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Abstract: Artificial intelligence (AI) is a branch of science and engineering that focuses on the
computational understanding of intelligent behavior. Many human professions, including clinical
diagnosis and prognosis, are greatly useful from AI. Antimicrobial resistance (AMR) is among the
most critical challenges facing Pakistan and the rest of the world. The rising incidence of AMR has
become a significant issue, and authorities must take measures to combat the overuse and incorrect
use of antibiotics in order to combat rising resistance rates. The widespread use of antibiotics in
clinical practice has not only resulted in drug resistance but has also increased the threat of super-
resistant bacteria emergence. As AMR rises, clinicians find it more difficult to treat many bacterial
infections in a timely manner, and therapy becomes prohibitively costly for patients. To combat the
rise in AMR rates, it is critical to implement an institutional antibiotic stewardship program that
monitors correct antibiotic use, controls antibiotics, and generates antibiograms. Furthermore, these
types of tools may aid in the treatment of patients in the event of a medical emergency in which
a physician is unable to wait for bacterial culture results. AI’s applications in healthcare might be
unlimited, reducing the time it takes to discover new antimicrobial drugs, improving diagnostic and
treatment accuracy, and lowering expenses at the same time. The majority of suggested AI solutions
for AMR are meant to supplement rather than replace a doctor’s prescription or opinion, but rather
to serve as a valuable tool for making their work easier. When it comes to infectious diseases, AI
has the potential to be a game-changer in the battle against antibiotic resistance. Finally, when
selecting antibiotic therapy for infections, data from local antibiotic stewardship programs are critical
to ensuring that these bacteria are treated quickly and effectively. Furthermore, organizations such as
the World Health Organization (WHO) have underlined the necessity of selecting the appropriate
antibiotic and treating for the shortest time feasible to minimize the spread of resistant and invasive
resistant bacterial strains.

Keywords: antibiotic stewardship; better diagnosis; AMR; global platform; advances;
diagnostic microbiology

1. Introduction

The widespread use of antibiotics in clinical practice has not only resulted in drug
resistance but has also increased the threat of super-resistant bacteria emergence. Pakistan
is one of the countries that have a high rate of AMR and little healthcare expertise and
assistance to tackle it, which raises questions about high AMR rates. Alexander Fleming’s
discovery of penicillin in 1928 marked the beginning of the modern age of antibiotics [1].
Since then, antibiotics have saved the lives of many individuals suffering from bacterial
and fungal infections. However, the widespread use of antibiotics in clinical practice has
resulted in drug resistance, in addition to increasing the threat of super-resistant bacteria
emergence [2]. Antimicrobial resistance (AMR) is anticipated to cause around 10 million
deaths per year by 2050, and the economic impact of AMR is expected to approach USD
100 billion during the same period [3]. It is imperative that required efforts to implement
new regulations and revive research efforts to manage the AMR epidemic are carried out
to address this crisis [4].

Due to the recent AMR emergence, the world is in desperate need of some relief,
and to this end, the Food and Drug Administration of the United States has proposed
regulations that would specify the types, quantities, and frequencies of adequate antibiotic
use [5]. A complete prohibition on the use of antibiotics in cattle feed was recommended
by the European Union in 2006 [6]. Japanese and Chinese policymakers, in contrast to their
counterparts in Europe and the United States, have concentrated on proposals that are more
compelling in nature. In 2016, the Chinese government announced the National Action
Plan to Contain Antimicrobial Resistance (NAPACAR) [7]. However, despite increased
awareness of antimicrobial resistance (AMR), the general situation is deteriorating, and
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we must continue to create antimicrobial peptides (AMPs), antibiotic combinations, and
monitoring systems to effectively control AMR [8].

Artificial intelligence (AI) has demonstrated substantial competence in the field of
AMR control in recent years. For example, artificial intelligence applications based on
sequencing have been used to explore AMR [9]. Furthermore, the collection of clinical data
for the development of clinical decision support systems could assist clinicians in moni-
toring trends in antimicrobial resistance to promote antibiotics’ sensible applications [10].
Additionally, artificial intelligence applications are commonly used in the development
of new antibiotics and the exploration of synergistic medication combinations [11]. Inter-
estingly, most past publications on AMR have also been written from the standpoint of
structural and molecular mechanisms [12]. The schematic diagram of the possible use of
AI and the dataflow integration is shown in Figure 1.
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Antibiotic Resistance; the Current Scenario

Antibiotics are medications that are utilized to both prevent and treat infections caused
by bacteria and fungi in animals (significantly humans). Antibiotic resistance arises when
bacteria alter their genetic makeup in response to the usage of antibiotics [13]. Antibiotic-
resistant bacteria are the main causative agents of antibiotic resistance. It is possible for
these germs to infect higher-order animals, and the diseases resulting from such infections
are more difficult to tackle, compared with those resulting from nonresistant bacterial
infections [14]. longer hospital stays, higher medical expenses, and an increased mortality
rate are all associated with this phenomenon [15].

Studies show that majority of infections exhibit strong resistance to routinely used
medicines; in addition, researchers are discovering gaps and breaches in surveillance
and methodical data collection [16]. Based on these data, it is urged that surveillance
practices must be formalized, and specific efforts must be taken to prevent AMR in the
region. Furthermore, the world needs to change the way it consumes antibiotics. Without a
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change in public behavior, medical expeditions to find newer antibiotics will not be fruitful.
The adoption of new behaviors should include measures to minimize the transmission of
infectious diseases, such as immunization, hand washing, and excellent food hygiene [17].

Increasing numbers of antibiotic-resistant microorganisms are being discovered in hos-
pitals and the general surroundings. Therefore, it is imperative to formulate new antibiotics
to combat these increasing cases, but development has been slow in this area. Historically,
most antibiotics have been derived from a few numbers of molecular scaffolds, with their
viability extended by cycles of synthetic tailoring and optimization [18]. Considering the
escalation of multidrug resistance in the most-recent generation of pathogens, the iden-
tification of novel scaffolds is a top priority. New techniques of scaffold discovery and
identification are gaining traction, such as mining untapped microbial pockets for natural
compounds, building screens to avoid rehashing old scaffolds, and reclaiming synthetic
molecular catalogs as antibiotics [19].

Due to the development of high-throughput gene sequencing, researchers have a
potent tool for profiling the complete DNA complement, which includes ARGs and DNA
extracts taken from a variety of environmental sources [20]. Using this type of metage-
nomics technique, for example, ARGs have now been identified in many environmental
samples such as soil, cattle dung, wastewater treatment plants, compost, water, and other
potentially contaminated habitats [21].

2. Artificial Intelligence against Antibiotic Resistance

Antibiotic resistance (AMR) is, unfortunately, a result of antibiotic misuse. As AMR
drastically reduces antibiotic therapeutic efficacy, it is critical that we follow its emergence
and dissemination [22]. Currently, two approaches for diagnosing AMR are commonly
utilized. One is called the whole-genome sequencing for antimicrobial susceptibility testing
(WGS-AST) and the other one is antibiotic susceptibility testing (AST). The latter is the
traditional approach for quantifying antimicrobial resistance levels, but it is not efficient,
nor does it explain the mechanism of antimicrobial resistance [23]. It is possible to diagnose
AMR with high accuracy and consistency using WGS-AST; however, to extract information
properly, large, and high-dimensional datasets are required [12]. As a result, artificial
intelligence technologies are being used to improve upon existing methodologies in the
previously discussed ways [9]. Table 1 shows the application of AI in efforts to control high
AMR rates with their advantages and disadvantages.

Table 1. AI application strategies against AMR.

AI Applications for
AMR Concepts Advantages Drawbacks

AI health industry and antibiotics

Antimicrobial peptides
A natural class of small host
defense peptides, found in all
classes of biological species.

• Low chances of
AMR development

• Multiple action mechanisms
• Ease of synthesis with

machine/deep learning

• Highly toxic
• Expensive in

large-scale production
• Unpreferable

widespread use
• The onset of

allergic reactions

New antibiotics

Discovery of new and
structurally different
antibiotics from the ones
already known using AI.

• Broad-spectrum and
targeted bioactivity

• Reduced production time
• Cost-effective

• Challenge of training
libraries according to
required pharmacokinetic
properties of drugs

• Challenge of most
appropriate approach
selection, minimizing
toxicity, and lead
compound discovery
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Table 1. Cont.

AI Applications for
AMR Concepts Advantages Drawbacks

AI, infectious diseases, and pediatric practices

Appropriate
antibiotic prescription

Appropriate therapy selection,
dose, and correct
administration route

• Automatic support for
decisions and review of
antimicrobial prescriptions

• Automatic feedback input
and relevant improvement

• Directed operation

• Biasness in operation
• Little labor
• Need for health funds

Prediction of
antibiotic resistance

ML techniques to predict early
AMR or the probability of a
microbial agent
becoming resistant

• Genomic exploitation to
predict the phenotype

• Ability to support
clinician’s decision

• Lack of genotypes and
genome data in NCBI or
other databases

• Challenge of large
data integration

The severity of
infection prediction

Machine/deep learning tools
for infectious pathology
recognition and
appropriate management

• The efficiency of
distinguishing infectious
and noninfectious diseases

• Decision support provision
• Mortality reduction

• Challenge of accurate
data collection

• Insufficient relevant
laboratory information

In the computer sciences field, AI has a dynamic part to play in human intelligence-
stimulation systems and its research. The processes including speech recognition, visual
perception, natural language processing, and decision making according to perceived
data are stimulated using the technology [9,11]. The metadata from available health
records and developments in processing performance are critical factors in the growth of AI
systems. These two aspects are inextricably linked to complicated mathematical algorithms
including neural networks (NN) and machine/deep learning, which are inextricably linked
to elements such as health records and breakthroughs in computer performance [24].
This is especially true with the development of deep neural network designs, where the
sophistication (commonly known as the number of factors the networks must learn) has
skyrocketed in the previous decade [25].

ML is a part of artificial intelligence that goes through a change in its results when
dealing with a large capacity of data. While specialized systems are related to the expertise
of humans, likely to the human brain working. This characteristic makes it independent of
man’s specialties [26]. NNs, then, are numerical informatics estimation models dependent
on the working of organic neural organizations (human or creature) and, ultimately, models
comprising interconnections of data that can perceive a dataset’s fundamental connections.
A DNN is designed using a few layers (generally above five) of handling units that per-
mit researchers to further develop forecasts from the information, thus finding how to
comprehend them autonomously [27].

A significant advantage of NNs is that their display improves dynamically as the quan-
tity of the dataset grows [28], allowing them to adapt to shifting information sources [11].
Currently, there are a plethora of elements associated with a patient’s consideration and
clinical history that complicate patient administration. According to a new distribution,
multiple times more clinical data than a person would have the choice to read in their
lifetime would be provided within the present year [9]. Artificial intelligence, via naturally
dealing with this massive amount of information, can assume a progressive part in sup-
porting clinical dynamics. Nevertheless, even today, most specialists do not comprehend
the convenience of AI and continue to settle on choices dependent on close-to-home insight
and therapy rules [12]. This audit is to demonstrate the possible contribution of AI in
battling the developing marvel of AMR, with specific pediatric patients at the center. The
focus was placed on the utilization of artificial intelligence for pediatric infections in settled
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countries [9]. A difference between the latest AI-based diagnosis methods for AST versus
the gold standards methods is shown in Figure 2.
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Assistance Strategies of AI in AMR

Early detection of infectious diseases, the differentiation between infectious and non-
infectious pathologies, and correct therapy of consequences are all important aspects of
combating antibiotic resistance. In this global issue, AI can play a very vital role. The
preparation of antibiograms and then the development of personalized machine learning
(ML)-based AMR prediction models could be very useful AI techniques for high-peak
risk infectious bugs and their trends in the susceptibility patterns [9]. Using this strategy,
Yelin et al. conducted a study to examine a 10-year longitudinal dataset of over 0.7 mil-
lion community-acquired UTIs and identified a significant association between AMR and
demographic characteristics, previous history of urine cultures, and the previous history
of using the antibiotics by the patients. After examinations, they developed an ML-based
AMR prediction model and described the high potential bugs for UTIs and their AMR
patterns [29]. The description of the use of deep sequencing AI models is shown in Figure 3.
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3. Use of Artificial Intelligence in Pakistan

Many studies have been performed previously to determine the prevalence of AMR
in Pakistan [30,31]. However, systematic reports that provide a thorough overview of
AMR in the country have not been published yet [32]. In previous studies, AMR in
clinically significant bacteria in Pakistan was discussed; the authors identified the gaps
in surveillance and provided references for impending work while also recommending
regulations and guidelines for government officials and consumers on evidence-based
measures to minimize AMR in Pakistan [13,24]. The exploitation of AI in Pakistan is not
common, except in a few healthcare setups. It is somewhat unfortunate for Pakistan that
only a few healthcare organizations—namely, Shaukat Khanum Memorial Cancer Hospital,
Agha Khan Hospital, Shifa International Hospital, and Pakistan Kidney and Liver Institute
and Research Center (PKLI&RC)—are currently implementing antibiotic stewardship
program practices [33]. The Regulation and Coordination Department of the Pakistan
Ministry of National Health Services, along with the NIH, pledges to develop a nationwide
AMR monitoring system that includes animal, human, and resistance surveillance; creation
of federal and provincial AMR labs in at least two provinces; and reduction in infection
incidence and prevalence in Pakistan [31]. They also pledge to finish the project of Tricycle
ESBL E. coli and expand the International AMR Monitoring System, as well as share relevant
findings globally [13].

Pakistan is still in the early stages of implementing and applying AI systems, with
very scarce available national data. One of the recent studies by Ahmed et al. (2022)
focused on the knowledge, attitude, and practices of AI in the area of medicine among
Pakistani medical students and professionals. Of the total studied subjects, 71.3% had
a basic understanding of AI, but just 35.3% understood its subtypes, machine learning,
and deep learning. The majority of research participants (77%) had no idea how AI
might be used in the medical field. This demonstrates that, despite having a rudimentary
understanding of AI, Pakistani physicians and medical students are unaware of its practical
consequences [34]. To the best of our knowledge, the use of AI to combat such high AMR
rates in Pakistan is very limited. Recently, AI facilities were used for electroencephalogram
waveforms to predict failure in early school grades in children [35], as well as for childhood
immunization coverage [36], mobile health applications [37], identification of risk factors
for brucellosis [38], and medical diagnostics [39].

4. Artificial Intelligence Treating Patients in the Intensive Care Unit (ICU)

Artificial intelligence has a crucial role in ICUs, where various possibilities for imple-
menting AI in the emergency sector have been explored. Nonadministrative AI methods
have been utilized to investigate a huge amount of information stored in electronic patient
data. Several AI models have been created to obtain significant data in an individual’s
outline [40] and distinguish significant patient outcomes [41]. Algorithms pertaining to
administered AI, given their expertise for mechanized example acknowledgment of reports,
have demonstrated their applications in radiology, pathology, and histopathology [42]. Ar-
tificial intelligence is utilized widely in many medical areas in accordance with mechanical
technology [43], especially in surgery and cardiology, [11] recognition of cardiac failure or
arrest [44], and oncology to categorize cancer types and development stages [45].

However, with the use of AI in ICUs being in its early stages, research has effectively
evaluated its utilization in the management of critical patients [46]. Many AI systems have
been utilized to investigate the hospital admission duration, readmission in ICUs, mortality
frequency, and the risk factors for creating unexpected infections such as sepsis. Using
data from 14,480 patients, a previous study [17] developed an AI-based method to forecast
patient survival and hospital admission days. The model’s area under the curve was 0.82,
predicting an extended stay. This contrasts with the results of a clinical trial revealing
that doctors’ accuracy in predicting ICU duration of hospital stay was around 55% [47]. A
hidden Markov framework used for physiological estimates gathered during the first 48 h
of ICU admission accurately predicted ICU duration of stay [48].
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Previously Adopted AI Models in ICUs in Relation to Infections and AMR

In ICUs, raw, high-dimensional inputs in form of images, numbers, text, and other
data must be evaluated quickly and precisely because of the critical situation of patients. In
addition, complicated, nonlinear relationships between the data must be determined. Many
statistical tools have been used to represent patterns in data as mathematical equations [49].
Linear regression recommends a “best-fit line”. Deep learning (DL) does not simplify the
relationship to a mathematical equation but approaches complicated medical data like a
doctor would, carefully analyzing evidence to draw a reasonable conclusion. Unlike a
single clinician, DL can concurrently record and evaluate several inputs, allowing prediction
models to be created based on the desired result. The recurrent neural network (RNN),
convolution neural network (CNN), and deep belief network (DBN) are three DL techniques
that are used in ICU applications in addition to other healthcare-related AI techniques.

To predict the result of blood culture tests, Steenkiste et al. (2019) employed a temporal
computational model with a bidirectional long short-term memory (LSTM) and nine clinical
characteristics assessed across time from a high-quality database of 2177 ICU patients. This
form of DL algorithm works effectively in situations when the time gap between an
expecting event and the diagnosis is unclear. The network had an area under the receiver
operating characteristic curve of 0.99 and an area under the curve (AUC) of 0.82 on average.
Furthermore, the results revealed that forecasting many hours before the event is only
achievable with a modest reduction in predictive power [50].

Using a dataset, Kaji et al. (2019) designed an RNN with LSTM to predict daily sepsis,
myocardial infarction (MI), and administration of Vancomycin (VA) antibiotic over two
weeks as the progression of patients. For sepsis, MI, and VA treatment, these models
achieved the anticipated AUC of 0.823, 0.876, and 0.833, respectively. These models’
attention maps revealed the moments when input factors affected the greatest predictions,
providing physicians with some interpretability. They also manifested variables that were
surrogates for clinician decision making, demonstrating the difficulty of building clinical
decision support systems using flexible DL techniques trained on electronic health record
(EHR) data [51].

Smith et al. (2020) conducted a study to examine the possible applications of AI in
microbiology and concluded that images (macroscopic or microscopic), MALDI-TOF mass
spectra, and whole-genome sequences (WGS) of bacteria may all benefit from AI. In clinical
microbiology, AI is starting to be applied, and it is already supporting laboratory employees
with some tools for diagnostic testing. In the near future, it seems that the quantity of AI
tools, the quality and reliability of AI software analyses, and the integration of AI into the
clinical microbiology laboratory workflow will all increase. Microbiology technicians will
increasingly depend on AI for initial screening and interpretation of routine infectious dis-
ease testing results in the future, as this allows them more time to concentrate on diagnostic
problems, challenging technical interpretations, and laboratory quality control. These
modifications will increase the efficiency and quality of clinical microbiology laboratory
testing, benefiting both the laboratory and the patients we serve [52].

5. Strategies to Overcome Antibiotic Resistance

As part of their research, Getsal et al. used a combination of tools to undertake
antibiotic susceptibility—namely, screening flow cytometer antimicrobial susceptibility
testing and assisted machine learning were used to improve current AST methods [53]. This
type of artificial intelligence technology produces a dependable output in less than 3 h. A
fully developed IR-spectrometer approach has also emerged in recent years that integrates
infrared (IR) spectroscopy with artificial neural networks to minimize the amount of time
required to perform AST from 24 h to 30 min [54]. Pakistan, Burkina Faso, Malawi, Nepal,
Bangladesh, and Zimbabwe are among the nations where the typhoid vaccine is being
used, with the prospect of other countries being included during the project [55].

The antibiotic-resistant gene-sequencing models can predict antibiotic resistance cat-
egories with excellent precision (>0.97) and recall (>0.90), according to the results of an
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assessment of the deep and machine learning models across 30 categories of antibiotic
resistance. Compared with the traditional best-hit strategy, the models demonstrated a
significant benefit by consistently producing negligible false-negative results and, thus,
greater total recall (>0.9) [22]. Given how neural networks underpin DeepAR Gmodels,
it is reasonable to predict that the outputs of the DeepARG systems will improve even
further if additional data are gathered for under-tapped categories of ARGs. DeepARG-DB,
a newly constructed ARG database, contains ARGs that have been predicted with a strong
confidence level and subjected to intensive manual examination, significantly increasing
the scope of current ARG repositories [22]. In general, a combination of antibiotic abuse
along with ineffective infection control and prevention contributes to antibiotic resistance
development. Actions can be taken at all societal levels to mitigate the effects and prevent
the growth of antigovernment sentiment [56].

Strategic Considerations for Artificial Intelligence

The advancement of antimicrobial agents is, as of now, not considered a monetarily
reasonable venture for the drug industries, as antibiotics are utilized for moderately brief
timeframes, unlike drugs used to treat persistent infections; the improvement expenses
of the latter are, along with other factors, cheaper, compared with antibiotic ventures [57].
The outcome is that, during the most recent 15 years, there have been considerable in-
sufficiencies in the turn of events and accessibility of new antimicrobial agents to battle
arising resistance cases [10]. Execution of control procedures to resolve this is a quickly
developing issue, and therefore, antimicrobial stewardship is fundamental. These method-
ologies, although emphatically successful in adults, have been recently provided to pedi-
atric patients [58], for which considerations of patients’ age and weight heterogeneity and
designated interventions are required [9].

Consequently, in the following section, potential AI utilization against antimicrobial
resistance is summarized and examined [48]. The strategies put forward in the previous
section cover the following important sectors: pediatric infection prediction, analysis, and
diagnosis. An important part of combating AMR is the prompt detection of infection
pathologies, the separation between contagious and noninfectious pathologies, and the
effective management of consequences. Children have greater infection frequencies than
adults and may demonstrate nonspecific symptoms, adding to diagnostic confusion [59].
To this end, AI is a potential weapon to combat high AMR rates.

Khaledi et al. presented a technique based on support training in 2020, in which a
simulated specialist learns a set of regulations from an experimental framework to enhance
them and magnify the predicted outcomes [54]. This technology eliminated a patient data
requirement that outperformed the practical experience of a real physician by several orders
of magnitude and obtained the optimal therapy of sepsis by assessing various physicians’
viewpoints. Its application resulted in decreased mortality in patients whose physicians’
real decisions were synchronized with those of this intelligent machine, demonstrating the
clinically sound potential of this technology to change sepsis therapy and assist clinicians
in reaching consistent conclusions [54]. In AI’s early days, a German children’s tertiary
emergency hospital undertook a trial to distinguish and assess pathogenic sepsis from
nonpathogenic SIRS based on the concept that these two categories are associated with
closely comparable symptoms [60]. In that trial, an ML-based diagnostic model based on
an unexpected forest method was developed, considering 44 criteria available at the time of
admission to the hospital (baseline characteristics, clinical/lab data, and specialized/clinical
assistance). The model accounted for early recognition of all sepsis infections, and a 30
percent reduction in antibiotic use in cases of nonpathogenic SIRS was was predicted [61].
Furthermore, Liang et al. conducted a pediatric study in 2019, examining 101.6 million
data points from 567,498 outpatients [40]. The main results were based on 55 diagnostic
criteria that were related to prevalent pediatric disorders. Bronchopneumonia, sudden
upper respiratory tract illness, bronchitis, and acute tonsillitis were among the most often
detected diagnoses [40].
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Nonetheless, the system performed well in detecting potentially life-threatening condi-
tions such as meningitis. The study used logistic regression predictors to build a hierarchical
health monitoring system that performed remarkably across all tissue and organ systems,
demonstrating an undeniable level of superiority in predicted diagnosis, compared with
original diagnoses by clinical experts [62]. These studies suggest that ML-based apps can
analyze EHR in a way similar to doctors’ logical deduction and, therefore, might be used
for purposes such as evaluating triage approaches or assisting doctors in the identifica-
tion of difficult or unusual illnesses. The reduction in incorrect testing and expense is a
considerable advantage [40].

In general, appropriate antimicrobial medication is a difficult undertaking because it
involves selecting the adequate treatment for the presumed microorganism, supervising
the concentration and the administration rate of the antimicrobial agent, and recognizing
the optimal route to ensure the active drug levels’ turnover at the infected area [48]. It
should also be highlighted in pediatrics because the types of diseases and resistance change
dramatically with age, with a considerable variation in age and weight-related dosage [42].
Another problem in suggesting antimicrobials is the requirement to adjust a patient’s
therapy when novel diagnostic data become available.

6. Artificial Intelligence Frameworks

Owing to the lack of quality healthcare resources and a large amount of information
to be processed, manual observation is impractical; hence, clinicians are increasingly rely-
ing on automated decision-based supporting systems for the monitoring of antimicrobial
administration [59]. To identify incorrect prescriptions and avert negative outcomes, most
remedy surveillance frameworks use criteria derived from documented and expert recom-
mendations. These frameworks are frequently insufficiently described, resulting in a high
rate of clinically useless warnings. To address this issue, frameworks based on machine
learning have been developed [48]. Figure 4 shows the schematic diagram of COMPOSER
to predict the risk factor for sepsis.
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This component, in conjunction with user feedback monitoring, was created to allow
APSS to enhance its skillset over time. Anahtar demonstrated a substantial learning ability,
allowing for a correct and clinically meaningful transition from parenteral to oral antibiotic
therapy [42]. Mostly, in the NN literature, it is noted that the ostensibly “static” NN
systems (in which the NN is prepared just once, at startup) are frequently unsuitable for
purposes in which the knowledge base varies over time. Furthermore, more appropriate
learning solutions have been suggested, such as reinforcement learning (as opposed to the
previously stated supervised methods) or incremental digital training [42].

A comparable APSS methodology was used in another investigation to identify prob-
lematic prescribing practices that were not supported by local antibiotic stewardship
professionals [10]. The learning module provided the option of removing clinically relevant
requirements by identifying improper prescription that was not identified by the baseline
structure [60]. Commencing with the assumption that the guideline of drug levels in the
clinical outcomes of children with tuberculosis is not evident (likely because of differences
in pathology configurations among youngsters and adults) and that the desired concen-
tration for component progression is unspecified, Swaminathan et al. used a collection of
AI algorithms, which include irregular forests (an ML approach executed by amassing the
outcomes of isolated choice trees), to differentiate 30 clinical indicators that include research,
pharmacokinetic, and therapeutic factors [40]. Along these lines, the analysts found that
pharmacokinetic differences are presumably a significant contributor to treatment failure
and mortality in TB patients, especially children [62].

They also identified drug concentration margins that predicted bad outcomes and
discovered a negative connection between isoniazid and its companion sets—pyrazinamide
and rifampicin—under specified concentration limits [55]. The challenge of healthcare costs
and personnel shortages in administering appropriate antibiotic prescriptions is especially
pressing in developing countries. Thus, in 2018, a group of researchers anticipated that,
by employing artificial intelligence technologies to quickly acquire patient records, it is
possible to achieve low-cost personalized expectations for certain antibiotics [64]. Table 2
shows the advantages, disadvantages, learning speeds, and interpretability of different
AI algorithms.

Table 2. Advantages and disadvantages of commonly used AI algorithms.

Algorithm Description Advantages Disadvantages Learning
Speed Interpretability

NB
(Naïve Bayes)

Based on the Bayes theorem, a
family of algorithms working on the

principle of independent
classification of each pair of features

Easily implemented,
fast, suitable for

missing
value datasets

Independent
features only 5 2

RF (Random Forest)

Solely based on decision trees’
predictions; takes the mean value of

various trees’ outputs; precision
increases with increasing no.

of trees

Effective for
large datasets, multi-

feature handling

Insensitive to
outlier information 2 3

ANN (Artificial
Neuron Network)

Imitates the working of nerve cells
in humans; makes independent
judgments on new input based

on learning

Multiple layer
perceptron, higher

accuracy with
model depth

Speed of learning
lowers with
increasing

model depth

1 1

SVM (Support
Vector Machine)

Supervised algorithm for regression
& classification; locates a

hyperplane to classify data points in
the N-dimensional space

Utility of
kernel functions

Slow, requires
specification of

multiple parameters
1 1

DT (Decision Tree)
Prediction based on targeted

variable; leaf nodes equal class label,
internal node equals attributes

Easily interpreted,
work with missing

values in the dataset

May not work on
missing data if the
tree is too complex

4 5

The learning speed and interpretability increase from 1 to 5, with 5 being the best.
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7. Artificial Intelligence vs. Antibiotic Stewardship Program

Many publications prove the importance of an antimicrobial stewardship program
(ASP). The data clearly demonstrate the significant impact an ASP has in reducing the
overuse of antibiotics and reducing the collateral damage that often results from the
overutilization of antimicrobials [65–67]. The data also indicate that an ASP leads to an
infection prevention strategy [68]. The increasing risk of antimicrobial resistance due
to inappropriate prescribing habits has led to devastating consequences [31]. The CDC
estimated that, in the US alone, 28 lakh individuals contract an antibiotic-resistant infection,
and more than 35 thousand individual annual mortality [69].

In addition, the Centers for Disease Control and Prevention also documented 223,900 in-
cidents of Clostridioides difficile in the year 2017 and around 13,000 people were reported
to be deceased [69]. As a result, the Centers for Medicare and Medicaid Services (CMS) now
needed hospitals and nursing homes to implement ASPs [70]. However, this requirement
is not found in the outpatient setting. Recently, the Joint Commission, an independent
body that provides accreditation and certification to healthcare institutions, has made it a
requirement to have ASPs in ambulatory medical institutions that are acknowledged by the
joint Commission and prescribe antibiotics routinely [61]. However, this initiative has not
been adopted by other agencies. Based on our review, most studies confirming the benefits
of an ASP have focused exclusively on hospital settings, thereby limiting the quantity of
available data regarding the benefits of an ASP in outpatient settings. Outpatient ASPs
may be difficult to implement due to many obstacles [69].

This includes limited resources, such as limited personnel with expertise in infectious
disease and antimicrobials, the inability to track data across multiple electronic health
systems and pharmacies, as well as limited finances, support, and infrastructure [64].
Additional obstacles may include time constraints for otherwise no reimbursable tasks.
Clinicians are unlikely to dedicate time to implementing an ASP if it does not generate
revenue or could incur additional costs for their practice [53]. A typical ASP program
may involve pharmacists, ID physicians, educational programs for providers and patients,
and mechanisms in place for interventions, tracking, and reporting data. Current CMS-
and relative value unit (RVU)-based payment models are tied to the number of patient
visits or procedures, and therefore, dedicating time to nonpatient-specific endeavors and
nonprocedural may inadvertently affect clinicians’ bottom line [22]. The CDC postulates
that a minimum of 30% of prescribed antibiotics in outpatient cases are unnecessary [42].
It has published core elements to promote outpatient ASPs. However, most outpatient
facilities do not have the means in place to implement these measures [56].

In addition, since medical practices have not been incentivized to participate in out-
patient ASPs, this undertaking has fallen by the wayside. According to the National the
Infection Prevention Strategy Ambulatory Medical Care Survey in 2016, more than 60% of
patient visits in the United States were to practices with five or fewer practitioners, and
only 3% of patient visits were to institutions associated with medical or academic health
centers [56]. Lastly, 89.7% of patient visits were to facilities categorized as private practices.
Despite the CDC’s figures on the overuse of antibiotics in outpatient settings, there have
been no uniformly adapted programs in place to address the need for an ASP in outpatient
settings [64]. It is, therefore, imperative that the principles of an ASP are applied to both the
inpatient and outpatient settings, to truly have a significant impact on reducing the threat
of antimicrobial resistance [42]. Furthermore, an ASP in the outpatient setting must be
designed in a way that can be adapted by a variety of institutions with ease and efficiency,
regardless of the facilities’ finances, endorsements, and resources available [3].

8. Conclusions

This review provides an insight into the current AI practices regarding antibiotic
resistance across the world, with Pakistan the central focus. It was established that the
developed nations have successfully incorporated artificial intelligence into their healthcare
systems, with the most common example being electronic data entry. However, with
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respect to these countries, Pakistan has not yet progressed much. Only three of a multitude
of Pakistani medical institutions make use of artificial intelligence, two of which are at the
working stage, and one is still establishing AI systems. Moreover, none of the discussed
AI frameworks is being utilized in the country, which calls for the doctors, administrators,
government, and researchers’ attention as many opportunities can be tapped into for the
use of AI in our systems. Global or multinational ventures can support the AI infrastructure
establishment, and with continual effort, we can improve the healthcare system manyfold.
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