicles (OMV) that carry different virulence factors. These OMVs elicit
the expression of miR-155 and miR-146a in host cells. The expression of these miRNAs
eventually results in the downregulation of the inflammatory response, which facilitates
bacterial proliferation [57].

2.1.4. Staphylococcus aureus

miR-155 overexpression can cause fatal pneumonia in Staphylococcus aureus infected
patients because of the overexpression of different interleukins, resulting in a fatal cytokine
storm [63]. S. aureus also elicits the expression of miR-127, and its upregulation may
increase the natural antibacterial response to the pathogen in mice by means of STAT3
ubiquitination [56].

2.1.5. Helicobacter pylori

Helicobacter pylori can also control inflammation by the upregulation of miR-155 [5,64].
This, in turn, reduces the expression of MyD88, whose gene silencing lowers the levels
of the pro-inflammatory cytokine IL-8 [65]. In addition, miR-155 is also part of negative
feedback that finally results in the downregulation of other inflammatory cytokines [66].

However, H. pylori chronic infection can cause other disorders such as coronary heart
disease [67]. This is also mediated by microRNAs, particularly by the activation and the
production of exosomal packaged miR-25, which increases the expression of inflamma-
tory factors in vascular endothelial cells [35]. Moreover, miR-21, miR-218 and miR-223
are also overexpressed in gastric cancer patients during an H. pylori infection, and they
are probably oncogenic [68]. Because of this, these miRNAs are used as biomarkers of
H. pylori-induced gastric inflammation and gastric cancer. These data shed some light
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on the complex relationship between bacterial infections and other pathologies linked to
miRNA changes.

2.1.6. Chlamydia trachomatis

Chlamydia trachomatis is a human intracellular pathogen and the causative agent of
trachoma. The infection caused by C. trachomatis is related to the differential expression of
miRNAs involved in inflammation [69,70]. In particular, the overexpression of miR-155 and
downregulation of miR-184 are associated with inflammation in trachoma patients [33].

Moreover, the miRNA expression profile could be used to determine the severity of
the disease. Specific miRNA expression patterns are good prognostic markers of pelvic
inflammatory disease, a sign of severe genital infection [71]. Additionally, miRNAs that
control the NF-kB pathway, such as miR-9, miR-19 and miR-451, are also upregulated
during infection [32].

2.1.7. Broad-Spectrum miRNAs

Some miRNAs, however, were identified as having a broad spectrum of antimicro-
bial effects. In particular, miR-30e-5p reduces bacterial survival by targeting SOCS1 and
SOCS3 [72], two crucial regulators of innate immunity whose silencing reduces bacterial
replication [73].

Other miRNAs target general regulators of the immune response during infection,
which may be broad-spectrum miRNAs. For example, some miRNAs target signalling
pathways activated by TOLL receptors (TLRs) [25]. In particular, miR-124 is often over-
expressed during bacterial infections [25,58,59], and it modulates the immune response
negatively through the TLRs/NK-κB signalling pathway. Thus, anti-miR-124 could be
used as a broad-spectrum therapy, as previously demonstrated with Mycobacterium bovis
(BCG) [58]. In addition, the expression of miR-302b is induced by TLR2 and the TLR4/
NK-κB pathway during Pseudomonas aeruginosa infection, and its overexpression activates
cytokine release [60]. Other miRNAs control the expression of interferon -γ [39]. For
example, miR-29 is downregulated during infection of L. monocytogenes and M. bovis [25,39].
Therefore, it is worth exploring if any of these miRNAs could be used against other bacte-
rial pathogens.

2.2. Role of miRNAs in the Control of the Infected Host Cell
2.2.1. Mycobacterium tuberculosis

Autophagy plays an important role during intracellular infection caused by M. tuberculosis,
and miRNAs regulate this molecular pathway. The expression of miR-155 and miR-17-5p
reduces the intracellular colonisation of M. tuberculosis by modulating different metabolic
routes that result in autophagy activation in macrophages [24,41,50]. The upregulation of
miR-155 results in the activation of autophagy and a concomitant mycobacterial clearance.
In particular, miR-155 binds to the 3’UTR region of the Rheb gene, promoting phagosome
maturation, binding to lysosomes, and subsequent mycobacterial elimination [51].

In addition, M. tuberculosis can also control the expression of different miRNAs to
reduce autophagy. For instance, miR-27 is upregulated during M. tuberculosis infection
and downregulates calcium-associated autophagy [45]. The target of miR-27 is the Ca2+

transported CAC-NA2D3, which is located at the endoplasmic reticulum (ER) and whose
downregulation inhibits autophagosome formation [45]. Moreover, M. tuberculosis host
cell infection induces the expression of miR-1958, which binds to the 3’UTR region of
Atg5, whose silencing results in the inhibition of the autophagic flux [53]. Finally, miR-18a
facilitates M. tuberculosis infection by silencing the ataxia–telangiectasia-mutated (ATM)
gene, which decreases LC3-II levels in infected cells and stops the xenophagy process [42].

On the other hand, miR-33 is overexpressed during M. tuberculosis infection, and it
targets different host cell genes involved in cholesterol transport and fatty acid oxidation,
including ABCA1, CROT, CPT1, HADHB and PRKAA1. This, in turn, activates the lipid
catabolism in the infected host cells, which facilitates bacterial colonisation because of
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the highly lipid-dependent metabolism of M. tuberculosis [46]. Thus, an anti-miR-33 may
promote phagosome maturation and bacterial clearance by stopping the lipid metabolism
of the infected host cell.

2.2.2. Adherent–Invasive Escherichia coli

Some microRNAs are also relevant in the Adherent–Invasive Escherichia coli (AIEC)
colonisation of intestinal mucosa in Crohn’s disease patients [74]. In this context, exosomes
carrying miR-30c and miR-130a are released into non-infected cells to silence the expression
of ATG5 and ATG16L1. The resulting inhibition of the autophagic flux facilitates the
intracellular replication of AIEC [29].

2.2.3. Legionella pneumophila

Interestingly, Legionella pneumophila may control the expression of 85 different miRNAs
during infection. In particular, the upregulation of three miRNAs (miR-125b, miR-221,
and miR-579) in a cooperative manner leads to the downregulation of the RNA recep-
tor DDX58/RIG-I, the tumour suppressor TP53, the antibacterial LGALS8 and the MX
dynamin-like GTPase 1 (MX1), which altogether enhance the intracellular replication of
the pathogen [36]. The repressive effects of miR-125b and miR-221 on MX1 and miR-579
on LGALS8 are particularly significant. These genes form a newly discovered cellular
immune response pathway against L. pneumophila whose overexpression results in bacterial
clearance [36].

2.2.4. Chlamydia trachomatis

C. trachomatis maintains mitochondrial ATP production during infection through the
upregulation of miR-30c-5p. This miRNA downregulates p53, which in turn leads to the
downregulation of Drp1, a mitochondrial fission regulator [31]. Many other intracellular
pathogens have very tight interactions with mitochondria during host cell infection, which
opens the way to interventions aimed at disrupting bacterial proliferation [75].

2.2.5. Shigella flexneri and Salmonella enterica Serovar Typhimurium

High-throughput screenings have quickly identified novel microRNAs involved in
other bacterial infections. One such study has uncovered three important miRNAs ex-
pressed during Shigella flexneri infection: miR-3668, miR-4732-5p and miR-6073. These miR-
NAs constrain the infection caused by S. flexneri by inhibiting the expression of N-WASP,
which in turn restricts bacterial actin-based motility, stops cell-to-cell spread, and attenu-
ates intracellular infection [13]. In contrast, the expression of miR-29b-2-5p promotes the
production of filopodia in host cells by targeting Unc-5 Netrin Receptor C (UNC5C), which
enhances bacterial uptake [76].

Despite the similarities between Shigella flexneri and Salmonella enterica serovar Ty-
phimurium, the control of the expression of specific miRNAs elicited by both pathogens
completely differs [13]. In particular, miR-let-7i-3p targets the host RGS2 protein and modu-
lates vacuolar trafficking during S. Typhimurium infection, inhibiting its pathogenesis [13].

In addition, the miR-15 family of miRNAs is very important in the pathogenesis of
S. Typhimurium, as they are downregulated during specific stages of the infection to allow
bacterial spreading [54]. In particular, the miR-15 family arrests the cell cycle of infected
cells through the inhibition of the transcription factor E2F1 and derepression of cyclin
D1 [54,77].

2.2.6. Burkholderia pseudomallei

It is also important to consider that the balance between pro-infection and anti-
infection miRNAs may be determinant in the fate of intracellular bacterial pathogens.
For example, Burkholderia pseudomallei downregulates the expression of miR-30b/30c,
which results in the upregulation of Rab32. This GTPase promotes the fusion between
phagosomes and lysosomes by releasing hydrolases that limit the intracellular growth of
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B. pseudomallei [30]. However, the expression of miR-3473 is triggered during B. pseudomallei
infection of macrophages, which is mediated by the overexpression of TNF receptor-
associated factor 3 (TRAF3) and subsequent TNF-α release, favouring bacterial replica-
tion [26].

2.2.7. Listeria monocytogenes

Listeriosis triggers the upregulation of miR-146a, and the silencing of this miRNA re-
duces the pathogen’s ability to colonise macrophages intracellularly [78]. At the same time,
miR-21 is also activated during infection and controls the polarisation of macrophages [79],
which eventually leads to a reduction in the intracellular survival of L. monocytogenes [37].
In contrast, miR-26a controls the infection of L. monocytogenes by targeting the Ephrin
receptor tyrosine kinase 2 (EphA2) to inhibit the internalization or the phagosomal escape
of the pathogen [38]. Intriguingly, EphA2 is also an invasion receptor for C. trachomatis or
S. aureus [80,81].

3. Novel Antimicrobial Treatments Based on miRNA-Based Technology

RNA-based technology is becoming a feasible strategy to control bacterial infec-
tions [82–86]. This new approach has been successfully tested against pulmonary tu-
berculosis by employing siRNAs targeting tfgb1 [87]. However, there are now many other
opportunities to develop antimicrobial strategies based on other small RNAs, such as many
of the miRNAs listed in the previous section.

In addition, the expression of anti-miRNAs targeting specific miRNAs that facilitate
bacterial infection may delay or disrupt the pathogen’s host colonisation. Anti-miRNAs
are artificially produced single-stranded RNAs that are complementary to target miRNAs
and block their functioning [82]. This strategy has been previously applied in the context of
viral infections [88,89]. For example, miravirsen is an anti-miRNA that targets miR-122, an
essential miRNA during hepatitis C virus (HCV) infection. Results from a phase II clinical
trial indicate that miravirsen can reduce the viral load in a dose-dependent manner [90,91].
The same strategy could be potentially applied to silence miRNAs that are essential for the
replication of bacterial intracellular pathogens.

However, there are some important challenges in the clinical application of miRNA
as anti-infectives. The most significant handicap of miRNA therapies is their off-target
effects. This could be due to miRNA interactions in a non-specific manner with partially
complementary mRNAs [10], leading to important side effects in the host [84].

Moreover, the delivery of miRNAs to infected cells could be complicated by the
presence of RNAses that can quickly degrade them. This could be partially solved by
improving the delivery method of microRNAs to reach specific targets at the cellular or even
subcellular levels. This problem has been approached from different perspectives, including
the use of nanoparticles, viral delivery systems, high-density lipoproteins, liposomes, or
exosomes [84,85], which can facilitate their delivery to host cells [92,93].

Currently, lipid nanoparticles are the leading non-viral delivery systems in the clinical
setting [94]. Liposomes are a group of lipid particles that are extensively used to guide
RNA-based therapies [95]. However, the main disadvantage of liposomes is the difficulty
in functionalising their lipid bilayer [96]. Thus, naturally produced extracellular vesicles
are now considered an exciting alternative to improve miRNA delivery (Figure 1).

In particular, exosomes are an up-and-coming solution since they are not toxic and
have low antigenicity because they are part of the natural intercellular communication path-
ways [97]. Exosomes are part of the vesicles generated within the endosomal system and
then secreted to the extracellular milieu with essential roles in cell-to-cell communication.
Exosomes may efficiently protect the miRNA molecules from degradation by nucleases.
Because of this, their use for the delivery of treatments based on nucleic acids is rapidly
increasing [98]. In addition, exosomes have advantages over other delivery strategies, such
as those based on adenoviruses that may be neutralised by antibodies [97].
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Similar to other RNA-delivery systems, exosomes must be modified to target infected
cells [31,75]. Cancer research has provided different molecular strategies to increase the
specificity of exosomal RNA delivery [99]. The main interactions between exosomes and
target cells are mainly based on tetraspanins, integrins, lipids, lectins, heparan sulphate
proteoglycans, and extracellular matrix elements [98].

Antibiotics 2022, 11, x FOR PEER REVIEW 9 of 15 
 

rapidly increasing [98]. In addition, exosomes have advantages over other delivery strat-

egies, such as those based on adenoviruses that may be neutralised by antibodies [97].  

 

Figure 1. Exosomal delivery of antimicrobial miRNAs to infected cells. Created with BioRender.com 

(Accessed on 01 February 2022). 

Similar to other RNA-delivery systems, exosomes must be modified to target infected 

cells [31,75]. Cancer research has provided different molecular strategies to increase the 

specificity of exosomal RNA delivery [99]. The main interactions between exosomes and 

target cells are mainly based on tetraspanins, integrins, lipids, lectins, heparan sulphate 

proteoglycans, and extracellular matrix elements [98].  

Interestingly, the isolation of exosomes naturally produced by specific cells increased 

their fusion with the same parental cells. Thus, isolating exosomes derived from tumour 

cells and loaded with anti-cancer drugs resulted in well-targeted drug delivery [99]. More-

over, changes in the transmembrane proteins present on the surface of exosomes result in 

a better adhesion to targeting cells [100]. In addition, the rationale design of exosomes 

with different membrane modifications also showed promising results in vitro and in vivo 

in cancer therapies [101]. The use of carbonate apatite or glycan polymers has improved 

the target cell selectivity by increasing the delivery from endosomes to the cytosol of target 

cells. Thus, the use of carbonate apatite increased the delivery into the liver, and poly-L-

lysine-lactose increased the uptake for hepatocytes [102].  

Similar approaches could be used to target bacterial-infected cells. However, the de-

velopment of exosomes as an efficient RNA-delivery system to treat bacterial infections is 

still in its early stages [103]. During bacterial infection, both the pathogen and eukaryotic 

cells can produce exosomes that stimulate the immune system or facilitate bacterial infec-

tion [104,105]. In addition, exosomes derived from cells primed with bacterial lipopoly-

saccharide (LPS) could target specific macrophage populations more efficiently and elicit 

their activation [106]. This strategy may increase the specificity of exosomal-delivery of 

small RNAs and lower the minimal inhibitory concentration of exosomes required to 

block host cell infection caused by intracellular pathogens [107–109]. Nonetheless, more 

research is needed to develop an efficient, scalable, easy to produce, stable and specific 

small RNA delivery system that could be used in the context of bacterial infection.  

Figure 1. Exosomal delivery of antimicrobial miRNAs to infected cells. Created with BioRender.com
(accessed on 1 February 2022).

Interestingly, the isolation of exosomes naturally produced by specific cells increased
their fusion with the same parental cells. Thus, isolating exosomes derived from tu-
mour cells and loaded with anti-cancer drugs resulted in well-targeted drug delivery [99].
Moreover, changes in the transmembrane proteins present on the surface of exosomes
result in a better adhesion to targeting cells [100]. In addition, the rationale design of
exosomes with different membrane modifications also showed promising results in vitro
and in vivo in cancer therapies [101]. The use of carbonate apatite or glycan polymers
has improved the target cell selectivity by increasing the delivery from endosomes to the
cytosol of target cells. Thus, the use of carbonate apatite increased the delivery into the
liver, and poly-L-lysine-lactose increased the uptake for hepatocytes [102].

Similar approaches could be used to target bacterial-infected cells. However, the
development of exosomes as an efficient RNA-delivery system to treat bacterial infec-
tions is still in its early stages [103]. During bacterial infection, both the pathogen and
eukaryotic cells can produce exosomes that stimulate the immune system or facilitate
bacterial infection [104,105]. In addition, exosomes derived from cells primed with bacterial
lipopolysaccharide (LPS) could target specific macrophage populations more efficiently and
elicit their activation [106]. This strategy may increase the specificity of exosomal-delivery
of small RNAs and lower the minimal inhibitory concentration of exosomes required to
block host cell infection caused by intracellular pathogens [107–109]. Nonetheless, more
research is needed to develop an efficient, scalable, easy to produce, stable and specific
small RNA delivery system that could be used in the context of bacterial infection.

4. Conclusions

Bacterial and viral infections cause millions of deaths, worldwide, each year. Moreover,
the increasing incidence of antimicrobial multidrug-resistant bacteria urgently requires
the development of alternative therapeutic strategies to classical antibiotherapy. Here, we
reviewed the importance of miRNAs during bacterial infections and new potential strate-
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gies to control diseases caused by these pathogens based on these small RNA molecules.
Altogether, the data reviewed here highlight the complexity of the interactions between
host miRNAs and bacterial pathogens and give a realistic perspective on the scientific
community’s insufficient knowledge about miRNAs as host-directed therapies. However,
this information also highlights the importance of some miRNAs in host cell immune
and antibacterial responses, which could be targeted for developing new antimicrobial
therapies. Despite being a very new technology that has hardly been used in the clinic,
miRNAs and artificial anti-miRNAs may have a promising future in human medicine.
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