
Citation: Angelova, V.T.; Pencheva,

T.; Vassilev, N.; K-Yovkova, E.;

Mihaylova, R.; Petrov, B.; Valcheva, V.

Development of New

Antimycobacterial Sulfonyl

Hydrazones and

4-Methyl-1,2,3-thiadiazole-Based

Hydrazone Derivatives. Antibiotics

2022, 11, 562. https://doi.org/

10.3390/antibiotics11050562

Academic Editor: Danila

V. Zimenkov

Received: 16 March 2022

Accepted: 19 April 2022

Published: 22 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antibiotics

Article

Development of New Antimycobacterial Sulfonyl Hydrazones
and 4-Methyl-1,2,3-thiadiazole-Based Hydrazone Derivatives
Violina T. Angelova 1,*, Tania Pencheva 2 , Nikolay Vassilev 3 , Elena K-Yovkova 4, Rositsa Mihaylova 5,
Boris Petrov 1 and Violeta Valcheva 6,*

1 Department of Chemistry, Faculty of Pharmacy, Medical University, 1431 Sofia, Bulgaria;
bobi.stoyanov@abv.bg

2 Department of QSAR and Molecular Modeling, Institute of Biophysics and Biomedical Engineering,
Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; tania.pencheva@biomed.bas.bg

3 Laboratory “Nuclear Magnetic Resonance”, Institute of Organic Chemistry with Centre of Phytochemistry,
Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; nikolay.vassilev@orgchm.bas.bg

4 Faculty of Computer Systems and Technologies, Technical University, 1756 Sofia, Bulgaria; epi_ka@abv.bg
5 Laboratory “Drug Metabolism and Drug Toxicity”, Department “Pharmacology, Pharmacotherapy and

Toxicology”, Faculty of Pharmacy, Medical University, 1431 Sofia, Bulgaria; rositsa.a.mihaylova@gmail.com
6 Laboratory of Molecular Biology of Mycobacteria, Department of Infectious Microbiology, The Stephan

Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
* Correspondence: violina_stoyanova@abv.bg or v.stoyanova@pharmfac.mu-sofia.bg (V.T.A.);

violeta_valcheva@mail.bg (V.V.)

Abstract: Fifteen 4-methyl-1,2,3-thiadiazole-based hydrazone derivatives 3a–d and sulfonyl hy-
drazones 5a–k were synthesized. They were characterized by 1H-NMR, 13C NMR, and HRMS.
Mycobacterium tuberculosis strain H37Rv was used to assess their antimycobacterial activity. All com-
pounds demonstrated significant minimum inhibitory concentrations (MIC) from 0.07 to 0.32 µM,
comparable to those of isoniazid. The cytotoxicity was evaluated using the standard MTT-dye re-
duction test against human embryonic kidney cells HEK-293T and mouse fibroblast cell line CCL-1.
4-Hydroxy-3-methoxyphenyl substituted 1,2,3-thiadiazole-based hydrazone derivative 3d demon-
strated the highest antimycobacterial activity (MIC = 0.0730 µM) and minimal associated cytotoxicity
against two normal cell lines (selectivity index SI = 3516, HEK-293, and SI = 2979, CCL-1). The
next in order were sulfonyl hydrazones 5g and 5k with MIC 0.0763 and 0.0716 µM, respectively,
which demonstrated comparable minimal cytotoxicity. All compounds were subjected to ADME/Tox
computational predictions, which showed that all compounds corresponded to Lipinski’s Ro5, and
none were at risk of toxicity. The suitable scores of molecular docking performed on two crystallo-
graphic structures of enoyl-ACP reductase (InhA) provide promising insight into possible interaction
with the InhA receptor. The 4-methyl-1,2,3-thiadiazole-based hydrazone derivatives and sulfonyl
hydrazones proved to be new classes of lead compounds having the potential of novel candidate
antituberculosis drugs.

Keywords: antimycobacterial activity; ADME/Tox predictions; cytotoxicity; hydrazide-hydrazone
derivatives; sulfonyl hydrazone derivatives; molecular docking

1. Introduction

Despite the significant progress in the development of new drugs and vaccines against
tuberculosis (TB), new treatment regimens and health control programs did not prevent
the spread of the disease. Multiple factors, such as the global economic crisis, human
migration, alcohol and drug addiction, and the spread of HIV infection, seriously impact
the TB incidence and lead to the emergence of Mycobacterium tuberculosis strains resistant to
the widely used anti-TB drugs [1–4]. In addition, the World Health Organization anticipates
that under the conditions of the COVID-19 pandemic, TB victims are exposed to higher
health risks [1,5,6]. The risks can be reduced by developing new anti-TB compounds that
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shorten treatment time and, at low therapeutic doses, have a specific effect on multidrug-
resistant strains. The search for new drug candidates with specific chemical, microbiological,
and pharmacological characteristics has become increasingly urgent.

Isoniazid (INH) remains important as the first-line anti-TB drug. INH is a prodrug,
and its activity depends on bioactivation by KatG to form an isonicotinoyl-NAD (INH-
NAD) adduct and subsequent inhibition of InhA [7]. InhA catalyzes the NADH-dependent
reduction in long-chain trans-2-enoyl-acyl carrier proteins (ACPs). The KatG activation
dependency of INH has been one of the main clinical weaknesses associated with INH
use due to KatG mutations leading to INH resistance [8]. Furthermore, Hegde et al. [7]
concluded that the observed SAR of INH largely reflects the restricted substrate specificity
for acyl-NAD adduct formation rather than the initial KatG oxidation and subsequent InhA
inhibition. Indeed, pyridomycin, or natural isoniazid, reported by Hartkoorn et al. [9],
is a natural product that also inhibits InhA and whose binding closely overlaps with the
INH-NAD adduct. Thus, identifying inhibitors that directly bind to InhA without the
requirement for activation by KatG (direct InhA inhibitors) may be a valid strategy to
overcome INH resistance [10]. For example, GSK-693 (Figure 1) is a novel direct reversible
InhA inhibitor of M. tuberculosis that binds to the active site and is currently being studied
as a potential substitute for isoniazid in current TB treatment regimens [11]. Researchers
from GlaxoSmithKline plc. (GSK), under the TB Alliance sponsorship, carried out a screen
against InhA using the GSK compound collection and identified the thiadiazole series as
the most promising antitubercular drug family [12].
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rial agents such as isoniazid [21], ciprofloxacin [22], and pyrazinamide [23] is a rational 
and frequently used approach to obtain novel anti-TB molecules with reduced toxicity. In 
our previous work, we performed M. tuberculosis H37Rv growth inhibition assays of a 
series of hydrazone-containing melatonin analogs. 2,3-Thiadiazole-containing hydrazone 
with a p-methoxyindol scaffold had excellent antimycobacterial activity against the refer-
ence strain M. tuberculosis H37Rv (MIC value 0.39 µM), low cytotoxicity, and no toxic ef-
fects when administered by oral or intraperitoneal routes to experimental animals (selec-
tivity index SI > 1979, LD50 > 2000 mg/kg b.w.), which revealed its suitability for further 
exploration. As a result, unlike INH, the compound did not affect the urine and serum 
hematological and biochemical parameters compared to the control mice. The new com-
pound did not significantly influence the MDA quantity and maintained its level near the 
control values compared with the INH-treated animals. At the higher doses, 200 and 400 
mg/kg, its level remained 47% higher than that in the INH-treated animals. Encouraged 

Figure 1. The chemical structure of GSK-693-novel direct Mtb InhA inhibitor.

On the other hand, many hydrazide-hydrazone derivatives with antimycobacterial
activity have been developed [11,13–17]. The replacement of the isonicotinic acid with a
variety of substituted aromatic fragments exhibits a higher minimal inhibitory concentration
(MIC) of the new derivatives against M. tuberculosis H37Rv. The hydrazones were shown
to be three to four times more potent than INH [14,18–20]. Introducing the hydrazone
moiety to the structure of new drug candidates as well as marketed antimycobacterial
agents such as isoniazid [21], ciprofloxacin [22], and pyrazinamide [23] is a rational and
frequently used approach to obtain novel anti-TB molecules with reduced toxicity. In our
previous work, we performed M. tuberculosis H37Rv growth inhibition assays of a series
of hydrazone-containing melatonin analogs. 2,3-Thiadiazole-containing hydrazone with
a p-methoxyindol scaffold had excellent antimycobacterial activity against the reference
strain M. tuberculosis H37Rv (MIC value 0.39µM), low cytotoxicity, and no toxic effects when
administered by oral or intraperitoneal routes to experimental animals (selectivity index
SI > 1979, LD50 > 2000 mg/kg b.w.), which revealed its suitability for further exploration.
As a result, unlike INH, the compound did not affect the urine and serum hematological
and biochemical parameters compared to the control mice. The new compound did not
significantly influence the MDA quantity and maintained its level near the control values
compared with the INH-treated animals. At the higher doses, 200 and 400 mg/kg, its level
remained 47% higher than that in the INH-treated animals. Encouraged by our previous
experience and literature data about thiadiazole derivatives [24], we carried out further
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experiments to develop novel hydrazone derivatives with a 4-methyl-1,2,3-thiadiazole
substituent as potential antitubercular agents with improved drug properties.

Alternatively, N-arylsulfonyl hydrazone derivatives were developed as antimycobac-
terial agents [15,25–27] to overcome the resistance mechanisms generated by some bacterial
species [28,29]. Sulphonyl hydrazones are considered to be a promising scaffold for anti-
tubercular drug discovery, which prompts further studies on their mechanism of action
to completely validate InhA as the main molecular target. Additionally, the sulfonyl
hydrazones were chosen because of their antimicrobial [27,28,30–36], anticancer [37–46],
antiviral [47], and antifungal [48–51] properties, and inhibition of metabolic enzymes,
in particular, carbonic anhydrase (CA) isoenzymes [52]. Besides sulfonyl, hydrazones
have antidepressant properties [53,54], insecticidal activity [55,56], α-glycosidase, and
acetylcholinesterase inhibitory properties [45,57–59], and the ability to inhibit some other
enzymes [60–62].

These investigations encouraged us to develop new compounds containing hydra-
zones with a 4-methyl-1,2,3-thiadiazole scaffold and N-substituted sulfonyl hydrazones.
For this purpose, tests on the antimycobacterial activity, cytotoxicity, and in silico ADME
properties of these compounds were performed combined with a molecular docking study
to determine the mechanism of action.

2. Results
2.1. Chemistry

The addition of protecting groups to the terminal nitrogen of the molecule by the
formation of hydrazide-hydrazones is a widely studied strategy for lessening the limita-
tions of INH. In this way, it is possible to avoid reactions at this site and, consequently, the
inactivation and generation of toxic metabolites. Hydrazones 3a–d were prepared by the
condensation reaction of a 4-methyl-1,2,3-thiadiazole-5-carbohydrazide 1 and aldehydes
2a–d, at a molar ratio of 1:1, in abs. ethanol for 1–2 h. The exploited synthetic strategy to
develop the target derivatives is presented in Scheme 1. Among the newly synthesized
compounds, compound 3a was reported previously [19]. The 1H-NMR spectra of com-
pounds 3b–d showed single signals corresponding to resonances of azomethine protons
(CH=N) at 8.08–8.38 ppm. The hydrazide/hydrazone N/H protons were observed at
11.73–12.25 ppm. The 13C-NMR spectra of 5a–g exhibited resonances arising from azome-
thine (C=N) at 143.04 to 146.16 and hydrazide/hydrazone (C=O) carbons at 162.57–163.19,
respectively. The following NMR experiments: 2D COSY, DEPT-135, 2D NOESY, 2D HSQC
and 2D HMBC, were used for the precise structure elucidation of all new compounds (see
Supplementary data). Sulfonyl hydrazones 5a–k were synthesized by procedures similar to
those shown in Scheme 1. Subsequently, we investigated the use of an acid catalyst. Treating
the reaction mixture with a catalytic amount of p-toluenesulfonic acid (PTSA; 10 mol%) in
refluxing ethanol afforded a suitable yield of the corresponding sulfonyl hydrazones after
half the reaction time. Surprisingly, this reaction condition provided the desired product
in almost quantitative yields. The structures of all compounds were confirmed by 1H
NMR, 13C NMR, and HRMS spectroscopic data. The 1H-NMR spectra of 5a–k had single
signals corresponding to resonances of azomethine protons (CH=N) at 8.08–8.38 ppm. The
hydrazide/hydrazone N/H protons were observed at 10.93–12.01 ppm. The 13C-NMR
spectra of 5a–k exhibited resonances arising from azomethine (C=N) at 144.62 to 149.48,
respectively (see Supplementary Materials).
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2.2. M. Tuberculosis Growth Inhibition and Cytotoxic Activity of Novel Compounds against
Normal Cell Lines

Among the 15 compounds synthesized, 3d, 5g, and 5k were found to be the most
active compounds at MIC less than 0.1 µM and were similarly active as INH against
M. tuberculosis H37Rv (Table 1). Two different series of compounds were compared: hydra-
zone derivatives with 4-methyl-1,2,3-thiadiazole fragment 3a–d and sulfonyl hydrazones
5a–k. Improved activity with MICs in the micro- to submicromolar concentration range was
observed by varying the substituents in sulfonyl hydrazone derivatives 5a–k. Concerning
the first family of hydrazones, compound 3d with a 4-methyl-1,2,3-thiadiazole heterocyclic
fragment and a 4-hydroxy-3-methoxy-substituted phenyl ring exhibited the highest activity.
Noteworthy introduction of a sulfonyl hydrazone fragment in the second series and the lack
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of a thiadiazole ring, despite one of the 4-hydroxy-3-methoxy-substituted benzene rings
in compound 5h, resulted in lower MIC values. Again, compound 5c bearing a sulfonyl
hydrazone fragment exhibited a two-fold higher MIC than compound 3c, which was a
hydrazone derivative with a thiadiazole ring. As seen, two compounds of the first family, 3c
and 3d, showed the best inhibitory activity, compared to the compounds in both series, and
MIC below 0.08 µM. The other two compounds, 3a and 3b, showed an opposite tendency
compared to the compounds from the second series, 5a and 5b (MIC < 0.4 µM). These
results proved that replacing the hydrazone group with sulfonyl hydrazone functionality
was not always a perspective modification to obtain more active antitubercular agents.
Despite this fact, the sulfonyl hydrazone derivative prepared from cinnamic aldehyde 5k
had the best activity (MIC = 0.07 µM) among the second family 5a–k, commensurate with
3d (MIC = 0.07 µM) from the first family. To assess the safety profile of the compounds, we
used Mosmann’s MTT assay to evaluate their cytotoxicity against two normal cell lines,
HEK-293 (human embryonic kidney 293 cells) and CCL-1 (mouse fibroblast cell line). The
results of the study (calculated IC50 values) are presented in Table 1. The compound with
the most potent antimycobacterial activity (MIC of 0.07 µM) 3d demonstrated negligible
cytotoxicity to the non-malignant human embryonic kidney cells HEK-29 and mouse fibrob-
last cells CCL-1 (corresponding IC50 values of 256.7 and 217.5 µM, respectively), in vitro test
systems commonly used for verifying biocompatibility. We also calculated the selectivity
indices (SI) as the ratio of IC50 to MIC, and values higher than 10 were indicative of accept-
able toxicity. Table 1 reports SI values higher than 10 for all tested compounds. Compounds
3b–d, 5g, and 5k demonstrated the most prominent biocompatibility and selectivity for
the tubercular bacilli with SIs > 1000. The most potent compound, 3d, demonstrated very
low toxicity against the non-malignant human embryonic kidney cells HEK-29 and mouse
fibroblast cells CCL-1 and high selectivity index values (SI = 3516 and 2979, respectively
for both screened cell lines), followed by 3c (SI = 2242 and SI = 4093) and 5k (SI = 3380 and
SI = 2216, respectively), indicating that they are selective for M. tuberculosis infection.

Table 1. Antimycobacterial activity of hydrazones with a 4-methyl-1,2,3-thiadiazole scaffold (3a–d)
and N-substituted sulfonyl hydrazones (5a–k) and cytotoxicity of the tested substances in HEK-293
(human embryonic kidney 293) cells and CCL-1 mouse fibroblast cell line.

Compd. Formula MIC a

(µM)
IC50 (µM) b

CCL-1
IC50 (µM) c

HEK-293
SI d

CCL-1
SI d

HEK-293

3a
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N

ON

O

O

 

0.2027 2.9 ± 0.3 16.2 ± 2.7 14 82 

5c 

S
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N
ON
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0.3434 321.4 ± 16.2 32.3 ± 1.5 945 95 
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S

NH
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ON
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0.1647 5.1 ± 1.1 15.6 ± 4.1 31 95 

5f S
NH

N
O

ONO2

 

0.3053 72.4 ± 5.8 100.1 ± 2.1 237 327 

5g S
NH

N
O

O

O2N  

0.0763 191 ± 13.2 138.3 ± 7.4 1812  1819 

0.0730 256.7 ± 13.3 217.5 ± 17.2 3516 2979
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A comparison of 3d with the previously mentioned similar scaffold, a compound with
a 4-methyl-1,2,3-thiadiazole moiety and a 5-metoxindole scaffold [20] (which activity is
two-fold more potent than isoniazid and four-fold higher than ethambutol) revealed the
importance of the 1,2,3-thiadiazole moiety in the connecting side chain for future research
in the development of novel antitubercular agents. Additionally, the oral administration of
the compound with a 4-methyl-1,2,3-thiadiazole moiety and 5-metoxindole scaffold [63],
at the highest dose of 2000 mg/kg b.w. resulted in no mortalities or evidence of adverse
effects, implying that the compound is non-toxic. Thus, comparable to isoniazid, the
4-methyl-1,2,3-thiadiazole-based hydrazone derivatives 3b–d and 5k, which are small,
non-toxic synthetic molecules, can be readily prepared and are excellent drug candidates.

2.3. ADME/Tox Screening Results

The newly synthesized compounds were subjected to an in silico ADME screening
study. The specific properties were compared to the available drugs used for treating TB
(Table 2), namely, molecular weight (MW), topological polar surface area (TPSA), hydrogen
bond acceptors (HBA), hydrogen bond donors (HBD), Moriguchi’s LogP (MLogP), and
water solubility.

Table 2. Chemical properties of the compounds.

Scheme MW 1 (g/mol) TPSA 2 (Å2) HBA 3 HBD 4 Rotatable
Bonds

Moriguchi’s
LogP

Water
Solubility

3a 348.76430 125.69 6 1 4 1.37 Poorly soluble
3b 329.37890 109.64 5 1 5 0.67 Moderately soluble
3c 391.44628 120.50 5 2 7 1.64 Moderately soluble
3d 292.31368 124.94 6 2 5 0.03 Soluble
5a 362.78754 97.12 5 1 4 2.15 Poorly soluble
5b 343.40018 81.07 4 1 5 1.44 Moderately soluble
5c 405.46950 91.93 4 2 7 2.37 Poorly soluble
5d 333.79268 82.70 3 2 4 2.01 Poorly soluble
5e 329.37360 91.93 4 2 5 1.20 Moderately soluble
5f 305.30914 112.73 5 1 5 1.86 Moderately soluble
5g 305.30914 112.73 5 1 5 1.86 Moderately soluble
5h 306.33696 96.37 5 2 5 1.23 Moderately soluble
5i 294.75664 66.91 3 1 4 2.61 Moderately soluble
5j 320.36354 85.37 5 1 6 1.49 Moderately soluble
5k 286.34886 66.91 3 1 5 2.52 Moderately soluble

INH 137.14 68.01 3 2 2 −0.47 Soluble
EMB 204.31 64.52 4 4 9 0.18 Soluble

1 Molecular weight; 2 topological polar surface area (TPSA); 3 hydrogen bond acceptors; 4 hydrogen bond donors.
INH, isoniazid; EMB, ethambutol.

All synthesized compounds had molecular weights in the qualifying range between
160 and 480 g/mol. The higher MW corresponded to poor bioavailability, poor fraction
absorption, and higher bond fraction [64]. The TPSA values between 67 and 125 Å2

indicated suitable absorption through the cell membrane. Most of the compounds appeared
to be moderately soluble except the compounds with coumarin scaffold 3a and 5a, as well
as 5-substituted indole derivatives 5c and 5d that showed poor solubility in water. It is
worth noting that the most active compound, 3d, was predicted to have aqueous solubility
similar to ethambutol and isoniazid. The lipophilicity (LogP) value is a key property for
predicting the oral liability of drug molecules. A drug targeting the central nervous system
(CNS) should have a LogP value of approximately 2; for oral and intestinal absorption, the
ideal value is 1.35–1.8, while a drug intended for sub-lingual absorption should have a
logP value > 5. Thus, the range of LogP from 0 to 5 is acceptable for an effective drug. In
this study, the compounds’ values ranged from 0.03 to 2.61, which is the adequate limit
for a drug to penetrate the bio-membrane. The 3a–d compounds have lower lipophilicity
than 5a–d, where the hydrazone fragment was replaced with the sulfonyl hydrazone
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fragment. The most active compound, 3d, with a predicted LogP of 0.03, demonstrated
characteristics similar to isoniazid and ethambutol (LogP −0.47, LogP 0.18, respectively).
According to Moriguchi et al. [65], all other compounds have higher lipophilicity. We
support the idea [66] that lipophilic compounds can easily penetrate through the cell
wall of M. tuberculosis; thus, lipophilic molecules have great therapeutic value as future
antitubercular agents. Cinnamaldehyde sulfonyl hydrazone derivative 5k showed LogP
values of 2.52 (Table 2) and activity similar to that of vanillin aldehyde hydrazone derivative
3d (Table 1).

The drug-likeness was evaluated using Lipinski’s “Rule of Five”, Ghose fitter, and
Veber’s constraints [67], and our synthesized compounds were shown to have a suitable
ADMET profile to be considered oral drug candidates (Table 3). According to the pharma-
cokinetic properties (Table 3), all compounds showed high gastrointestinal absorption, most
of them had no BBB permeability (except 5i and 5k), and only 5f and 5g were predicted to
be P-gp substrates. The inhibition of the cytochrome P450 (CYP) family enzyme isoforms
could lead to unwanted effects or a higher risk of hepatotoxicity [67–71]. In order to avoid
such a situation, the synthesized compounds were computationally evaluated according
to the inhibition of several CYP450 isoforms: CYP1A2, CYP2C19, CYP2C9, CYP2D6, and
CYP3A4. The in silico molecular screening revealed that two of the compounds, 3d and 5h,
were predicted to be non-inhibitors of the CYP450 isoforms, 5a could inhibit only CYP2C19,
5f, and 5g were predicted to be inhibitors only of CYP1A2. The other compounds were
predicted to exhibit inhibition properties over two or more of the enzyme isoforms.

Table 3. Pharmacokinetics and drug-likeness prediction.
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3a high no no yes yes no no no −6.56 yes yes yes 0.55
3b high no no yes yes yes no yes −6.80 yes yes yes 0.55
3c high no no yes yes yes no yes −6.08 yes yes yes 0.55
3d high no no no no no no no −6.88 yes yes yes 0.55
5a high no no no yes no no no −6.34 yes yes yes 0.55
5b high no no no yes yes no yes −6.57 yes yes yes 0.55
5c high no no yes yes yes yes yes −5.86 yes yes yes 0.55
5d high no no yes yes yes no yes −6.01 yes yes yes 0.55
5e high no no yes yes yes no no −6.45 yes yes yes 0.55
5f high no yes yes no no no no −6.49 yes yes yes 0.55
5g high no yes yes no no no no −6.49 yes yes yes 0.55
5h high no no no no no no no −6.67 yes yes yes 0.55
5i high yes no yes yes yes no no −5.86 yes yes yes 0.55
5j high no no yes yes yes no no −6.51 yes yes yes 0.55
5k high yes no yes yes yes no no −5.95 yes yes yes 0.55

INH high no no no no no no no −7.63 yes no:3
viol. yes 0.55

EMB high no no no no no no no −7.60 yes yes yes 0.55

INH, isoniazid; EMB, ethambutol.

Then, the toxic potential of the new compounds due to their chemical structure was
predicted by the web service ProTox-II assessment (https://tox-new.charite.de/protox_II,
accessed on 21 April 2022). The evaluation scheme included classification into several
levels/classes of toxicity [72] for each of the following endpoints: oral toxicity (acute rodent
toxicity), organ toxicity (hepatotoxicity), and toxicological endpoints (such as carcinotoxic-
ity, immunotoxicity, mutagenicity, and cytotoxicity). The classification was based on the

https://tox-new.charite.de/protox_II
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predicted LD50 value, given in mg/kg, according to the globally harmonized system of
classification of labeling the chemicals (GHS). As shown in Table 4, most of the components
belonged to class IV (300 < LD50 ≤ 2000), two (3c, 3d) were predicted in class V (2000
< LD50 ≤ 5000) and the other two (3a, 5k) were predicted in class III (50 < LD50 ≤ 300).
According to some studies, INH was confirmed to be in class III, and EMB was confirmed
to be in class IV. All of the new components from classes V and IV were taken into consid-
eration in our studies. In addition, the balanced probability of the predicted toxicities was
estimated at a certain confidence rate for each of the endpoints. The results are summarized
in Table 4, where the compounds were classified into two classes: active and inactive, with
the corresponding probability value. Probability values above 70% were taken into serious
consideration for both active (A) and inactive (I) cases.

Table 4. In silico toxicity prediction.
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Pr Prob Pr Prob Pr Prob Pr Prob Pr Prob

1 3a III 187 A 0.61 I 0.55 I 0.97 A 0.52 I 0.69
2 3b IV 1120 A 0.51 I 0.56 A 0.78 A 0.54 I 0.67
3 3c V 4920 A 0.63 I 0.52 I 0.82 A 0.55 I 0.65
4 3d V 4920 A 0.60 A 0.56 I 0.55 A 0.56 I 0.64
5 5a IV 500 I 0.53 I 0.60 I 0.99 I 0.68 I 0.71
7 5b IV 500 I 0.50 I 0.51 I 0.92 I 0.50 I 0.72
8 5c IV 500 I 0.50 I 0.53 I 0.99 I 0.55 I 0.78
9 5d IV 500 I 0.55 I 0.58 I 0.99 I 0.68 I 0.77
10 5e IV 500 I 0.50 I 0.50 I 0.94 I 0.53 I 0.81
11 5f IV 500 I 0.50 A 0.51 I 0.99 I 0.55 I 0.79
12 5g IV 500 A 0.52 A 0.57 I 0.99 I 0.63 I 0.73
13 5h IV 500 I 0.53 A 0.55 I 0.95 I 0.59 I 0.87
14 5i IV 500 I 0.63 I 0.60 I 0.99 I 0.66 I 0.70
15 5j IV 500 I 0.51 A 0.54 I 0.99 I 0.55 I 0.88
16 5k III 283 I 0.59 A 0.51 I 0.99 I 0.59 I 0.69

INH III 133 A 0.94 A 0.98 I 0.99 I 0.63 I 0.81
EMB IV 998 A 0.63 I 0.56 I 0.99 I 0.95 I 0.72

Class I: death after swallowing (LD50 ≤ 5); Class II: death after swallowing (5 < LD50 ≤ 50); Class III: toxic after
swallowing (50 < LD50 ≤ 300); Class IV: harmful after swallowing (300 < LD50 ≤ 2000); Class V: may be harmful
after swallowing (2000 < LD50 ≤ 5000) and Class VI: non-toxic (LD50 > 5000) [72]; Pr—predicted: A—active;
I—inactive.

The hepatotoxicity simulation tests revealed that all compounds from group 5a–k were
predicted to be non-hepatotoxic or hepatotoxic inactive, but only 5g showed hepatotoxic
activity with a low probability score of 0.52. Surprisingly, the components from groups
3a–d were predicted to be hepatotoxic active but with lower probability values of 0.61, 0.51,
0.63, and 0.60, respectively. Nevertheless, these values remained lower or comparable to the
corresponding probabilities of EMB and INH. The prediction tests of some genotoxicity end-
points-immunotoxicity and cytotoxicity determined all of the components to be both non-
immunotoxic and non-cytotoxic with high levels of probability. Only 3b was predicted to
be immunotoxicity active with a relatively high probability value (0.78). The carcinotoxicity
prediction study demonstrated that most of the compounds were inactive (3a–c, 5a–e, 5i),
and the rest were active at low probability rates. The simulations at the mutagenicity
endpoint showed different behavior: compounds 3a–d were predicted to be mutagenically
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active at a low probability-0.52, 0.54, 0.55, and 0.56, respectively, while other compounds
were revealed to be mutagenically inactive.

2.4. Molecular Docking

Docking simulations were carried out in Molecular Operating Environment (MOE, https:
//www.chemcomp.com/MOE-Molecular_Operating_Environment.htm, version 2016.08, ac-
cessed on 18 April 2022) with the following two X-ray crystallographic structures of
M. tuberculosis enoyl reductase (InhA):

(1) The crystal structure of M. tuberculosis InhA complexed with
5-hexyl-2-(2-methylphenoxy)phenol (TCU) with the co-factor nicotinamide adenine
dinucleotide (NAD+) was extracted from the Protein Data Bank (http://www.rcsb.
org/ (accessed on 20 April 2022), PDB ID 2X22);

(2) The crystal structure of M. tuberculosis InhA complexed with (3S)-1-cyclohexyl-N-(3,5-
dichlorophenyl)-5-oxopyrrolidine-3-carboxamide (ligand ID 641, further denoted as
641), also with a co-factor NAD+, extracted from PDB (PDB ID 4TZK).

Dogan et al. [73] have reported some promising results when investigating hydrazone-
containing thiadiazoles as InhA inhibitors, which makes the crystal structure 4TZK the first
choice for molecular docking studies of the compounds considered here. Their interest in
the crystal structure 2X22 has been provoked by the results reported by Menendez et al. [74].

Table 5 lists the docking scores for the synthesized compounds in both structures 2X22
and 4TZK. The obtained docking scores of all the compounds in both enzyme structures
were found to be satisfactory, in the range of −12.36 to −10.02 in 2X22 (Column 2X22,
E-score 1 in Table 5) and from −14.67 to −11.10 in 4TZK (Column 4TZK, E-score 1 in
Table 5). The results presented in Table 5 show that the two most active compounds (lowest
MIC), namely, 5k and 3d appeared as the two top-ranked compounds after docking in
2X22. The third most active compound, 5g, reached the fourth-best rank after docking in
2X22, while 5e showed the third-best rank. The docking scores were found to be −12.36
(5k), −12.19 (3d), −12.03 (5e), and −11.98 (5g) (Table 5). The docking procedure in 4TZK
distinguished 5e as the top-ranked compound, with a docking score of −14.67, followed
by 5k (with a docking score of −12.83) and 5g (with a docking score of −12.80), with both
being the most active and the third most active compounds. The second active compound,
3d, achieved a docking score of −12.38, placing it at the sixth position in the docking
ranking. In both enzyme structures, the reference compound isoniazid recorded the worst
results, with docking scores of −9.18 in 2X22 and −8.51 in 4TZK.

Table 5. Docking results for compounds 3a–d and 5a–k.

Compound 2X22
E_Score1 * (kcal/mol)

4TZK
E_Score1 * (kcal/mol)

3a −10.93 (13) −11.56 (14)
3b −10.02 (15) −11.10 (15)
3c −11.09 (9) −11.62 (13)
3d −12.19 (2) −12.38 (6)
5a −11.06 (10) −12.15 (9)
5b −10.99 (12) −12.30 (7)
5c −10.73 (14) −12.66 (4)
5d −11.60 (5) −12.19 (8)
5e −12.03 (3) −14.67 (1)
5f −11.29 (7) −11.88 (10)
5g −11.98 (4) −12.80 (3)
5h −11.43 (6) −12.49 (5)
5i −11.18 (8) −11.87 (11)
5j −11.06 (11) −11.75 (12)
5k −12.36 (1) −12.83 (2)

INH −9.18 (16) −8.51 (16)
* E_score1—the energy score from rescoring stage 1, in kcal/mol.

https://www.chemcomp.com/MOE-Molecular_Operating_Environment.htm
https://www.chemcomp.com/MOE-Molecular_Operating_Environment.htm
http://www.rcsb.org/
http://www.rcsb.org/
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The protein–ligand interactions (PLI) diagrams of the co-crystalized ligands of
M. tuberculosis InhA in the ligand-binding domains of both receptors, 2X22 and 4TZK,
were obtained using the “Ligand Interactions” tool of MOE at the maximum distance of
4.5 Å between the heavy atoms of the ligands and receptors. Figure 2 presents the PLI of
the ligands of both receptors for TCU (2X22, Figure 2A) and 641 (4TZK, Figure 2B).
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Figure 2. Interaction diagrams of the ligand-binding domains of M. tuberculosis InhA with:
(A) 5-hexyl-2-(2-methylphenoxy)phenol (TCU) (PDB ID 2X22) and (B) (3s)-1-cyclohexyl-N-(3,5-
dichlorophenyl)-5-oxopyrrolidine-3-carboxamide (641) (PDB ID 4TZK).

Docking studies performed on isoniazid derivatives demonstrated that the hydro-
gen bond interactions with Tyr158 and Ile194 were critical for binding InhA, which is in
agreement with previous results on Ser94, Gly96, Lys165, and Ile194 [15,72,75–77].

Phe149, Tyr158, and Met161 were involved in protein–ligand interactions, forming
arene-H interactions (Phe149 and Met161), and H-bond (Tyr158). Residues Gly96, pro193,
Ala198, Met199, val201, and Leu218 were at receptor exposure, very close to the ligand,
but still not at the binding distance (Figure 2A). Only Tyr158 was involved in protein–
ligand interactions, forming H-bond. Residues Gly96, Met103, Phe149, Met199, Ile215, and
Leu218 are at receptor exposure, very close to the ligand, but still not at a binding distance
(Figure 2B).

Figure 3 presents the PLI diagrams of the most active compounds 5k and 3d, which
were the top-scored compounds after docking in the receptor 2X22.
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Figure 3A (with a legend equal to that presented in Figure 2) shows that the most
active and the top-scored compound 5k demonstrated the reproduction of two out of three
interactions as presented in Figure 2A, namely with Tyr158 and Met161, while the second
active and second top-scored compound 3d did not repeat the specific interaction with
Tyr158, but produced two newly appeared interactions with Met155 (H-bond) and Val203
(arene-H interaction).

Figure 4 presents the PLI diagrams of the top-scored compounds after docking in the
receptor 4TZK, namely, 5e and 5k, and one of the most active compounds, 3d.
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The top-scored compound 5e demonstrated only one newly appeared interaction with
Phe97 (arene-H interaction) (Figure 4A). Most of the mentioned important residues were
still very close but did not exhibit any strong interaction. The second-ranked and one of
the most active compounds, 5k, presented in Figure 4B, also demonstrated only one newly
appeared interaction with Phe97 (arene-H interaction). As in the case of compound 5e,
most of the mentioned important residues were still very close. Noticeably, the catalytic
residue Tyr158 did not form any H-bonds with the inhibitor. Thus, 5e and 5k turned out to
be representative of a class of inhibitors with no need for a conserved network of interaction
with Tyr158 for potency. One of the most active compounds, 3d (Figure 4C), repeated the
PLI interaction with Tyr158, as shown in Figure 2B, demonstrating a new interaction with
Ile 215 (both arene-H interactions). We suggest that the main differences in the binding
mode rely on the hydrophobicity of the two series compounds-hydrazone derivatives with
4-methyl-1,2,3-thiadiazole fragment 3a–d and sulfonyl hydrazones 5a–k.

All synthesized compounds, docked in the ligand-binding domains of M. tuberculosis
InhA, are presented in Figure 5 in the receptor 2X22 (Figure 5A) and the receptor 4TZK
(Figure 5B) with a Connolly surface. All synthesized compounds occupied the same binding
site as the respective ligands, forming clusters that fit well in the ligand-binding domain of
M. tuberculosis InhA.
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Figure 5. Docking conformations of all synthesized compounds (in green), the ligands TCU (A) (in
magenta) and 641 (B) (in magenta), and the corresponding Connolly surface.

Figure 6 presents a closer view of the interactions of one of the most active compounds
3d in the ligand-binding domain of M. tuberculosis InhA (4TZK), demonstrating the noticed
scores above PLI with Tyr158, as well as the H-bond with NAD+.
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The interactions of 3d (in green) in the ligand-binding domains of M. tuberculosis InhA
(4TZK) with NAD+ (in gray) and Tyr158 (in orange) presented in Figure 6 support the
hypothesis that 3d might be considered an inhibitor binding directly to InhA without the
requirement for activation by KatG. Taken together, our data suggest that 3d potentially
targets InhA and that its mechanism of action is independent of KatG activation. The direct
mode of binding to InhA and circumventing the main isoniazid resistance mechanisms
would lead these compounds to be active against MDR-TB clinical isolates. The further
planned investigations on the in vitro inhibition of InhA will shed light on whether the
sulfonyl hydrazones and 4-methyl-1,2,3-thiadiazole-containing hydrazone derivatives bind
InhA and would help to understand the protein-compound molecular interactions in vivo.

3. Materials and Methods
3.1. Chemistry

The melting points were determined using a Buchi 535 apparatus and melting point
meter M5000 apparatus. All nuclear magnetic resonance (NMR) experiments were car-
ried out on a Bruker Avance spectrometer 600 MHz at 20 ◦C in deuterated dimethyl
sulfoxide (DMSO-d6) as a solvent and tetramethylsilane (TMS) as the internal standard.
The precise assignment of the 1H and 13C NMR spectra was accomplished by measure-
ment of two-dimensional (2D) homonuclear correlation (correlation spectroscopy (COSY)),
DEPT-135, and 2D inverse-detected heteronuclear (C-H) correlations (heteronuclear single-
quantum correlation spectroscopy (HMQC) and heteronuclear multiple bond correlation
spectroscopy (HMBC)). Mass spectra were measured on a Q Exactive Plus mass spectrom-
eter (ThermoFisher Scientific) equipped with a heated electrospray ionization (HESI-II)
probe (Thermo Scientific). All chemicals used for the synthesis were commercial products
and used without further purification.

3.1.1. General Procedure for the Synthesis of 3a–d

To a solution of 4-methyl-1,2,3-thiadiazole-5-carbohydrazide 1 (2.0 mmol) in absolute
(abs.) ethanol, a stirred solution of appropriate carbaldehydes 2a–d (2.0 mmol) in abs.
ethanol was added. The solution was refluxed for 1–3 h. The solid product formed was
collected by filtration and recrystallized with ethanol.

N’-[(E)-(4-chloro-2-oxo-2H-1-benzopyran-3-yl)methylidene]-4-methyl-1,2,3-thiadiazole-5-carbohydrazide,
3a [19] Yield: 77%; m.p. 252–253 ◦C. HRMS (ESI) m/z: calcd: [M+H]+ 337.165902. Found:
[M+H]+ 337.16517.

N’-[(E)-(5-methoxy-1-methyl-1H-indol-3-yl)methylidene]-4-methyl-1,2,3-thiadiazole-5-carbohydrazide,
3b Yellow solid. Yield: 77%; m.p. 191–192 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 11.98 (s, 1H,
NH), 8.35 (s, 1H, CH=N), 7.90 (s, 1H, H-2), 7.67 (d, J = 2.4 Hz, 1H, H-4), 7.45 (d, J = 8.9 Hz,
1H, H-7), 6.93 (dd, J = 2.4, 8.9 Hz, 1H, H-6), 3.83 (s, 3H, OCH3), 3.82 (s, 3H, NCH3), 2.96
(s, 3H, CH3). 13C NMR (151 MHz, DMSO-d6) δ 162.63 (C=O), 158.95 (C-4′), 155.03 (C-5),
143.04 (CH=N), 136.41 (C-5′), 135.94 (C-2), 132.67 (C-7a), 124.53 (C-3a), 112.97 (C-6), 111.64
(C-7), 109.22 (C-3), 102.31 (C-4), 55.45 (OCH3), 33.14 (NCH3), 14.83 (CH3). HRMS (ESI) m/z:
calcd: [M+H]+ 330.10192. Found: [M+H]+ 330.1009.

N’-((E)-[5-(benzyloxy)-1H-indol-3-yl]methylidene)-4-methyl-1,2,3-thiadiazole-5-carbohydrazide, 3c
Yellow solid. Yield: 76%; m.p. 229–230 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 12.02 (s, 1H,
NH-indol), 11.73 (s, 1H, NH), 8.38 (s, 1H, CH=N), 7.92 (d, J = 2.3 Hz, 1H, H-2), 7.80 (d,
J = 2.4 Hz, 1H, H-4), 7.49–7.47 (m, 2H, o-Ar), 7.42–7.39 (m, 3H, m-Ar and H-7), 7.33 (tt,
J = 1.5, 7.4 Hz, 1H, o-Ar), 6.97 (dd, J = 2.4, 8.8 Hz, 1H, H-6), 5.15 (s, 2H, CH2), 2.97 (s, 3H,
CH3). 13C NMR (151 MHz, DMSO-d6) δ 162.57 (C=O), 159.01 (C-5‘), 153.80 (C-5), 143.59
(CH=N), 137.27 (i-Ar), 136.61 (C-4′), 132.86 (C-2), 132.16 (C-7a), 128.40 (m-Ar), 128.10 (o-Ar),
127.75 (p-Ar), 124.00 (C-3), 113.64 (C-6), 113.12 (C-7), 110.50 (C3a), 103.69 (C-4), 69.84 (CH2),
14.79 (CH3). HRMS (ESI) m/z: calcd: [M+H]+ 392.117571. Found: [M+H]+ 392.1166

N’-[(E)-(4-hydroxy-3-methoxyphenyl)methylidene]-4-methyl-1,2,3-thiadiazole-5-carbohydrazide, 3d
Yellow solid. Yield: 80%; m.p. 229–230 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 12.25 (bs,
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NH), 9.75 (bs, 1H, OH), 8.08 (s, 1H, CH=N), 7.38 (d, J = 1.9 Hz, 1H, H-2), 7.22 (dd, J = 1.9,
8.2 Hz, 1H, H-6), 6.90 (d, J = 8.2 Hz, 1H, H-5), 3.89 (s, 3H, OMe), 2.97 (s, 3H, CH3). 13C
NMR (151 MHz, DMSO-d6) δ 163.19 (C=O), 159.64 (C-5), 149.44 (C-3-Ar), 148.08 (C-4-Ar),
146.16 (CH=N), 135.40 (C-4), 124.69 (C-1-Ar), 122.32 (C-6-Ar), 115.80 (C-5-Ar), 110.15 (C-
2-Ar), 55.51 (OCH3), 15.08 (CH3). HRMS (ESI) m/z: calcd: [M+H]+ 393.070287. Found:
[M+H]+ 393.0694.

3.1.2. General Procedure for the Synthesis of 5a–k

A stirred solution of appropriate carbaldehydes 2a–k (2.0 mmol) in abs. ethanol was
added to a solution of benzenesulfonohydrazide 4 (2.0 mmol) in absolute ethanol. For the
preparation of the compound 5k, we used cinnamaldehyde 2k. The solution was refluxed
for 1–3 h. Treating the reaction mixture with a catalytic amount of p-toluenesulfonic acid
(PTSA; 10 mol%) in refluxing ethanol produced the corresponding sulfonyl hydrazones
in a suitable yield after half the reaction time. The solid product formed was collected by
filtration and recrystallized with ethanol.

N’-[(E)-(4-chloro-2-oxo-2H-1-benzopyran-3-yl)-methylidene]benzenesulfonohydrazide, 5a Yellow
solid. Yield: 75%; m.p. 163–165 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 12.04 (s, 1H, NH),
7.98 (s, 1H, CH=N), 7.95 (dd, J = 1.5, 8.3 Hz, 1H, H-5), 7.91 (dd, J = 1.3, 8.4 Hz, 2H, H-o),
7.72 (ddd, J = 1.4, 7.4, 8.3 Hz, 1H, H-7), 7.69 (tt, J = 1.6, 7.4 Hz, 1H, H-p), 7.64 (tt, J = 1.6,
7.7 Hz, 2H, H-m), 7.47 (ddd, J = 1.2, 6.6, 7.8 Hz, 1H, H-6), 7.46 (d, J = 8.3 Hz, 1H, H-8). 13C
NMR (151 MHz, DMSO-d6) δ 157.81 (C=O), 151.28 (C-8a), 144.57 (C-4), 140.18 (CH=N),
138.87 (C-i), 133.72 (C-7), 133.32 (C-p), 129.30 (C-m), 127.38 (C-o), 126.14 (C-5), 125.35 (C-6),
118.70 (C-3), 118.29 (C-4a), 116.58 (C-8). HRMS (ESI) m/z: calcd: [M+H]+ 363.020081. Found:
[M+H]+ 363.02012.

N’-[(E)-(5-methoxy-1-methyl-1H-indol-3-yl)methylidene]benzenesulfonohydrazide, 5b Yellow
solid. Yield: 83%; m.p. 190–191 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 10.93 (s, 1H, NH),
8.05 (s, 1H, CH=N), 7.92 (dd, J = 1.5, 7.0 Hz, 2H, H-o), 7.64 (s, 1H, H-2), 7.63 (tt, J = 1.4, 7.4
Hz, 1H, H-p), 7.59 (tt, J = 1.7, 7.3 Hz, 2H, H-m), 7.44 (d, J = 2.5 Hz, 1H, H-4), 7.35 (d, J = 8.9
Hz, 1H, H-7), 6.85 (dd, J = 2.6, 8.9 Hz, 1H, H-6), 3.75 (s, 3H, OCH3), 3.73 (s, 3H, NCH3). 13C
NMR (151 MHz, DMSO-d6) δ 154.68 (C-5), 145.35 (CH=N), 139.16 (C-i), 134.39 (C-2), 132.86
(C-p), 132.52 (C-7a), 129.09 (C-m), 127.34 (C-o), 124.87 (C-3a), 112.58 (C-6), 111.09 (C-7),
109.62 (C-3), 103.21 (C-4), 55.21 (OCH3), 32.94 (NCH3). HRMS (ESI) m/z: calcd: [M+H]+

344.106338. Found: [M+H]+ 344.10625.

N’-((E)-[5-(benzyloxy)-1H-indol-3-yl]methylidenebenzenesulfonohydrazide, 5c Yellow solid. Yield:
87%; m.p. 208–209 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 11.41 (s, 1H, NH-indol), 10.95
(s, 1H, NH), 8.08 (s, 1H, CH=N), 7.92 (d, J = 7.4 Hz, 2H, H-o), 7.68 (s, 1H, H-2), 7.61 (t,
J = 6.8 Hz, 1H, H-p), 7.55–7.56 (m, 3H, H-m and H-4), 7.52 (d, J = 7.3 Hz, 2H, H-o), 7.42
(t, J = 6.9 Hz, 2H, H-m), 7.35 (t, J = 6.9 Hz, 1H, H-p), 7.29 (d, J = 8.5 Hz, 1H, H-7), 6.87 (d,
J = 8.2 Hz, 1H, H-6), 5.03 (s, 2H, CH2). 13C NMR (151 MHz, DMSO-d6) δ 153.40 (C-5), 145.82
(CH=N), 139.22 (C-i), 137.38 (C-i), 132.83 (C-p), 132.01 (C-7a), 131.10 (C-2), 129.04 (C-m),
128.51 (C-m), 127.90 (C-o), 127.85 (C-p), 127.33 (C-o), 124.48 (C-3a), 113.07 (C-6), 112.56
(C-7), 110.77 (C-3), 104.81 (C-4), 69.66 (CH2). HRMS (ESI) m/z: calcd: [M+H]+ 406.121988.
Found: [M+H]+ 406.12167.

N’-[(E)-(5-chloro-1H-indol-3-yl)methylidene]benzenesulfonohydrazide, 5d Yellow solid. Yield:
81%; m.p. 183–184 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 11.70 (bs, 1H, NH-indol), 11.05 (s,
1H, NH), 8.08 (s, 1H, CH=N), 7.92 (d, J = 7.0 Hz, 2H, H-o), 7.89 (d, J = 2.0 Hz, 1H, H-4), 7.80
(d, J = 2.7 Hz, 1H, H-2), 7.66 (t, J = 7.2 Hz, 1H, H-p), 7.62 (t, J = 7.3 Hz, 2H, H-m), 7.41 (d,
J = 8.6 Hz, 1H, H-7), 7.17 (dd, J = 2.1, 8.6 Hz, 1H, H-6). 13C NMR (151 MHz, DMSO-d6) δ
144.88 (CH=N), 138.98 (C-i), 135.36 (C-7a), 133.02 (C-p), 131.94 (C-2), 129.14 (C-m), 127.37
(C-o), 125.09 (C-3a), 125.02 (C-5), 122.56 (C-6), 120.73 (C-4), 113.47 (C-7), 110.68 (C-3). HRMS
(ESI) m/z: calcd: [M+H]+ 334.041151. Found: [M+H]+ 334.04123.

N’-[(E)-(5-methoxy-1H-indol-3-yl)methylidene]benzenesulfonohydrazide, 5e Yellow solid. Yield:
90%; m.p. 174–175 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 11.40 (d, J = 2.0 Hz, 1H, NH-indol),
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10.94 (s, 1H, NH), 8.08 (s, 1H, CH=N), 7.93 (td, J = 1.6, 6.5 Hz, 2H, H-o), 7.67 (d, J = 2.8
Hz, 1H, H-2), 7.64 (tt, J = 1.8, 7.3 Hz, 1H, H-p), 7.60 (tt, J = 1.7, 7.1 Hz, 2H, H-m), 7.43 (d,
J = 2.5 Hz, 1H, H-4), 7.28 (d, J = 8.8 Hz, 1H, H-7), 6.79 (dd, J = 2.6, 8.8 Hz, 1H, H-6), 3.74
(s, 3H, CH3). 13C NMR (151 MHz, DMSO-d6) δ 154.38 (C-5), 145.82 (CH), 139.17 (C-i),
132.85 (C-p), 131.79 (C-7a), 130.95 (C-2), 129.08 (C-m), 127.35 (C-o), 124.46 (C-3a), 112.65
(C-6), 112.55 (C-7), 110.77 (C-3), 103.03 (C-4), 55.15 (CH3). HRMS (ESI) m/z: calcd: [M+H]+

330.090688. Found: [M+H]+ 330.09057.

N’-[(E)-(2-nitrophenyl)methylidene]benzenesulfonohydrazide, 5f Yellow solid. Yield: 79%; m.p.
148–149 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 12.00 (s, 1H, NH), 8.29 (s, 1H, CH=N), 8.02
(dd, J = 1.2, 8.2 Hz, 1H, H-3), 7.89 (td, J = 1.5, 6.6 Hz, 2H, H-o), 7.81 (dd, J = 1.5, 7.9 Hz, 1H,
H-6), 7.75 (dt, J = 1.0, 7.6 Hz, 1H, H-5), 7.69 (tt, J = 1.6, 7.3 Hz, 1H, H-p), 7.62–7.56 (m, 3H,
H-m and H-4). 13C NMR (151 MHz, DMSO-d6) δ 147.88 (CH=N), 142.71 (C-2), 138.92 (C-i),
133.82 (C-5), 133.30 (C-p), 130.79 (C-4), 129.43 (C-m), 128.00 (C-1), 127.90 (C-6), 127.14 (C-o),
124.71 (C-3). HRMS (ESI) m/z: calcd: [M+H]+ 306.054302. Found: [M+H]+ 306.0535.

N’-[(E)-(4-nitrophenyl)methylidene]benzenesulfonohydrazide, 5g Yellow solid. Yield: 92%; m.p.
166–167 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 12.01 (s, 1H, NH), 8.23 (td, J = 2.1, 9.3 Hz, 2H,
H-3 and H-5), 8.03 (s, 1H, CH=N), 7.90 (td, J = 1.5, 6.7 Hz, 2H, H-o), 7.83 (td, J = 1.4, 8.9 Hz,
2H, H-2 and H-6), 7.68 (tt, J = 1.6, 7.4 Hz, 1H, H-p), 7.62 (tt, J = 1.5, 7.5 Hz, 2H, H-m). 13C
NMR (151 MHz, DMSO-d6) δ 147.90 (C-p), 144.62 (CH=N), 139.78 (C-i), 138.85 (C-i), 133.32
(C-p), 129.42 (C-m), 127.76 (C-2 and C-6), 127.15 (C-o), 124.09 (C-3 and C-05). HRMS (ESI)
m/z: calcd: [M+H]+ 306.054302. Found: [M+H]+ 306.0535.

N’-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]benzenesulfonohydrazide, 5h Yellow solid.
Yield: 75%; m.p. 129–13 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 11.29 (s, 1H, NH), 9.25
(bs, 1H, OH), 7.86 (td, J = 1.6, 6.6 Hz, 2H, H-o), 7.77 (s, 1H, CH=N), 7.66 (tt, J = 1.7, 7.4 Hz,
1H, H-p), 7.60 (tt, J = 1.6, 11.6 Hz, 2H, H-m), 7.05 (d, J = 1.3 Hz, 1H, H-2), 6.89–6.92 (m, 2H,
H-5 and H-6), 3.76 (s, 3H, OCH3). 13C NMR (151 MHz, DMSO-d6) δ 149.80 (C-4), 147.58
(CH=N), 146.76 (C-34), 139.13 (C-i), 133.01 (C-p), 129.24 (C-m), 127.16 (C-o), 126.46 (C-1),
120.14 (C-6), 111.87 (C-2), 111.75 (C-5), 55.56 (OCH3). HRMS (ESI) m/z: calcd: [M+H]+

307.074703. Found: [M+H]+ 307.0738.

N’-[(E)-(4-chlorophenyl)methylidene]benzenesulfonohydrazide, 5i White solid. Yield: 80%; m.p.
161–163 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 11.64 (s, 1H, NH), 7.91 (s, 1H, CH=N), 7.88
(td, J = 1.5, 6.6 Hz, 2H, H-o), 7.67 (tt, J = 1.6, 7.1 Hz, 1H, H-p), 7.61 (tt, J = 1.5, 7.2 Hz, 2H,
H-m), 7.58 (td, J = 2.2, 9.1 Hz, 2H, H-2 and H-6), 7.45 (td, J = 2.2, 9.1 Hz, 2H, H-3 and H-5).
13C NMR (151 MHz, DMSO-d6) δ 145.90 (CH=N), 138.95 (C-i), 134.60 (C-4), 133.16 (C-p),
132.56 (C-1), 129.32 (C-m), 128.93 (C-3 and C-5), 128.44 (C-2 and C-6), 127.18 (C-o). HRMS
(ESI) m/z: calcd: [M+H]+ 295.030252. Found: [M+H]+ 295.03044.

N’-[(E)-(3,4-dimethoxyphenyl)methylidene]benzenesulfonohydrazide, 5j White solid. Yield: 87%;
m.p. 150–152 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 11.33 (s, 1H, NH), 7.88 (td, J = 2.1, 7.7 Hz,
2H, H-o), 7.83 (s, 1H, CH=N), 7.66 (tt, J = 1.7, 11.1 Hz, 1H, H-p), 7.61 (tt, J = 1.6, 7.5 Hz, 2H,
H-m), 7.12 (d, J = 1.9 Hz, 1H, H-2), 7.08 (dd, J = 1.9, 8.3 Hz, 1H, H-6), 6.95 (d, J = 8.4 Hz, 1H,
H-5), 3.76 (s, 3H, OCH3), 3.76 (s, 3H, OCH3). 13C NMR (151 MHz, DMSO-d6) δ 150.66 (C-4),
148.90 (C-3), 147.45 (CH=N), 139.01 (C-i), 133.05 (C-p), 129.21 (C-m), 127.26 (C-o), 126.36 (s,
1C), 121.00 (C-6), 111.49 (C-5), 108.58 (C-2), 55.56 (OCH3), 55.42 (OCH3). HRMS (ESI) m/z:
calcd: [M+H]+ 321.090353. Found: [M+H]+ 321.0895.

N’-[(1E,2E)-3-phenylprop-2-en-1-ylidene]benzenesulfonohydrazid, 5k White solid. Yield: 85%;
m.p. 168–170 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 11.50 (s, 1H, NH), 7.83–7.85 (m, 2H,
H-o), 7.73 (d, J = 9.2 Hz, 1H, H-1), 7.66–7.68 (m, 1H, H-p), 7.60–7.63 (m, 2H, H-m), 7.54–7.56
(m, 2H, H-o), 7.33–7.36 (m, 2H, H-m), 7.28–7.31 (m, 1H, H-p), 6.95 (d, J = 16.1 Hz, 1H,
H-3), 6.84 (dd, J = 9.2, 16.1 Hz, 1H, H-2). 13C NMR (151 MHz, DMSO-d6) δ 149.48 (C-1),
139.38 (C-3), 139.14 (C-i), 135.65 (C-i), 133.06 (C-p), 129.32 (C-m), 128.94 (C-p), 128.80 (C-m),
127.15 (C-o), 127.12 (C-o), 124.68 (C-2). HRMS (ESI) m/z: calcd: [M+H]+ 287.084874. Found:
[M+H]+ 287.0842.
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3.2. In Vitro Antimycobacterial Activity

The in vitro antimycobacterial activity of the tested compounds was assessed accord-
ing to the EUCAST broth microdilution reference method for MIC determination [78]. The
M. tuberculosis H37Rv strain (ATCC 27294) was cultured at 37 ◦C in Loewenstein-Jensen
medium until log phase growth; then, a cell suspension was prepared at a concentration
of approximately 2 × 106 cells/mL and further diluted 1:20 in Middlebrook 7H9 medium
with 10% OADC (oleic acid-albumin-dextrose-catalase) (Becton Dickinson and Co., Sparks,
MD, USA). Ninety-six-well microplates were used. The Middlebrook 7H9 medium was
added dropwise at the appropriate concentration of the test compound (range of 0.25 to
32 mg/L) and M. tuberculosis suspension. Ethambutol and isoniazid were used as controls.
Reading was performed after 7, 14, and 21 days of incubation at 37 ◦C using an inverted
mirror. The MIC was the lowest concentration without visual growth.

3.3. In Vitro Cytotoxicity Screening

The cytostatic activity of the investigational compounds was determined using a
standard MTT-based colorimetric assay for evaluating cell viability [79,80]. HEK-293 and
CCL-1 cells were harvested and seeded (100 µL/well) in 96-well plates at a density of
3 × 105. Following a 24 h incubation, the cells were treated with serial dilutions of the
tested compounds in the concentration range of 200.0–12.5 µM. Following an exposure
time of 72 h, a filter-sterilized MTT substrate solution (5 mg/mL in PBS) was added to
each well of the culture plate. A further 1–4 h incubation allowed the formation of purple
insoluble precipitates of the formazan dye. The latter was dissolved in an isopropyl alcohol
solution containing 5% formic acid for absorbance measurement at 550 nm. The collected
absorbance values were blanked against MTT-and isopropanol solution and normalized to
the mean value of the untreated control (100% cell viability).

3.4. Statistical Methods

Semi-logarithmic “dose-response” curves were computed using nonlinear regression
in GraphPad Prism® 8.0. The antiproliferative potential of the studied compounds was
rated according to the calculated half-maximal inhibitory concentrations (IC50 values).

3.5. ADME/Tox Screening

ADME screenings were performed using the online tool SwissADME of the Swiss
Institute of Bioinformatics (https://www.sib.swiss, accessed on 20 April 2022). The tool
is based on multiple linear regression, binary classification, and support vector machine
algorithms performed over large data sets of known inhibitors/non-inhibitors, as well
as on substrates/non-substrates [81,82]. The web service ProTox-II was used to predict
the toxicity of the synthesized compounds. The tool incorporates computer models based
on chemical similarities and machine-learning algorithms [83,84]. The models were pre-
trained on specific databases of real data to estimate the balanced accuracy and the specific
confidence rate at each classification.

3.6. Molecular Docking

Molecular docking studies were performed using Molecular Operating Environment
developed by the Chemical Computing Group, version 2016.08 (MOE, https://www.
chemcomp.com/MOE-Molecular_Operating_Environment.htm, accessed on 20 April 2022).
Before proceeding with docking, all the ligands and water molecules were removed from
the crystal structures, except the co-factor NAD+. To position the missing hydrogen
atoms, the “Protonate 3D” tool of MOE was tutor to have assigned the correct ionization
states assigned to the protein structure. The docking procedure was implemented via the
“Docking” module in MOE. No changes were made in the default settings of the docking
procedure. Docking was performed within a rigid receptor, and the top 30 poses ranked by
London dG were kept. For further analysis of the molecular docking results, the “Ligand

https://www.sib.swiss
https://www.chemcomp.com/MOE-Molecular_Operating_Environment.htm
https://www.chemcomp.com/MOE-Molecular_Operating_Environment.htm
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Interactions” MOE tool was used to visualize the protein–ligand interactions in the active
site of the complexes.

4. Conclusions

In this study, we present the synthesis and investigation of the substituted sulfonyl
hydrazones scaffolds 5a–k and 4-methyl-1,2,3-thiadiazole-containing hydrazone deriva-
tives 3a–d, looking for the most effective compounds as M. tuberculosis growth inhibitors
with low cytotoxicity and a highly selective index, that would reduce or eliminate adverse
effects. The new compound 3d displayed antimycobacterial activity at a submicromolar
concentration level with the lowest MIC of 0.0730 µM against M. tuberculosis H37Rv and
remarkably minimal associated cytotoxicity in the normal human embryonic kidney cell
line HEK-293T and mouse fibroblast cell line CCL-1. It was also found that the vanillin,
cinnamyl, and p-nitrophenyl fragments in 3d, 5h, 5g, and 5k, as well as 4-methyl-1,2,3-
thiadiazole scaffolding in 3a–d and 5h, may be pharmacophores with antimycobacterial
activity much higher than other compounds tested. The in silico ADME study revealed
that all compounds had suitable bioavailability and fraction absorption at high levels of
gastrointestinal absorption. All the compounds that form the collection seem to be suit-
able drug-like molecules in terms of their satisfactory membrane permeability and oral
bioavailability. Their predicted toxicity properties are a prerequisite for considering the
new compounds as effective and safe and with potential for TB treatment. The results of
the molecular docking studies agree with experimental studies focused on the significance
of the synthesized compounds as potential growth inhibitors of M. tuberculosis. All most
active compounds displayed interactions with critical residues. Thus, we consider that the
4-methyl-1,2,3-thiadiazole derivatives and sulfonyl hydrazones are promising scaffolds for
antitubercular drug discovery that prompt further studies on their mechanism of action to
completely validate InhA as the main molecular target.
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