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Abstract: Topical cariostatic agents have become a reasonable alternative for managing dental caries in
young children. Silver diamine fluoride (SDF) is a practical topical approach to arrest caries and avoid
extensive and risky dental treatment. However, the literature demonstrates a parental hesitation
towards accepting SDF because of black unaesthetic tooth discolouration following application.
The rapid oxidation of ionic silver darkens demineralised tooth structure permanently. In this
regard, nano-metallic antimicrobials could augment or substitute for silver, and thereby enhance SDF
aesthetic performance. Recently, biomedical research has drawn attention to selenium nanoparticles
(SeNPs) due to their antimicrobial, antioxidant, and antiviral potencies. Various in vitro studies have
examined the effect of SeNPs on the virulence of bacteria. This narrative review explores practical
issues when using SDF and suggests future directions to develop it, focusing on antimicrobial metals.
Several methods are described that could be followed to reduce the discolouration concern, including
the use of nanoparticles of silver, of silver fluoride, or of selenium or other metals with antimicrobial
actions. There could also be value in using remineralising agents other than fluoride, such as NPs
of hydroxyapatite. There could be variations made to formulations in order to lower the levels of
silver and fluoride in the SDF or even to replace one or both of the silver and fluoride components
completely. Moreover, since oxidation processes appear central to the chemistry of the staining,
adding SeNPs which have antioxidant actions could have an anti-staining benefit; SeNPs could be
used for their antimicrobial actions as well. Future research should address the topic of selenium
chemistry to optimise how SeNPs would be used with or in place of ionic silver. Incorporating
other antimicrobial metals as nanoparticles should also be explored, taking into account the optimal
physicochemical parameters for each of these.

Keywords: early childhood caries; ECC; silver diamine fluoride; SDF; nanotechnology; nanoparticles;
selenium

1. Introduction

Globally, one of the most widespread childhood illnesses is Early Childhood Caries
(ECC). Statistically, this represents some 48% of chronic childhood diseases [1], and is the
major reason for preventable hospital admissions in children. Given that it affects children
who are too young to cooperate with conventional dental treatment, ECC is typically treated
invasively under general anaesthesia (GA). From an economic point of view, untreated
ECC is a significant burden to the healthcare system. According to a recent study, a single
dental GA session costs over USD 1000 (AUD 1793.23 with SD 803.45) [2], and there is
often a long GA waitlist for public sector dental treatment. Private treatment under GA is
not affordable for many parents. Hence, there is great value in alternative management
options to treat and arrest ECC in young pre-cooperative children that can be quick, simple,
painless, affordable, effective, and easy to apply.

In recent years, silver diamine fluoride (SDF) has emerged as a popular topical treat-
ment for achieving caries arrest in young children, thereby reducing the need for invasive
and costly restorative or surgical dental treatment [1]. SDF is composed of silver, ammonia,
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fluoride, and water. Silver ions inhibit bacterial growth by reacting with the bacterial cell
wall and with intracellular contents, causing reproductive and metabolic disturbances [2,3].
Fluoride at high concentrations also exerts antibacterial actions, and it remineralises tooth
structure. Ammonia elevates the pH and acts as a stabiliser [3].

Studies have shown that when SDF at a concentration of 38% is applied semi-annually,
an arrest of 81% of carious lesions in the dentine will predictably occur [4,5]. Furthermore,
application does not lead to acute complications such as systemic diseases or toxicity [6].
However, there is still practitioner and parental reluctance towards the use of SDF for
caries arrest in children [7,8]. The most common reason cited for avoidance is black
discolouration of carious lesions following its application, which is unaesthetic [6]. In a
systematic review, parents’ decision whether to accept or reject SDF treatment was linked
to tooth position; and a low acceptance rate was reported if SDF treatment was proposed
for anterior teeth [9]. Dental aesthetic issues are unlikely to have effects on preschool child
social interactions or self-esteem [10,11]. Despite this, parental acceptance of SDF is low
because of concerns regarding the black appearance of treated sites on the teeth [8,12]. A
survey of 920 school children revealed that, unlike their preschool counterparts, those with
abnormalities in tooth shape or colour were more likely to experience bullying, with its
attendant psychological and emotional impacts [13].

SDF discolouration is caused by oxidation of ionic silver to metallic silver and silver
oxide, with subsequent precipitation of silver–protein and silver phosphate complexes on
tooth structure. Given this issue, there is a need to find additional antimicrobial agents to
augment or replace silver, reducing the need for high concentrations of ionic silver. Any
such replacements should reduce the tendency to darken carious lesions. Nanomaterial-
based antimicrobial agents have become more widely used for a range of medical appli-
cations. Nanoparticles have distinctive characteristics such as a large surface area and
enhanced reactivity [14]. In dentistry, nanoparticles have been loaded into various den-
tal materials to provide antibacterial actions [15]. The antimicrobial potential of metallic
nanoparticles can be controlled by altering various physio-chemical parameters, such as
particle size, shape, and zeta potential, and by altering the method of synthesis or by
applying capping agents [16]. Each physio-chemical property is potentially important
when evaluating the biological behaviour and impacts of nanoparticles. For instance, nano
morphology plays an important role in the fate and performance of nanoparticles. Different
nanoparticle shapes give different diffusion rates. A further point is that shape affects steric
hindrance when nanoparticles collide with and interact intimately with surfaces [17]. An
additional example of nanoscale parameters influencing behaviour is agglomeration, where
many nanoparticles come together into clusters due to attraction forces. Agglomerations
cause large clusters to form; these have a smaller surface area and so are not as biologically
active as separate individual nanoparticles. A range of important nano specifications are
illustrated in Figure 1.

Lately, selenium nanoparticles (SeNPs) have been attracting interest in biomedical
research owing to their suitable biocompatibility as well as their antibacterial, antifungal,
antiviral, and antioxidant effects [18]. SeNPs have been shown to exert antimicrobial actions
against multiple species of bacteria [19]. The antibacterial and antioxidant effects of SeNPs
in topical anticaries agents has not been investigated thoroughly [19]. The specific aims
of this review are to (1) explore how the chemical composition of SDF could be altered
to reduce staining and (2) explore the possibility of using alternative nanomaterial-based
antimicrobial agents to augment or replace ionic silver, thus lowering the potential to cause
black discolouration of teeth.
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2. Early Childhood Caries: The Ripple Effect

ECC is one of the most common chronic disorders in the world [20]. ECC is defined
as “the presence of one or more decayed (non-cavitated or cavitated lesions), missing
(due to caries), or filled tooth surfaces in any primary tooth in a child under the age of
six” [21]. It is challenging to provide restorative treatment for younger children because of
their immaturity as well as their inability and unwillingness to cooperate for treatment by
dentists and therapists provided in the dental chair. Recently, the COVID-19 pandemic crisis
has worsened the situation regarding caries in children because parents have postponed
their children’s dental appointments [22]. Moreover, in communities that are facing major
public health issues because of social disadvantage, high rates of caries in the primary
dentition may not be a high priority compared with other health needs [23,24].

ECC affects a child’s life in multiple ways, causing pain, infection, nutrition difficulties,
interrupted sleep, self-esteem concerns, and aesthetic problems [25,26]. Advanced cases
of ECC can cause further complications such as impaired dietary intake, school absence,
impaired growth and development, and repeated emergency admissions and hospitalisa-
tions for severe dental infections. Due to the cognitive and communication problems of
treating preschool and very young children, dental treatment under GA is often needed.
In Australia, there is a growing need for paediatric dental GA, and the waitlist in some
public healthcare facilities may extend up to two years [27]. Children who undergo dental
GA for the treatment of ECC have a reported relapse rate of up to 79%, as they continue to
develop new carious lesions and symptoms requiring repeated treatment [28]. Dental GA
sessions are a major financial burden for the health care system. According to the National
Independent Hospital Pricing Authority, the average direct cost for a typical ECC treatment
episode (including extractions and restorations) under GA was AUD 3029 in 2012–2013.
Additionally, a retrospective study (from 2018–2019) reported that dental extraction under
GA was the most frequent treatment choice when young children presented to emergency
departments with severe dental infections [29].

Dental caries is a complex disease that involves multiple microbes (both bacteria
and fungi) which emerge due to ecological changes in the dental plaque biofilm. This
dysbiosis is driven by diet and other lifestyle factors [30]. There is an imbalance between
acidogenic and aciduric microbes on one hand, and health-associated commensal bacteria
on the other [31]. Even though dental caries is polymicrobial in nature, Streptococcus mutans
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(S. mutans) serves as a key pathogen by initiating the formation of a dense extracellular
polymer matrix composed of glucan-rich exopolysaccharides. S. mutans and Streptococcus
sobrinus (S. sobrinus) can both produce large quantities of these insoluble glucans [32], which
give the biofilm enhanced bulk and adhesiveness and serve as a source of fermentable
carbohydrates [33,34]. Therefore, impairing the growth and metabolism of these bacteria
is desirable.

3. Silver Diamine Fluoride SDF: Sharpening an Anticaries Agent

As traditional approaches to the management of caries in young children are challeng-
ing, expensive, and often risky, there has recently been a marked shift towards minimally
invasive approaches. SDF, as a topically applied antimicrobial agent, leverages the antimi-
crobial actions of several components: the alkaline pH (pH range from 9–13), the silver
ions (25% by wt), fluoride ions (5% by wt), and ammonia (8% by wt). The balance of 62% is
water, which acts as the solvent [35].

SDF was first introduced in Japan in the 1960s by Nishino, who added ammonia to
improve on existing silver fluoride formulations [36]. While marketed with regulatory
approval for treating dentinal hypersensitivity, SDF is used widely off-label for arrest-
ing dental caries in both deciduous and permanent teeth [37]. As a topical agent, it is
more effective than fluoride varnishes [3]. SDF has demonstrated greater efficacy for halt-
ing the progress of lesions and gives increased fluoride absorption into tooth structure
when compared with fluoride varnishes and topical fluoride gels, in both in vitro and
in vivo studies [38,39].

The effectiveness of SDF in causing caries arrest is attributed to the combined actions
of the high concentrations of fluoride and silver ions as well as the alkaline pH [40]. Ionic
silver attacks bacterial microbes via multiple approaches, as explained in detail below.
Moreover, the silver ions in SDF form a layer of silver phosphate that provides resistance
to further decay, while fluoride ions convert hydroxyapatite to less soluble fluorapatite [41].
Together, these actions inhibit the further progression of demineralisation and help to
preserve dentine collagen, protecting it from further degradation [42].

SDF has been produced commercially in various concentrations (12%, 30%, 38%, and
40%), with the 38% versions being in widespread use [4]. These formulations contain
44,800 ppm of fluoride, which is 8 times above the threshold needed for antimicrobial
actions on bacteria [4]. When applied to primary teeth, 38% SDF has greater potency
than 12% SDF for caries arrest [5,43]. Worldwide, multiple SDF brands are manufactured.
Advantage ArrestTM has a pH of 10 and contains 24.4–28.8% silver (w/v) and 5.0–5.9% fluo-
ride. SDI Riva StarTM has a pH of 13 and contains 35–40% (w/v) silver fluoride (AgF) and
15–20% (w/v) ammonia. The manufacturer also provides a solution of potassium iodide (KI)
to be applied immediately onto the surface to scavenge precipitated silver [44]. The same
manufacturer also has an ammonia-free neutral formulation (pH 7.4), SDI Riva Star Aqua™,
with 40% AgF. Removing the ammonia was intended to prevent transient gingival/mucosal
burns. Another notable product, CSDS, is made by Whiteley. This is also ammonia-free,
and contains 40% AgF and 10% stannous fluoride (SnF2). The SnF2 acts as a reducer for
excessive silver ions [45].

The use of silver fluoride in various forms can exert potent effects on microbial growth.
A significant reduction in levels of S. mutans has been seen following the application of SDF
onto an infected dentine surface in vitro [46]. A similar beneficial effect on impairing the
growth of Lactobacilli [47] has also been seen in an in vitro study. The high concentration
of fluoride ions (44,800 ppm) exerts a two-level action on bacteria. Firstly, it disrupts
bacterial enzymes that regulate carbohydrate uptake and metabolism. Secondly, it impairs
biofilm formation [47].

With regard to the interaction between SDF and tooth structure, there is some evidence
that SDF remineralises dentine [38]. This occurs through the creation of silver phosphate
and the deposition of calcium fluoride, both of which contribute to an increase in pH (from
5.5 to 9–13). The calcium fluoride, which is believed to remain on tooth surfaces via protein-
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based globules, can discharge fluoride ions in acidic mediums (cariogenic conditions) and
serves as an effective medium-term fluoride reservoir [48]. The formation of fluorapatite
with its reduced acid solubility lessens the impact of acids produced by the dental plaque
biofilm [35]. Silver ions that react and bind with hydroxyapatite form a type of protection
shield against future cariogenic attacks [42]. Additionally, hydrolytic collapse of dentine
collagen is impaired via inhibition of proteolytic enzymes, including cathepsins (or cysteine
cathepsins) and matrix metalloproteinases (MMPs) [49]. Thus, the effectiveness of SDF
results from multiple pathways, a point that is very relevant when considering how to
enhance the formulation or substitute other components for the silver.

The ionic silver in SDF creates several issues. Due to the alkaline pH of SDF, during
application, the solution must be applied in very small amounts, and some manufacturers
recommend that gingival protection be applied before SDF. Proper cotton roll isolation is
important because of the risk of causing burns to skin or mucosa [50]. The fate of silver
applied to deep lesions that are close to the dental pulp is a further point. In the 1990s,
Gotjamanos et al. [51] reported the possibility of silver ions penetrating through the tooth
structure and reaching the pulp chamber. This situation would occur when SDF was
applied to very deep carious lesions that were close to the dental pulp [52]. A further point
is that SDF has a noticeable, odd metallic taste that may cause momentary nausea [7].

Going beyond these short-term issues, the most significant drawback of using SDF,
especially in high concentrations, is that it creates long-lasting black stains on the treated
surfaces due to the formation of silver compounds, especially silver phosphate and silver
sulphide [53]. Within two minutes of SDF application, the treated dentine surface darkens
noticeably and irreversibly. This is followed by a gradual increase in the intensity of staining
from 5 min to 5 h post-application. The maximum colour change following SDF application
occurs at 12 h. The intensity of the stains varies according to the frequency of application [6].
Paradoxically, the discolouration has been considered an SDF success indicator, since it
represents a zone high in calcium, phosphorus, fluoride, and silver ions [38].

While parents might accept SDF staining on primary posterior teeth, they have lower
acceptance of its application to primary anterior teeth, as these are within the aesthetic
zone [9]. They may accede to its use on anterior teeth as a fall-back measure when the
child displays an uncooperative attitude during regular dental visits [54,55]. In contrast,
parents of a cooperative child are more inclined to prefer aesthetic tooth-coloured restora-
tions for the anterior teeth of their child in order to alleviate the sense of guilt from not
having managed their child’s oral hygiene, and because reliable restorative techniques and
procedures exist [56].

The black discolouration caused by SDF is an issue that could be addressed by using
less silver or by using a scavenging agent. As mentioned previously, one manufacturer
includes a topical application of saturated potassium iodide [57]. The rationale behind this
is that the reaction between available silver ions and KI results in the precipitation of silver
iodide (a bright yellow chemical compound) [58]. Silver iodide formation should minimise
the concentration of free silver ions that eventually discolour the tooth surface. Despite this
approach having been rated with “insufficient clinical evidence” in systematic reviews [59],
in vitro studies have reported that the use of the SDF followed by KI application may lead
to better aesthetic outcomes [60]. However, these outcomes appear to be temporary. A
randomised clinical trial (RCT) showed no significant difference between the SDF/KI group
and the SDF-only group at 30 months follow up [61]. They concluded that the further
decomposition of silver iodide due to its photosensitivity leads to further release of silver
and iodine. There is a concern that immediate application of KI following SDF may stain
demineralised dentin [62]. This has prompted the search for a future antimicrobial agent
that can achieve a balance between providing an adequate antibacterial effect and not
significantly staining the tooth surface. Alternative potential antimicrobial agents include
silver nanoparticles (AgNPs), selenium nanoparticles, and copper nanoparticles.

Nanoparticles (NPs) have diameters ranging from 1 to 100 nm. Their large surface
area and strong chemical reactivity are desirable features [63]. Several metal-based nano-
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materials are being actively considered for inclusion in dental materials and therapeutic
products [14]. Furthermore, combining NPs with polymers and coating them with other
nanocomposites provides an opportunity for multiple types of physio-chemical modifica-
tion [64]. Each modified form can have unique chemical and antibacterial properties. A
high level of antibacterial activity is an anticipated result of the strong interactions between
certain metal NPs and the negatively charged surface of bacterial cells. These interactions
occur because of the vast surface area and high charge density of NPs [65].

As the size of NPs reduces, their antibacterial properties improve. For instance, 10 nm
AgNPs are small enough to penetrate the bacterial matrix and can cause an imbalance in
vital cellular functions like DNA replication, particularly in Gram-negative bacteria [2].
Moreover, by triggering oxygen radical production, they cause lipid peroxidation, which
disrupts bacterial cell membranes and decreases bacterial metabolism [66]. There have
been some preliminary studies of AgNPs. Tirupathi and others assessed the anticariogenic
capacity of AgNPs loaded into a sodium fluoride (NaF) varnish and compared this with
38% SDF [67]. It proved to be as effective as the SDF but without causing undesirable
postoperative staining [67]. Additionally, the AgNPs did not generate silver oxide when
exposed to oxygen in the medium; hence, the demineralised enamel did not stain black [68].
Furthermore, in an in vitro study, Targino and others compared 38% SDF and a nano
form of silver fluoride, finding that AgNPs exert greater antimicrobial actions than silver
ions [69]. This provides some support for the extension of this line of work. Likewise, the
further development of hydroxyapatite NPs might result in the replacement of fluoride in
topical anticaries agents, thusavoiding issues with fluoride in young patients [2].

4. Silver: The Old New

For thousands of years, the antimicrobial actions of silver have been recognised.
In 335 BC, Alexander the Great used silver vessels for storing water and silver jugs for
drinking [70]. The action of silver in keeping water from fouling was recognised before
the advent of the “Germ Theory of Disease” [71]. Silver compounds were used in wound
healing remedies by ancient Greeks due to their antimicrobial properties [72], and this idea
now extends into the modern age to dressings for burns. Prior to the advent of antibiotics,
silver was a widely used antibacterial agent [73].

In dentistry, silver nitrate (AgNO3) was used as a caries-arresting solution and an
antibacterial agent since the 18th century [74]. In the 1840s, AgNO3 was used to treat caries
in primary teeth and for control of gingival disease, marking the first documented use of
silver compounds in dentistry. Thereafter, it was further used as a dentine desensitiser,
cavity disinfectant, and caries preventive treatment for permanent molars [75–77]. In 1908,
GV Black described using AgNO3 to treat caries in children as “the first measure against
the disease” [78]. Then, in the 1960s, it was proposed that silver and fluoride should
work together to prevent cavities; however, because of the discolouration of caries lesions,
therapeutic use of silver fluoride compounds was limited [3].

Several modes of action of silver explain its antibacterial actions. Firstly, it attacks
bacterial cell walls and changes their permeability, which leads to the leakage of cellular
contents and impaired transport activity across the membrane [79]. Silver also generates
reactive oxygen species (ROS) and hydroxyl radicals, which damage microbial DNA
and cause lipid destruction through oxidation [80]. Ionic silver also inhibits the proton
motive force, leading to apoptosis [81]. Moreover, AgNPs deactivate respiratory chain
dehydrogenases, which inhibits cell respiration and growth. Once combined with halides,
AgNPs release silver ions and produce more ROS [82]. A recent study by Hovhannisyan and
colleagues pointed out that the effect of green synthesised AgNPs on bacterial membrane
permeability was due to effects on formate hydrogenlyase proton–potassium transporters,
energy-dependent H+-fluxes, and H+-translocating ATPase activity [83]. In addition, by
specifically disturbing FOF1-ATPase activity, these biogenic AgNPs can affect bacteria that
have no respiratory chain such as the Enterococcaceae species. The antimicrobial mechanisms
of action of AgNPs are demonstrated in Figure 2.
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5. SDF Re-Composition: Nanometals vs. Ionic Silver

Although the individual chemical ingredients of SDF work in cooperation to halt caries,
the question arises as to whether the same or better clinical actions would be achieved
with less staining by reformulation of the product. Hence, several research groups have
evaluated the use of nano formulated approaches instead of traditional silver-based topical
cariostatic agents [63,68,84–86]. Nano-silver fluoride is one of the suggested substitutes [63].
A study conducted by Nagireddy et al. used chemically synthesised AgNPs added to
0.05 ppm NaF and tested this formula for anticaries effects on 100 primary teeth. The
results of their study showed 78% caries arrest within seven days. However, an issue with
the design of their study was that normal saline was used as a control treatment, and there
was no direct comparison to SDF [63].

In another study, SDF was modified by adding different concentrations of copper-
doped bioglass nanoparticles (CuBGNPs), and the mixtures were assessed for their viscosity
and antibacterial actions [84]. This modified form of SDF showed improved ion release and
decreased cytotoxicity; in addition, a cumulative increase in the antimicrobial effect was
observed as the concentration of CuBGNPs rose. Discolouration was not investigated.

The combination of fluoride ions and silver NPs has also been compared with SDF [86];
the two provide similar bactericidal effects, but the version with AgNPs does not cause
noticeable tooth discolouration. Taken together, these results suggest that the use of nanopar-
ticles of silver or of silver fluoride could be one way to solve the problem of discolouration.

6. Selenium: A Plausible Substitute

Selenium (Se) was identified as a natural element by the Swedish chemist Jon Jakob
Berzeliusin 1817 [87]. It occurs naturally in limited amounts. Most commercial Se is refined
from other metals such as copper (Cu) using electrolysis [88]. Se can be organic (selenocys-
teine and selenothionine) or inorganic (selenate and selenite). Based on its configuration, it
can exist either in a crystal form (monoclinic and trigonal) or in an amorphous polymorphic
form [89]. Se is one of the group-6 elements in the periodic table and is situated between
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non-metallic sulphur (S) and metallic tellurium (Te) in the oxygen group [90]. Thus, the
chemistry of Se is somewhat similar to that of sulphur, although the two have different
oxidation capacities [91]. Se shows multiple oxidation states: Se2+, Se4+, Se6+, and Se2–18.

6.1. Selenium and Human Health

Selenium is an essential micronutrient in the human diet. Generally, Se has a valuable
impact on human health at different levels. It plays a vital role in several intracellular
activities [92], and its sufficient intake is linked to protection against various diseases,
including hypercholesterolemia, some malignancies, and cardiovascular illnesses [93]. Se
has unique growth-regulating capabilities and fulfils a role as a cofactor for essential en-
zymes such as thioredoxin reductases (which control the redox state of the cell by inhibiting
thioredoxin) and glutathione peroxidases (which prevent cellular destruction caused by
oxygen-free radicals) [94]. Other health-related effects of Se include its antibacterial and
antiviral actions [95]. As a trace element in the diet, Se is essential for human health [96].
Decreased Se levels have been correlated to impaired cognitive ability, weak immunity, and
increased mortality risk [97].

6.2. Selenium Nanoparticle Properties: Size, Shape, and Synthesis

SeNPs have a core of inorganic Se (0). They can exert their own actions or can be loaded
with additional therapeutic agents [98]. SeNPs have superior biosafety and biocompatibility
to organic or inorganic Se molecules [99]. In addition, they exhibit distinctive chemical
and physical characteristics owing to their large surface-to-volume ratio and high surface
energy [100]. SeNPs have high bioavailability but low toxicity [101].

Additionally, the parameters of SeNPs can be adjusted to optimise their physical
and chemical features, including through altering the synthesis process or by using cap-
ping agents [102]. SeNPs have been synthesised in a range of configurations, including
spheres [103], cubes [104], ribbons [105], flowers [106], nanorods [107], and nanonee-
dles [108]. Generally, the most frequently used shape for therapeutic purposes is spher-
ical [109]. Wire-shaped SeNPs have shown greater photoconductivity, while spherical-
shaped SeNPs have demonstrated greater biocompatibility [110,111]. Furthermore, certain
forms of SeNPs are generated by specific synthetic processes. For instance, green synthesis
can result in SeNPs with a hexagonal ring form [112–114].

The adjustability of SeNPs extends to their charge. SeNPs are normally negatively
charged, but this can be altered to positive by using surface modifiers such as chitosan [115,116].
This type of tuning is important in terms of binding to different types of microorganisms.
In terms of the antimicrobial actions of SeNPs, one study reported that both Gram-positive
and Gram-negative bacteria were inhibited to a similar extent by SeNPs [117]. In contrast,
another study by Wang and others found that SeNPs were less effective against Gram-
negative bacteria (P. aeruginosa and E. coli) after 72 h of treatment [118]. It is possible that
SeNPs could be less active against Gram-negative bacteria due to electrostatic repulsion
between negatively charged lipopolysaccharide in the bacterial cell membrane and SeNPs,
unlike the situation with Gram-positive bacteria, which have a slight positive or neutral
surface charge [119]. Although the antimicrobial impact of SeNPs has not yet been fully
explored [120], this parameter has been demonstrated in several studies, and these are
summarised in Table 1.

6.3. Selenium Nanoparticles and Toxicity Concerns

Although selenium is a trace element and is essential for human body, there is a fine
line between healthy therapeutic levels of selenium and a harmful toxic concentration.
As a supplement, the World Health Organisation recommends 55 µg of selenium per day
for healthy individuals [121]. Selenium compounds, especially at high concentrations,
exhibit noticeable toxicity. On the contrary, SeNPs have better safety use and cause less
cytotoxicity [110]. In vivo evidence has shown that the SeNP lethal dose is 4–6 times less
than other formulations of organic and inorganic selenium [122]. In general, the cytotoxic
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actions of SeNPs are closely associated with their ability to damage cell membranes and to
generate oxidative stresses [123]. Furthermore, stabilisation of SeNPs could play a part in
further reducing their toxicity [107]. For example, polysaccharide-stabilised SeNPs show
less toxicity and enhanced bioavailability [110].

It has been reported that if human selenium consumption surpasses 400 µg/day, symp-
toms of selenosis (selenium intoxication) might be observed. Selenosis causes symptoms
that range from hair and nail damage to severe neuromotor disturbances. However, other
studies argued that a much higher intake (e.g., 3000 µg/day) is needed to cause symptoms
of selenosis [123]. The median lethal dose of SeNPs is 92.1 mg/kg, while it is only 14.6
mg/kg for seleno-methylselenocysteine [101]. The cytotoxicity of SeNPs varied according
to their synthesis method. Biogenic (green) synthesis results in less toxic forms of nano
selenium compared with chemically synthesised SeNPs [124]. Lastly, in terms of genotoxic
impacts of SeNPs, some studies have found that bare (uncoated) SeNPs cause a dose-
dependent genotoxic action; however, this problem can be reduced markedly by capping
or coating SeNPs with surfactants [107]. Overall, in terms of clinical use under controlled
conditions where little or no ingestion is likely to occur, concerns over the cytotoxic effects
of SeNPs are likely to be low. Moreover, this concern can be minimised by using green
synthesis and by applying suitable capping agents.

6.4. SeNPs and the Role of Capping Agents

Stabilisers/capping agents can be added to chemically synthesised SeNPs to enhance
their physio-chemical characteristics and maintain their bioactivity and size by enhancing
their stability and preventing them from agglomerating [125]. Furthermore, such stabili-
sation influences the ultimate size of SeNPs and, thus, is strongly related to antioxidant
capacity, cytotoxicity, and antimicrobial actions [93]. Multiple agents have been used to
coat SeNPs. Chitosan is a type of chitin that can be extracted from insects and crustaceans.
Chitosan-capped SeNPs have reasonable bioavailability, a positive charge, and minimal
toxicity; thus, they have been used in several therapeutic applications [126]. Various
polymers have also been used to stabilise SeNPs, including polyvinyl alcohol, polyethylen-
imine, and polyvinylpyrrolidone [110]. Plant-derived polysaccharides have been used
to cap SeNPs, and this enhances their antioxidant actions [127,128]. Proper selection of
capping agents can be used to optimise the chemical, physical, and biological properties of
selenium nanoparticles.

Table 1. Summary of published research on antimicrobial action of selenium nanoparticles.

STUDY METHODS KEY FINDINGS

[103]

Synthesis: chemically—Na2SeO3 reduction;
Stabiliser: BSA
Characterisation: TEM and DLS
Tested microbes: S. aureus
SeNPs tested concentrations: 7.8, 15.5, 31 µg/mL

-SeNPs shape/size: spherical/40–60 nm
-SeNPs inhibited S. aureus growth compared with
no treatment.
-SeNPs killed approx. 40% of S. aureus after 3, 4, and 5 h

[129]

Synthesis: chemically—chitosan dissolution
Characterisation: DLS
Sample: skin infection swabs (n = 25)
Tested microbes: 49 various bacterial strains
Antibacterial tests: agar diffusion assay, growth curves
SeNPs tested concentrations: up to 100 µg/mL

* Size and shape of SeNPs: not revealed
-Bacterial growth curves were inhibited by low
concentration (1 µg/mL) in all tested bacterial isolates
-64 µg/mL of SeNPs shows complete inhibition when
applied on E. fergusonii, P. aeruginosa, and
S. agalactiae assays

[130]

Synthesis: biosynthesis—R. Alstonia eutropha
bacterium-based Na2SeO3 reduction
Characterisation: TEM, SEM, XRD, and SAED
Tested microbes: E. coli, P. aeruginosa, S. aureus, S. pyogenes,
and A. clavatus

-SeNPs shape/size: spherical 40–120 nm
hexagonal crystalline
-MIC: E. coli 125 µg/mL, P. aeruginosa 100 µg/mL, S. aureus
100 µg/mL, S. pyogenes 250 µg/mL and A. clavatus
500 µg/mL
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Table 1. Cont.

STUDY METHODS KEY FINDINGS

[131]

Synthesis: chemically—Na2SeO3 reduction
using glutathione
Stabiliser: BSA
Characterisation: FTIR, UV–Vis, DLS, SEM, and TEM
Tested microbes: E. coli, S. aureus, Salmonella, and Listeria

-SeNPs shape/size: spherical ~79 nm
-SeNPs show dose-dependent antimicrobial action against
S. aureus but not the other three pathogens -SeNPs exerts
cytotoxicity on cancer cells Caco-2 after 24 h exposure

[132]

Synthesis: (1) biosynthesised SeNPs (B. mycoides);
(2) chemically synthesised SeNPs
Characterisation: TEM, EDX, and DLS
Tested microbes: P. aeruginosa and S. aureus
Antibacterial tests: biofilms on hydroxyapatite discs

-SeNPs shape: spherical
-Biosynthesized SeNPs had greater antibacterial action
than chemically synthesized SeNPs

[133]

Synthesis: chemical method (using SeO2 as a precursor)
Stabiliser: polyvinyl alcohol
Characterisation: TEM, EDS, and FTIR
Tested microbes: S. aureus
Cytotoxicity: human dermal fibroblasts

-SeNPs shape/size: amorphous and spherical 43–205 nm
-SeNPs antimicrobial; action is size dependent
-greatest antibacterial action was observed in 81 nm SeNPs

[134]

Synthesis: chemical method (using SeO2 and
ascorbic acid)
Stabiliser: egg white lysozyme (EWL)
Characterisation: UV–Vis, FTIR, TEM, and XRD
Tested microbes: E. coli, S. pneumoniae, B. cereus, K.
pneumoniae, P. mirabilis, and B. subtilis

-SeNPs shape/size: spherical (crystalline
structure)/40–60 nm
-MIC: 10.0 µg mL−1

-ZOI: 19 mm (B. subtilis), 15 mm (E. coli), 14 mm (B. cereus),
and 13 mm (K. pneumoniae)
-SeNPs exhibits prolonged stability (minimum of
12 months)

[135]

Synthesis: chemical method (using dissolution of
Na2SeO3, L-ascorbic acid, and polyvinyl alcohol PVA in
purified water)
Characterisation: TEM, XPS, and SEM (Ti implants coated
with SeNPs 30–70 nm)
Tested microbes: S. aureus

-SeNPs shape/size: spherical (crystalline
structure)/50–200 nm
-Oxidation state: zero
-SeNPs showed great antibacterial activity even at 0.5 ppm

[136]

Synthesis: chemical method (using Na2SeO3 as
a precursor)
Stabiliser: BSA, D-glucose, and soluble starch
Characterisation: UV–Vis, FTIR, SEM, and EDXTested
microbes: B. subtilis (mid-log)
Antimicrobial test: SEM

-SeNPs shape/size: (BSA): rod shaped/200–250 nm
(D-Glucose): spherical/200 nm (starch):
cubes/250–300 nm
-Antioxidation capacity: starch > D-Glucose > BSA
-Antibacterial effect seen in all samples but not quantified

[137]
Synthesis: green synthesis—ascorbic acid as reductant
Stabiliser: BSA
Tested microbes: S. aureus and E. coli

-SeNPs shape/size: spherical/10–100 nm
Proliferation of fibroblasts was promoted by SeNPs,
whereas growth of S. aureus was suppressed

[138]

Synthesis: green method (Na2SeO3 as a precursor, using
bovine urine)
Characterisation: UV–Vis, SEM, TEM, DLS, AFM,
and EDX
Tested microbes: E. coli, K. pneumoniae, P. aeruginosa,
Serratia, Proteus, and S. aureus

-SeNPs shape/size: spherical/110 nm
-SeNPs effective against all species especially against
Klebsiella species.

[139]

Synthesis: chemically—using Na2SeO3
Characterisation: UV–Vis
Tested microbes: P. aeruginosa, Salmonella typhimurium,
E.coli, S. sanguinis, S. aureus, and E. faecalis

MIC:
S. sanguinis, 68 µg/mL
S. aureus, 137 µg/mL
E. faecalis 274 µg/mL

[140]

Synthesis: chemically—Na2SeO3 as a precursor
Stabiliser: (i) BSA + ascorbic acid, (ii) Chitosan + ascorbic
acid, and (iii) glucose
Characterisation: FTIR, XRD, DLS, TEM, DLS, and UV–Vis
Tested microbes: mixed biofilm S. aureus and C. albicans
Cytotoxicity: human dermal fibroblasts

-SeNPs shape/size: spherical/70–300 nm
-MIC: The lowest MIC was against C. albicans (25 µg/mL)
-Zeta potential: SeNPs-Chit < SeNPs-BSA < SeNPs-Gluc
* SeNPs-BSA was less cytotoxic than the other
two formulations
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Table 1. Cont.

STUDY METHODS KEY FINDINGS

[141]

Synthesis: chemical method (using Na2SeO3 as
a precursor)
Characterisation: UV–Vis, XRD, and SEM
Tested microbes: S. aureus isolated from public water
Antibacterial tests: disk diffusion assay,
microdilution assay

-SeNPs shape/size: rod/85–275 nm
-MIC: 50 µg/mL
-synthetic SeNPs contributed to the breakdown of
S. aureus biofilms

[109]

Synthesis: chemically—reduction of Na2SeO3
Characterisation: TEM, DLS, and XRD
Tested microbes: E. faecalis
Cytotoxicity: human fibroblasts

-SeNPs shape/size: spherical/77 + 27 nm
-CFU: significantly reduced compared with control
-Methylene Blue-induced Photodynamic Antimicrobial
Chemotherapy SeNPs-MB-PACT showed the greatest
antibiofilm impact
-At 128 µg/mL SeNPs, 50% of human fibroblasts survived

[142]

Synthesis: biosynthesis—guava leaves (Psidium guajava)
Characterisation: UV–Vis, DLS, TEM, and XRD
Tested microbes: E. faecalis
Group I: Distilled water (control), Group II: SeNPs (1
mg/mL), Group III: Calcium hydroxide (1 mg/mL),
Group IV: 2% CHX, and Group V: 5.25% NaOCl
Antibacterial tests: agar diffusion method, microdilution,
viable cell count, antibiofilm assay, and Anthrone and
Bradford’s tests

-SeNPs shape/size: spherical/30–50 nm
-Zeta potential: −60 mV.
-MIC: 25 mg/mL
-ZOI: SeNPs 11.33–28.50 mm (based on the concentration)
-SeNPs are the most active against E. faecalis biofilm,
followed by NaOCl, CHX and Ca(OH)2

[19]

Synthesis: green method (using Brassica
Oleracea (Broccoli))
Characterisation: UV–Vis, TEM, FTIR, and EDX
Tested microbes: S. mutans, S. aureus, E. faecalis,
Lactobacillus, and C. albicans

-SeNPs shape/size: spherical/10–25 nm
-greatest ZOI reported against S. mutans

[143]

Synthesis: biosynthesis—Na2SeO3 with citrus fruit
extracts (lemons and grapefruits)
Characterisation: UV–Vis, TEM, FTIR, and DLS
Tested microbes: E. coli, M. luteus, K. pneumoniae, and
B. subtilis
Antimicrobial tests: agar diffusion assay

-SeNPs shape/size: not determined
-SeNPs ZOI: 20 ± 1.646 mm against K. pneumoniae
-A noticeable antimicrobial effect was detected after
testing Citrus SeNPs
-SeNPs could replace traditional antibiotics

[144]

Synthesis: biosynthesis—Na2SeO3 using Rosmarinus
officinalis extract
Characterisation: UV–Vis, DLS, TEM, XRD, and FTIR
Tested microbes: M. tuberculosis, S. aureus, S. mutans,
E. coli, and P. aeruginosa

-SeNPs shape/size: Spherical 20 to 40 nm
-MIC in µg/mL: (M. tuberculosis), 256; (S. aureus), 16;
(S. mutans), 32;
(E. coli), 128; and (P. aeruginosa), 64

[145]
Synthesis: chemical reduction
Bacterial tests: MHB microdilution to assess MIC
and MBC

SeNPs size: 81.4 nm
MIC in µg/mL: S. mutans 68, L. acidophilus 137 and
C. albicans 274
MBC in µg/mL: S. mutans 274 after 1–2 h and 137 after
6–24 h

[120]

Synthesis: biosynthesis—Na2SeO3 (precursor) using
Calendula officinalis L. flowers as a (capping agent)
Characterisation: SEM, TEM, FTIR, and EDX
Tested microbes: Serratia marcescens, Enterobacter cloacae,
and Alcaligenes faecalis bacteria
Antimicrobial tests: disc diffusion

-SeNPs shape/size: spherical/40–60 nm
-SeNPs demonstrated superior antibacterial effect, at
various incubation times compared with the antibiotic
ciprofloxacin CIP
-SeNPs had greater antioxidant activity than methanolic
extracts of flowers Cof-Met extract and Na2SeO3

[146]

Synthesis: chemically—concentration was 128 and
64 µg/mL
Characterisation: chemical reduction method
Cytotoxicity: MTT test on human gingival fibroblast
Tested Microbes: S. mutans

SeNPs enhanced photodynamic therapy (PDT) activity
and exhibited significant antibiofilm action against
S. mutans
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Table 1. Cont.

STUDY METHODS KEY FINDINGS

[15]
Tested Microbes: S. salivarius, S. mutans, and S. sanguinis
Control: untreated sealant
Analysis: SEM, CLSM

Organo-selenium dental sealant was able to inhibit the
growth of all species individually and in a mixed biofilm.

Abbreviations: AFM: Atomic force microscopy; BSA: Bovine serum albumin; CHX: Chlorhexidine gluconate;
CLSM: Confocal laser scanning microscopy; DLS: Dynamic light scattering; EDX: Energy dispersive X-ray
analysis; EWL: Egg white lysozyme; FTIR: Fourier transform infrared; Na2SeO3: Sodium selenite; MBC: Minimum
bactericidal concentration; MB-PACT: Methylene Blue-induced photodynamic antimicrobial chemotherapy;
MHB: Mueller Hinton broth; MIC: Minimum inhibitory concentration; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl-2H-tetrazolium bromide assay; NaOCl: Sodium hypochlorite; SAED: Selected area (electron) diffraction;
SEM: Scanning electron microscope; SeO2: Selenium dioxide; TEM: Transmission electron microscope; UV–
Vis: Ultraviolet–visible; XPS: X-ray photoelectron spectroscopy; XRD: X-ray diffraction analysis. ZOI: Zone
of inhibition.

As shown in Table 1, SeNPs possess microbial inhibition action against a variety
of bacterial strains as well as against important fungi (C. albicans), and this action varies
according to the synthesis method and the SeNP properties. Some studies have adopted eco-
friendly green synthesis using plants, fruit, vegetables, and natural substances. Others have
followed traditional chemical synthesis approaches and then used capping agents. Most
studies of SeNPs began with Na2SeO3 as the precursor molecule. A noteworthy pattern
across these studies was that, regardless of the variables being examined, all the microbes
used were affected by exposure to SeNPs to some extent. A limitation of the work to date is
that most studies used organisms in the planktonic state rather than in biofilms; moreover,
biofilm studies were single species rather than multispecies. Hence, additional work is
needed to determine the optimum profile of SeNPs for achieving caries-arresting actions.

7. Conclusions and Future Directions

SDF has become a popular treatment choice for halting dental caries in young children,
especially children with minimal cooperation for dental procedures. However, it darkens
hard tooth structure permanently, which compromises aesthetics, particularly in the ante-
rior smile zone. This review identifies several methods that could be followed to reduce
this concern, including the use of AgNPs and NPs of silver fluoride. There could also be
value in using remineralising agents other than fluoride, such as NPs of hydroxyapatite.
There could be variations made to formulations in order to lower the levels of silver and
fluoride in the SDF or even to replace one or both of the silver and fluoride components
completely. Moreover, since oxidation processes appear central to the chemistry of the
staining, adding SeNPs which have antioxidant actions could have an anti-staining benefit;
SeNPs could be used for their antimicrobial actions as well. Future research should address
the topic of selenium chemistry to optimise how SeNPs could be used with or in place of
ionic silver. Incorporating other antimicrobial metals as nanoparticles such as copper, zinc
oxide, and cerium oxide should also be deeply explored in the context of topical anticaries
agents, taking into account the optimal physicochemical parameters for each of these.
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