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Abstract: Wastewater treatment plants (WWTPs) are recognized as important niches of antibiotic-
resistant bacteria that can be easily spread to the environment. In this study, we collected wastewater
samples from the WWTP of A Coruña (NW Spain) from April 2020 to February 2022 to evaluate the
presence of Gram-negative bacteria harboring carbapenemase genes. Bacteria isolated from wastew-
ater were classified and their antimicrobial profiles were determined. In total, 252 Gram-negative
bacteria carrying various carbapenemase genes were described. Whole-genome sequencing was
conducted on 55 selected carbapenemase producing isolates using Oxford Nanopore technology. This
study revealed the presence of a significant population of bacteria carrying carbapenemase genes
in WWTP, which constitutes a public health problem due to their risk of dissemination to the envi-
ronment. This emphasizes the usefulness of WWTP monitoring for combating antibiotic resistance.
Data revealed the presence of different types of sequences harboring carbapenemase genes, such as
blaKPC-2, blaGES-5, blaGES-6, blaIMP-11, blaIMP-28, blaOXA-24, blaOXA-48, blaOXA-58, blaOXA-217, and blaVIM-2.
Importantly, the presence of the blaKPC-2 gene in wastewater, several months before any clinical case
was detected in University Hospital of A Coruña, suggests that wastewater-based epidemiology can
be used as an early warning system for the surveillance of antibiotic-resistant bacteria.

Keywords: antimicrobial resistant bacteria; carbapenemase; Gram-negative bacteria; wastewater-
based epidemiology; whole-genome sequencing; blaKPC

1. Introduction

Antibiotics are one of the most significant medical achievements of the 20th century.
They can kill or inhibit the growth of bacteria that cause infectious diseases. The excessive
and irresponsible use of antibiotics has led to bacterial pathogens developing antibiotic
resistance (AR) and spreading, posing a threat to human health. It has been estimated
that at least 700,000 deaths occur annually worldwide due to antibiotic-resistant bacteria
(ARB). This is expected to reach 10 million deaths due to bacterial resistance by 2050,
which could entail an estimated cost of USD 100 billion [1]. Therefore, the World Health
Organization (WHO) and the USA Centers for Diseases Control and Prevention (CDC) have
considered that AR is a global public health problem, especially carbapenem resistance
in Gram-negative bacteria. Additionally, special attention should be paid to the ESKAPE
bacteria group, including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae,
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Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. [2], especially if
they harbor carbapenem resistance genes and Extended-Spectrum Beta-Lactamases (ESBL)
genes, which are often responsible for hospital infections [3,4]. However, carbapenems
(meropenem, imipenem, doripenem, and ertapenem), among the beta-lactam class of
antibiotics, are used as last resort antibiotics for treating the most severe infections caused
by multidrug-resistant bacteria [5–7]. Despite this, excessive carbapenem usage promotes a
variety of resistance mechanisms that can hydrolyze carbapenems [8]. In Spain, carbapenem
antibiotics rank as the fourth most prescribed group [9]. Carbapenem resistance can be
mediated by four major mechanisms. These include the over-expression of genes encoding
efflux pumps, the decrease in cell wall permeability, mutations on the antibiotic target,
or the production of carbapenemases. The production of carbapenemases predominates
worldwide as the main mechanism of resistance to carbapenems, which represents a
significant health risk. These enzymes can break down carbapenems and other beta-lactam
antibiotics and are mainly encoded on plasmids, which can be transmitted horizontally
to other bacteria [5–7,10]. Carbapenemases belong to three Ambler classes: A, B, and
D [5,6,10]. Class A carbapenemases include Guiana extended spectrum enzyme (GES),
Serratia marcescens enzyme (SME), imipenem-hydrolyzing beta lactamase (IMI), Serratia
fonticola carbapenemase-1 (SFC-1), and K. pneumoniae carbapenemase (KPC), all of which
are clinically relevant. Class B carbapenemases include New Delhi metallo-beta-lactamase
1 (NDM), imipenem-resistant pseudomonas (IMP), Verona integron-encoded metallo-beta-
lactamase (VIM), German imipenemase (GIM), and Seoul imipenemase (SIM). Class D
carbapenemases include oxacillinase enzymes (OXAs), particularly the clinically relevant
OXA-48 and its derivatives [5,6,10]. However, among carbapenemase enzymes, KPC, VIM,
IMP, NDM, and OXA-48 are the most effective based on their carbapenem hydrolysis
capacity and on their high ability to geographically spread [11]. Despite variations in
the regional distribution of prevalence rates, these five carbapenemase genes are often
identified in Enterobacterales [12].

Wastewater-based epidemiology (WBE) is an epidemiological approach that can be
used for public health surveillance and to predict disease outbreaks at an early stage. WBE
is based on the wastewater analysis of chemical or biological markers, such as pathogens,
resistant genes, pharmaceuticals, and other health indicators, which can be pooled in
one wastewater treatment plant connected to the local community [13]. Accordingly, the
CDC [14] has considered WBE to be a key procedure for ARB surveillance. Therefore,
wastewater surveillance systems have been developed in many places for tracking the
transmission of different pathogens in populations, including resistant pathogens. This
will provide insight into how humans, other animals, and the environment are exposed
to this threat [14]. Wastewater treatment plants (WWTPs) are considered environmental
hotspots for the spread of AR genes and AR bacteria [15]. WWTPs receive sewage from
different sources, such as hospitals, households, and animal husbandries, which use an-
tibiotics, biocides, disinfectants, metal residues, and pharmaceutical products, as well as
different microorganisms. Antibiotics and other substances may induce selection pressure,
promoting the horizontal gene transfer of resistance genes and leading to the dissemination
of AR in wastewater [15,16]. The significance of wastewater as a reservoir for ARGs has
been increasing over recent years, with regular reports on novel ARGs [17–23]. Several
contemporary wastewater treatment plants are not able to remove these microorganisms
completely, so the corresponding wastewater effluents or the sludges generated are po-
tential sources of ARGs. Therefore, understanding the presence of clinically relevant ARB
and their genes in wastewater could help in reducing their environmental circulation, thus
protecting human and other animals’ health [15].

Previous studies have described the presence of diverse ARB and ARGs in wastewater,
including carbapenem resistance [17,24–30]. However, due to the high significance of
carbapenem-resistant bacteria, further studies on WWTPs are required to better understand
molecular epidemiology. In the present study, we isolated and characterized a collection
of carbapenem-resistant bacteria from wastewater samples obtained from the WWTP of
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A Coruña (A Coruña, Northwest of Spain) during the period April 2020–February 2022.
This WWTP serves a population of ca. 400,000 inhabitants from the metropolitan area
of A Coruña. Our findings revealed the presence of carbapenem-resistant bacteria in the
wastewater. Interestingly, a collection of K. pneumoniae strains harboring blaKPC genes
was identified prior to clinical cases, which indicates the potential of wastewater-based
epidemiology as an early warning system for community and hospital infections.

2. Results
2.1. Identification of Bacterial Isolates

In total, 706 bacterial isolates were identified. Among these, 32.43% (n = 229) were
isolated from sewage, 36.7% (n = 259) from primary sludge, and 30.9% (n = 218) from
secondary sludge in the WWTP. The identified species and their respective percentages are
shown in Figure 1 and Table S1.
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Figure 1. Representation of the species identified from the wastewater samples obtained from the
WWTP of A Coruña. The bacterial isolates were isolated from three distinct sources within the WWTP:
primary sludge, secondary sludge, and sewage. The numbers within the figure correspond to the
count of bacterial isolates per individual species, while the colors employed in the figure represent
the different genera.

2.2. Antimicrobial Susceptibility Testing

Among the 706 bacterial isolates, 425 were chosen for antimicrobial susceptibility
testing according to their clinical relevance. The MIC results for these 425 bacteria are
shown in Figure 2 and Table S1. In summary, MIC results for meropenem showed that
all these 425 isolates were resistant (breakpoint for Enterobacterales R ≥ 4, P. aeruginosa
and Acinetobacter spp. R ≥ 8, non-Enterobacterales R ≥ 16). MIC results for imipenem
showed that 422 isolates were resistant (breakpoint for Enterobacterales R ≥ 4 µg/mL,
P. aeruginosa and Acinetobacter spp. R ≥ 8 µg/mL, non-Enterobacteriales R ≥ 16 µg/mL). For
ertapenem, only Enterobacterales were provided in accordance with CLSI standards. In our
study, 360 Enterobacterales isolates (84.7% of the total) were described. All of them were
resistant to ertapenem (breakpoint, R ≥ 2).

2.3. Carbapenemases Multiplex PCR Detection

Carbapenemase genes were detected by PCR in 252 strains (95%) of the 265 isolates
selected after antimicrobial susceptibility testing. Among the isolates, carbapenemase
genes were detected in the following proportions: blaKPC in 62.3% (165/265), blaVIM in
7.5% (20/265), blaIMP in 6.8% (18/265), blaOXA-48 in 5.6% (14/265), blaGES in 6% (16/265),
blaKPC and blaGES in 5.7% (15/265), blaKPC and blaOXA-48 in 0.8% (2/265), blaKPC and blaIMP
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in 0.4% (1/265), blaIMP and blaGES in 0.4% (1/265). None of the bacteria tested positive for
the carbapenemase gene blaNDM (Figure 3).
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Carbapenemase genes were not detected (ND) in 4.9% (13/265) of the isolates. A
comprehensive list of all identified bacterial species and their corresponding carbapenemase
genes is shown in Table S2.

2.4. Whole-Genome Sequencing

Whole-genome sequencing was performed on 55 bacterial isolates chosen based on
several factors, including clinical relevance, sampling site and date, MIC, and PCR results.
To understand the genomic characteristics of these isolates, an analysis was conducted; the
findings are summarized in Figure 4. Additional details can be found in Table S3.
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bacteria and their respective STs and carbapenemase genes. The biomaterial column shows the
sample origin from the WWTP of A Coruña, which include primary sludge (PS; brown), secondary
sludge (SS; yellow), and sewage (SW; red). Asterisks (*) represent an allele with less than 100%
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isolation dates for each strain during the study period. The green squares represent the presence
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indicate the absence of carbapenemase genes.
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Twenty-one isolates of Klebsiella spp. were selected for sequencing. These were identi-
fied as K. pneumoniae (n = 7), K. variicola (n = 5), K. quasipneumoniae (n = 4), K. quasivariicola
(n = 3), and K. michiganensis (n = 2). The seven K. pneumoniae strains belonged to three
different sequence types (STs): ST147 (n = 3), ST27 (n = 2), and ST872 (n = 2).

The harbored carbapenemase genes presented 100% identity with those described.
Two isolates of Klebsiella pneumonia (SW-2 and SW-5), which belonged to the ST147 group,
carried the blaOXA-48 gene. Meanwhile, K. pneumoniae isolate SS-84, belonging to ST147,
carried two types of carbapenemase genes, blaKPC-2 and blaOXA-48. Moreover, two K. pneu-
moniae isolates (PS-257 and SW-224) belonging to ST27 were found to have carbapenemase
genes blaKPC-2. Two other isolates of K. pneumoniae (SS-173 and PS-71) belonged to ST872
carried the blaKPC-2 gene. Four K. quasipneumoniae isolates belonged to four different STs:
ST3516 (PS-160), ST2389 (SW-196), ST1040* (PS-11), and ST3026 (SW-215). Carbapenemase
genes harbored presents 100% of identity with those described. The PS-160 and SW-196
isolates were found to carry the blaKPC-2 gene. This isolate (PS-11) was found to carry the
blaOXA-48 gene. Finally, the fourth isolate (SW-215) had the blaGES-5 gene. Five K. variicola
isolates belonging to ST347 harbored carbapenemase genes with 100% identity. Two isolates
of K. variicola (SS-175 and SW-229) carried two different carbapenemase genes. The SS-175
isolate was found to carry blaGES-5 and blaKPC-2 genes and the SW-229 isolate of K. variicola
harbored the blaGES-5 and blaKPC-2 genes. In addition, SW-4, SW-95, and SS-217 isolates
carried a single carbapenemase gene, blaKPC-2 in SW-4 and blaGES-5 in SW-95 and SS-217.
The three K. quasivariicola isolates, SS-215, SW-9, and SS-22, showed less than 100% identity
matches to the alleles of ST2569*. All of them carried the blaKPC-2 gene with 100% identity.
The two K. michiganensis isolates (SS-168 and PS-212) were found to be unknown sequence
types (STs) for the Multilocus Sequence Typing (MLST) database. Both isolates were found
to carry the blaKPC-2 gene with 100% identity.

In addition, sixteen Enterobacter isolates were selected for sequencing. The isolates
were classified as Enterobacter kobei (n = 7), E. roggenkampii (n = 5), E. asburiae (n = 3), and
E. hormaechei (n = 1). Seven isolates of E. kobei were identified, and they were classified into
different sequence types (STs). Among these isolates, four belonged to ST910*, one belonged
to ST910, and two belonged to ST32. Notably, the ST910* isolates did not match the alleles
of ST910* completely. These isolates, namely, PS-232, SW-12, SW-124, and SS-34, had less
than 100% identity with the alleles of ST910*, whereas the ST910 isolate (SW-130) and the
ST32 isolates (SW-11 and SW-13) showed a 100% identical match in the MLST database. The
identities for carbapenemase genes in E. kobei isolates were determined as follows: blaGES-6
and blaKPC-2 exhibited 100% identity, whereas the blaIMP-28 gene showed slightly lower
identity (99.59%) based on the CARD database. Among the E. kobei isolates, three were
identified to harbor two carbapenemase genes each: PS-232, SW-124, and SW-130. PS-232
was found to carry both the blaIMP-28 and the blaGES-6 genes, SW-124 carried the blaIMP-28
and blaKPC-2 genes, and SW-130 was found to possess two copies of the blaKPC-2 gene. Four
E. kobei isolates were identified, each carrying one carbapenemase gene. Specifically, SW-12
was found to contain the blaIMP-28 gene, SS-34 carried the blaKPC-2 gene, and both SW-11 and
SW-13 isolates were observed to harbor the blaKPC-2 gene. Five isolates of E. roggenkampii
were classified into different sequence types (STs). Within this set, three isolates (SW-20,
SW-32, and SW-109) were recognized as the closest to ST1330! (! represents the closest
to ST1330), while the two remaining isolates (SS-80 and SW-227) were assigned to ST523.
All these isolates were identified as carriers of the blaKPC-2 gene, demonstrating a 100%
match in the CARD database. Three isolates of E. asburiae were differentiated into three
distinct sequence types (STs). Among these, the PS-194 isolate and SS-172 isolate were
close to ST2016! and ST1009!, respectively, while the SS-77 isolate was classified under
ST23. All the isolates exhibited carbapenemase genes with a complete match of 100%
identity. Notably, the PS-194 isolate contained two carbapenemase genes, namely, the
blaKPC-2 gene and the blaGES-5 gene, whereas both the SS-77 and SS-172 isolates carried a
singular carbapenemase gene, specifically the blaKPC-2 gene. The E. hormaechei SW-75 isolate



Antibiotics 2024, 13, 194 7 of 17

was identified as belonging to ST93. It was confirmed to carry the blaOXA-48 gene, showing
complete identity at 100%.

Three E. coli isolates, namely, SW-225, PS-172, and SS-174, all carried the blaKPC-2 gene
with complete identity at 100%. Interestingly, SW-225 and PS-172 isolates were not assigned
to any known sequence types (STs) in the MLST database. In contrast, the SS-174 isolate
was categorized to ST1463*, although its alleles had less than 100% identity.

Moreover, two Acinetobacter isolates, SW-226 recognized as A. johnsonii and PS-22
identified as A. baumannii, were both characterized by unclassified sequence types (STs)
in the MLST database. However, the SW-226 isolate harbored three carbapenemase genes:
blaIMP-11, blaOXA-58 and blaOXA-24, while the PS-22 isolate harbored two carbapenemase
genes: blaOXA-217 and blaOXA-24. All these carbapenemase genes exhibited complete identity
at 100%.

In addition, one Citrobacter freundii (PS-195) isolate closely matched ST175! and carried
the blaKPC-2 gene, showing a full 100% match. Additionally, the identified SS-40 isolate
of Pseudocitrobacter corydidari did not correspond to any known ST in the MLST database,
although it carried the blaKPC-2 gene, exhibiting a complete identity of 100%. Two Kluyvera
intermedia isolates, namely, SW-107 and SW-10, were unknown STs in the MLST database.
Notably, the SW-107 isolate carried two blaKPC-2 genes, both with 100% identity, whereas the
SW-10 isolate lacked any carbapenemase genes. Two isolates of Aeromonas, namely, SW-6
(A. hydrophila) and PS-175 (A. caviae), were selected for sequencing. The SW-6 isolate was
found to be closely related to ST1919!; conversely, the PS-175 isolate had an unknown ST in
the MLST database. Notably, the SW-6 isolate carried the blaKPC-2 gene with a 100% identity
match, whereas PS-175 did not harbor any carbapenemase genes. Two Stenotrophomonas
maltophilia isolates were chosen for sequencing. The first isolate, SW-15, was assigned
to ST30*, although its alleles did not exhibit a 100% identity match. Conversely, the
second isolate, SW-27, belonged to ST79. Notably, neither isolate exhibited the presence of
carbapenemase genes. Finally, five Pseudomonas aeruginosa isolates (SS-209, SW-221, SW-184,
PS-256, and PS-254) were categorized as belonging to ST1284. All isolates exhibited the
presence of the blaVIM-2 gene, showing complete identity at 100%.

2.5. Presence of Carbapenemase Genes in Patients from CHUAC

In this study, we analyzed a dataset comprising 421 clinical bacterial isolates obtained
from CHUAC, NW Spain. The isolates were collected over a span of approximately six years
and eight months, from 5 January 2017 to 11 September 2023. Carbapenemase genes were
identified in the clinical isolates, with the blaOXA-48 gene being the most prevalent, detected
in 95% of isolates. This gene was consistently found from January 2017 to September
2023. Other carbapenemase genes were also detected in various years, including blaVIM
(2.6%, n = 11), blaKPC (1.2%, n = 5), blaNDM (1.2%, n = 5), and blaIMP (0.71%, n = 3). The
blaKPC carbapenemase gene was identified for the first time among clinical isolates at
our hospital (CHUAC) in June–July 2023, with occurrences found in three K. pneumoniae
isolates and two C. freundii isolates. For specific, detailed information on the respective
years, carbapenemase gene types, and the bacterial species that carried these genes, please
refer to Figure 5 and Table S4.
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3. Discussion

This research showed the presence of various carbapenemase genes (blaKPC, blaVIM,
blaIMP, blaOXA-24, blaOXA-48, and blaGES) in Gram-negative bacteria that were isolated from
the WWTP of A Coruña. This WWTP processes water from the metropolitan area of A
Coruña, in the northwest of Spain. To the best of our knowledge, this investigation marks
the first examination of ARGs at this specific site. The Gram-negative bacterial isolates were
obtained from different sources within the wastewater treatment plant, including sewage,
primary sludge, and secondary sludge. Our results indicated the presence and proliferation
of these bacteria and their resistance genes in the WWTP. Similarly, previous studies have
isolated a variety of bacteria and their resistance genes from all stages of WWTPs [29,31].

The Gram-negative bacterial isolates displayed significant diversity, with 70% of the
isolates representing highly clinically relevant bacteria that are known to cause infections
due to carbapenem resistance [2,3]. Among these clinically relevant carbapenem-resistant
bacteria, Enterobacteriaceae such as Klebsiella spp., Enterobacter spp., Citrobacter spp., and E.
coli accounted for 474 (95.8%) isolates, while P. aeruginosa and A. baumannii were represented
by 20 (4%) and 1 (0.2%) isolate (s), respectively. By conducting PCR tests on the 265 selected
isolates, we determined that 252 of them were positive for carbapenemase genes. Among
these bacteria, the blaKPC carbapenemase gene was the most prevalent carbapenemase type
identified in this study, and the blaOXA-48 gene exhibited a lower prevalence. KPC-type
carbapenemase are widely distributed and considered the most dominant carbapenemases
among Enterobacteriaceae globally [32]. Nevertheless, several studies have reported a higher
prevalence of blaOXA-48 among clinical isolates in multiple provinces of Spain [12,33–35].
However, despite extensive investigations, no evidence of the blaKPC gene was detected
among patients in the A Coruña metropolitan area (population of ca. 400,000) until June
2023. At this date, patients infected with bacteria harboring the blaKPC gene were identified
for the first time at the University Hospital of A Coruña. These clinical bacterial isolates
carrying the blaKPC gene included three K. pneumoniae isolates and two C. freundii isolates.
(Figure 5 and Table S4). This fact indicates, once more, that wastewater-based epidemi-
ology is an excellent tool for outbreak predictions, serving as an early warning system
of bacterial resistance. Additionally, our investigation revealed the presence of blaGES
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in bacterial isolates from WWTP, although this gene had not previously been detected
within our hospital setting. Analysis of our hospital’s collected data suggests a probable
emergence of this gene among future patients, similar to the pattern observed with blaKPC.
The significant presence of the blaKPC and blaGES genes in our WWTP isolates indicates the
potential presence of bacteria carrying these genes within the local community [33,36]. Con-
sequently, bacteria isolated from WWTPs can serve as valuable indicators for predicting the
existence of resistant bacteria in the local population [33,36]. In our study, the absence of the
NDM in comparison to hospital isolates suggests a potential connection to various factors.
These may encompass different selection pressures, dynamics of gene transfer (specifically,
horizontal gene transfer), and the diverse nature of the bacterial population [37].

In a previous investigation, blaKPC2 was initially identified in a WWTP in Japan, de-
spite its absence in clinical isolates. They proposed that the surveillance of AMR through
WWTP could aid identifying the continuous dissemination of AMR in the environment
and potentially serve as an early indicator of its spread in clinical settings and communi-
ties [38,39]. In another study conducted in Jeddah city, Saudi Arabia, researchers identified
the presence of the carbapenemase gene blaNDM-1 in an E. coli strain (ST101) in wastewater
for the first time. This gene was not detected in clinical isolates from the same area. The
researchers proposed that the influx of international pilgrims to Jeddah could potentially
have contributed to the spread of the blaNDM-1 gene in the wastewater treatment plant [40].

In our study, identification efforts revealed a variety of carbapenemase genes among
the Klebsiella genus within the K. pneumoniae species complex (KpSC). These species in-
clude K. pneumoniae (deemed critically significant in clinical contexts), as well as K. variicola,
K. quasipneumoniae, and K. quasivariicola, all linked to clinical infections [41,42]. In Spain,
K. pneumoniae stands out as the predominant species harboring a significant number of
carbapenemase genes, with blaOXA-48 being the most prevalent [43–45]. We detected
K. pneumoniae isolates of sequence type ST147 carrying the blaKPC-2 gene, the blaOXA-48
gene, or both. The ST147 isolate has gained global recognition as a widely disseminated
antimicrobial resistant clone, known to be associated with various carbapenemases (KPC,
OXA-48, VIM, and NDM), and has been implicated in multiple nosocomial outbreaks
worldwide [46]. Additionally, we detected K. pneumoniae strains of ST27 and ST872 car-
rying the blaKPC-2 gene, both STs known for their clinical significance [42,47]. We found
K. variicola isolates of sequence type ST347 carrying either the blaKPC-2 gene, the blaGES-5
gene, or both. This specific ST347 strain, recognized for its clinical significance, has been
observed to possess ESBL genes [48]. K. quasipneumoniae isolates, specifically ST3516 and
ST2389, were identified as carriers of the blaKPC-2 gene. Additionally, within this species,
ST1040 was found to harbor the blaOXA-48 gene, while ST3026 demonstrated carriage of
the blaGES-5 gene. Furthermore, multiple K. quasivariicola isolates that belonged to ST2569
were identified as carriers of the blaKPC-2 gene. None of the K. quasipneumoniae STs or
K. quasivariicola STs had been previously documented.

Additional types of carbapenemase genes have been detected in our work within
the E. cloacae complex (ECC), such as E. hormaechei, E. asburiae, E. roggenkampii, E. kobei.
ECC is frequently found in healthcare settings as a pathogen capable of causing a wide
range of infections, such as pneumonia, septicemia, and urinary tract infections. Moreover,
they are recognized for their multidrug resistance (MDR) [49–51]. Among them, we
identified an E. hormaechei isolate of sequence type 93, carrying the bla-OXA-48 gene. This
specific ST93 strain, found in a patient with a bloodstream infection, demonstrated the
presence of carbapenemase genes including blaNDM-1 and blaKPC-2, in addition to several
other resistance genes [52]. Isolates of E. kobei were identified as sequence type ST910
and displayed a spectrum of carbapenemase genes. One isolate notably presented a
combination of blaGES-5, blaGES-6, and blaIMP-28 genes. Additionally, a separate isolate
exclusively carried the blaIMP-28 gene, while another isolate demonstrated the presence
of two carbapenemase genes, namely, blaIMP-28 and blaKPC-2. Lastly, two isolates were
characterized by the sole presence of the blaKPC-2 gene. The ST910 was previously isolated
from hospital wastewater, showing the presence of the blaGES-24 gene [53]. Moreover, its
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identification was documented in German surface waters, confirming the existence of the
carbapenemase gene blaVIM-1 [54]. An additional E. kobei isolate, classified as ST32, exhibited
the presence of the carbapenemase gene blaKPC-2. This strain, previously recovered from a
clinical specimen in Colombia, also harbored the carbapenemase gene blaKPC-2 [55]. Isolates
of E. roggenkampii were categorized into two distinct sequence types, namely, ST1330
and ST523, with both types exhibiting the presence of the blaKPC-2 gene. Notably, the
ST1330 strain represents a novel detection, thus far unreported, whereas the ST523 strain,
previously identified in a human clinical sample, harbored the blaVIM-4 carbapenemase
gene [56]. E. asburiae isolates were classified into three distinct sequence types: ST2016,
ST1009, and ST23. The ST2016 strain demonstrated the presence of both blaGES-5 and
blaKPC-2, whereas the ST1009 strain carried the blaKPC-2 gene. Both STs indicate a novel
detection. The ST23 strain was found to contain the blaKPC-2 gene, while prior clinical
reports have indicated it association with the blaVIM-4 gene [56].

Isolates of P. aeruginosa were determined to be sequence type ST1284 and exhibited
the presence of the carbapenemase gene blaVIM-2. Notably, this specific ST1284 strain was
previously recovered from a patient diagnosed with ventilator-associated pneumonia in
Brazil, and it was found to harbor the carbapenemase gene blaVIM-7 [57]. The E. coli strain
identified in this study was classified as sequence type ST1463 and was found to harbor
the blaKPC-2 gene. Notably, this particular ST1463 strain had previously been documented
in China, originating from a patient specimen, and similarly exhibited the presence of
the blaKPC-2 gene [58]. The C. freundii strain, classified as ST175, and A. hydrophila strain,
categorized as ST1919, both carried the blaKPC-2 gene, representing a novel detection as
these particular STs had not previously been observed.

It is important to note that our sample collection from a single WWTP in our area may
not fully represent the spread of carbapenemase genes in our country. Further studies are
required to collect samples from different WWTP locations in Spain.

4. Materials and Methods
4.1. Sampling Site

The WWTP of A Coruña [59], located in the city of A Coruña (NW of Spain), collects
sewage from the A Coruña metropolitan area. This metropolitan area includes A Coruña,
Culleredo, Cambre, Oleiros, and Arteixo municipalities. The WWTP of A Coruña serves
about 400,000 inhabitants, which constitutes ca. 0.78% of the total population of Spain.
On average, the municipal sewage volume per day at the WWTP of A Coruña is about
135,000 m3.

4.2. Sampling, Isolation, and Bacterial Identification

The samples were collected from three locations within the WWTP of A Coruña,
including untreated sewage (influent), primary sludge, and secondary sludge, during the
period April 2020–February 2022. Each 500 mL sample was transported to the microbiology
laboratory in a cooling box. Samples were collected using automatic sampling, as previously
described [60].

Initially, the samples were diluted serially (1:10, 1:100, and 1:1000) in sterile water.
Subsequently, 100 µL of each diluted sample was applied to MacConkey agar plates (BD
Difco, Sparks, MD, USA) supplemented with 4, 8, and 16 µg/mL of meropenem (Sigma-
Aldrich, Darmstadt, Germany), as well as mSuperCARBA TM plates (CHROMagar, Paris,
France) [61]. All plates were incubated at 37 ◦C for 18–24 h. To represent the bacterial genetic
diversity in the sample, a random collection of colonies was selected from these plates.
These colonies were cultured on Luria Bertani (LB) agar medium plates, supplemented
with 4 µg/mL of meropenem, and incubated at 37 ◦C for 18–24 h. Subsequently, each
isolated species was identified using matrix-assisted laser desorption/ionization time-of-
flight mass spectrometry (MALDI-TOF MS) (Bruker-Daltonik, Billerica, MA, USA). The
identified isolates were stored in a solution of 20% glycerol and 80% LB broth at −80 ◦C for
further analysis.
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4.3. Antimicrobial Susceptibility Testing

The antimicrobial susceptibility testing was conducted using the broth microdilution
test, involving meropenem (Sigma-Aldrich, Darmstadt, Germany), ertapenem (Sigma-
Aldrich, Darmstadt, Germany), and imipenem (Sigma-Aldrich, Darmstadt, Germany)
antibiotics, in accordance with the guidelines established by the Clinical and Laboratory
Standards Institute (CLSI) [62]. Briefly, 100 µL of cation-adjusted Mueller–Hinton (M-H)
broth 2 (Merck Millipore, Darmstadt, Germany) was added to the 96-well polystyrene
microtiter sterile plate. Serially diluted concentrations of meropenem, imipenem, or er-
tapenem ranging from 0.25 to 128 µg/mL were established. In each plate, wells without
antibiotics were included as positive controls of growth, and wells without inocula and
antibiotics were used as negative control. The bacterial suspension at 0.5 McFarland
(1 × 108 CFU/mL) was diluted 1:20 to achieve 5 × 106 CFU/mL, and 5 µL was added to
the plate wells as an inoculum. The plates were placed in a plastic bag and incubated at
37 ◦C for 18 h. Minimum inhibitory concentrations (MICs) were expressed in µg/mL using
an inverted mirror to display the visual growth. The MICs were expressed in µg/mL using
an inverted mirror to display the visual growth. The interpretation of the results was also
in accordance to recommendations provided by the CLSI [63].

4.4. Carbapenemases Detection by Multiplex PCR

Bacterial DNA was extracted using the boiling method, consistent with previous
studies [64,65]. Subsequently, multiplex PCR was performed to assess DNA from each
isolate, followed by confirmation through single PCR. Detection of clinically significant
carbapenemase genes (blaNDM, blaKPC, blaIMP, blaVIM, blaOXA-48, and blaGES) was conducted
using the specific primers outlined in Table 1 [66,67]. The identification of carbapenemase
genes utilized GoTaq® DNA polymerase (Promega, Madison, WI, USA) and a T100 thermal
cycler (Bio-Rad, Hercules, CA, USA). Briefly, the multiplex PCRs were divided into two
groups: group 1 included blaKPC, blaVIM, and blaIMP, while group 2 included blaOXA-48
and blaNDM. The blaGES gene amplification was performed using a single reaction. The
multiplex PCR mixture for group 1 consisted of 11.625 µL of nuclease-free water, 5 µL
of 5× green GoTaq® buffer, 2.5 of µL MgCL2, 0.25 µL of dNTPs, 0.5 µL of each forward
primer (blaKPC, blaVIM, and blaIMP) with a concentration 10 µM, 0.5 µL of each reverse
primer (blaKPC, blaVIM, and blaIMP) with a concentration of 10 µM, 0.125 µL of GoTaq® DNA
polymerase, and 2.5 µL of DNA template. Group 2 consisted of the same reaction mixture
as before, with the only difference being the primer amounts. For this group, 0.75 µL of
each forward primer (blaOXA-48 and blaNDM) and 0.75 µL of each reverse primer (blaOXA-48
and blaNDM) was used. The single PCR mixture had the same amount for each component
except for the primers, which were 1.5 µL of forward primer and 1.5 µL of reverse primer.
The amplification conditions for both multiplex and single PCR were the same, as follows:
an initial denaturation at 95 ◦C for 2 min, followed by 34 cycles of amplification. Each cycle
consisted of denaturation at 95 ◦C for 1 min, annealing at 54 ◦C for 40 s, and extension at
72 ◦C for 50 s. The final extension was at 72 ◦C for 5 min. Each PCR procedure included a
positive and a negative control. The amplified products were analyzed by electrophoresis
using a 1% agarose gel.

Table 1. Oligonucleotides used in the present study.

Gene Oligonucleotide
Name Sequence (5′-3′) Product Size

(bp) References

blaKPC
KPC-Fm
KPC-Rm

CGTCTAGTTCTGCTGTCTTG
CTTGTCATCCTTGTTAGGCG

798
232 [66]

blaOXA-48
OXA-F
OXA-R

GCGTGGTTAAGGATGAACAC
CATCAAGTTCAACCCAACCG 438 [66]

blaVIM
VIM-F
VIM-R

GATGGTGTTTGGTCGCATA
CGAATGCGCAGCACCAG 390 [66]
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Table 1. Cont.

Gene Oligonucleotide
Name Sequence (5′-3′) Product Size

(bp) References

blaIMP
IMP-F
IMP-R

GGAATAGAGTGGCTTAAYTCTC
GGTTTAAYAAAACAACCACC 232 [66]

blaNDM
NDM-F
NDM-R

GGTTTGGCGATCTGGTTTTC
CGGAATGGCTCATCACGATC 621 [66]

blaGES
GES-F
GES-R

CTGGCAGGGATCGCTCACTC
TTC CGATCAGCCACCTCTCA 600 [67]

4.5. Whole-Genome Sequencing

First, a single colony from a fresh MH agar plate was suspended in 5 mL of LB broth
containing 4 µg/mL of meropenem and grown overnight at 180 rpm and 37 ◦C. Genomic
DNA was extracted from 1–2 mL of culture using the Puregene DNA extraction kit (Qiagen,
CA, USA), following the manufacturer’s instructions. Genomic DNA was purified using
Mag-Bind Total Pure NGS (Omega Bio-Tek, Inc., Norcross, GA, USA) to achieve the required
degree of DNA purity. The genomic DNA was mixed with Mag-Bind beads at a ratio of 1.8
(beads) to 1 (genomic DNA), following the manufacturer’s instructions. Quantification and
DNA purity ware determined by the ratio of absorbance at 260/280 nm and 260/230 nm
using a BioDrop uLite Spectrophotometer (BioDrop, Cambridge, UK), and by fluorometry
using an Invitrogen Qubit TM 4 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA).
The DNA library preparation was conducted using the Rapid Barcoding Sequencing Kit
(Oxford Nanopore Technologies, Oxford, UK), following the manufacturer’s instructions.
The concentration of genomic DNA used for the library preparation ranged between 55
and 65 ng/µL. Sequencing was performed using MinION Mk1C devices and FLO-MIN106
flow cells for 72 h of sequencing and MinKNOW software version 21.05.26 (all provided by
Oxford Nanopore Technologies, Oxford, UK).

4.6. Bioinformatics

Basecalling was performed using Guppy (v.6.4.6+ae70e8f) and the SUP model
(dna_r9.4.1_450bps_sup.cfg), activating demultiplexing, trimming, and read splitting. The
resulting reads were then further split using Duplex Sequencing Tools (v.0.2.9) [68] and
quality-controlled with Filtlong (v.0.2.1) [69]. The effects of these steps were checked with
NanoPlot (v.1.40.0) [70] before and after, resulting in a median of 37,406 reads, a median
quality of Q14, and an N50 of 15 Kbp per sample. Flye (v.2.9-b1768) [71] was used to
create assemblies, which were then polished with medaka (v.1.7.2) [72] and Homopolish
(v.0.3.3) [73]. CheckM (v.1.1.3) [74] was used to assess their quality, discarding them if they
had high contamination or low completeness. Species identification was performed with
Kmerfinder (v.3.2) [75] and sourmash (v.4.6.1) [76]; mlst (Center for Genomic Epidemiology,
v.2.0) [77] was used for ST identification. Genomes were annotated using bakta (v.1.7.0) [78],
mobile elements were identified using MOB-suite (v.3.1.0) [79], and resistance genes were
detected using RGI (v.5.2.0) and CARD (v.3.2.6) [80]. Additionally, Kleborate (v.2.2.0) [81]
was used for Klebsiella characterization. To create the phylogenetic tree, PIRATE (v.1.0.4) [82]
and ggtree (v.3.0.4) [83] were used.

4.7. Clinical Data

Data on clinical bacterial isolates detected in patients were obtained from the database
of the University Hospital of A Coruña (CHUAC) (NW Spain), covering the period from 5
January 2017 to 11 September 2023.

5. Conclusions

Overall, our study emphasizes the role of WWTPs as a reservoir for carbapenemase
genes, revealing a diverse range of bacterial sequence types (STs). Notably, the blaKPC
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gene emerged as the predominant carbapenemase gene among the bacterial isolates. Sig-
nificantly, this resistance gene was absent in clinical isolates at our hospital before June
2023, highlighting the importance of monitoring ARGs in WWTPs as an early warning
system to anticipate potential community and hospital ARBs. However, conducting further
research at WWTP sites globally is crucial to achieve a comprehensive understanding of
the prevalence and diversity of carbapenemase genes worldwide.
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