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Abstract: Metallo-β-lactamases (MBLs), also known as class B β-lactamases (BBLs), are Zn(II)-
containing enzymes able to inactivate a broad range of β-lactams, the most commonly used antibiotics,
including life-saving carbapenems. They have been known for about six decades, yet they have
only gained much attention as a clinical problem for about three decades. The naming conventions
of these enzymes have changed over time and followed various strategies, sometimes leading to
confusion. We are summarizing the naming strategies of the currently known MBLs. These enzymes
are quite diverse on the amino acid sequence level but structurally similar. Problems trying to
describe conserved residues, such as Zn(II) ligands and other catalytically important residues, which
have different numbers in different sequences, have led to the establishment of a standard numbering
scheme for BBLs. While well intended, the standard numbering scheme is not trivial and has not
been applied consistently. We revisit this standard numbering scheme and suggest some strategies
for how its implementation could be made more accessible to researchers. Standard numbering
facilitates the comparison of different enzymes as well as their interaction with novel antibiotics and
BBL inhibitors.
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1. Introduction

β-Lactam antibiotics have been the mainstay of antibacterial chemotherapy for eight
decades. After the discovery of the antibacterial activity of penicillin by Alexander Fleming
in 1928, it took more than a decade to bring it into the clinic [1–4]. Since then, penicillins and
other subsequently discovered β-lactams, such as cephalosporins and cephamycins, car-
bapenems, and monobactams, have constituted more than half of all antibiotics used [5,6].
They owe their antibacterial effect to their ability to inhibit the bacterial enzyme transpep-
tidase, which is essential for the biosynthesis as well as the remodeling and repair of
peptidoglycan, the major component of the bacterial cell wall. In addition, they are charac-
terized by low toxicity because humans do not have a functional analog of this enzyme
that could cause off-target effects, and most β-lactams are not metabolized and excreted
renally. As predicted by Fleming in his Nobel lecture [7], resistance to β-lactams was
discovered even before penicillin was used on a large scale in the 1940s [8], and inac-
tivation of β-lactams by β-lactamases remains the most common antibiotic resistance
mechanism [9].

Mechanistically, there are two types of β-lactamases. The first type uses an active-
site serine residue to hydrolyze the antibiotic. These enzymes are referred to as serine
β-lactamases or SBLs and constitute class A, C, and D β-lactamases, which are based on
sequence homology. The second type activates a water molecule by coordination to Zn(II)
ions, leading to deprotonation of the water molecule. The resulting hydroxide then acts
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as the nucleophile in the hydrolysis of the antibiotic. These enzymes are called metallo-β-
lactamases or MBLs, constitute class B β-lactamases, and differ from the other three classes
A, C, and D in structure, mechanism, substrate spectrum, and sensitivity to β-lactamase
inhibitors, as described in the following.

The overall protein architecture of MBLs follows an αβ/βα fold [10] (Figure 1A).
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S223 are involved in substrate binding rather than K224. Figures were created with VMD [13]. The 
residues are numbered following the class B standard numbering scheme [14,15]. 

A central “sandwich” of two β sheets is flanked by α helical domains on either side. 
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Figure 1. Three-dimensional structures of MBLs. (A) Overall structure of NDM-1 (subclass B1) based
on PDB entry 8PGE. The protein backbone is shown in gray as a cartoon representation. The side
chains of the Zn(II) ligands in the active site as well as K224, which is involved in substrate binding,
are shown as sticks (C, gray; N, blue; O, red; and S, yellow). Zn(II) ions are shown as orange spheres.
(B) A detailed view of the active site of NDM-1 is shown in panel (A), with residues labeled at their
Cα atoms. (C) Active site of CphA (subclass B2) based on PDB entry 1X8G [11]. H116 in subclass
B1 is replaced with N116, and Zn1 is absent. (D) Active site of L1 (subclass B3) based on PDB entry
2AIO [12]. The role of Zn(II) ligand C221 in subclasses B1 and B2 is taken over by H121. S221 and
S223 are involved in substrate binding rather than K224. Figures were created with VMD [13]. The
residues are numbered following the class B standard numbering scheme [14,15].

A central “sandwich” of two β sheets is flanked by α helical domains on either side. In
contrast, SBLs have a mixed αβ hydrolase fold. The catalytic mechanism of MBLs has been
reviewed elsewhere (e.g., Bahr et al. [16] and references therein). It relies on one or two
Zn(II) ions that activate the β-lactam substrate by polarizing the β-lactam carbonyl group,
making the carbonyl carbon more electrophilic, and generating and orienting a hydroxide
anion as an effective nucleophile. The nucleophilic attack of the hydroxide on the β-lactam
carbonyl carbon initiates the hydrolysis of the β-lactam. SBLs employ an active-site serine
residue to carry out the nucleophilic attack. In contrast to MBLs, the catalytic cycle of
SBLs includes a covalent acyl-enzyme intermediate. Most MBLs, especially the clinically
important ones, have a broad substrate spectrum that includes penicillins, cephalosporins
and cephamycins, and carbapenems, but not monobactams. The substrate spectra of the
other classes are diverse. Most of them can inactivate early penicillins and cephalosporins,
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and typically only enzymes that have acquired mutations (e.g., in the TEM family from
class A) can hydrolyze more recent penicillins, cephalosporins, and monobactams [17]. In
addition, there are specialized families (e.g., KPC, class A) that can inactivate carbapenems,
and enzymes from other families (e.g., OXA, class D) have acquired mutations that enable
them to hydrolyze carbapenems [18]. A clinically very significant difference between MBLs
and SBLs is their sensitivity to β-lactamase inhibitors (BLIs). The original BLIs (clavulanate,
sulbactam, and tazobactam) are themselves β-lactams, but they have no or very little
antibacterial activity. These BLIs can inactivate some but not all SBLs and are ineffective
against MBLs [19]. The discovery and development of BLIs, including MBL inhibitors, is
an active field of research in both academia and the industrial sector, and recent progress
has been summarized elsewhere [20–24].

Typical bacteria that express β-lactamases, including MBLs and SBLs, are Gram-
negative Enterobacteriaceae (e.g., Escherichia coli and Klebsiella pneumoniae) and nonfermen-
tative species, such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas
maltophilia. However, enzymes have been isolated from various other bacterial species,
which are listed for each enzyme, for instance, in the β-Lactamase DataBase (BLDB) [25].

Accurate naming of MBLs and numbering of their amino acid residues is essential to
understanding the function of MBLs and interpreting the binding and inhibition modes
of potential MBL inhibitors. However, to quote Tooke et al. [20], “It is apparent [. . .] that
the field is considerably complicated by historical but now well-established inconsistencies
of nomenclature”. This review offers an account of some of these historical naming and
numbering conventions and some possible solutions to standardize enzyme names as well
as amino acid residue numbering.

2. The Challenge of Naming β-Lactamases and Numbering Their Amino
Acid Residues

In the first part of this review (Section 3), we will summarize different strategies
that have been followed for naming metallo-β-lactamases and members within families.
Family members are often numbered sequentially according to the chronology in which
they were discovered, typically from clinical isolates. But, as can be expected, there have
been controversies and miscommunications regarding who has the authority to make such
assignments and which enzyme should have a particular name. Since these numberings
have become part of the enzyme names (e.g., IMP-1, VIM-2, or NDM-1), we will consider
these numbers part of the naming problem.

Another level of complexity is associated with the numbering of amino acid residues
in β-lactamase sequences. Once it became clear that many enzymes were very closely
related in terms of structure, including catalytic residues, the utility of standard numbering
schemes became obvious. Such standard numbering schemes typically assign a constant
number to an important catalytic residue. For instance, the active-site serine in class A and
D enzymes is always S70 [26,27], and in class C enzymes, it is S64 [28]. The numbering of
the other residues in the amino acid sequence is shifted accordingly. Thus, every amino acid
in TEM-1 receives a number augmented by 2 [29] relative to its position in the preprotein
(including the leader sequence) [26]. In the case of class A enzymes, this approach is straight-
forward because sequences are overall very similar, typically resulting in the omission of
a few residue numbers for some enzymes [29]. In MBLs (class B enzymes), the situation
is more complex because the nucleophile is not one active-site serine, but an activated
water/hydroxide coordinated to one or two Zn(II) ions, which in turn are coordinated by a
set of amino acid ligands. The identity of these ligands mostly falls into three patterns, and
based on these patterns, three subclasses of class B enzymes named B1, B2, and B3 have
been defined [14] (Figure 1B–D). There have been efforts to number these Zn(II) ligands
consistently [14,15,30]. Like the naming problem, there have been inconsistencies in the
numbering of β-lactamase residues, obviously before standard numbering schemes were
available but also after and despite their existence.
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The simpler it is to conform to a particular numbering scheme, the more consistently
it is followed. For instance, as mentioned above, most class A amino acid sequences can be
brought into agreement with Ambler’s numbering scheme quite easily. The metallo- or class
B β-lactamase (BBL) standard numbering scheme [14,15] is quite complex, with various
possible insertions and deletions. Accordingly, when new enzymes were discovered, BBL
numbering was not always applied. Whether the BBL standard numbering is used for PDB
files derived from X-ray crystal structures or not often seems to depend on whether existing
PDB files that are used as search models have used BBL numbering or not. The same
is true for publications: if most publications about an enzyme have not used a standard
numbering scheme, then most subsequent publications will not use it either.

In the second part of this review (Section 4), we will revisit the BBL standard number-
ing scheme, explain the potential benefits of using it, give a historic overview of when it
has been applied and when not, and provide possible solutions for how its use could be
increased without imposing an undue burden on researchers.

3. Naming of β-Lactamases
3.1. Naming of β-Lactamases Based on the Enzymatic Reaction Catalyzed

The enzyme name β-lactamase refers to the activity of hydrolyzing the β-lactam ring
of these antibiotics (Figure 2) and is classified by the Enzyme Commission as EC 3.5.2.6
(spelled out: 3 = hydrolases, 5 = acting on carbon-nitrogen bonds other than peptide bonds,
2 = in cyclic amides, and 6 = β-lactamase) [31,32].
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Figure 2. Chemical structures of benzylpenicillin (left) and cefotaxime (right) as representative
β-lactam antibiotics. Different possible hydrolysis reactions acting on these compounds are shown
with the catalyst (enzyme or acid/base) indicated.

It should be noted that other hydrolases exist that act on β-lactam antibiotics out-
side the β-lactam ring. These include natural or engineered penicillin and cephalosporin
amidases (EC 3.5.1.11, 3 = hydrolases, 5 = acting on carbon-nitrogen bonds, 1 = in linear
amides, and 11 = penicillin amidase) [33]. These enzymes are historically also referred to as
acylases. They are frequently used in biotransformations to cleave the amide bond at C6 of
penicillins or C7 of cephalosporins to yield 6-aminopenicillanic acid or 7-cephalosporanic
acid, respectively. The same enzymes can be used subsequently to introduce more desir-
able moieties at those positions to yield novel semisynthetic β-lactam antibiotics. These
processes are described in detail elsewhere [34–36]. Beyond that, these amidases/acylases
are also used in other biocatalytic processes, such as peptide synthesis and the production
of enantiopure compounds [37].
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Another hydrolytic reaction that is involved in the degradation of cephalosporins
with an ester moiety at position 3 (3-acetoxymethylcephalosporins), such as cephalothin
and cefotaxime, is ester hydrolysis in either acidic or basic conditions to the desacetyl
derivatives. The resulting alcohols can form lactones with the carboxyl group at C4 in
acidic conditions [38]. The desacetyl derivatives do maintain antimicrobial activity [39].
This reaction is acid- or base-catalyzed and does not require an enzyme.

This review will focus exclusively on metallo-β-lactamases and hydrolysis of the
β-lactam ring (EC 3.5.2.6). An interesting observation is that when the first β-lactamase
activity was reported, it was not at all clear that it was a β-lactamase. This is evident
from the title of the seminal publication about an “enzyme [. . .] able to destroy penicillin”,
or the enzyme name penicillinase [8]. In fact, the structure of penicillin was not solved
until the late 1940s by X-ray crystallography [40] and infrared spectroscopy [41]. Once the
bioactive core of penicillin (as well as cephalosporins discovered later) was identified as a
β-lactam ring and the inactivating enzymes were shown to hydrolyze the β-lactam ring,
they could have properly been called β-lactam hydrolases, but since the mid-1960s to this
day, usually the shorter and less specific term β-lactamase is used. Historical perspectives
on β-lactamase nomenclature, such as naming enzymes based on their substrate preference,
are summarized elsewhere [42].

Also in the mid-1960s, it became apparent that there are two mechanistically distinct
types of β-lactamases: one that is not inactivated by the addition of the metal ion-chelating
agent ethylenediaminetetraacetate (EDTA) and one that is [43,44]. The former was deter-
mined to be a class A serine β-lactamase (SBL), and the latter a class B (BBL) or metallo-
β-lactamase (MBL). The SBL (a penicillinase in terms of substrate spectrum) and MBL (a
cephalosporinase) from Bacillus cereus studied by Sabath and Abraham were subsequently
simply referred to as B. cereus β-lactamase type I or BcI [45], and B. cereus β-lactamase type
II or BcII [46]. The reader might notice that naming two enzymes that are structurally and
mechanistically so different by these names might cause confusion later. Very similarly,
when two β-lactamases referred to as “labile enzymes” were isolated from Stenotrophomonas
maltophilia, one that turned out to be an MBL was named L1 [47] and another one that
turned out to be an SBL was named L2 [48].

Classification of β-lactamases is accomplished by amino acid sequence compari-
son [49] or by also including function and physical properties [9]. Historical, frequently
confusing, [42,50] and desirable [51] naming of all β-lactamases has been described. Here,
the focus is on class B or MBLs. For an in-depth classification of all β-lactamases, including
SBLs, we refer to other recent excellent reviews [9,16,20,42,52]. In terms of naming, the
identity of MBLs is often indicated in the name by using the letter M to indicate MBL (for
instance, in NDM for New Delhi MBL or VIM for Verona Integron-borne MBL) or B to
indicate class B (for instance, in BlaB for β-lactamase class B or CGB for Chryseobacterium
gleum class B), or the combination MB to indicate an MBL (for instance, in GMB for German
MBL or HMB for Hamburg MBL).

3.2. Naming of Metallo-β-Lactamase Families

Apart from some exceptions, many of which date back to the 20th century, most
MBL families (as well as SBL families) are named by a three-letter acronym, but what the
acronyms stand for is not consistent (Figure 3). Several databases containing β-lactamase
information exist [25,53–59]. For this study, we have relied mostly on the β-Lactamase
DataBase (BLDB) [25]. Tables 1–3 list the named MBLs found in the BLDB with their
abbreviated name (as shown in the database), the derivation, naming pattern, naming
pattern explanation, and reference (including PMID). We cross-checked our derivations
with those reported by Dr. George Jacoby [50] where possible and contacted authors when
in doubt. In some cases, we used our own best judgment.
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Table 1. Naming of subclass B1 enzymes. The underlined letters in the Derivation column indicate
where the letters in the Name column are derived from. The underlined letters in the Pattern
Explanation column indicate where the letters in the Pattern column are derived from. The references
are designated by their PubMed ID and their number in the References section.

Name Derivation Pattern Pattern Explanation Reference

AFM Alcaligenes faecalis MBL GsM Genus species MBL 36000902 [60]

ANA Anaeromyxobacter spp. Gen Genus 29020980 [61]

BcII Bacillus cereus type II BL Gs Genus species 3930467 [46]

BIM Belém imipenemase LSu Location Substrate Specificity 37038995 [62]

BlaB β-lactamase class B Other * 10858348 [63]

CAM Central Alberta MBL LoM Location MBL 30789204 [64]

CfiA
(CcrA)

Cefoxitin and imipenem-resistant A
Cefoxitin and carbapenem-resistant A

Other
Other

2110145 [65]
2121094 [66]

CGB Chryseobacterium gleum class B GsB Genus species BBL 12183230 [67]

CHM Chryseobacterium MBL GeM Genus MBL 37047008 [68]

CEMC19 Cefixime (cem) resistance Other 35768448 [69]

CrxA Carbapenem-resistant Bacteroides xylanisolvens A Other 35296904 [70]

CX1 Isolated from clone CX1 Other 31487611 [71]

DIM Dutch imipenemase LSu Location Substrate Specificity 20308383 [72]

EBR Empedobacter brevis Gsp Genus species 12234848 [73]

ECV Echinicola vietnamensis Ges Genus species 29020980 [61]

ElBla2 Erythrobacter litoralis β-lactamase 2 Other 21468894 [74]

FIA Fibrella aestuarina Ges Genus species 29020980 [61]

FIM Florence imipenemase LSu Location Substrate Specificity 23114762 [75]

GIM German imipenemase LSu Location Substrate Specificity 15561840 [76]

GMB German MBL LMB Location MBL 35257174 [77]

GRD23 Gemmatimonadetes resistant Denmark Other 28082950 [78]

HBA Hirschia baltica Gsp Genus species 22675580 [79]

HMB Hamburg MBL LMB Location MBL 28065891 [80]

IMP Imipenemase Sub Substrate Specificity 8141584 [81]

IND Chryseobacterium indologenes spe species 10077836 [82]

JOHN Chryseobacterium johnsoniae spec species 12562690 [83]

KHM Kyorin University Hospital MBL LoM Location MBL 18765691 [84]

MOC Myroides odoratus carbapenemase GsM Genus species MBL

MUS Myroides odoratimimus spe species 12384365 [85]

MYO Myroides odoratimimus Ges Genus species 29020980 [61]

MYX Myxococcus xanthus Ges Genus species 29020980 [61]

NDM New Delhi MBL LoM Location MBL 19770275 [86]
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Table 1. Cont.

Name Derivation Pattern Pattern Explanation Reference

ORR Ornithobacterium rhinotracheale Ges Genus species 29020980 [61]

PAN Pseudobacteriovorax antillogorgiicola Gsp Genus species 31396187 [87]

PEDO Pedobacter roseus Genu Genus 26482314 [88]

PKB Pontibacter korlensis class B GsB Genus species BBL 26057562 [89]

PST Pseudomonas stutzeri Gsp Genus species 29020980 [61]

SFB Shewanella frigidimarina class B GsB Genus species BBL 15772146 [90]

SHD Shewanella denitrificans Ges Genus species 29020980 [61]

SHN Shewanella denitrificans Ges Genus species 29020980 [61]

SIM Seoul imipenemase LSS Location Substrate Specificity 16251286 [91]

SLB Shewanella livinstonensis class B GsB Genus species BBL 15772146 [90]

SPM Sao Paulo MBL LoM Location MBL 12407123 [92]

SPN79 Spain Loc Location 28082950 [78]

SPS Sediminispirochaeta smaragdinae Ges Genus species 29020980 [61]

STA Stigmatella aurantiaca Ges Genus species 29020980 [61]

SZM Shenzhen MBL LoM Location MBL 36225370 [93]

TMB Tripoli MBL LMB Location MBL 22290947 [94]

TTU Teredinibacter turnerae Gsp Genus species 29020980 [61]

TUS Myroides odoratus spe species 12384365 [85]

VAM
(VMB)

Vibrio alginolyticus MBL
Vibrio alginolyticus MBL

GsM
GMB

Genus species MBL
Genus MBL

34424042 [95]
34097496 [96]

VIM Verona integron-borne MBL LIM Location integron-borne MBL 10390207 [97]

VMB Vibrio MBL GMB Genus MBL 32293144 [98]

VMH Vibrio vulnificus metallohydrolase GMH Genus metallohydrolase 34228542 [99]

WUS Wenzhou Monopterus albus Lsp Location species 36532482 [100]

ZHO Zhongshania aliphaticivorans Gen Genus 30778547 [101]

ZOG Zobellia galactanivorans Ges Genus species 29020980 [61]

* Other, does not fit into one of the commonly used patterns.

Table 2. Naming of subclass B2 enzymes.

Name Derivation Pattern Pattern Explanation Reference

CphA Carbapenem-hydrolyzing enzyme A Other 1856163 [102]

CVI Chromobacterium violaceum Gsp Genus species 37513808 [103]

PFM Pseudomonas fluorescens MBL GsM Genus species MBL 31685461 [104]

Sfh Serratia fonticola carbapenem hydrolase GsH Genus species hydrolase 12821491 [105]

YEM Yersinia mollaretii Ges Genus species 32540974 [106]



Antibiotics 2023, 12, 1746 8 of 21

Table 3. Naming of subclass B3 enzymes.

Name Derivation Pattern Pattern Explanation Reference

AIM Adelaide imipenemase LSu Location Substrate Specificity 22985886 [107]

ALG6 Algeria Loc Location 28082950 [78]

ALG11 Algeria Loc Location 28082950 [78]

AM1 Isolated from clone AM1 Other 31487611 [71]

B3SU1 B3 subclass uncultured 1 Other

B3SU2 B3 subclass uncultured 2 Other

BJP Bradyrhizobium japonicum Gsp Genus species 16723554 [108]

BLEG Bacillus lehensis G GspG Genus species 34502284 [109]

CAR Erwinia caratovora spe species 18443127 [110]

CAU Caulobacter crescentus Gen Genus 12019096 [111]

CHI Chitinophaga pinensis Gen Genus

CPS Chryseobacterium piscium Stok-1 Gss Genus species strain 26482314 [88]

CRD3 CRUCIAL Denmark Other 28082950 [78]

CSR Chronobacter sakazakii resistant Gsr Genus species resistant 32542533 [112]

DHT2 Dossenheim plantomycin treated Other 28082950 [78]

EAM Erythrobacter aquimaris MBL GsM Genus species MBL 22850693 [113]

ECM Erythrobacter citreus MBL GsM Genus species MBL 22850693 [113]

EFM Erythrobacter flavus MBL GsM Genus species MBL 22850693 [113]

ELM Erythrobacter longus MBL GsM Genus species MBL 22850693 [113]

ESP Extended-spectrum BL Other 26482314 [88]

EVM Erythrobacter vulgaris MBL GsM Genus species MBL 22850693 [113]

FEZ Fluoribacter gormanii endogenous zinc BL Other 10817705 [114]

GOB Chryseobacterium meningosepticum class B spB species BBL 10858348 [63]

L1 Labile enzyme 1 from Stenotrophomonas maltophilia Other 8018721 [47]

LMB Linz MBL LMB Location MBL 29897538 [115]

LRA2 Lactam resistant from Alaskan soil Other 18843302 [116]

LRA3 Lactam resistant from Alaskan soil Other 18843302 [116]

LRA7 Lactam resistant from Alaskan soil Other 18843302 [116]

LRA8 Lactam resistant from Alaskan soil Other 18843302 [116]

LRA12 Lactam resistant from Alaskan soil Other 18843302 [116]

LRA17 Lactam resistant from Alaskan soil Other 18843302 [116]

LRA17 Lactam resistant from Alaskan soil Other 18843302 [116]

MIM Maynooth imipenemase LSS Location Substrate Specificity 26775612 [117]

MSI Massilia oculi Gen Genus 26482314 [88]

NWM North Rhine-Westphalia MBL LoM Location MBL

PAM Pseudomonas alcaligenes MBL GsM Genus species MBL 24356301 [118]

PEDO Pedobacter roseus Genu Genus 26482314 [88]

PJM Pseudoxanthomonas japonensis MBL GsM Genus species MBL 35943258 [119]
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Table 3. Cont.

Name Derivation Pattern Pattern Explanation Reference

PLN Pedobacter lusitanus NL19 Gss Genus species strain 30029312 [120]

POM Pseudomonas otitidis MBL GsM Genus species MBL 21060106 [121]

PNGM Papua New Guinea MBL LocM Location MBL 29842976 [122]

RM3 Isolated from clone RM3 Other 27431213 [123]

SAM Simiduia agarivorans MBL GsM Genus species MBL

SER Salmonella enterica resistance Gsr Genus species resistance 32542533 [112]

SIE Sphingobium indicum B3-E (E116) GsE Genus species B3-E 34310207 [124]

SIQ Sphingobium indicum B3-Q (Q116) GsQ Genus species B3-Q 34310207 [124]

SMB Serratia marcescens class B GsB Genus species BBL 21876060 [125]

SPG Sphingomonas Gen Genus 26482314 [88]

SPR Serratia proteamaculans Gsp Genus species 23982345 [126]

SSE Sphingopyxis sp. Enzyme? GsE Genus species Enzyme 32542533 [112]

THIN-B Janthinobacterium lividum class B GenB Genus BBL 11181369 [127]

Analyzing Tables 1–3, one can observe that the three-letter naming patterns used are
very diverse. The most common are GsM (Genus species MBL), followed by Ges (Genus
species), Gen (Genus), Gsp (Genus species), LSu (Location Substrate Specificity), and LoM
(Location MBL). The different strategies for obtaining these three-letter codes are summa-
rized in Figure 3.
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Figure 3. This decision tree chart shows the different strategies that have been applied in the naming of
MBLs. In this chart, only three-letter-code names have been considered. The main themes by which
names have been given are based on organism of origin, location where the enzyme was isolated,
genetic background, such as integron-borne, and enzyme activity, either generally as MBL or class B or
focusing on its substrate specificity, such as imipenemase. These different strategies have led to various
three-letter-code names, the components of which are shown in the three-digit boxes. Below these boxes,
some examples are shown of where these codes are used, either individually or in combination.

Either using Genus and/or species or a specific location in the name has its pros and
cons. If a Genus and/or species are used, chances are that the enzyme is subsequently isolated
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from another organism or that the name of the organism changes due to reclassification.
GOB-1 was isolated from Chryseobacterium meningosepticum, with the GO derived from
the center of the species name and B added for class B or BBL. Subsequent variants were
isolated from other organisms, like Elizabethkingia anopheles, making the acronym somewhat
meaningless. In addition, an increasing number of β-lactamase genes are isolated from
metagenomes where Genus and species are frequently not known. Regarding enzymes that
use a location in their name, the first Verona integron-borne MBL (VIM-1) was isolated in
Verona, Italy [97], but VIM-2 was isolated in Marseille, France [128]. In addition, giving an
MBL a name associated with a specific location can be politically sensitive [129]. A recent
contribution by a panel of β-lactamase experts recommended that “new β-lactamases
should not be named based on geographical location” [51]. Naming an enzyme based
on substrate preference is equally problematic, since frequently they turn out to have
an even greater preference for other substrates. For instance, IMP-1 was initially named
for its ability to inactivate imipenem [81], although it is actually much more efficient at
inactivating some cephalosporins [130,131]. Even when only focusing on carbapenemase
activity, a variant named IMP-6 is particularly efficient at inactivating meropenem [132,133].
Nevertheless, its name is still IMP-6 rather than MER or MEM for meropenemase.

The authors do not have any specific recommendations on how to name new MBLs
except that, if possible, a combination of three capital letters should be used that is some-
what descriptive of the enzyme’s origin or properties and ideally ends in M for MBL. There
is a large body of scientific studies published on existing MBLs based on the established
nomenclature. So, we should embrace this historically grown nomenclature and attempt
to avoid ambiguity going forward. Authors should also consult Ref. [51] and are encour-
aged to contact NCBI staff as suggested here: https://www.ncbi.nlm.nih.gov/pathogens/
submit-beta-lactamase/ (accessed on 31 October 2023).

3.3. Naming of Metallo-β-Lactamase Family Members

Historically, when a new MBL was discovered that was deemed sufficiently different
from other known MBL families, a new name was given as described above (preferably
a capital three-letter name) with the number 1 added (e.g., IMP-1 [81], VIM-1 [97], and
NDM-1 [86]). As additional variants of these enzymes or their encoding genes were discov-
ered, new allele numbers 2, 3, etc. were added to the family acronym in chronological order.
These enzymes, with links to the original publication, the nucleotide sequence, as well as
the amino acid sequence, were then deposited on the “Lahey Site”, which was curated for
many years by Drs. Karen Bush, George Jacoby, and later Timothy Palzkill. As was recently
explained [42], this site was retired in 2015 but is still available in its 2015 version at https:
//externalwebapps.lahey.org/studies/Other.aspx (accessed on 31 October 2023). The au-
thors of that site also had the authority to assign/approve new family names and new allele
numbers to existing families. Today, the information on the Lahey Site as well as the name-
giving authority reside with the National Center for Biotechnology Information (NCBI),
Bethesda, MD, USA, for instance, at the National Database of Antibiotic Resistant Or-
ganisms (NDARO) (https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/,
accessed on 31 October 2023).

Such an allele assignment system is not perfect. As mentioned, allele numbers were
assigned in chronological order, but typically this does not mean isolation date but pub-
lication date (or rather, allele number request date). For example, VIM-2 was isolated in
1996 [128] before VIM-1 in 1997 [97], but published in 2000 after the publication of VIM-1
in 1999. In addition, while the proximity of allele numbers might be interpreted as an
indication of sequence similarity, this is far from the truth. IMP-1 isolated in Japan [81] and
IMP-2 isolated in Italy [134] are among the most distantly related IMP enzymes with only
85% sequence identity. Interestingly, IMP-2 was isolated from a patient in Verona, Italy,
and it was integron-borne, but it was not named Verona integron-borne MBL (VIM)-2 but
instead IMP-2 due to its higher sequence similarity with IMP-1 than VIM-1 (31%), further
highlighting some of the curiosities of MBL naming. Nevertheless, this naming approach

https://www.ncbi.nlm.nih.gov/pathogens/submit-beta-lactamase/
https://www.ncbi.nlm.nih.gov/pathogens/submit-beta-lactamase/
https://externalwebapps.lahey.org/studies/Other.aspx
https://externalwebapps.lahey.org/studies/Other.aspx
https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/
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has resulted in close to 200 BcII variants, more than 100 IMP variants, and approaching
100 VIM and NDM variants. For some of the SBL families, the allele numbers are even
larger (>2200 EC variants (class C) and >1200 OXA variants (class D)) [25].

Unfortunately, authors reporting new families or new alleles did not always consult
with the authorities mentioned above, leading to incorrect assignments and duplications of
assignments. For instance, the name NDM-16 was used twice for different enzymes, which differ
in four amino acid identities. This necessitated the designation of the two names, NDM-16a
(GenBank accession code NG_049333) and NDM-16b (GenBank accession code KU285430).
Another example is the designation of two different names, IND-2a (GenBank accession code
AF219130) and IND-13 (GenBank accession code HM245381), for the identical enzyme.

Again, the authors recommend consulting Ref. [51] and contacting NCBI staff to
request the assignment of a new allele number before publishing any such enzyme. More
information can be found here: https://www.ncbi.nlm.nih.gov/pathogens/submit-beta-
lactamase/ (accessed on 31 October 2023).

4. Numbering Amino Acid Residues in Metallo-β-Lactamases

Now that each enzyme is assigned a unique identifier through its family name and
number, what remains to be labeled in a way that is useful to microbiologists, biochemists,
and medicinal chemists are the amino acid residues. Because β-lactamases from each class
are quite diverse in amino acid sequence with insertions and deletions but very similar
in three-dimensional structure with conserved residues, it has been suggested to apply
standard amino acid numbering schemes based on sequence and structural alignments.
Such standard numberings now exist for all classes: A [29], B [14,15], C [28], and D [27].
The one for class B enzymes will be revisited below.

4.1. The Class B (Metallo-)β-Lactamase Standard Numbering Scheme

In 2001, several experts in the MBL field with backgrounds in enzymology and X-
ray crystallography proposed a “standard numbering scheme for class B β-lactamases”,
henceforth often referred to as the BBL or MBL standard numbering scheme [14]. At
that time, the crystal structures of a few MBLs were available. These as well as sequence
similarities were the basis of grouping MBLs or class B enzymes into three subclasses,
B1–B3. B1 enzymes included BcII, CcrA, and IMP-1, for which crystal structures were
available, and VIM-1, BlaB, and IND-1, for which no structures were available at the time.
One crystal structure of a B3 enzyme (L1, Figure 1D) was available, and other B3 enzymes
included in the study were FEZ-1, GOB-1, and THIN-B. The authors noted that, despite
the small sequence identities of the different enzymes, their overall structures were very
similar. This information was sufficient to align the amino acid sequences from all three
subclasses, including B2 enzymes CphA and Sfh-1, for which no structures were available
while keeping the positions of Zn(II) ligands constant. The N-terminal numbering of L1
was used as a reference due to it being the longest enzyme. However, there are some
deletions from residues 58–65 due to B3 enzymes not having an active site lid. Aligning
the Zn(II) ligands based on their three-dimensional location also made it clear that they
deviate between the subclasses, one defining characteristic of the subclassification (Table 4
and Figure 1). All MBLs have two Zn(II) binding sites. The Zn(II) ions bound are called
Zn1 and Zn2, and their respective ligands are referred to as Zn1 ligands and Zn2 ligands.

Table 4. Zn(II) ligands with consensus numbering in the three MBL subclasses.

MBL Subclass Zn1 Ligands Zn2 Ligands

B1 H116 H118 H196 D120 C221 H263

B2 N116 H118 H196 D120 C221 H263

B3 H/Q/E116 H/R118 H196 D120 H/Q121 H/K263

https://www.ncbi.nlm.nih.gov/pathogens/submit-beta-lactamase/
https://www.ncbi.nlm.nih.gov/pathogens/submit-beta-lactamase/
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A few years later, additional crystal structures were available for VIM-2 and BlaB
(subclass B1), FEZ-1 (subclass B3), and importantly, CphA as the first subclass B2 enzyme
(Figure 1C), which prompted an update to the BBL standard numbering scheme [15]. The
identity of the Zn(II) ligands did not have to be adjusted, and minor adjustments to the
numbering were mostly limited to the N- and C-termini. The CphA crystal structure also
revealed that while B1 and B3 enzymes bind two Zn(II) ions, B2 only binds Zn2 [11], and
Zn1 inhibits B2 enzymes. A later crystal structure confirmed that the inhibitory Zn1 binds
to the Zn1 binding site [135]. The decreased affinity for Zn1 could be explained by N116
instead of H116 in the Zn1 site (Figure 1C). Table 4 also shows that subclass B3 is the most
diverse in terms of Zn(II) ligands, with some of these variants being described only recently
in a genome database [112] and the E116 variant subsequently studied biochemically [124].
Following the publication of the BBL standard numbering scheme, many researchers in
the field made an effort to apply it in publications and even in PDB files for all hitherto-
crystallized B2 [11,12,135–140] and many B3 enzymes [12,141–147].

Enter NDM-1 [86]. NDM-1 caused severe outbreaks and quickly became one of the
most widely spread MBLs and antibiotic resistance factors [148]. It was also featured in
a PBS Frontline documentary called “Hunting the Nightmare Bacteria”. Understandably,
there was a big desire to learn more about this enzyme, including solving a crystal struc-
ture. Eventually, it was solved by research groups that either decided not to use the BBL
numbering or were unfamiliar with it [149–151]. Going forward, most publications on
NDM-1 have not used the BBL numbering, with a few laudable exceptions [125,152–154].

Of course, the original motivation for the BBL numbering scheme is still valid. If
applied consistently, it would greatly improve our ability to compare different MBL variants,
their catalytic mechanisms, and their interactions with substrates as well as inhibitors. We
propose that the reasons for not applying it are mostly unfamiliarity with its existence and
how to apply it. Indeed, its application is not trivial, and, to our knowledge, no easily
accessible tool exists. We have previously proposed a simple algorithm for renumbering
residues in NDM-1 [30], but it requires manually renumbering residues by certain numbers
depending on their position in the protein (Table 5). In the next section, we illustrate the
renumbering problem with manual renumbering and then propose possible solutions for
automated renumbering.

Table 5. NDM renumbering algorithm [30]. The original numbering that corresponds to the amino
acid position in a FASTA file is modified by adding the value in the Modification column to obtain
the BBL numbering. This standard numbering follows the BBL standard numbering scheme and will
accomplish renumbering of the Zn(II) ligands, among others, to the consensus numbers shown in
Figure 1B and Table 4.

Original Number
(FASTA Position) Modification BBL Number

1 to 110 −6 −5 to 104
111 to 134 −4 107 to 130
135 to 153 −3 132 to 150

154 −4 + a 150 a
155 to 201 +7 162 to 208
202 to 225 +13 215 to 238
226 to 239 +15 241 to 254

240 +14 + a 254 a
241 +13 + b 254 b

242 to 253 +13 255 to 266
254 to 270 +41 295 to 311
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4.2. Strategies for MBL Renumbering
4.2.1. Manual Renumbering

MBL amino acid sequences in public databases, such as NCBI Protein, are shown in
FASTA format, that is, as strings of letters without any numbering. Three-dimensional struc-
tures, mostly from X-ray crystallography, are deposited as Protein Data Bank (PDB) files,
and the amino acid numbering is often simply the position of the amino acid in the FASTA
file. For instance, the NDM-1 preprotein sequence deposited under ID WP_004201164 is
shown in Figure 4.
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Figure 4. Amino acid sequence of the NDM-1 preprotein deposited in NCBI Protein under ID
WP_004201164. The portion included in PDB entry 8PGE is highlighted in green. The first amino acid
of the mature protein is highlighted in blue. Zn(II) ligands are highlighted in red.

The most recent structure of NDM-1 has been deposited under PDB ID 8PGE
(Figure 1A,B). It is in complex with hydrolyzed benzylpenicillin at 1.4 Å resolution and
contains two chains. The BBL standard numbering has not been applied. The mature
protein starts with C26, highlighted in blue, which is lipidated and anchors the protein into
the bacterial outer membrane [151,155]. The PDB structure starts with I31 in both chains,
which is expected because C26 is often removed to improve expression of soluble NDM-1
and/or a few residues at the N-terminus could be disordered in the crystal structure. Both
chains end with the final residue, R270. The range covered by the PDB file is highlighted in
green in Figure 4. The active-site Zn(II) ligands are highlighted in red. Table 5 shows the
renumbering algorithm proposed previously [30], which, when applied to the sequence
shown in Figure 4, yields the correct BBL numbers. For instance,

• H120, H122, and D124 become H116, H118, and D120 (−4), respectively;
• H189 becomes H196 (+7);
• C208 becomes C221 (+13);
• H250 becomes H263 (+13).

This simple method has accurately renumbered all Zn(II) ligands and can renumber all
other residues accordingly. However, this process may be too tedious for most researchers.
In addition, it is limited to NDM family enzymes that have the same length as NDM-1. For
instance, it will not work for NDM-18, which has a 5-amino acid residue duplication after
its original position 46, BBL numbering 40. It would require changing the numbering of the
following five residues to 40a through 40e.

4.2.2. Automated Renumbering Based on Conserved Motive Recognition

A better approach than just using absolute numbers would be to search for conserved
motives, such as the HXHXD motive (where X could be any amino acid), that is highly
conserved in B1 and many B3 enzymes, and adjust the numbering in that region to the
desired numbers: H116, X117, H118, X119, and D120. Subsequently, other motives in
other parts of the protein can be used to adjust the numbering in those regions. A Python
program doing just that was presented at the ASM Microbe 2022 [156]. This program
can also account for the five amino acid duplication in NDM-18 mentioned above. Once
determined, the BBL numbering can also be used to renumber amino acids in PDB files.
Still, such a program is specific to one family and would have to be adapted to any other
MBL family, which may not be very practical on a larger scale.
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4.2.3. Automated Renumbering Based on Profile Hidden Markov Model

Profile hidden Markov models have been used to renumber, for example, thiamine
diphosphate-dependent decarboxylases [157] or class C β-lactamases [28]. This approach is
more biologically sound, as it does not require the presence of specific consensus sequences
and can thus cover a broader range of MBL sequences, including unknown ones. It
involves a structure-guided alignment of multiple relevant sequences and the creation of a
profile hidden Markov model, for instance, with the HMMER program (http://hmmer.org,
accessed on 31 October 2023). Both the alignment and assignment of standard numbers can
be adjusted to ensure agreement with the BBL standard numbering scheme [15].

Finally, for a tool to find wide use, it needs to be freely accessible and easy to use.
Mack et al. provided detailed instructions on how to install and run HMMER with their
profile hidden Markov model and how to interpret the output [28]. It may be even easier
for a user to copy-and-paste or upload a FASTA or PDB file with original numbering and be
returned a sequence file with renumbering (probably in a comma-separated value or CSV
file format, showing original numbering, amino acid identity, and standard numbering) or
a renumbered PDB file. This could all be accomplished through a web interface. Such a
web interface has been implemented for thiamine diphosphate-dependent decarboxylases
(https://teed.biocatnet.de/numbering/, accessed on 31 October 2023 [157]). We are in the
process of developing a similar web site for renumbering MBLs.

5. Conclusions

The field of MBLs has grown exponentially over the past three decades, assisted
by advances in DNA sequencing and X-ray crystallography technology and, of course,
through the studies performed by dedicated clinicians and researchers. Unfortunately,
the importance of MBLs as the cause of disease has also grown, probably illustrated
mostly through the sudden appearance followed by severe outbreaks of NDM-1. Efforts to
design new β-lactam antibiotics that cannot be inactivated by MBLs and MBL inhibitors
are ongoing [16,20,22,158,159], and having sequence and structural information on an
increasing number of MBL families and family members has been beneficial for these efforts.
However, the more information we have, the more important it is to keep it organized.
Just as one needs to keep their files organized on a computer by putting them into the
appropriate folders and giving them descriptive and unique names, the classification
and naming of MBLs have also become more challenging and important. Here, we have
attempted to give an account of naming strategies to highlight this challenge. Some of them
have historical origins, and we must embrace the names we have. Going forward, an expert
panel has made some recommendations regarding β-lactamase nomenclature [51], and we
wholeheartedly agree with those recommendations. Many of the recommendations relate
to the assignment of new allele (family member) numbers. Besides, new families should not
be named based on geographical location. We additionally recommend that a three-letter
code with M in the third position be used for MBLs. This allows for 26 × 26 = 676 different
combinations, a number that might be exceeded at some point. Then, probably the easiest
way forward would be to move to a four-letter code.

Regarding the numbering of amino acid residues in MBLs, the best and most efficient
path forward will likely involve the use of growing databases of MBL sequences and
structures, automated sequence and structure alignments, and the automated assignment of
amino acid numbers based on, for instance, profile hidden Markov models and the already
established standard numbering scheme. These efforts will be facilitated by ever-increasing
computational resources and improved computer algorithms. It is expected that this
increased knowledge base will benefit the design and testing of new β-lactam antibiotics
and MBL inhibitors and improve the treatment of antibiotic-resistant bacterial infections.
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